# Math Camp 

Justin Grimmer

Associate Professor<br>Department of Political Science<br>Stanford University

## September 15th, 2016

## Conditional Probability

Political scientists almost always examine conditional relationships

- Given highway and partisanship, what is the probability of moving? (Clayton Nall)
- Given racial background, what is the probability of holding liberal political views? (Lauren Davenport)
- Given small donor base, what is the probability of extreme positions? (Adam Bonica)


## Conditional Probability

Political scientists almost always examine conditional relationships

- Given highway and partisanship, what is the probability of moving? (Clayton Nall)
- Given racial background, what is the probability of holding liberal political views? (Lauren Davenport)
- Given small donor base, what is the probability of extreme positions? (Adam Bonica)
Intuition:


## Conditional Probability

Political scientists almost always examine conditional relationships

- Given highway and partisanship, what is the probability of moving? (Clayton Nall)
- Given racial background, what is the probability of holding liberal political views? (Lauren Davenport)
- Given small donor base, what is the probability of extreme positions? (Adam Bonica)
Intuition:
- Some event has occurred: an outcome was realized


## Conditional Probability

Political scientists almost always examine conditional relationships

- Given highway and partisanship, what is the probability of moving? (Clayton Nall)
- Given racial background, what is the probability of holding liberal political views? (Lauren Davenport)
- Given small donor base, what is the probability of extreme positions? (Adam Bonica)
Intuition:
- Some event has occurred: an outcome was realized
- And with the knowledge that this outcome has already happened


## Conditional Probability

Political scientists almost always examine conditional relationships

- Given highway and partisanship, what is the probability of moving? (Clayton Nall)
- Given racial background, what is the probability of holding liberal political views? (Lauren Davenport)
- Given small donor base, what is the probability of extreme positions? (Adam Bonica)
Intuition:
- Some event has occurred: an outcome was realized
- And with the knowledge that this outcome has already happened
- What is the probability that something in another set happens?


## Conditional Probability

Political scientists almost always examine conditional relationships

- Given highway and partisanship, what is the probability of moving? (Clayton Nall)
- Given racial background, what is the probability of holding liberal political views? (Lauren Davenport)
- Given small donor base, what is the probability of extreme positions? (Adam Bonica)
Intuition:
- Some event has occurred: an outcome was realized
- And with the knowledge that this outcome has already happened
- What is the probability that something in another set happens?

Let's formalize this idea.

## Conditional Probability: Definition

## Definition

Suppose we have two events, $E$ and $F$, and that $P(F)>0$. Then,

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}
$$

## Conditional Probability: Definition

## Definition

Suppose we have two events, $E$ and $F$, and that $P(F)>0$. Then,

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}
$$

- $P(E \cap F)$ : Both $E$ and $F$ must occur


## Conditional Probability: Definition

Definition
Suppose we have two events, $E$ and $F$, and that $P(F)>0$. Then,

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}
$$

- $P(E \cap F)$ : Both $E$ and $F$ must occur
- $P(F)$ normalize: we know $P(F)$ already occurred


## Some Examples

## Some Examples

## Example 1:

## Some Examples

## Example 1:

- $F=\{$ All Democrats Win $\}$


## Some Examples

## Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$


## Some Examples

## Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$


## Some Examples

## Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$

Example 2:

## Some Examples

## Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$

Example 2:

- $F=\{$ All Democrats Win $\}$


## Some Examples

## Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$

Example 2:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Louie Gohmert Wins (R-TX) $\}$


## Some Examples

## Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$

Example 2:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Louie Gohmert Wins (R-TX) $\}$
- $F \cap E=\emptyset \Rightarrow P(E \mid F)=\frac{P(F \cap E)}{P(F)}=\frac{P(\emptyset)}{P(F)}=0$


## Some Examples

## Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$

Example 2:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Louie Gohmert Wins (R-TX) $\}$
- $F \cap E=\emptyset \Rightarrow P(E \mid F)=\frac{P(F \cap E)}{P(F)}=\frac{P(\emptyset)}{P(F)}=0$

Example 3: (Wilkins, Legislative Studies Quarterly, TA Emeritus, 450a)

## Some Examples

## Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$

Example 2:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Louie Gohmert Wins (R-TX) $\}$
- $F \cap E=\emptyset \Rightarrow P(E \mid F)=\frac{P(F \cap E)}{P(F)}=\frac{P(\emptyset)}{P(F)}=0$

Example 3: (Wilkins, Legislative Studies Quarterly, TA Emeritus, 450a)

- $I=\{$ Candidate is an incumbent $\}$


## Some Examples

Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$

Example 2:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Louie Gohmert Wins (R-TX) $\}$
- $F \cap E=\emptyset \Rightarrow P(E \mid F)=\frac{P(F \cap E)}{P(F)}=\frac{P(\emptyset)}{P(F)}=0$

Example 3: (Wilkins, Legislative Studies Quarterly, TA Emeritus, 450a)

- $I=\{$ Candidate is an incumbent $\}$
- $D=\{$ Candidate Defeated $\}$


## Some Examples

Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$

Example 2:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Louie Gohmert Wins (R-TX) $\}$
- $F \cap E=\emptyset \Rightarrow P(E \mid F)=\frac{P(F \cap E)}{P(F)}=\frac{P(\emptyset)}{P(F)}=0$

Example 3: (Wilkins, Legislative Studies Quarterly, TA Emeritus, 450a)

- $I=\{$ Candidate is an incumbent $\}$
- $D=\{$ Candidate Defeated $\}$
- $P(D \mid I)=\frac{P(D \cap I)}{P(I)}$


## Some Examples

Example 1:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Nancy Pelosi Wins (D-CA) $\}$
- If $F$ occurs then $E$ most occur, $P(E \mid F)=1$

Example 2:

- $F=\{$ All Democrats Win $\}$
- $E=\{$ Louie Gohmert Wins (R-TX) $\}$
- $F \cap E=\emptyset \Rightarrow P(E \mid F)=\frac{P(F \cap E)}{P(F)}=\frac{P(\emptyset)}{P(F)}=0$

Example 3: (Wilkins, Legislative Studies Quarterly, TA Emeritus, 450a)

- $I=\{$ Candidate is an incumbent $\}$
- $D=\{$ Candidate Defeated $\}$
- $P(D \mid I)=\frac{P(D \cap I)}{P(I)}$
- In words?


