Math Camp

Justin Grimmer

Associate Professor Department of Political Science Stanford University

September 14th, 2016

< A

3

990

Probability Theory:

- 1) Mathematical model of uncertainty
- 2) Foundation for statistical inference
- 3) Continues our development of key skills
 - Proofs [precision in thinking, useful for formulating arguments]
 - Statistical computing [basis for much of what you'll do in graduate school]

Three parts to our probability model

- (A 🖓

Э

990

Three parts to our probability model

1) Sample space: set of all things that could happen

3

Three parts to our probability model

- 1) Sample space: set of all things that could happen
- 2) Events: subsets of the sample space

Three parts to our probability model

- 1) Sample space: set of all things that could happen
- 2) Events: subsets of the sample space
- 3) Probability: chance of an event

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

Examples:

1) House of Representatives: Elections Every 2 Years

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$
 - Two incumbents: $S = \{(W, W), (W, N), (N, W), (N, N)\}$

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$
 - Two incumbents: $S = \{(W, W), (W, N), (N, W), (N, N)\}$
 - 435 incumbents: $S = 2^{435}$ possible outcomes

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$
 - Two incumbents: $S = \{(W, W), (W, N), (N, W), (N, N)\}$
 - 435 incumbents: $S = 2^{435}$ possible outcomes
- 2) Number of countries signing treaties

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$
 - Two incumbents: $S = \{(W, W), (W, N), (N, W), (N, N)\}$
 - 435 incumbents: $S = 2^{435}$ possible outcomes
- 2) Number of countries signing treaties

-
$$S = \{0, 1, 2, \dots, 194\}$$

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$
 - Two incumbents: $S = \{(W, W), (W, N), (N, W), (N, N)\}$
 - 435 incumbents: $S = 2^{435}$ possible outcomes
- 2) Number of countries signing treaties
 - $S = \{0, 1, 2, \dots, 194\}$
- 3) Duration of cabinets

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$
 - Two incumbents: $S = \{(W, W), (W, N), (N, W), (N, N)\}$
 - 435 incumbents: $S = 2^{435}$ possible outcomes
- 2) Number of countries signing treaties
 - $S = \{0, 1, 2, \dots, 194\}$
- 3) Duration of cabinets
 - All non-negative real numbers: $\left[0,\infty\right)$

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

Examples:

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$
 - Two incumbents: $S = \{(W, W), (W, N), (N, W), (N, N)\}$
 - 435 incumbents: $S = 2^{435}$ possible outcomes
- 2) Number of countries signing treaties
 - $S = \{0, 1, 2, \dots, 194\}$
- 3) Duration of cabinets
 - All non-negative real numbers: $\left[0,\infty\right)$
 - $S = \{x : 0 \le x < \infty\}$

∃ ► < ∃ ►</p>

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

Examples:

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$
 - Two incumbents: $S = \{(W, W), (W, N), (N, W), (N, N)\}$
 - 435 incumbents: $S = 2^{435}$ possible outcomes
- 2) Number of countries signing treaties
 - $S = \{0, 1, 2, \dots, 194\}$
- 3) Duration of cabinets
 - All non-negative real numbers: $\left[0,\infty\right)$
 - $S = \{x : 0 \le x < \infty\}$
- Key point: this defines all possible realizations

∃ ► < ∃ ►</p>

Definition

An event, E is a subset of the sample space. $E \subset S$

Sar

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set

200

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:

-
$$E = W$$

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:

$$-E = W$$

-
$$F = N$$

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:

$$-E = W$$

$$F = N$$

- Two Incumbents:

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:

$$-E = W$$

$$F = N$$

- Two Incumbents:

- $E = \{(W, N), (W, W)\}$

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:

$$-E = W$$

$$F = N$$

- Two Incumbents:

-
$$E = \{(W, N), (W, W)\}$$

- $F = \{(N, N)\}$

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:

$$-E = W$$

$$F = N$$

- Two Incumbents:

$$- E = \{(W, N), (W, W)\}$$

-
$$F = \{(N, N)\}$$

- 435 Incumbents:

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
 - E = W
 - *F* = N
- Two Incumbents:

-
$$E = \{(W, N), (W, W)\}$$

- $F = \{(N, N)\}$
- 435 Incumbents:
 - Outcome of 2010 election: one event

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
 - E = W
 - *F* = N
- Two Incumbents:

-
$$E = \{(W, N), (W, W)\}$$

- $F = \{(N, N)\}$
- 435 Incumbents:
 - Outcome of 2010 election: one event
 - All outcomes where Dems retain control of House: one event

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
 - E = W
 - *F* = N
- Two Incumbents:

-
$$E = \{(W, N), (W, W)\}$$

- $F = \{(N, N)\}$
- 435 Incumbents:
 - Outcome of 2010 election: one event
 - All outcomes where Dems retain control of House: one event

Notation:

