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Where are we going?

Probability Theory:

1) Mathematical model of uncertainty

2) Foundation for statistical inference

3) Continues our development of key skills

- Proofs [precision in thinking, useful for formulating arguments]
- Statistical computing [basis for much of what you'll do in graduate
school]
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Model of Probability

Three parts to our probability model
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1) Sample space: set of all things that could happen
2) Events: subsets of the sample space
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Model of Probability

Three parts to our probability model

1) Sample space: set of all things that could happen
2) Events: subsets of the sample space

3) Probability: chance of an event
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
- One incumbent: S = {W, N}
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
- One incumbent: S = {W, N}
- Two incumbents: S = {(W, W), (W, N), (N, W), (N, N)}
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
- One incumbent: S = {W, N}

- Two incumbents: S = {(W, W), (W, N), (N, W), (N, N)}
- 435 incumbents: S = 2435 possible outcomes
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
- One incumbent: S = {W, N}
- Two incumbents: S = {(W, W), (W, N), (N, W), (N, N)}
- 435 incumbents: S = 2435 possible outcomes

2) Number of countries signing treaties
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
- One incumbent: S = {W, N}
- Two incumbents: S = {(W, W), (W, N), (N, W), (N, N)}
- 435 incumbents: S = 2435 possible outcomes
2) Number of countries signing treaties
- 5=1{0,1,2,...,194}
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
- One incumbent: S = {W, N}

- Two incumbents: S = {(W, W), (W, N), (N, W), (N, N)}
- 435 incumbents: S = 2435 possible outcomes

2) Number of countries signing treaties
- 5=1{0,1,2,...,194}
3) Duration of cabinets
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
- One incumbent: S = {W, N}

- Two incumbents: S = {(W, W), (W, N), (N, W), (N, N)}
- 435 incumbents: S = 2435 possible outcomes

2) Number of countries signing treaties
- 5=1{0,1,2,...,194}
3) Duration of cabinets

- All non-negative real numbers: [0, 00)
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
- One incumbent: S = {W, N}

- Two incumbents: S = {(W, W), (W, N), (N, W), (N, N)}
- 435 incumbents: S = 2435 possible outcomes

2) Number of countries signing treaties
- 5=1{0,1,2,...,194}
3) Duration of cabinets

- All non-negative real numbers: [0, 00)
-S={x:0<x< o0}
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Sample Spaces: All Things that Can Happen
Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years
- One incumbent: S = {W, N}

- Two incumbents: S = {(W, W), (W, N), (N, W), (N, N)}
- 435 incumbents: S = 2435 possible outcomes

2) Number of countries signing treaties
- 5=1{0,1,2,...,194}
3) Duration of cabinets
- All non-negative real numbers: [0, 00)
-S={x:0<x< o0}
Key point: this defines all possible realizations
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
- Two Incumbents:
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
- Two Incumbents:
- E={(W,N),(W, W)}
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
- Two Incumbents:
- E={(W,N),(W, W)}
- F={(N. M)}
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
- Two Incumbents:
- E={(W,N),(W, W)}
- F={(N.N)}
- 435 Incumbents:
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
- Two Incumbents:
- E={(W,N), (W, W)}
- F={(N,N)}
- 435 Incumbents:
- Outcome of 2010 election: one event
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
- Two Incumbents:
- E={(W,N), (W, W)}
- F={(N,N)}
- 435 Incumbents:
- Outcome of 2010 election: one event

- All outcomes where Dems retain control of House: one event
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
- Two Incumbents:
- E={(W,N), (W, W)}
- F={(N,N)}
- 435 Incumbents:
- Outcome of 2010 election: one event

- All outcomes where Dems retain control of House: one event
Notation:
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
- Two Incumbents:
- E={(W,N), (W, W)}
- F={(N,N)}
- 435 Incumbents:
- Outcome of 2010 election: one event

- All outcomes where Dems retain control of House: one event
Notation: x is an “element” of a set E:
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Events: Subsets of Sample Space
Definition

An event, E is a subset of the sample space.
ECS

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example
- One incumbent:
-E=W
- F=N
- Two Incumbents:
- E={(W,N), (W, W)}
- F={(N,N)}
- 435 Incumbents:
- Outcome of 2010 election: one event