## Conditional Probabilities are Probabilities

Everything we proved yesterday holds for $P(\cdot \mid B)$.

## Conditional Probabilities are Probabilities

Everything we proved yesterday holds for $P(\cdot \mid B)$.

- $P(S \mid B)=\frac{P(S \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1$


## Conditional Probabilities are Probabilities

Everything we proved yesterday holds for $P(\cdot \mid B)$.

- $P(S \mid B)=\frac{P(S \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1$
- Suppose $E_{1}, E_{2}, \ldots, E_{N}$ are mutually exclusive. Recall: $\left(\cup_{i=1}^{N} E_{i}\right) \cap B=\cup_{i=1}^{N} E_{i} \cap B$

$$
\begin{aligned}
P\left(\cup_{i=1}^{N} E_{i} \mid B\right) & =\frac{P\left(\cup_{i=1}^{N} E_{i} \cap B\right)}{P(B)} \\
& =\frac{\sum_{i=1}^{N} P\left(E_{i} \cap B\right)}{P(B)} \\
& =\sum_{i=1}^{N} P\left(E_{i} \mid B\right)
\end{aligned}
$$

## Conditional Probabilities are Probabilities

Everything we proved yesterday holds for $P(\cdot \mid B)$.

- $P(S \mid B)=\frac{P(S \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1$
- Suppose $E_{1}, E_{2}, \ldots, E_{N}$ are mutually exclusive. Recall: $\left(\cup_{i=1}^{N} E_{i}\right) \cap B=\cup_{i=1}^{N} E_{i} \cap B$

$$
\begin{aligned}
P\left(\cup_{i=1}^{N} E_{i} \mid B\right) & =\frac{P\left(\cup_{i=1}^{N} E_{i} \cap B\right)}{P(B)} \\
& =\frac{\sum_{i=1}^{N} P\left(E_{i} \cap B\right)}{P(B)} \\
& =\sum_{i=1}^{N} P\left(E_{i} \mid B\right)
\end{aligned}
$$

We are calculating probabilities in the new "universe" $B$

## $P(A \mid B)$ and $P(B \mid A)$ are usually different

## $P(A \mid B)$ and $P(B \mid A)$ are usually different

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

## $P(A \mid B)$ and $P(B \mid A)$ are usually different

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
& P(B \mid A)=\frac{P(A \cap B)}{P(A)}
\end{aligned}
$$

## $P(A \mid B)$ and $P(B \mid A)$ are usually different

Numerous serious examples: Why American Hate Welfare (Gilens 1995)

## $P(A \mid B)$ and $P(B \mid A)$ are usually different

Numerous serious examples: Why American Hate Welfare (Gilens 1995) Less Serious Example

## $P(A \mid B)$ and $P(B \mid A)$ are usually different

Numerous serious examples: Why American Hate Welfare (Gilens 1995) Less Serious Example $\rightsquigarrow$ type of person who flies to vegas on Southwest Airlines

## $P(A \mid B)$ and $P(B \mid A)$ are usually different

Numerous serious examples: Why American Hate Welfare (Gilens 1995) Less Serious Example $\rightsquigarrow$ type of person who flies to vegas on Southwest Airlines

$$
P(\text { Cutoff Shirt } \mid \text { Southwest Airlines })=0.2
$$

## $P(A \mid B)$ and $P(B \mid A)$ are usually different

Numerous serious examples: Why American Hate Welfare (Gilens 1995) Less Serious Example $\rightsquigarrow$ type of person who flies to vegas on Southwest Airlines

$$
\begin{aligned}
P(\text { Cutoff Shirt } \mid \text { Southwest Airlines }) & =0.2 \\
P(\text { Southwest Airlines } \mid \text { Cutoff Shirt }) & \approx 1
\end{aligned}
$$

## Proposition

Multiplication Rule: Suppose $E_{1}, E_{2}, \ldots, E_{N}$ is a sequence of events.

$$
P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{N}\right)=
$$

$$
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{2}, E_{1}\right) \times \cdots \times P\left(E_{N} \mid E_{N-1}, E_{N-2}, \ldots, E_{1}\right)
$$

## Proposition

Multiplication Rule: Suppose $E_{1}, E_{2}, \ldots, E_{N}$ is a sequence of events.

$$
P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{N}\right)=
$$

$$
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{2}, E_{1}\right) \times \cdots \times P\left(E_{N} \mid E_{N-1}, E_{N-2}, \ldots, E_{1}\right)
$$

Proof.

$$
\begin{aligned}
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) & =P\left(E_{1}\right) \frac{P\left(E_{2} \cap E_{1}\right)}{P\left(E_{1}\right)} \\
& =P\left(E_{1} \cap E_{2}\right)
\end{aligned}
$$

## Proposition

Multiplication Rule: Suppose $E_{1}, E_{2}, \ldots, E_{N}$ is a sequence of events.

$$
P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{N}\right)=
$$

$$
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{2}, E_{1}\right) \times \cdots \times P\left(E_{N} \mid E_{N-1}, E_{N-2}, \ldots, E_{1}\right)
$$

Proof.