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
 - E = W
 - *F* = N
- Two Incumbents:
 - $E = \{(W, N), (W, W)\}$
 - $F = \{(N, N)\}$
- 435 Incumbents:
 - Outcome of 2010 election: one event
 - All outcomes where Dems retain control of House: one event

Notation: x is an "element" of a set E:

Definition

An event, E is a subset of the sample space. $E \subset S$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
 - E = W
 - *F* = N
- Two Incumbents:

-
$$E = \{(W, N), (W, W)\}$$

- $F = \{(N, N)\}$
- 435 Incumbents:
 - Outcome of 2010 election: one event
 - All outcomes where Dems retain control of House: one event

Notation: x is an "element" of a set E: $x \in E$

E is a set

< A

Э

990

E is a set: collection of distinct objects.

3

200
E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets:

E is a set: collection of distinct objects. Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

 $E = \{(W, W), (W, N)\}$

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

 $E = \{(W, W), (W, N)\}$ $F = \{(N, N), (W, N)\}$

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

1) Union: \cup

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

1) Union: ∪

- All objects that appear in either set

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

1) Union: \cup

- All objects that appear in either set
- $E^{\text{new}} = E \cup F = \{(W, W), (W, N), (N, N)\}$

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

1) Union: \cup

- All objects that appear in either set
- $E^{\text{new}} = E \cup F = \{(W, W), (W, N), (N, N)\}$

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

1) Union: ∪

- All objects that appear in either set
- $E^{\text{new}} = E \cup F = \{(W, W), (W, N), (N, N)\}$

2) Intersection: \cap

- All objects that appear in both sets

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

1) Union: \cup

- All objects that appear in either set

-
$$E^{new} = E \cup F = \{(W, W), (W, N), (N, N)\}$$

- All objects that appear in both sets
- $E^{\text{new}} = E \cap F = \{(W, N)\}$

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

1) Union: \cup

- All objects that appear in either set
- $E^{\text{new}} = E \cup F = \{(W, W), (W, N), (N, N)\}$

- All objects that appear in both sets
- $E^{\text{new}} = E \cap F = \{(W, N)\}$
- Sometimes written as EF

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

1) Union: \cup

- All objects that appear in either set
- $E^{\text{new}} = E \cup F = \{(W, W), (W, N), (N, N)\}$

- All objects that appear in both sets
- $E^{\text{new}} = E \cap F = \{(W, N)\}$
- Sometimes written as EF

3) Complement of set $E: E^c$

Ξ

990

- 3) Complement of set $E: E^c$
 - All objects in S that aren't in E

< A

3

- 3) Complement of set $E: E^c$
 - All objects in S that aren't in E
 - $E^{c} = \{(N, W), (N, N)\}$

< A

3

Sac

- 3) Complement of set $E: E^c$
 - All objects in S that aren't in E
 - $E^{c} = \{(N, W), (N, N)\}$
 - $F^{c} = \{(N, W), (W, W)\}$

< ∃ >

< A

Sac

- 3) Complement of set $E: E^c$
 - All objects in S that aren't in E
 - $E^{c} = \{(N, W), (N, N)\}$
 - $F^{c} = \{(N, W), (W, W)\}$
 - $S = \Re$ and E = [0, 1]. What is E^c ?

< ∃ >

-

- 3) Complement of set $E: E^c$
 - All objects in S that aren't in E
 - $E^{c} = \{(N, W), (N, N)\}$
 - $F^{c} = \{(N, W), (W, W)\}$
 - $S = \Re$ and E = [0, 1]. What is E^c ?
 - What is S^c?

∃ ► < ∃ ►</p>

< A

- 3) Complement of set $E: E^c$
 - All objects in S that aren't in E
 - $E^{c} = \{(N, W), (N, N)\}$
 - $F^{c} = \{(N, W), (W, W)\}$
 - $S = \Re$ and E = [0, 1]. What is E^c ?
 - What is S^c? ∅

Sar

∃ ► < ∃ ►</p>

< A

3) Complement of set $E: E^c$

- All objects in S that aren't in E
-
$$E^c = \{(N, W), (N, N)\}$$

- $F^c = \{(N, W), (W, W)\}$
- $S = \Re$ and $E = [0, 1]$. What is E^c ?
- What is S^c ? \emptyset

Suppose E = W, F = N. Then $E \cap F = \emptyset$ (there is nothing that lies in both sets)

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

Sar

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^c are mutually exclusive events

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^c are mutually exclusive events

Examples:

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^c are mutually exclusive events

Examples:

- Suppose $S = \{H, T\}$. Then E = H and F = T, then $E \cap F = \emptyset$

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^c are mutually exclusive events

Examples:

- Suppose $S = \{H, T\}$. Then E = H and F = T, then $E \cap F = \emptyset$
- Suppose $S = \{(H, H), (H, T), (T, H), (T, T)\}$. $E = \{(H, H)\}, F = \{(H, H), (T, H)\}$, and $G = \{(H, T), (T, T)\}$