- All outcomes where Dems retain control of House: one event
Notation: x is an “element” of a set E:
xeE
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E is a set
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Justin Grimmer (Stanford University)

Methodology |



Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets:
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

] = =
Justin Grimmer (Stanford University) Methodology |



Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets

Consider two example sets (from two incumbent example)

E= {(W7 W)’(W’ N)}
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets

Consider two example sets (from two incumbent example)

E= {(W7 W)’(W’ N)}
F= {(N7 N),(W, N)}
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets

Consider two example sets (from two incumbent example)

E= {(W7 W)’(W7 N)}
F= {(N7 N),(W, N)}
S= {(W7 W)?(W7 N)?(Nv W)v(Nv N)}
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets

Consider two example sets (from two incumbent example)

E= {(W7 W)’(W7 N)}
F= {(N7 N),(W, N)}

S= {(W7 W)? (W7 N)? (Nv W), (N7 N)}
Operations determine what lies in new set E"W
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets

Consider two example sets (from two incumbent example)

E= {(W7 W)’(W7 N)}
F= {(N7 N),(W, N)}
S= {(W7 W)?(Wv N)?(Nv W)v(Nv N)}

Operations determine what lies in new set E"W
1) Union: U
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets

Consider two example sets (from two incumbent example)

E= {(W7 W)’(W7 N)}
F= {(N7 N),(W, N)}
S= {(W7 W)?(W7 N)?(Nv W)v(Nv N)}

Operations determine what lies in new set E"W
1) Union: U

- All objects that appear in either set
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

E= {(W7 W)’(W7 N)}
F = {(N7 N)v (W7 N)}
S= {(W7 W)? (W7 N)? (N7 W)? (N7 N)}
Operations determine what lies in new set E"W
1) Union: U

- All objects that appear in either set
- E=EUF= {(Wv W)a (Wv N)?(Nv N)}
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):
E={(W,W),(W,N)}
F= {(N7 N)? (W7 N)}

S= {(W7 W)? (W7 N)? (Nv W), (N7 N)}
Operations determine what lies in new set E"W
1) Union: U

- All objects that appear in either set

_EY = EUF = {(W, W), (W, N),(N,N)}
2) Intersection: N
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

E= {(W7 W)’(W7 N)}
F = {(N7 N)? (W7 N)}
S= {(W7 W)? (W7 N)? (N7 W)? (N7 N)}
Operations determine what lies in new set E"W
1) Union: U

- All objects that appear in either set

_EY = EUF = {(W, W), (W, N),(N,N)}
2) Intersection: N

- All objects that appear in both sets
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):
E={(W,W),(W,N)}
F= {(N7 N)? (W7 N)}

S= {(W7 W)? (W7 N)? (Nv W), (N7 N)}
Operations determine what lies in new set E"W
1) Union: U

- All objects that appear in either set
- E=EUF= {(Wv W)a (Wv N)?(Nv N)}
2) Intersection: N

- All objects that appear in both sets
- EY=ENF={(W,N)}
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):
E={(W,W),(W,N)}
F= {(N7 N)? (W7 N)}

S= {(W7 W)? (W7 N)? (N7 W)? (N7 N)}
Operations determine what lies in new set E"W
1) Union: U
- All objects that appear in either set
- B =FEUF ={(W,W),(W,N),(N,N)}
2) Intersection: N

- All objects that appear in both sets
- EY=ENF={(W,N)}
- Sometimes written as EF
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Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):
E={(W,W),(W,N)}
F= {(N7 N)? (W7 N)}

S= {(W7 W)? (W7 N)? (N7 W)? (N7 N)}
Operations determine what lies in new set E"W
1) Union: U
- All objects that appear in either set
- B =FEUF ={(W,W),(W,N),(N,N)}
2) Intersection: N

- All objects that appear in both sets
- EY=ENF={(W,N)}
- Sometimes written as EF
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3) Complement of set E: E€
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3) Complement of set E: E€

- All objects in S that aren’t in E
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3) Complement of set E: E€