$$
\begin{aligned}
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) & =P\left(E_{1}\right) \frac{P\left(E_{2} \cap E_{1}\right)}{P\left(E_{1}\right)} \\
& =P\left(E_{1} \cap E_{2}\right) \\
P\left(E_{1} \cap E_{2}\right) P\left(E_{3} \mid E_{1}, E_{2}\right) & =P\left(E_{1} \cap E_{2}\right) \frac{P\left(E_{3} \cap E_{2} \cap E_{1}\right)}{P\left(E_{2} \cap E_{1}\right)} \\
& =P\left(E_{3} \cap E_{2} \cap E_{1}\right)
\end{aligned}
$$

## Proposition

Multiplication Rule: Suppose $E_{1}, E_{2}, \ldots, E_{N}$ is a sequence of events.

$$
P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{N}\right)=
$$

$$
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{2}, E_{1}\right) \times \cdots \times P\left(E_{N} \mid E_{N-1}, E_{N-2}, \ldots, E_{1}\right)
$$

Proof.

$$
\begin{aligned}
P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) & =P\left(E_{1}\right) \frac{P\left(E_{2} \cap E_{1}\right)}{P\left(E_{1}\right)} \\
& =P\left(E_{1} \cap E_{2}\right) \\
P\left(E_{1} \cap E_{2}\right) P\left(E_{3} \mid E_{1}, E_{2}\right) & =P\left(E_{1} \cap E_{2}\right) \frac{P\left(E_{3} \cap E_{2} \cap E_{1}\right)}{P\left(E_{2} \cap E_{1}\right)} \\
& =P\left(E_{3} \cap E_{2} \cap E_{1}\right)
\end{aligned}
$$

Repeating for all probabilities proves the proposition

## Law of Total Probability

## Proposition

Suppose that we have a set of events $F_{1}, F_{2}, \ldots, F_{N}$ such that the events are mutually exclusive and together comprise the entire sample space $\cup_{i=1}^{N} F_{i}=$ Sample Space. Then, for any event $E$

$$
P(E)=\sum_{i=1}^{N} P\left(E \mid F_{i}\right) \times P\left(F_{i}\right)
$$

## Law of Total Probability

$$
P(E)=\sum_{i=1}^{N} P\left(E \mid F_{i}\right) \times P\left(F_{i}\right)
$$

## Law of Total Probability

$$
P(E)=\sum_{i=1}^{N} P\left(E \mid F_{i}\right) \times P\left(F_{i}\right)
$$

## Proof.

Suppose $F_{1}, F_{2}, \ldots, F_{N}$ are mutually exclusive and $\cup_{i=1}^{N} F_{i}=S$. Then we can write $E$ as:

## Law of Total Probability

$$
P(E)=\sum_{i=1}^{N} P\left(E \mid F_{i}\right) \times P\left(F_{i}\right)
$$

## Proof.

Suppose $F_{1}, F_{2}, \ldots, F_{N}$ are mutually exclusive and $\cup_{i=1}^{N} F_{i}=S$. Then we can write $E$ as:

$$
E=\left(E \cap F_{1}\right) \cup\left(E \cap F_{2}\right) \ldots \cup\left(E \cap F_{N}\right)
$$

## Law of Total Probability

$$
P(E)=\sum_{i=1}^{N} P\left(E \mid F_{i}\right) \times P\left(F_{i}\right)
$$

## Proof.

Suppose $F_{1}, F_{2}, \ldots, F_{N}$ are mutually exclusive and $\cup_{i=1}^{N} F_{i}=S$. Then we can write $E$ as:

$$
\begin{aligned}
E & =\left(E \cap F_{1}\right) \cup\left(E \cap F_{2}\right) \ldots \cup\left(E \cap F_{N}\right) \\
P(E) & =P\left(\left(E \cap F_{1}\right) \cup\left(E \cap F_{2}\right) \ldots \cup\left(E \cap F_{N}\right)\right)
\end{aligned}
$$

## Law of Total Probability

$$
P(E)=\sum_{i=1}^{N} P\left(E \mid F_{i}\right) \times P\left(F_{i}\right)
$$

## Proof.

Suppose $F_{1}, F_{2}, \ldots, F_{N}$ are mutually exclusive and $\cup_{i=1}^{N} F_{i}=S$. Then we can write $E$ as:

$$
\begin{aligned}
E & =\left(E \cap F_{1}\right) \cup\left(E \cap F_{2}\right) \ldots \cup\left(E \cap F_{N}\right) \\
P(E) & =P\left(\left(E \cap F_{1}\right) \cup\left(E \cap F_{2}\right) \ldots \cup\left(E \cap F_{N}\right)\right) \\
& =\sum_{i=1}^{N} P\left(E \cap F_{i}\right)
\end{aligned}
$$

## Law of Total Probability

$$
P(E)=\sum_{i=1}^{N} P\left(E \mid F_{i}\right) \times P\left(F_{i}\right)
$$

## Proof.

Suppose $F_{1}, F_{2}, \ldots, F_{N}$ are mutually exclusive and $\cup_{i=1}^{N} F_{i}=S$. Then we can write $E$ as:

$$
\begin{aligned}
E & =\left(E \cap F_{1}\right) \cup\left(E \cap F_{2}\right) \ldots \cup\left(E \cap F_{N}\right) \\
P(E) & =P\left(\left(E \cap F_{1}\right) \cup\left(E \cap F_{2}\right) \ldots \cup\left(E \cap F_{N}\right)\right) \\
& =\sum_{i=1}^{N} P\left(E \cap F_{i}\right) \\
& =\sum_{i=1}^{N} P\left(E \mid F_{i}\right) P\left(F_{i}\right)
\end{aligned}
$$

