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Conditional Probability

Political scientists almost always examine conditional relationships

- Given highway and partisanship, what is the probability of moving?
(Clayton Nall)

- Given racial background, what is the probability of holding liberal
political views? (Lauren Davenport)

- Given small donor base, what is the probability of extreme positions?
(Adam Bonica)

Intuition:

- Some event has occurred: an outcome was realized

- And with the knowledge that this outcome has already happened

- What is the probability that something in another set happens?

Let’s formalize this idea.
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Conditional Probability: Definition

Definition

Suppose we have two events, E and F , and that P(F ) > 0. Then,

P(E |F ) =
P(E ∩ F )

P(F )

- P(E ∩ F ): Both E and F must occur

- P(F ) normalize: we know P(F ) already occurred
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Some Examples

Example 1:

- F = {All Democrats Win}
- E = {Nancy Pelosi Wins (D-CA)}
- If F occurs then E most occur, P(E |F ) = 1

Example 2:

- F = {All Democrats Win}
- E = {Louie Gohmert Wins (R-TX) }
- F ∩ E = ∅ ⇒ P(E |F ) = P(F∩E)

P(F ) = P(∅)
P(F ) = 0

Example 3: (Wilkins, Legislative Studies Quarterly, TA Emeritus, 450a)

- I = {Candidate is an incumbent}
- D = {Candidate Defeated}
- P(D|I ) = P(D∩I )

P(I )

- In words?
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Conditional Probabilities are Probabilities

Everything we proved yesterday holds for P(·|B).

- P(S |B) = P(S∩B)
P(B) = P(B)

P(B) = 1

- Suppose E1,E2, . . . ,EN are mutually exclusive.
Recall: (∪Ni=1Ei ) ∩ B = ∪Ni=1Ei ∩ B

P(∪Ni=1Ei |B) =
P(∪Ni=1Ei ∩ B)

P(B)

=

∑N
i=1 P(Ei ∩ B)

P(B)

=
N∑
i=1

P(Ei |B)

We are calculating probabilities in the new “universe” B
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P(A|B) and P(B |A) are usually different

P(A|B) =
P(A ∩ B)

P(B)

P(B|A) =
P(A ∩ B)

P(A)
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P(A|B) and P(B |A) are usually different

Numerous serious examples: Why American Hate Welfare (Gilens 1995)

Less Serious Example type of person who flies to vegas on Southwest
Airlines

P(Cutoff Shirt|Southwest Airlines) = 0.2

P(Southwest Airlines|Cutoff Shirt) ≈ 1
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Proposition

Multiplication Rule: Suppose E1,E2, . . . ,EN is a sequence of events.

P(E1 ∩ E2 ∩ · · · ∩ EN) =

P(E1)P(E2|E1)P(E3|E2,E1)× · · · × P(EN |EN−1,EN−2, . . . ,E1)

Proof.

P(E1)P(E2|E1) = P(E1)
P(E2 ∩ E1)

P(E1)

= P(E1 ∩ E2)

P(E1 ∩ E2)P(E3|E1,E2) = P(E1 ∩ E2)
P(E3 ∩ E2 ∩ E1)

P(E2 ∩ E1)

= P(E3 ∩ E2 ∩ E1)

Repeating for all probabilities proves the proposition
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Law of Total Probability

Proposition

Suppose that we have a set of events F1,F2, . . . ,FN such that the events
are mutually exclusive and together comprise the entire sample space
∪Ni=1Fi = Sample Space. Then, for any event E

P(E ) =
N∑
i=1

P(E |Fi )× P(Fi )
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Law of Total Probability

P(E ) =
N∑
i=1

P(E |Fi )× P(Fi )

Proof.

Suppose F1,F2, . . . ,FN are mutually exclusive and ∪Ni=1Fi = S . Then we
can write E as:

E = (E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN)

P(E ) = P ((E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN))

=
N∑
i=1

P(E ∩ Fi )

=
N∑
i=1

P(E |Fi )P(Fi )

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 10 / 31



Law of Total Probability

P(E ) =
N∑
i=1

P(E |Fi )× P(Fi )

Proof.

Suppose F1,F2, . . . ,FN are mutually exclusive and ∪Ni=1Fi = S . Then we
can write E as:

E = (E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN)

P(E ) = P ((E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN))

=
N∑
i=1

P(E ∩ Fi )

=
N∑
i=1

P(E |Fi )P(Fi )

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 10 / 31



Law of Total Probability

P(E ) =
N∑
i=1

P(E |Fi )× P(Fi )

Proof.