- All objects in S that aren’t in E

- Ec= {(Nv W)a(N’ N)}
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3) Complement of set E: E€
- All objects in S that aren’t in E

- Ec= {(Nv W)a(N’ N)}

- Fe= {(N7 W)v(W7 W)}
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3) Complement of set E: E€

- All objects in S that aren’t in E

- Ec={(N,W),(N,N)}

- Fe= {(N7 W)v(W7 W)}

- S=%Rand E=][0,1]. What is E?
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3) Complement of set E: E€

- All objects in S that aren’t in E

- EC:{(Nv W)a(N,N)}
- FC:{(N7 W)v(W7 W)}

What is S¢7
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3) Complement of set E: E€

- All objects in S that aren’t in E

- EC:{(Nv W)a(N,N)}
- FC:{(N7 W)v(W7 W)}

What is 57 0
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3) Complement of set E: E€
- All objects in S that aren’t in E
- Ec= {(N7 W)a(N7 N)}
- Fe= {(N7 W)?(W7 W)}
- S=WRand E=10,1]. What is E<?
- What is 5¢7 0

Suppose E = W, F = N. Then E N F = () (there is nothing that lies in
both sets)
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Events: Subsets of Sample Space

Definition

Suppose E and F are events. If ENF = () then we'll say E and F are

mutually exclusive
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Events: Subsets of Sample Space

Definition

Suppose E and F are events. If ENF = () then we'll say E and F are

mutually exclusive

- Mutual exclusivity # independence
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Events: Subsets of Sample Space

Definition

Suppose E and F are events. If ENF = () then we'll say E and F are

mutually exclusive

- Mutual exclusivity # independence

- E and E€ are mutually exclusive events
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Events: Subsets of Sample Space

Definition

Suppose E and F are events. If ENF = () then we'll say E and F are

mutually exclusive

- Mutual exclusivity # independence

- E and E€ are mutually exclusive events
Examples:
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Events: Subsets of Sample Space
Definition

Suppose E and F are events. If ENF = () then we'll say E and F are
mutually exclusive

- Mutual exclusivity # independence
- E and E€ are mutually exclusive events

Examples:

- Suppose S ={H, T}. Then E=Hand F =T, then ENF =1
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Events: Subsets of Sample Space
Definition

Suppose E and F are events. If ENF = () then we'll say E and F are
mutually exclusive

- Mutual exclusivity # independence
- E and E€ are mutually exclusive events

Examples:

- Suppose S ={H, T}. Then E=Hand F =T, then ENF =1

_ Suppose S = {(H, H), (H, T),(T,H),(T, T)}. E = {(H,H)},
F = {(H,H),(T,H)}, and G = {(H, T),(T, T)}
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Events: Subsets of Sample Space
Definition

Suppose E and F are events. If ENF = () then we'll say E and F are
mutually exclusive

- Mutual exclusivity # independence
- E and E€ are mutually exclusive events

Examples:

- Suppose S ={H, T}. Then E=Hand F =T, then ENF =1
- Suppose S = {(H,H),(H, T),(T,H),(T,T)}. E={(H,H)},
F={(H,H),(T.H)} and G ={(H,T),(T,T)}
- ENF = (H,H)
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Events: Subsets of Sample Space
Definition

Suppose E and F are events. If ENF = () then we'll say E and F are
mutually exclusive

- Mutual exclusivity # independence
- E and E€ are mutually exclusive events
Examples:

- Suppose S ={H, T}. Then E=Hand F =T, then ENF =1
B SUppOSG S = {(H7 H)7 (H7 T)?(T7 H)?(Ta T)} E = {(H7 H)}'

F = {(H, H), (T, H)}, and G = {(Ha T)v(Ta T)}
- ENF=(H,H)
-ENG=0
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Events: Subsets of Sample Space
Definition

Suppose E and F are events. If ENF = () then we'll say E and F are
mutually exclusive

- Mutual exclusivity # independence
- E and E€ are mutually exclusive events
Examples:

- Suppose S ={H, T}. Then E=Hand F =T, then ENF =1
B SUppOSG S = {(H7 H)7 (H7 T)?(T7 H)?(Ta T)} E = {(H7 H)}'