## Example: Law of Total Probability

Infer $P$ (vote) after mobilization campaign

## Example: Law of Total Probability

Infer $P$ (vote) after mobilization campaign

- $P($ vote $\mid$ mobilized $)=0.75$


## Example: Law of Total Probability

Infer $P$ (vote) after mobilization campaign

- $P($ vote $\mid$ mobilized $)=0.75$
- $P($ vote $\mid$ not mobilized $)=0.25$


## Example: Law of Total Probability

Infer $P$ (vote) after mobilization campaign

- $P($ vote $\mid$ mobilized $)=0.75$
- $P($ vote $\mid$ not mobilized $)=0.25$
- $P($ mobilized $)=0.6 ; P($ not mobilized $)=0.4$


## Example: Law of Total Probability

Infer $P$ (vote) after mobilization campaign

- $P($ vote $\mid$ mobilized $)=0.75$
- $P($ vote $\mid$ not mobilized $)=0.25$
- $P($ mobilized $)=0.6 ; P($ not mobilized $)=0.4$
- What is $P$ (vote)?


## Example: Law of Total Probability

Infer $P$ (vote) after mobilization campaign

- $P($ vote $\mid$ mobilized $)=0.75$
- $P($ vote $\mid$ not mobilized $)=0.25$
- $P($ mobilized $)=0.6 ; P($ not mobilized $)=0.4$
- What is $P$ (vote)?

Sample space (one person) $=$
\{ (mobilized, vote), (mobilized, not vote), (not mobilized, vote), (not mobilized, not vote) $\}$
Mobilization partitions the space (mutually exclusive and exhaustive)

## Example: Law of Total Probability

Infer $P$ (vote) after mobilization campaign

- $P($ vote $\mid$ mobilized $)=0.75$
- $P($ vote $\mid$ not mobilized $)=0.25$
- $P($ mobilized $)=0.6 ; P($ not mobilized $)=0.4$
- What is $P$ (vote)?

Sample space (one person) $=$
\{ (mobilized, vote), (mobilized, not vote), (not mobilized, vote), (not mobilized, not vote) \}
Mobilization partitions the space (mutually exclusive and exhaustive)
We can use the law of total probability

## Example: Law of Total Probability

Infer $P$ (vote) after mobilization campaign

- $P($ vote $\mid$ mobilized $)=0.75$
- $P($ vote $\mid$ not mobilized $)=0.25$
- $P($ mobilized $)=0.6 ; P($ not mobilized $)=0.4$
- What is $P$ (vote)?

Sample space (one person) $=$
\{ (mobilized, vote), (mobilized, not vote), (not mobilized, vote), (not mobilized, not vote) \}
Mobilization partitions the space (mutually exclusive and exhaustive)
We can use the law of total probability

$$
\begin{aligned}
P(\text { vote }) & =P(\text { mob } .) \times P(\text { vote } \mid \text { mob } .)+P(\text { not mob } \times P(\text { vote } \mid \text { not mob }) \\
& =0.6 \times 0.75+0.4 \times 0.25 \\
& =0.55
\end{aligned}
$$

## Example Law of Total Probability

Mixture Models: flexible modeling strategy.

## Example Law of Total Probability

Mixture Models: flexible modeling strategy.
Two coins:

## Example Law of Total Probability

Mixture Models: flexible modeling strategy.
Two coins:

- Fair: $P(H)=1 / 2$


## Example Law of Total Probability

Mixture Models: flexible modeling strategy.
Two coins:

- Fair: $P(H)=1 / 2$
- Biased $P(H)=3 / 4$


## Example Law of Total Probability

Mixture Models: flexible modeling strategy.
Two coins:

- Fair: $P(H)=1 / 2$
- Biased $P(H)=3 / 4$

Draw a coin from urn $(P($ fair $)=1 / 2)$ and then flip. $P(H)$ ?

## Example Law of Total Probability

Mixture Models: flexible modeling strategy.
Two coins:

- Fair: $P(H)=1 / 2$
- Biased $P(H)=3 / 4$

Draw a coin from urn $(P($ fair $)=1 / 2)$ and then flip.
$P(H)$ ?
$S=\{($ fair,$H),($ fair,$T),($ bias,$H),($ bias, $T)\}$

## Example Law of Total Probability

Mixture Models: flexible modeling strategy.
Two coins:

- Fair: $P(H)=1 / 2$
- Biased $P(H)=3 / 4$

Draw a coin from urn $(P($ fair $)=1 / 2)$ and then flip.
$P(H)$ ?
$S=\{($ fair,$H),($ fair,$T),($ bias,$H),($ bias, $T)\}$

$$
P(H)=P(\text { fair }) \times P(H \mid \text { fair })+P(\text { bias }) \times P(H \mid \text { bias })
$$

## Example Law of Total Probability

Mixture Models: flexible modeling strategy.
Two coins:

- Fair: $P(H)=1 / 2$
- Biased $P(H)=3 / 4$

Draw a coin from urn $(P($ fair $)=1 / 2)$ and then flip.
$P(H)$ ?
$S=\{($ fair,$H),($ fair,$T),($ bias,$H),($ bias, $T)\}$

$$
\begin{aligned}
P(H) & =P(\text { fair }) \times P(H \mid \text { fair })+P(\text { bias }) \times P(H \mid \text { bias }) \\
& =\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times \frac{3}{4} \\
& =\frac{5}{8}
\end{aligned}
$$

## Example Law of Total Probability

Mixture Models: flexible modeling strategy.
Two coins:

- Fair: $P(H)=1 / 2$
- Biased $P(H)=3 / 4$

Draw a coin from urn $(P($ fair $)=1 / 2)$ and then flip.
$P(H)$ ?
$S=\{($ fair,$H),($ fair,$T),($ bias,$H),($ bias, $T)\}$

$$
\begin{aligned}
P(H) & =P(\text { fair }) \times P(H \mid \text { fair })+P(\text { bias }) \times P(H \mid \text { bias }) \\
& =\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times \frac{3}{4} \\
& =\frac{5}{8}
\end{aligned}
$$

Mixture of two coins

## Bayes' Rule

- $P(B \mid A)$ may be easy to obtain
- $P(A \mid B)$ may be harder to determine
- Bayes' rule provides a method to move from $P(B \mid A)$ to $P(A \mid B)$.