∃ ► < ∃ ►</p>

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^c are mutually exclusive events

Examples:

- Suppose $S = \{H, T\}$. Then E = H and F = T, then $E \cap F = \emptyset$
- Suppose $S = \{(H, H), (H, T), (T, H), (T, T)\}$. $E = \{(H, H)\}$, $F = \{(H, H), (T, H)\}$, and $G = \{(H, T), (T, T)\}$ - $E \cap F = (H, H)$

* E > < E >

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^c are mutually exclusive events

Examples:

- Suppose $S = \{H, T\}$. Then E = H and F = T, then $E \cap F = \emptyset$
- Suppose $S = \{(H, H), (H, T), (T, H), (T, T)\}$. $E = \{(H, H)\}$, $F = \{(H, H), (T, H)\}$, and $G = \{(H, T), (T, T)\}$ - $E \cap F = (H, H)$ - $F \cap G = \emptyset$

3

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^c are mutually exclusive events

Examples:

- Suppose $S = \{H, T\}$. Then E = H and F = T, then $E \cap F = \emptyset$
- Suppose $S = \{(H, H), (H, T), (T, H), (T, T)\}$. $E = \{(H, H)\}$, $F = \{(H, H), (T, H)\}$, and $G = \{(H, T), (T, T)\}$ - $E \cap F = (H, H)$ - $E \cap G = \emptyset$

-
$$F \cap G = \emptyset$$

3

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^c are mutually exclusive events

Examples:

- Suppose $S = \{H, T\}$. Then E = H and F = T, then $E \cap F = \emptyset$
- Suppose $S = \{(H, H), (H, T), (T, H), (T, T)\}$. $E = \{(H, H)\}, F = \{(H, H), (T, H)\}, and G = \{(H, T), (T, T)\}$ - $E \cap F = (H, H)$
 - $E \cap G = \emptyset$ $F \cap G = \emptyset$
- Suppose $S = \Re_+$. $E = \{x : x > 10\}$ and $F = \{x : x < 5\}$. Then $E \cap F = \emptyset$.

Definition

Suppose we have events E_1, E_2, \ldots, E_N . Define:

$$\cup_{i=1}^{N} E_i = E_1 \cup E_2 \cup E_3 \cup \ldots \cup E_N$$

 $\cup_{i=1}^{N} E_i$ is the set of outcomes that occur at least once in E_1, \ldots, E_N .

Definition

Suppose we have events E_1, E_2, \ldots, E_N . Define:

$$\cup_{i=1}^{N} E_i = E_1 \cup E_2 \cup E_3 \cup \ldots \cup E_N$$

 $\cup_{i=1}^{N} E_i$ is the set of outcomes that occur at least once in E_1, \ldots, E_N . Define:

$$\bigcap_{i=1}^{N} E_i = E_1 \cap E_2 \cap \ldots \cap E_N$$

 $\bigcap_{i=1}^{N} E_i$ is the set of outcomes that occur in each E_i

Probability

Ξ

990

<ロト <回ト < 回ト < 回ト

Probability

1) Sample Space: set of all things that could happen

3
- 1) Sample Space: set of all things that could happen
- 2) Events: subsets of sample space

- 1) Sample Space: set of all things that could happen
- 2) Events: subsets of sample space
- 3) Probability: chance of event

- 1) Sample Space: set of all things that could happen
- 2) Events: subsets of sample space
- 3) Probability: chance of event
 - P is a function

- 1) Sample Space: set of all things that could happen
- 2) Events: subsets of sample space
- 3) Probability: chance of event
 - P is a function
 - Domain: all events E

Definition All probability functions, P, satisfy three axioms:

3

Definition All probability functions, P, satisfy three axioms: 1) For all events E,

Definition

All probability functions, P, satisfy three axioms:

1) For all events E, $0 \leq P(E) \leq 1$

Definition

All probability functions, P, satisfy three axioms:

1) For all events E, $0 \leq P(E) \leq 1$ 2) P(S) = 1

Definition

All probability functions, P, satisfy three axioms:

- 1) For all events E, $0 \le P(E) \le 1$
- 2) P(S) = 1
- 3) For all sequences of mutually exclusive events E_1, E_2, \ldots, E_N (where N can go to infinity)

Definition

All probability functions, P, satisfy three axioms:

- 1) For all events E, $0 \le P(E) \le 1$
- 2) P(S) = 1
- 3) For all sequences of mutually exclusive events E₁, E₂,..., E_N (where N can go to infinity) P (∪^N_{i=1}E_i) = ∑^N_{i=1}P(E_i)

Ξ

990

<ロト <回ト < 回ト < 回ト

- Suppose we are flipping a fair coin. Then P(H) = P(T) = 1/2

프 - - 프 - -

< □ > < 同 >

3

- Suppose we are flipping a fair coin. Then P(H) = P(T) = 1/2
- Suppose we are rolling a six-sided die. Then P(1) = 1/6