F={(H,H),(T,H)}, and G ={(H, T),(T, T)}
- ENF = (H,H)
-ENG=0
-FNG=0
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Events: Subsets of Sample Space
Definition

Suppose E and F are events. If ENF = () then we'll say E and F are
mutually exclusive

- Mutual exclusivity # independence
- E and E€ are mutually exclusive events
Examples:
- Suppose S ={H, T}. Then E=Hand F =T, then ENF =1
- Suppose S = {(H,H),(H, T),(T,H),(T,T)}. E={(H,H)},

F={(H,H),(T,H)}, and G ={(H, T),(T, T)}
- ENF=(H,H)
-ENG=0
-FNG=0

- Suppose S =R;. E={x:x>10} and F = {x: x <5}. Then
ENF=0.

[m] = = =

Justin Grimmer (Stanford University) Methodology |



Events: Subsets of the Sample Space
Definition

Suppose we have events Eq, Ej,
Define:

.., En.

UN_IE,' = BHHUEUEU...UEN

UN | E; is the set of outcomes that occur at least once in Ej,

.. En.

Justin Grimmer (Stanford University)
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Events: Subsets of the Sample Space

Definition
Suppose we have events E;1, Ep, ..., Ey.
Define:
UNIIE,' = BHHUEUEU...UEN

UN | E; is the set of outcomes that occur at least once in Ej,
Define:

NNLE = EENEN...NEy

NN | E; is the set of outcomes that occur in each E;

.. En.
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Probability
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Probability

1) Sample Space: set of all things that could happen
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Probability

1) Sample Space: set of all things that could happen
2) Events: subsets of sample space
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Probability

2) Events: subsets of sample space

1) Sample Space: set of all things that could happen
3) Probability: chance of event
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Probability

1) Sample Space: set of all things that could happen
2) Events: subsets of sample space
3) Probability: chance of event

- P is a function
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Probability

1) Sample Space: set of all things that could happen
2) Events: subsets of sample space

3) Probability: chance of event
- P is a function

- Domain: all events E
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Probability

Definition

All probability functions, P, satisfy three axioms:
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Probability

Definition

All probability functions, P, satisfy three axioms:
1) For all events E,
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Probability

Definition

1) For all events E,
0<PE)<1

All probability functions, P, satisfy three axioms:
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Probability

Definition

1) For all events E,
0<PE)<1
2) P(S)=1

All probability functions, P, satisfy three axioms:
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Probability

Definition
All probability functions, P, satisfy three axioms:
1) For all events E,
0<PE)<1
2) P(S)=1
3) For all sequences of mutually exclusive events E;, E,

N can go to infinity)
P (Uf\lzlEi) = Z;\Izl P(Ei)

..., En (where
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- Suppose we are flipping a fair coin. Then P(H) = P(T)=1/2
- Suppose we are rolling a six-sided die. Then P(1) =1/6
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Probability

- Suppose we are flipping a fair coin. Then P(H) = P(T)=1/2
- Suppose we are rolling a six-sided die. Then P(1) =1/6

- Suppose we are flipping a pair of fair coins. Then P(H,H) =1/4
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One candidate example:
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Example: Congressional Elections

One candidate example:

- P(W): probability incumbent wins

- P(N): probability incumbent loses
Two candidate example:

- P({W,W}): probability both incumbents win

- P{W, W}, {W,N}): probability incumbent 1 wins
Full House example:

- P({All Democrats Win}) (Cox, McCubbins (1993, 2005), Party
Brand Argument )
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Example: Congressional Elections

One candidate example:

- P(W): probability incumbent wins

- P(N): probability incumbent loses
Two candidate example:

- P({W,W}): probability both incumbents win

- P{W, W}, {W,N}): probability incumbent 1 wins
Full House example:

- P({All Democrats Win}) (Cox, McCubbins (1993, 2005), Party
Brand Argument )

We'll use data to infer these things

Justin Grimmer (Stanford University) Methodology | September 14th, 2016 13 / 32



Properties of Probability

We can derive intuitive properties of probability theory.
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We can derive intuitive properties of probability theory. Using just the
axioms

Proposition

P(0) =0

Proof.
Define £ = S and E, = 0,
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o =1 = = Qe
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Properties of Probability