## Definition

Bayes' Rule: For two events $A$ and $B$,

$$
P(A \mid B)=\frac{P(A) \times P(B \mid A)}{P(B)}
$$

## Definition

Bayes' Rule: For two events $A$ and $B$,

$$
P(A \mid B)=\frac{P(A) \times P(B \mid A)}{P(B)}
$$

Proof.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

## Definition

Bayes' Rule: For two events $A$ and $B$,

$$
P(A \mid B)=\frac{P(A) \times P(B \mid A)}{P(B)}
$$

Proof.

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

## Bayes' Rule: Example

Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify racial groups from lists of names?

## Bayes' Rule: Example

Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify racial groups from lists of names?
Census Bureau collects information on distribution of names by race.

## Bayes' Rule: Example

Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify racial groups from lists of names?
Census Bureau collects information on distribution of names by race. For example, Washington is the "blackest" name in America.

## Bayes' Rule: Example

Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify racial groups from lists of names?
Census Bureau collects information on distribution of names by race. For example, Washington is the "blackest" name in America.

- $\mathrm{P}($ black $)=0.126$.
- $\mathrm{P}($ not black $)=1-\mathrm{P}($ black $)=0.874$.
- $\mathrm{P}($ Washington $\mid$ black $)=0.00378$.
- $P($ Washington $\mid n b)=0.000060615$.


## Bayes' Rule: Example

Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify racial groups from lists of names?
Census Bureau collects information on distribution of names by race. For example, Washington is the "blackest" name in America.

- $\mathrm{P}($ black $)=0.126$.
- $\mathrm{P}($ not black $)=1-\mathrm{P}($ black $)=0.874$.
- $\mathrm{P}($ Washington $\mid$ black $)=0.00378$.
- $\mathrm{P}($ Washington $\mid \mathrm{nb})=0.000060615$.

$$
\begin{aligned}
P(\text { black } \mid \text { Wash }) & =\frac{P(\text { black }) P(\text { Wash } \mid \text { black })}{P(\text { Wash })} \\
& =\frac{P(\text { black }) P(\text { Wash } \mid \text { black })}{P(\text { black }) P(\text { Wash } \mid \text { black })+P(\text { nb }) P(\text { Wash } \mid \text { nb })} \\
& =\frac{0.126 \times 0.00378}{0.126 \times 0.00378+0.874 \times 0.000060616} \\
& \approx 0.9
\end{aligned}
$$




## MARILYN vos SAVANT Colurn nist Parade Magazine

"You blew it, and you blew it big! Since you seem to have difficulty grasping the basic principle at work here, l'll explain. After the host reveals a goat, you now have a one-in-two chance of being correct. Whether you change your selection or not, the odds are the same. There is enough mathematical illiteracy in this country, and we don't need the world's highest IQ propagating more. Shame!" Scott Smith, Ph.D. University of Florida (From Wikipedia)

## Monty Hall Problem

Suppose we have three doors. $A, B, C$.

## Monty Hall Problem

Suppose we have three doors. $A, B, C$.
Behind one door there is a car. Behind the others is a goat (you don't want a goat)

## Monty Hall Problem

Suppose we have three doors. $A, B, C$.
Behind one door there is a car. Behind the others is a goat (you don't want a goat)

- A contestant guesses a door.


## Monty Hall Problem

Suppose we have three doors. $A, B, C$.
Behind one door there is a car. Behind the others is a goat (you don't want a goat)

- A contestant guesses a door.
- The host opens a different door and then contestant has option to switch


## Monty Hall Problem

Suppose we have three doors. $A, B, C$.
Behind one door there is a car. Behind the others is a goat (you don't want a goat)

- A contestant guesses a door.
- The host opens a different door and then contestant has option to switch
- Should the contestant switch?


## Monty Hall Problem

Suppose we have three doors. $A, B, C$.
Behind one door there is a car. Behind the others is a goat (you don't want a goat)

- A contestant guesses a door.
- The host opens a different door and then contestant has option to switch
- Should the contestant switch?

Contestant guesses $A$

## Monty Hall Problem

Suppose we have three doors. $A, B, C$.
Behind one door there is a car. Behind the others is a goat (you don't want a goat)

- A contestant guesses a door.
- The host opens a different door and then contestant has option to switch
- Should the contestant switch?

Contestant guesses $A$
$P(A)=1 / 3 \rightsquigarrow$ chance of winning without switch

## Monty Hall Problem

Suppose we have three doors. $A, B, C$.
Behind one door there is a car. Behind the others is a goat (you don't want a goat)

- A contestant guesses a door.
- The host opens a different door and then contestant has option to switch
- Should the contestant switch?

Contestant guesses $A$
$P(A)=1 / 3 \rightsquigarrow$ chance of winning without switch
If $C$ is revealed to not have a car:

## Monty Hall Problem

Suppose we have three doors. $A, B, C$.
Behind one door there is a car. Behind the others is a goat (you don't want a goat)

- A contestant guesses a door.
- The host opens a different door and then contestant has option to switch
- Should the contestant switch?