- Suppose we are flipping a fair coin. Then P(H) = P(T) = 1/2
- Suppose we are rolling a six-sided die. Then P(1) = 1/6
- Suppose we are flipping a pair of fair coins. Then P(H, H) = 1/4

3

Sac

One candidate example:

Э

Sac

One candidate example:

- P(W): probability incumbent wins

One candidate example:

- P(W): probability incumbent wins
- P(N): probability incumbent loses

One candidate example:

- P(W): probability incumbent wins
- P(N): probability incumbent loses

Two candidate example:

One candidate example:

- P(W): probability incumbent wins
- P(N): probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win

One candidate example:

- P(W): probability incumbent wins
- P(N): probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win
- $P(\{W, W\}, \{W, N\})$: probability incumbent 1 wins

One candidate example:

- P(W): probability incumbent wins
- P(N): probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win
- $P(\{W, W\}, \{W, N\})$: probability incumbent 1 wins

Full House example:

One candidate example:

- P(W): probability incumbent wins
- P(N): probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win
- $P(\{W, W\}, \{W, N\})$: probability incumbent 1 wins

Full House example:

- *P*({All Democrats Win}) (Cox, McCubbins (1993, 2005), Party Brand Argument)

One candidate example:

- P(W): probability incumbent wins
- P(N): probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win
- $P(\{W, W\}, \{W, N\})$: probability incumbent 1 wins

Full House example:

 P({All Democrats Win}) (Cox, McCubbins (1993, 2005), Party Brand Argument)

We'll use data to infer these things

We can derive intuitive properties of probability theory.

We can derive intuitive properties of probability theory. Using just the axioms

3

Sar

We can derive intuitive properties of probability theory. Using just the $\ensuremath{\mathsf{axioms}}$

Proposition

 $P(\emptyset) = 0$

We can derive intuitive properties of probability theory. Using just the $\ensuremath{\mathsf{axioms}}$

Proposition

 $P(\emptyset) = 0$

Proof.

ustin	Grimmer	(Stanford	University)	
		\ =	/ /	

We can derive intuitive properties of probability theory. Using just the $\ensuremath{\mathsf{axioms}}$

Proposition

 $P(\emptyset) = 0$

Proof.

We can derive intuitive properties of probability theory. Using just the $\ensuremath{\mathsf{axioms}}$

Proposition

 $P(\emptyset) = 0$

Proof.

$$1 = P(S) = P(S \cup \emptyset) = P(E_1 \cup E_2)$$

We can derive intuitive properties of probability theory. Using just the $\ensuremath{\mathsf{axioms}}$

Proposition

 $P(\emptyset) = 0$

Proof.

$$1 = P(S) = P(S \cup \emptyset) = P(E_1 \cup E_2)$$

$$1 = P(E_1) + P(E_2)$$

We can derive intuitive properties of probability theory. Using just the $\ensuremath{\mathsf{axioms}}$

Proposition

 $P(\emptyset) = 0$

Proof.

$$1 = P(S) = P(S \cup \emptyset) = P(E_1 \cup E_2)$$

$$1 = P(E_1) + P(E_2)$$

$$1 = P(S) + P(\emptyset)$$

We can derive intuitive properties of probability theory. Using just the $\ensuremath{\mathsf{axioms}}$

Proposition

 $P(\emptyset) = 0$

Proof.

Define $E_1 = S$ and $E_2 = \emptyset$,

$$1 = P(S) = P(S \cup \emptyset) = P(E_1 \cup E_2)$$

$$1 = P(E_1) + P(E_2)$$

$$1 = P(S) + P(\emptyset)$$

$$1 = 1 + P(\emptyset)$$

Justin Grimmer (Stanford University)

We can derive intuitive properties of probability theory. Using just the $\ensuremath{\mathsf{axioms}}$

Proposition

 $P(\emptyset) = 0$

Proof.

$$1 = P(S) = P(S \cup \emptyset) = P(E_1 \cup E_2)$$

$$1 = P(E_1) + P(E_2)$$

$$1 = P(S) + P(\emptyset)$$

$$1 = 1 + P(\emptyset)$$

$$0 = P(\emptyset)$$

We can derive intuitive properties of probability theory. Using just the $\ensuremath{\mathsf{axioms}}$

Proposition

 $P(\emptyset) = 0$

Proof.

$$1 = P(S) = P(S \cup \emptyset) = P(E_1 \cup E_2)$$

$$1 = P(E_1) + P(E_2)$$

$$1 = P(S) + P(\emptyset)$$

$$1 = 1 + P(\emptyset)$$

$$0 = P(\emptyset)$$

Justin Grimmer (Stanford University)

< A

Э

Proposition $P(E) = 1 - P(E^c)$

-

< A

Э
Proposition $P(E) = 1 - P(E^c)$

Proof.