Suppose F1,F2, . . . ,FN are mutually exclusive and ∪Ni=1Fi = S . Then we
can write E as:

E = (E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN)

P(E ) = P ((E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN))

=
N∑
i=1

P(E ∩ Fi )

=
N∑
i=1

P(E |Fi )P(Fi )

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 10 / 31



Law of Total Probability

P(E ) =
N∑
i=1

P(E |Fi )× P(Fi )

Proof.

Suppose F1,F2, . . . ,FN are mutually exclusive and ∪Ni=1Fi = S . Then we
can write E as:

E = (E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN)

P(E ) = P ((E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN))

=
N∑
i=1

P(E ∩ Fi )

=
N∑
i=1

P(E |Fi )P(Fi )

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 10 / 31



Law of Total Probability

P(E ) =
N∑
i=1

P(E |Fi )× P(Fi )

Proof.

Suppose F1,F2, . . . ,FN are mutually exclusive and ∪Ni=1Fi = S . Then we
can write E as:

E = (E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN)

P(E ) = P ((E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN))

=
N∑
i=1

P(E ∩ Fi )

=
N∑
i=1

P(E |Fi )P(Fi )

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 10 / 31



Law of Total Probability

P(E ) =
N∑
i=1

P(E |Fi )× P(Fi )

Proof.

Suppose F1,F2, . . . ,FN are mutually exclusive and ∪Ni=1Fi = S . Then we
can write E as:

E = (E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN)

P(E ) = P ((E ∩ F1) ∪ (E ∩ F2) . . . ∪ (E ∩ FN))

=
N∑
i=1

P(E ∩ Fi )

=
N∑
i=1

P(E |Fi )P(Fi )

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 10 / 31



Example: Law of Total Probability

Infer P(vote) after mobilization campaign

- P(vote|mobilized) = 0.75

- P(vote|not mobilized) = 0.25

- P(mobilized) = 0.6;P(not mobilized) = 0.4

- What is P(vote)?

Sample space (one person) =
{ (mobilized, vote), (mobilized, not vote), (not mobilized, vote) , (not
mobilized, not vote) }
Mobilization partitions the space (mutually exclusive and exhaustive)
We can use the law of total probability

P(vote) = P(mob.)× P(vote|mob.) + P(not mob× P(vote|not mob)

= 0.6× 0.75 + 0.4× 0.25

= 0.55
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Example Law of Total Probability

Mixture Models: flexible modeling strategy.

Two coins:

- Fair: P(H) = 1/2

- Biased P(H) = 3/4

Draw a coin from urn (P(fair) = 1/2) and then flip.
P(H)?
S = {(fair,H), (fair,T ), (bias,H), (bias,T )}

P(H) = P(fair)× P(H|fair) + P(bias)× P(H|bias)

=
1

2
× 1

2
+

1

2
× 3

4

=
5

8

Mixture of two coins
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Bayes’ Rule

- P(B|A) may be easy to obtain

- P(A|B) may be harder to determine

- Bayes’ rule provides a method to move from P(B|A) to P(A|B).
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Definition

Bayes’ Rule: For two events A and B,

P(A|B) =
P(A)× P(B|A)

P(B)

Proof.

P(A|B) =
P(A ∩ B)

P(B)

=
P(B|A)P(A)

P(B)
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Bayes’ Rule: Example
Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify
racial groups from lists of names?

Census Bureau collects information on distribution of names by race.
For example, Washington is the “blackest” name in America.

- P(black)= 0.126.

- P(not black) = 1 - P(black) = 0.874.

- P(Washington| black) = 0.00378.

- P(Washington|nb) = 0.000060615.

P(black|Wash) =
P(black)P(Wash|black)

P(Wash)

=
P(black)P(Wash|black)

P(black)P(Wash|black) + P(nb)P(Wash|nb)

=
0.126× 0.00378

0.126× 0.00378 + 0.874× 0.000060616
≈ 0.9

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 15 / 31



Bayes’ Rule: Example
Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify
racial groups from lists of names?
Census Bureau collects information on distribution of names by race.

For example, Washington is the “blackest” name in America.

- P(black)= 0.126.

- P(not black) = 1 - P(black) = 0.874.

- P(Washington| black) = 0.00378.

- P(Washington|nb) = 0.000060615.