Contestant guesses $A$
$P(A)=1 / 3 \rightsquigarrow$ chance of winning without switch
If $C$ is revealed to not have a car:

## Monty Hall Problem

## Monty Hall Problem

$$
P(B \mid C \text { revealed })=\frac{P(B) P(C \text { revealed } \mid B)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)}
$$

## Monty Hall Problem

$$
\begin{aligned}
P(B \mid C \text { revealed }) & =\frac{P(B) P(C \text { revealed } \mid B)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)} \\
& =\frac{1 / 3 \times 1}{1 / 3+1 / 3 \times 1 / 2}=\frac{1 / 3}{1 / 2}=\frac{2}{3}
\end{aligned}
$$

## Monty Hall Problem

$$
\begin{aligned}
P(B \mid C \text { revealed }) & =\frac{P(B) P(C \text { revealed } \mid B)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)} \\
& =\frac{1 / 3 \times 1}{1 / 3+1 / 3 \times 1 / 2}=\frac{1 / 3}{1 / 2}=\frac{2}{3} \\
P(A \mid C \text { revealed }) & =\frac{P(A) P(C \text { revealed } \mid A)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)}
\end{aligned}
$$

## Monty Hall Problem

$$
\begin{aligned}
P(B \mid C \text { revealed }) & =\frac{P(B) P(C \text { revealed } \mid B)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)} \\
& =\frac{1 / 3 \times 1}{1 / 3+1 / 3 \times 1 / 2}=\frac{1 / 3}{1 / 2}=\frac{2}{3} \\
P(A \mid C \text { revealed }) & =\frac{P(A) P(C \text { revealed } \mid A)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)} \\
& =\frac{1 / 3 \times 1 / 2}{1 / 3+1 / 3 \times 1 / 2}=\frac{1}{3}
\end{aligned}
$$

## Monty Hall Problem

$$
\begin{aligned}
P(B \mid C \text { revealed }) & =\frac{P(B) P(C \text { revealed } \mid B)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)} \\
& =\frac{1 / 3 \times 1}{1 / 3+1 / 3 \times 1 / 2}=\frac{1 / 3}{1 / 2}=\frac{2}{3} \\
P(A \mid C \text { revealed }) & =\frac{P(A) P(C \text { revealed } \mid A)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)} \\
& =\frac{1 / 3 \times 1 / 2}{1 / 3+1 / 3 \times 1 / 2}=\frac{1}{3}
\end{aligned}
$$

Double chances of winning with switch

## Monty Hall Problem

$$
\begin{aligned}
P(B \mid C \text { revealed }) & =\frac{P(B) P(C \text { revealed } \mid B)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)} \\
& =\frac{1 / 3 \times 1}{1 / 3+1 / 3 \times 1 / 2}=\frac{1 / 3}{1 / 2}=\frac{2}{3} \\
P(A \mid C \text { revealed }) & =\frac{P(A) P(C \text { revealed } \mid A)}{P(B) P(C \text { revealed } \mid B)+P(A) P(C \text { revealed } \mid A)} \\
& =\frac{1 / 3 \times 1 / 2}{1 / 3+1 / 3 \times 1 / 2}=\frac{1}{3}
\end{aligned}
$$

Double chances of winning with switch
R Code!

## Testing for a Rare Disease

Suppose there is a medical test

$$
\begin{aligned}
P(\text { positive } \mid \text { disease }) & =0.99 \\
P(\text { positive } \mid \text { not disease }) & =0.10 \\
P(\text { disease }) & =0.0001
\end{aligned}
$$

## Testing for a Rare Disease

Suppose there is a medical test

$$
\begin{aligned}
P(\text { positive } \mid \text { disease }) & =0.99 \\
P(\text { positive } \mid \text { not disease }) & =0.10 \\
P(\text { disease }) & =0.0001
\end{aligned}
$$

After a positive test, how worried should we be?

## Testing for a Rare Disease

Suppose there is a medical test

$$
\begin{aligned}
P(\text { positive } \mid \text { disease }) & =0.99 \\
P(\text { positive } \mid \text { not disease }) & =0.10 \\
P(\text { disease }) & =0.0001
\end{aligned}
$$

After a positive test, how worried should we be?

$$
P(\text { disease } \mid \text { pos. })=\frac{P(\text { dis. }) P(\text { pos } \mid \text { dis. })}{P(\text { dis. }) P(\text { pos } \mid \text { dis. })+P(\text { not dis. }) P(\text { pos } \mid \text { not dis. })}
$$

## Testing for a Rare Disease

Suppose there is a medical test

$$
\begin{aligned}
P(\text { positive } \mid \text { disease }) & =0.99 \\
P(\text { positive } \mid \text { not disease }) & =0.10 \\
P(\text { disease }) & =0.0001
\end{aligned}
$$

After a positive test, how worried should we be?

$$
\begin{aligned}
P(\text { disease } \mid \text { pos. }) & =\frac{P(\text { dis. }) P(\text { pos } \mid \text { dis. })}{P(\text { dis. }) P(\text { pos } \mid \text { dis. })+P(\text { not dis. }) P(\text { pos } \mid \text { not dis. })} \\
& =\frac{0.0001 \times 0.99}{0.0001 \times 0.99+0.9999 \times 0.1}
\end{aligned}
$$

## Testing for a Rare Disease

Suppose there is a medical test

$$
\begin{aligned}
P(\text { positive } \mid \text { disease }) & =0.99 \\
P(\text { positive } \mid \text { not disease }) & =0.10 \\
P(\text { disease }) & =0.0001
\end{aligned}
$$

After a positive test, how worried should we be?

$$
\begin{aligned}
P(\text { disease } \mid \text { pos. }) & =\frac{P(\text { dis. }) P(\text { pos } \mid \text { dis. })}{P(\text { dis. }) P(\text { pos } \mid \text { dis. })+P(\text { not dis. }) P(\text { pos } \mid \text { not dis. })} \\
& =\frac{0.0001 \times 0.99}{0.0001 \times 0.99+0.9999 \times 0.1} \\
& \approx 0.0009891
\end{aligned}
$$

## Independence and Information

Does one event provide information about another event?