Justin Grimmer	(Stanford	University)	
----------------	-----------	-------------	--

Э

Proposition $P(E) = 1 - P(E^c)$

Proof.

Note that, $S = E \cup E^c$. And that $E \cap E^c = \emptyset$.

3

∃ ► < ∃ ►</p>

Proposition $P(E) = 1 - P(E^{c})$

Proof.

Note that, $S = E \cup E^c$. And that $E \cap E^c = \emptyset$. Therefore,

3

18 I.S.

Proposition $P(E) = 1 - P(E^c)$

Proof.

Note that, $S = E \cup E^c$. And that $E \cap E^c = \emptyset$. Therefore,

$$1 = P(S) = P(E \cup E^c)$$

3

E 5 4 E 5

Proposition $P(E) = 1 - P(E^{c})$

Proof.

Note that, $S = E \cup E^c$. And that $E \cap E^c = \emptyset$. Therefore,

$$1 = P(S) = P(E \cup E^c)$$

$$1 = P(E) + P(E^c)$$

3

18 I.S.

Proposition $P(E) = 1 - P(E^c)$

Proof.

Note that, $S = E \cup E^c$. And that $E \cap E^c = \emptyset$. Therefore,

$$1 = P(S) = P(E \cup E^{c})$$

$$1 = P(E) + P(E^{c})$$

$$1 - P(E^{c}) = P(E)$$

3

∃ ► < ∃ ►</p>

Proposition $P(E) = 1 - P(E^{c})$

Proof.

Note that, $S = E \cup E^c$. And that $E \cap E^c = \emptyset$. Therefore,

$$1 = P(S) = P(E \cup E^{c})$$

$$1 = P(E) + P(E^{c})$$

$$1 - P(E^{c}) = P(E)$$

-

Proposition $P(E) = 1 - P(E^c)$

Proof.

Note that, $S = E \cup E^c$. And that $E \cap E^c = \emptyset$. Therefore,

$$1 = P(S) = P(E \cup E^{c})$$

$$1 = P(E) + P(E^{c})$$

$$1 - P(E^{c}) = P(E)$$

In words: Probability an outcome in E happens is 1- probability an outcome in E doesn't.

Justin Grimmer (Stanford University)

< A

Э

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.

Justin Grimmer (Stanford University)

3

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.

Proof.

3

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.

Proof.

We can write $F = E \cup (E^c \cap F)$. (Why?)

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.

Proof.

We can write $F = E \cup (E^c \cap F)$. (Why?) Further, $(E^c \cap F) \cap E = \emptyset$

3

∃ ► < ∃ ►</p>

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.

Proof.

We can write $F = E \cup (E^c \cap F)$. (Why?) Further, $(E^c \cap F) \cap E = \emptyset$ Then

3

∃ ► < ∃ ►</p>

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.

Proof.

We can write $F = E \cup (E^c \cap F)$. (Why?) Further, $(E^c \cap F) \cap E = \emptyset$ Then $P(F) = P(E) + P(E^c \cap F)$ (Done!)

3

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.

Proof.

We can write $F = E \cup (E^c \cap F)$. (Why?) Further, $(E^c \cap F) \cap E = \emptyset$ Then $P(F) = P(E) + P(E^c \cap F)$ (Done!)

3

ヨト・モヨト

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.

Proof.

We can write $F = E \cup (E^c \cap F)$. (Why?) Further, $(E^c \cap F) \cap E = \emptyset$ Then $P(F) = P(E) + P(E^c \cap F)$ (Done!)

As you add more "outcomes" to a set, it can't reduce the probability.

∃ ► < ∃ ►</p>

Simulation: use pseudo-random numbers, computers to gain evidence for claim

Tradeoffs:

- Pro Deep understanding of problem, easier than proofs
- Con Never as general, can be deceiving if not done carefully (also, never a monte carlo study that shows a new method is wrong)
- Walk through R code to simulate these two results

To the R code!

E

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>

4.2. Three different combination rules were used. We then tried to identify the rules used to combine individual drug predictions into a combination score. Letting P() indicate probability of sensitivity, the rules used are:

$$\begin{array}{rcl} P(TFAC) &=& P(T) + P(F) + P(A) + P(C) - P(T)P(F)P(A)P(C), \\ P(TET) &=& P(ET) = \max[P(E), P(T)], \text{ and} \\ & 5 & 1 \end{array}$$

3

< 🗇 🕨

Sac

Inclusion/Exclusion

Proposition

Suppose E_1, E_2, \ldots, E_n are events. Then

$$P(E_{1} \cup E_{2} \cup \cdots \cup E_{n}) = \sum_{i=1}^{N} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) + \cdots + (-1)^{r+1} \sum_{i_{1} < i_{2} < \cdots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i_{r}}) + \cdots + (-1)^{n+1} P(E_{1} \cap E_{2} \cap \cdots \cap E_{n})$$

< A

Sac

- Suppose that we have an outcome.