P(black|Wash) =
P(black)P(Wash|black)

P(Wash)

=
P(black)P(Wash|black)

P(black)P(Wash|black) + P(nb)P(Wash|nb)

=
0.126× 0.00378

0.126× 0.00378 + 0.874× 0.000060616
≈ 0.9

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 15 / 31



Bayes’ Rule: Example
Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify
racial groups from lists of names?
Census Bureau collects information on distribution of names by race.
For example, Washington is the “blackest” name in America.

- P(black)= 0.126.

- P(not black) = 1 - P(black) = 0.874.

- P(Washington| black) = 0.00378.

- P(Washington|nb) = 0.000060615.

P(black|Wash) =
P(black)P(Wash|black)

P(Wash)

=
P(black)P(Wash|black)

P(black)P(Wash|black) + P(nb)P(Wash|nb)

=
0.126× 0.00378

0.126× 0.00378 + 0.874× 0.000060616
≈ 0.9

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 15 / 31



Bayes’ Rule: Example
Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify
racial groups from lists of names?
Census Bureau collects information on distribution of names by race.
For example, Washington is the “blackest” name in America.

- P(black)= 0.126.

- P(not black) = 1 - P(black) = 0.874.

- P(Washington| black) = 0.00378.

- P(Washington|nb) = 0.000060615.

P(black|Wash) =
P(black)P(Wash|black)

P(Wash)

=
P(black)P(Wash|black)

P(black)P(Wash|black) + P(nb)P(Wash|nb)

=
0.126× 0.00378

0.126× 0.00378 + 0.874× 0.000060616
≈ 0.9

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 15 / 31



Bayes’ Rule: Example
Enos (2011), Fraga (2015), Imai and Khanna (2015): how do we identify
racial groups from lists of names?
Census Bureau collects information on distribution of names by race.
For example, Washington is the “blackest” name in America.

- P(black)= 0.126.

- P(not black) = 1 - P(black) = 0.874.

- P(Washington| black) = 0.00378.

- P(Washington|nb) = 0.000060615.

P(black|Wash) =
P(black)P(Wash|black)

P(Wash)

=
P(black)P(Wash|black)

P(black)P(Wash|black) + P(nb)P(Wash|nb)

=
0.126× 0.00378

0.126× 0.00378 + 0.874× 0.000060616
≈ 0.9

Justin Grimmer (Stanford University) Methodology I September 15th, 2016 15 / 31



Justin Grimmer (Stanford University) Methodology I September 15th, 2016 16 / 31



Justin Grimmer (Stanford University) Methodology I September 15th, 2016 16 / 31



Justin Grimmer (Stanford University) Methodology I September 15th, 2016 16 / 31



”You blew it, and you blew it big! Since you seem to have difficulty
grasping the basic principle at work here, I’ll explain. After the host
reveals a goat, you now have a one-in-two chance of being correct.
Whether you change your selection or not, the odds are the same. There is
enough mathematical illiteracy in this country, and we don’t need the
world’s highest IQ propagating more. Shame!” Scott Smith, Ph.D.
University of Florida (From Wikipedia)
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Monty Hall Problem

Suppose we have three doors. A,B,C .

Behind one door there is a car. Behind the others is a goat (you don’t
want a goat)

- A contestant guesses a door.

- The host opens a different door and then contestant has option to
switch

- Should the contestant switch?

Contestant guesses A
P(A) = 1/3 chance of winning without switch
If C is revealed to not have a car:
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Monty Hall Problem

P(B|C revealed) =
P(B)P(C revealed|B)

P(B)P(C revealed|B) + P(A)P(C revealed|A)

=
1/3× 1

1/3 + 1/3× 1/2
=

1/3

1/2
=

2

3

P(A|C revealed) =
P(A)P(C revealed|A)

P(B)P(C revealed|B) + P(A)P(C revealed|A)

=
1/3× 1/2

1/3 + 1/3× 1/2
=

1

3

Double chances of winning with switch
R Code!
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Testing for a Rare Disease

Suppose there is a medical test

P(positive|disease) = 0.99

P(positive|not disease) = 0.10

P(disease) = 0.0001

After a positive test, how worried should we be?

P(disease|pos.) =
P(dis.)P(pos|dis.)

P(dis.)P(pos|dis.) + P(not dis.)P(pos|not dis.)

=
0.0001× 0.99

0.0001× 0.99 + 0.9999× 0.1
≈ 0.0009891
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Independence and Information

Does one event provide information about another event?

Definition

Independence: Two events E and F are independent if

P(E ∩ F ) = P(E )P(F )

If E and F are not independent, we’ll say they are dependent

- Independence is symetric: if F is independent of E , then E is
indepenent of F
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Example Independence Relationship

Flip a fair coin twice.