## Independence and Information

Does one event provide information about another event?
Definition
Independence: Two events $E$ and $F$ are independent if

$$
P(E \cap F)=P(E) P(F)
$$

If $E$ and $F$ are not independent, we'll say they are dependent

## Independence and Information

Does one event provide information about another event?
Definition
Independence: Two events $E$ and $F$ are independent if

$$
P(E \cap F)=P(E) P(F)
$$

If $E$ and $F$ are not independent, we'll say they are dependent

- Independence is symetric: if $F$ is independent of $E$, then $E$ is indepenent of $F$


## Example Independence Relationship

Flip a fair coin twice.
$E=$ first flip heads
$F=$ second flip heads

$$
\begin{aligned}
P(E \cap F) & =P(\{(H, H),(H, T)\} \cap\{(H, H),(T, H)\}) \\
& =P(\{(H, H)\}) \\
& =\frac{1}{4} \\
P(E) & =\frac{1}{2} \\
P(F) & =\frac{1}{2} \\
P(E) P(F) & =\frac{1}{2} \frac{1}{2}=\frac{1}{4}=P(E \cap F)
\end{aligned}
$$

## Independence: No Information

Suppose $E$ and $F$ are independent. Then,

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{P(E) P(F)}{P(F)} \\
& =P(E)
\end{aligned}
$$

Conditioning on the event $F$ does not modify the probability of $E$. No information about $E$ in $F$

## Independence: No Information

Suppose $E$ and $F$ are independent. Then,

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{P(E) P(F)}{P(F)} \\
& =P(E)
\end{aligned}
$$

Conditioning on the event $F$ does not modify the probability of $E$. No information about $E$ in $F$
Mutually exclusive $\neq$ Independent
Suppose $E$ and $F$ are mutually exclusive events:

$$
\begin{aligned}
& E=\{(H, H),(H, T)\} ; F=\{(T, H),(T, T)\} \\
& E \cap F=\emptyset \\
& P(E \mid F)=0 ; P(E)=\frac{1}{2}
\end{aligned}
$$

## Independence and Complements

## Proposition

Suppose $A$ and $B$ are independent events. Then the events $A$ and $B^{c}$ are also independent.

## Independence and Complements

## Proposition

Suppose $A$ and $B$ are independent events. Then the events $A$ and $B^{c}$ are also independent.

Proof.

$$
P\left(A \cap B^{c}\right)=P(A)-P(A \cap B)
$$

## Independence and Complements

## Proposition

Suppose $A$ and $B$ are independent events. Then the events $A$ and $B^{c}$ are also independent.

Proof.

$$
\begin{aligned}
P\left(A \cap B^{c}\right) & =P(A)-P(A \cap B) \\
& =P(A)-P(A) P(B)
\end{aligned}
$$

## Independence and Complements

## Proposition

Suppose $A$ and $B$ are independent events. Then the events $A$ and $B^{c}$ are also independent.

Proof.

$$
\begin{aligned}
P\left(A \cap B^{c}\right) & =P(A)-P(A \cap B) \\
& =P(A)-P(A) P(B) \\
& =P(A)(1-P(B))
\end{aligned}
$$

## Independence and Complements

Proposition
Suppose $A$ and $B$ are independent events. Then the events $A$ and $B^{c}$ are also independent.

Proof.

$$
\begin{aligned}
P\left(A \cap B^{c}\right) & =P(A)-P(A \cap B) \\
& =P(A)-P(A) P(B) \\
& =P(A)(1-P(B)) \\
& =P(A) P\left(B^{c}\right)
\end{aligned}
$$

## Example: Independence and Causal Inference

Selection and Observational Studies

- We often want to infer the effect of some treatment
- Incumbency on vote return
- Democracy on war
- Observational studies: observe what we see to make inference
- Problem: units select into treatment
- Simple example: enroll in job training if I think it will help
- P (job|training in study) $\neq \mathrm{P}$ (job|forced training)
- Background characteristic: difference between treatment and control groups
- Experiments (second greatest discovery of 20th century): make background characteristics and treatment status independent


## Conditional Probability

## Definition

Let $E_{1}$ and $E_{2}$ be two events. We will say that the events are conditionally independent given $E_{3}$ if

$$
P\left(E_{1} \cap E_{2} \mid E_{3}\right)=P\left(E_{1} \mid E_{3}\right) P\left(E_{2} \mid E_{3}\right)
$$

## Proposition

Suppose $E_{1}$ and $E_{2}$ and $E_{3}$ are events such that $P\left(E_{1} \cap E_{2}\right)>0$ and $P\left(E_{2} \cap E_{3}\right)>0$. Then $E_{1}$ and $E_{2}$ are conditionally independent given $E_{3}$ if and only if $P\left(E_{1} \mid E_{2} \cap E_{3}\right)=P\left(E_{1} \mid E_{3}\right)$.