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\bigcup_{i=1}^{n} E_i$ (contributes once to $P(\bigcup_{i=1}^{n} E_i)$).

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\bigcup_{i=1}^{n} E_i$ (contributes once to $P(\bigcup_{i=1}^{n} E_i)$).
- How many times on the other side? Suppose it appears in m of the E_i m > 0

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\bigcup_{i=1}^{n} E_i$ (contributes once to $P(\bigcup_{i=1}^{n} E_i)$).
- How many times on the other side? Suppose it appears in m of the E_i m > 0

count =
$$\binom{m}{1} - \binom{m}{2} + \binom{m}{3} - \dots + (-1)^{m+1} \binom{m}{m}$$

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\bigcup_{i=1}^{n} E_i$ (contributes once to $P(\bigcup_{i=1}^{n} E_i)$).
- How many times on the other side? Suppose it appears in m of the E_i m > 0

count =
$$\binom{m}{1} - \binom{m}{2} + \binom{m}{3} - \dots + (-1)^{m+1} \binom{m}{m}$$

count = $\sum_{i=1}^{m} \binom{m}{i} (-1)^{i+1}$

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\bigcup_{i=1}^{n} E_i$ (contributes once to $P(\bigcup_{i=1}^{n} E_i)$).
- How many times on the other side? Suppose it appears in m of the E_i m > 0

$$count = \binom{m}{1} - \binom{m}{2} + \binom{m}{3} - \dots + (-1)^{m+1} \binom{m}{m}$$
$$count = \sum_{i=1}^{m} \binom{m}{i} (-1)^{i+1}$$
$$count = -\sum_{i=1}^{m} \binom{m}{i} (-1)^{i}$$

 $\operatorname{count} = -\sum_{i=1}^{m} {m \choose i} (-1)^{i}$

-

- < A

3

count
$$= -\sum_{i=1}^{m} {m \choose i} (-1)^i$$

Binomial Theorem: $(x+y)^n = \sum_{i=0}^{n} {n \choose i} (x)^{n-i} y^i$.

- (A

Ξ

count =
$$-\sum_{i=1}^{m} {m \choose i} (-1)^i$$

Binomial Theorem: $(x+y)^n = \sum_{i=0}^{n} {n \choose i} (x)^{n-i} y^i$.

$$0 = (-1+1)^m = \sum_{i=0}^m \binom{m}{i} (-1)^i$$

- (A

Ξ

count =
$$-\sum_{i=1}^{m} {m \choose i} (-1)^i$$

Binomial Theorem: $(x+y)^n = \sum_{i=0}^{n} {n \choose i} (x)^{n-i} y^i$.

$$0 = (-1+1)^{m} = \sum_{i=0}^{m} {m \choose i} (-1)^{i}$$
$$0 = 1 + \sum_{i=1}^{m} {m \choose i} (-1)^{i}$$

Justin Grimmer (Stanford University)

1 22 / 32 September 14th, 2016

- < fi

990

Ξ

count =
$$-\sum_{i=1}^{m} {m \choose i} (-1)^i$$

Binomial Theorem: $(x+y)^n = \sum_{i=0}^{n} {n \choose i} (x)^{n-i} y^i$.

$$0 = (-1+1)^{m} = \sum_{i=0}^{m} {\binom{m}{i}} (-1)^{i}$$
$$0 = 1 + \sum_{i=1}^{m} {\binom{m}{i}} (-1)^{i}$$
$$0 = 1 - \text{count}$$

- < fi

990

Ξ

count =
$$-\sum_{i=1}^{m} {m \choose i} (-1)^i$$

Binomial Theorem: $(x + y)^n = \sum_{i=0}^{n} {n \choose i} (x)^{n-i} y^i$.

$$0 = (-1+1)^m = \sum_{i=0}^m \binom{m}{i} (-1)^i$$
$$0 = 1 + \sum_{i=1}^m \binom{m}{i} (-1)^i$$
$$0 = 1 - \text{count}$$
$$1 = \text{count}$$

-

< 口 > < 同

E

Inclusion/Exclusion

Corollary

Suppose E_1 and E_2 are events. Then

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

R Code!

3

Proposition Consider events E_1 and E_2 . Then

 $P(E_1 \cap E_2) = P(E_1) - P(E_1 \cap E_2^c)$

Proof.

- ∢ ⊢⊒ ト

3

Sac
Proposition Consider events E_1 and E_2 . Then

$$P(E_1 \cap E_2) = P(E_1) - P(E_1 \cap E_2^c)$$

Proof.