E = first flip heads

F = second flip heads

P(E ∩ F ) = P({(H,H), (H,T )} ∩ {(H,H), (T ,H)})
= P({(H,H)})

=
1

4

P(E ) =
1

2

P(F ) =
1

2

P(E )P(F ) =
1

2

1

2
=

1

4
= P(E ∩ F )
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Independence: No Information

Suppose E and F are independent. Then,

P(E |F ) =
P(E ∩ F )

P(F )

=
P(E )P(F )

P(F )

= P(E )

Conditioning on the event F does not modify the probability of E .
No information about E in F

Mutually exclusive 6= Independent
Suppose E and F are mutually exclusive events:

E = {(H,H), (H,T )}; F = {(T ,H), (T ,T )}
E ∩ F = ∅
P(E |F ) = 0; P(E ) = 1

2 .
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Independence and Complements

Proposition

Suppose A and B are independent events. Then the events A and Bc are
also independent.

Proof.

P(A ∩ Bc) = P(A)− P(A ∩ B)

= P(A)− P(A)P(B)

= P(A)(1− P(B))

= P(A)P(Bc)
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Example: Independence and Causal Inference

Selection and Observational Studies

- We often want to infer the effect of some treatment

- Incumbency on vote return
- Democracy on war

- Observational studies: observe what we see to make inference

- Problem: units select into treatment

- Simple example: enroll in job training if I think it will help
- P(job|training in study) 6= P(job|forced training)

- Background characteristic: difference between treatment and control
groups

- Experiments (second greatest discovery of 20th century): make
background characteristics and treatment status independent
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Conditional Probability

Definition

Let E1 and E2 be two events. We will say that the events are conditionally
independent given E3 if

P(E1 ∩ E2|E3) = P(E1|E3)P(E2|E3)
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Proposition

Suppose E1 and E2 and E3 are events such that P(E1 ∩ E2) > 0 and
P(E2 ∩ E3) > 0. Then E1 and E2 are conditionally independent given E3 if
and only if P(E1|E2 ∩ E3) = P(E1|E3).

Proof.

Suppose E1 and E2 are conditionally independent given E3. Then

P(E1 ∩ E2|E3) =
P(E1 ∩ E2 ∩ E3)

P(E3)

=
P(E3)P(E2|E3)P(E1|E2 ∩ E3)

P(E3)

P(E1|E3)P(E2|E3) = P(E2|E3)P(E1|E2 ∩ E3)

P(E1|E3) = P(E1|E2 ∩ E3)
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Proof.

Suppose P(E1|E2 ∩ E3) = P(E1|E3)

P(E1 ∩ E2|E3) = P(E2|E3)P(E1|E2 ∩ E3)

= P(E2|E3)P(E1|E3)
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Conditional Independence
Suppose we want to hire an employee, but applicants have variable quality.

- 1/2 low quality (LQ): P(NFU) = 0.01 each day

- 1/2 high quality (HQ) : P(NFU) = 0.99 each day

E1 = High Quality selected
Hi = Event NFU on day i

P(H1 ∩ H2|E1) = P(H1|E1)P(H2|E2)

But

P(H1) = P(E1)P(H1|E1) + P(E c
1 )P(H1|E c

1 ) = 1/2(0.99) + 1/2(0.01) = 1/2

P(H2) = 1/2

P(H1 ∩ H2) = P(E1)P(H1 ∩ H2|E1) + P(E c
1 )P(H1 ∩ H2|E c

1 )

= 0.5(0.99× 0.99) + 0.5(0.01× 0.01) ≈ 0.5
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Definition

Suppose we have a sequence of events E1,E2, . . . ,En. We say the
sequence of events is mutually indepenent if for each subset of the
sequence, Ei1 ,Ei2 , . . . ,Eij

P(Ei1 ∩ Ei2 ∩ . . . ∩ Eij ) =

j∏
m=1

P(Eim)

For a sequence to be independent, every subset is independent
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Definition

Define the odds of some event E as

oddsE =
P(E )

1− P(E )

Suppose F is another event. Define the odds ratio of E to F as

odds ratioE :F =
oddsE
oddsF

=

P(E)
1−P(E)

P(F )
1−P(F )

- Big: implies E is very likely

- Small: implies E is unlikely

- Problem: big changes in odd ratio may correspond to very small
changes in chance something will happen  baseline problem
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Where we’re going

Today

- Conditional probability

- Bayes’ Rule

- Independence

Next lecture: Random variables (discrete and continuous)
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