## Proof.

Suppose $E_{1}$ and $E_{2}$ are conditionally independent given $E_{3}$. Then

$$
\begin{aligned}
P\left(E_{1} \cap E_{2} \mid E_{3}\right) & =\frac{P\left(E_{1} \cap E_{2} \cap E_{3}\right)}{P\left(E_{3}\right)} \\
& =\frac{P\left(E_{3}\right) P\left(E_{2} \mid E_{3}\right) P\left(E_{1} \mid E_{2} \cap E_{3}\right)}{P\left(E_{3}\right)} \\
P\left(E_{1} \mid E_{3}\right) P\left(E_{2} \mid E_{3}\right) & =P\left(E_{2} \mid E_{3}\right) P\left(E_{1} \mid E_{2} \cap E_{3}\right) \\
P\left(E_{1} \mid E_{3}\right) & =P\left(E_{1} \mid E_{2} \cap E_{3}\right)
\end{aligned}
$$

Proof.
Suppose $P\left(E_{1} \mid E_{2} \cap E_{3}\right)=P\left(E_{1} \mid E_{3}\right)$

$$
\begin{aligned}
P\left(E_{1} \cap E_{2} \mid E_{3}\right) & =P\left(E_{2} \mid E_{3}\right) P\left(E_{1} \mid E_{2} \cap E_{3}\right) \\
& =P\left(E_{2} \mid E_{3}\right) P\left(E_{1} \mid E_{3}\right)
\end{aligned}
$$

## Conditional Independence

Suppose we want to hire an employee, but applicants have variable quality.

## Conditional Independence

Suppose we want to hire an employee, but applicants have variable quality.

- $1 / 2$ low quality $(L Q): P(N F U)=0.01$ each day


## Conditional Independence

Suppose we want to hire an employee, but applicants have variable quality.

- $1 / 2$ low quality $(L Q): P(N F U)=0.01$ each day
- $1 / 2$ high quality $(H Q): P(N F U)=0.99$ each day


## Conditional Independence

Suppose we want to hire an employee, but applicants have variable quality.

- $1 / 2$ low quality $(L Q): P(N F U)=0.01$ each day
- $1 / 2$ high quality $(H Q): P(N F U)=0.99$ each day
$E_{1}=$ High Quality selected


## Conditional Independence

Suppose we want to hire an employee, but applicants have variable quality.

- $1 / 2$ low quality $(L Q): P(N F U)=0.01$ each day
- $1 / 2$ high quality $(H Q): P(N F U)=0.99$ each day
$E_{1}=$ High Quality selected
$H_{i}=$ Event NFU on day $i$


## Conditional Independence

Suppose we want to hire an employee, but applicants have variable quality.

- $1 / 2$ low quality $(L Q): P(N F U)=0.01$ each day
- $1 / 2$ high quality $(H Q): P(N F U)=0.99$ each day
$E_{1}=$ High Quality selected
$H_{i}=$ Event NFU on day $i$

$$
P\left(H_{1} \cap H_{2} \mid E_{1}\right)=P\left(H_{1} \mid E_{1}\right) P\left(H_{2} \mid E_{2}\right)
$$

## Conditional Independence

Suppose we want to hire an employee, but applicants have variable quality.

- $1 / 2$ low quality $(L Q): P(N F U)=0.01$ each day
- $1 / 2$ high quality $(H Q): P(N F U)=0.99$ each day
$E_{1}=$ High Quality selected
$H_{i}=$ Event NFU on day $i$

$$
P\left(H_{1} \cap H_{2} \mid E_{1}\right)=P\left(H_{1} \mid E_{1}\right) P\left(H_{2} \mid E_{2}\right)
$$

But

## Conditional Independence

Suppose we want to hire an employee, but applicants have variable quality.

- $1 / 2$ low quality $(L Q): P(N F U)=0.01$ each day
- $1 / 2$ high quality $(H Q): P(N F U)=0.99$ each day
$E_{1}=$ High Quality selected
$H_{i}=$ Event NFU on day $i$

$$
P\left(H_{1} \cap H_{2} \mid E_{1}\right)=P\left(H_{1} \mid E_{1}\right) P\left(H_{2} \mid E_{2}\right)
$$

But

$$
\begin{aligned}
P\left(H_{1}\right) & =P\left(E_{1}\right) P\left(H_{1} \mid E_{1}\right)+P\left(E_{1}^{c}\right) P\left(H_{1} \mid E_{1}^{c}\right)=1 / 2(0.99)+1 / 2(0.01 \\
P\left(H_{2}\right) & =1 / 2 \\
P\left(H_{1} \cap H_{2}\right) & =P\left(E_{1}\right) P\left(H_{1} \cap H_{2} \mid E_{1}\right)+P\left(E_{1}^{c}\right) P\left(H_{1} \cap H_{2} \mid E_{1}^{c}\right) \\
& =0.5(0.99 \times 0.99)+0.5(0.01 \times 0.01) \approx 0.5
\end{aligned}
$$

## Definition

Suppose we have a sequence of events $E_{1}, E_{2}, \ldots, E_{n}$. We say the sequence of events is mutually indepenent if for each subset of the sequence, $E_{i_{1}}, E_{i_{2}}, \ldots, E_{i_{j}}$

$$
P\left(E_{i_{1}} \cap E_{i_{2}} \cap \ldots \cap E_{i_{j}}\right)=\prod_{m=1}^{j} P\left(E_{i_{m}}\right)
$$

For a sequence to be independent, every subset is independent

## Definition

Define the odds of some event $E$ as

$$
\text { odds }_{E}=\frac{P(E)}{1-P(E)}
$$

Suppose $F$ is another event. Define the odds ratio of $E$ to $F$ as

$$
\begin{aligned}
\text { odds ratio }_{E: F} & =\frac{\text { odds }_{E}}{\text { odds }_{F}} \\
& =\frac{\frac{P(E)}{1-P(E)}}{\frac{P(F)}{1-P(F)}}
\end{aligned}
$$

- Big: implies $E$ is very likely
- Small: implies $E$ is unlikely
- Problem: big changes in odd ratio may correspond to very small changes in chance something will happen $\rightsquigarrow$ baseline problem


## Where we're going

Today

- Conditional probability
- Bayes' Rule
- Independence

Next lecture: Random variables (discrete and continuous)