 $E_1 = (E_1 \cap E_2) \cup (E_1 \cap E_2^c)$

Justin Grimmer	(Stanford	University)
----------------	-----------	-------------

Э

Proposition Consider events E_1 and E_2 . Then

$$P(E_1 \cap E_2) = P(E_1) - P(E_1 \cap E_2^c)$$

Proof.

$$E_1 = (E_1 \cap E_2) \cup (E_1 \cap E_2^c)$$

$$P(E_1) = P(E_1 \cap E_2) + P(E_1 \cap E_2^c)$$

Justin Grimmer (Stanford University)

< A

Э

Proposition Consider events E_1 and E_2 . Then

$$P(E_1 \cap E_2) = P(E_1) - P(E_1 \cap E_2^c)$$

Proof.

$$E_1 = (E_1 \cap E_2) \cup (E_1 \cap E_2^c)$$

$$P(E_1) = P(E_1 \cap E_2) + P(E_1 \cap E_2^c)$$

$$P(E_1 \cap E_2) = P(E_1) - P(E_1 \cap E_2^c)$$

- (A 🖓

Э

$$P(\bigcup_{i=1}^{N} E_i) \leq \sum_{i=1}^{N} P(E_i)$$

E

990

< 🗇 🕨

$$P(\cup_{i=1}^{N} E_i) \leq \sum_{i=1}^{N} P(E_i)$$

Proof.

< □ >

< A

E

990

ヨト・イヨト

$$P(\bigcup_{i=1}^{N} E_i) \leq \sum_{i=1}^{N} P(E_i)$$

Proof.

Proceed by induction. Trivially true for n = 1. Now assume the proposition is true for n = k and consider n = k + 1.

$$P(\bigcup_{i=1}^{N} E_i) \leq \sum_{i=1}^{N} P(E_i)$$

Proof.

Proceed by induction. Trivially true for n = 1. Now assume the proposition is true for n = k and consider n = k + 1.

$$P(\bigcup_{i=1}^{k} E_{i} \cup E_{k+1}) = P(\bigcup_{i=1}^{k} E_{i}) + P(E_{k+1}) - P(\bigcup_{i=1}^{k} E_{i} \cap E_{k+1})$$

$$P(\cup_{i=1}^{N} E_i) \leq \sum_{i=1}^{N} P(E_i)$$

Proof.

Proceed by induction. Trivially true for n = 1. Now assume the proposition is true for n = k and consider n = k + 1.

$$P(\bigcup_{i=1}^{k} E_{i} \cup E_{k+1}) = P(\bigcup_{i=1}^{k} E_{i}) + P(E_{k+1}) - P(\bigcup_{i=1}^{k} E_{i} \cap E_{k+1})$$
$$P(E_{k+1}) - P(\bigcup_{i=1}^{k} E_{i} \cap E_{k+1}) \le P(E_{k+1})$$

Justin Grimmer (Stanford University)

E

990

$$P(\cup_{i=1}^{k} E_i) \leq \sum_{i=1}^{k} P(E_i)$$

E

990

$$P(\bigcup_{i=1}^{k} E_{i}) \leq \sum_{i=1}^{k} P(E_{i})$$
$$P(\bigcup_{i=1}^{k} E_{i}) + P(E_{k+1}) - P(\bigcup_{i=1}^{k} E_{i} \cap E_{k+1}) \leq \sum_{i=1}^{k} P(E_{i}) + P(E_{k+1})$$

E

990

$$P(\bigcup_{i=1}^{k} E_{i}) \leq \sum_{i=1}^{k} P(E_{i})$$

$$P(\bigcup_{i=1}^{k} E_{i}) + P(E_{k+1}) - P(\bigcup_{i=1}^{k} E_{i} \cap E_{k+1}) \leq \sum_{i=1}^{k} P(E_{i}) + P(E_{k+1})$$

$$P(\bigcup_{i=1}^{k+1} E_{i}) \leq \sum_{i=1}^{k+1} P(E_{i})$$

E

990

Bonferroni's Inequality

$$P(\bigcap_{i=1}^{n} E_i) \geq 1 - \sum_{i=1}^{n} P(E_i^c)$$

Bonferroni's Inequality

$$P(\cap_{i=1}^{n} E_{i}) \geq 1 - \sum_{i=1}^{n} P(E_{i}^{c})$$

Proof.

 $\cup_{i=1}^{n}E_{i}^{c}=(\cap_{i=1}^{n}E_{i})^{c}.$ So,

Bonferroni's Inequality

$$P(\cap_{i=1}^{n} E_{i}) \geq 1 - \sum_{i=1}^{n} P(E_{i}^{c})$$

$$\cup_{i=1}^{n} E_{i}^{c} = (\cap_{i=1}^{n} E_{i})^{c}$$
. So,

$$P(\cup_{i=1}^{N} E_i^c) \leq \sum_{i=1}^{N} P(E_i^c)$$

Bonferroni's Inequality

$$P(\bigcap_{i=1}^{n} E_i) \geq 1 - \sum_{i=1}^{n} P(E_i^c)$$

$$\cup_{i=1}^{n} E_{i}^{c} = (\cap_{i=1}^{n} E_{i})^{c}$$
. So,

$$P(\bigcup_{i=1}^{N} E_{i}^{c}) \leq \sum_{i=1}^{N} P(E_{i}^{c})$$
$$P(\bigcup_{i=1}^{N} E_{i}^{c}) = P((\bigcap_{i=1}^{n} E_{i})^{c}))$$
$$= 1 - P(\bigcap_{i=1}^{n} E_{i})$$

Bonferroni's Inequality

$$P(\bigcap_{i=1}^{n} E_i) \geq 1 - \sum_{i=1}^{n} P(E_i^c)$$

$$\cup_{i=1}^{n} E_{i}^{c} = (\cap_{i=1}^{n} E_{i})^{c}$$
. So,

$$P(\bigcup_{i=1}^{N} E_{i}^{c}) \leq \sum_{i=1}^{N} P(E_{i}^{c})$$

$$P(\bigcup_{i=1}^{N} E_{i}^{c}) = P((\bigcap_{i=1}^{n} E_{i})^{c}))$$

$$= 1 - P(\bigcap_{i=1}^{n} E_{i})$$

$$P(\bigcap_{i=1}^{n} E_{i}) \geq 1 - \sum_{i=1}^{n} P(E_{i}^{c})$$

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds"

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" $\, \rightsquigarrow \,$ not great, but neither are all the other non-pattens that are missed

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" $\, \rightsquigarrow \,$ not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55%"

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" $\, \rightsquigarrow \,$ not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55%" → confuses different events

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" $\, \rightsquigarrow \,$ not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55%" → confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group A"

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55%" \rightarrow confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group A" \rightarrow confuses two different problems (explain more tomorrow)

Jac.

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55%" \rightarrow confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group A" \rightarrow confuses two different problems (explain more tomorrow)
- "This is a low probability event, therefore god designed it"

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" $\, \rightsquigarrow \,$ not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55%" → confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group A" → confuses two different problems (explain more tomorrow)
- "This is a low probability event, therefore god designed it" → (1) Even if we stipulate to a low probability event, intelligent design is an assumption (2) Low probability obviously doesn't imply divine intervention. Take 100 balls and let them sort into an undetermined bins. You'll get a result, but probability of that result = 1/(10²⁹ × Number of Atoms in Universe)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" $\, \rightsquigarrow \,$ not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55%" → confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group A" → confuses two different problems (explain more tomorrow)
- "This is a low probability event, therefore god designed it" → (1) Even if we stipulate to a low probability event, intelligent design is an assumption (2) Low probability obviously doesn't imply divine intervention. Take 100 balls and let them sort into an undetermined bins. You'll get a result, but probability of that result = 1/(10²⁹ × Number of Atoms in Universe)

Easy Problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Probabilistic reasoning pays off for harder problems

Probabilistic reasoning pays off for harder problems Suppose we have a room full of N people. What is the probability at least 2 people have the same birthday?

Probabilistic reasoning pays off for harder problems Suppose we have a room full of N people. What is the probability at least 2 people have the same birthday?

- Assuming leap year counts, N = 367 guarantees at least two people with same birthday (pigeonhole principle)

Probabilistic reasoning pays off for harder problems Suppose we have a room full of N people. What is the probability at least 2 people have the same birthday?

- Assuming leap year counts, N = 367 guarantees at least two people with same birthday (pigeonhole principle)
- For N < 367?

Probabilistic reasoning pays off for harder problems Suppose we have a room full of N people. What is the probability at least 2 people have the same birthday?

- Assuming leap year counts, N = 367 guarantees at least two people with same birthday (pigeonhole principle)
- For *N* < 367?
- Examine via simulation

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1):

Sac

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:

Sac
Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:

Pr(2 people agree) = 0.5

Jac.

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:

Pr(2 people agree) = 0.5

 $\mathsf{Pr}(\mathsf{Exact}) \ = \ \mathsf{Pr}(\mathsf{Agree})_1 \times \mathsf{Pr}(\mathsf{Agree})_2 \times \ldots \times \mathsf{Pr}(\mathsf{Agree})_{29}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:

Pr(2 people agree) = 0.5

Jac.

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:

Pr(2 people agree) = 0.5

$$\begin{aligned} \mathsf{Pr}(\mathsf{Exact}) &= & \mathsf{Pr}(\mathsf{Agree})_1 \times \mathsf{Pr}(\mathsf{Agree})_2 \times \ldots \times \mathsf{Pr}(\mathsf{Agree})_{29} \\ &= & 0.5 \times 0.5 \times \ldots \times 0.5 \\ &= & 0.5^{29} \end{aligned}$$

Jac.

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:

Pr(2 people agree) = 0.5

Sac

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:

Pr(2 people agree) = 0.5

1 in 536,870,912 people

200

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:

Pr(2 people agree) = 0.5

1 in 536,870,912 people Across many "variables" (events) agreement is harder

Probability Theory

- Today: Introducing probability model
- Conditional probability, Bayes' rule, and independence

3