We can derive intuitive properties of probability theory. Using just the
axioms

Proposition

P(0) =0

Proof.
Define £ = S and E, = 0,

1:P(5):P(5U®) = P(E1UE2)
1 = P(E)+P(E)

o =1 = = Qe
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Properties of Probability

We can derive intuitive properties of probability theory. Using just the

axioms

Proposition

P(0) =0

Proof.
Define £ = S and E, = 0,

1:P(5):P(5U®) = P(E1UE2)
1 = P(E)+P(E)
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Properties of Probability

We can derive intuitive properties of probability theory. Using just the

axioms

Proposition

P(0) =0

Proof.
Define £ = S and E, = 0,

1= P(S)=P(SUD) = P(EiUE)
1 = P(E&)+ P(E)
1 = P(S)+ PO)
1 1+ P(0)
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Properties of Probability

We can derive intuitive properties of probability theory. Using just the
axioms

Proposition

P() =0

Proof.
Define £ = S and E, = 0,

1=P(S)=P(SUD) = P(E UE)
P(E1) + P(E2)
P(S) + P(0)
1+ P(0)

1
1
1
0

o =3 = = £ wae
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Properties of Probability

We can derive intuitive properties of probability theory. Using just the
axioms

Proposition

P() =0

Proof.
Define £ = S and E, = 0,

1= P(S) = P(SU@) = P(E1UE2)

1 = P(E)+P(E)
1 = P(S)+ P(0D)
1 = 14 P(0)
0 = P(0)
DJ
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Properties of Probability
Proposition
P(E) =1 P(E°)

Proof.

1= P(S)

Note that, S = E U E€. And that E N E€ = (). Therefore,

P(E U E°)
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Proposition
P(E)=1— P(E°)

Proof.

Properties of Probability

1= P(S)

Note that, S = E U E€. And that E N E€ = (). Therefore,
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Properties of Probability

Proposition
P(E)=1— P(E°)

Proof.
Note that, S = E U E€. And that E N E€ = (). Therefore,
1=P(S) = P(EUES)

1 = P(E)+ P(E)
1- P(ES) = P(E)
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Properties of Probability

Proposition
P(E)=1— P(E°)

Proof.
Note that, S = E U E€. And that E N E€ = (). Therefore,
1=P(S) = P(EUES)

1 = P(E)+ P(E)
1- P(ES) = P(E)
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Properties of Probability

Proposition
P(E)=1— P(E°)

Proof.
Note that, S = E U E€. And that E N E€ = (). Therefore,
1=P(S) = P(EUES)

1 = P(E)+ P(E)
1- P(ES) = P(E)

In words: Probability an outcome in E happens is 1— probability an
outcome in E doesn't.
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Properties of Probability

Proposition

If E C F then P(E) < P(F).
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Proof.

We can write F = EU(E° N F). (Why?)
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Properties of Probability

Proposition
If E C F then P(E) < P(F).

Proof.

We can write F = EU(E° N F). (Why?)
Further, (ECNF)NE =10

Then

P(F) = P(E)+ P(ES N F) (Done!)
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If E C F then P(E) < P(F).

Proof.
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Properties of Probability

Proposition
If E C F then P(E) < P(F).

Proof.

We can write F = EU(E° N F). (Why?)

Further, (ECNF)NE =10

Then

P(F) = P(E)+ P(E° N F) (Done!) O

As you add more “outcomes” to a set, it can’t reduce the probability.
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Examples in R

Simulation: use pseudo-random numbers, computers to gain evidence for
claim

Tradeoffs:
Pro Deep understanding of problem, easier than proofs

Con Never as general, can be deceiving if not done carefully (also, never a
monte carlo study that shows a new method is wrong)

Walk through R code to simulate these two results
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To the R code!
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4.2, Three different combination rules were wsed. We then tried to iden-

tify the rules used to combine individual drug predictions into a combination
score. Letting P({) indicate probability of sensitivity, the rules used are:
P(TFAC)

P(T) + P(F) + P(A) + P(C) — P(T)P(F)P(A)P(C),
P(TET) = P(ET)=max|P(E),P(T)], and
5 1
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Inclusion /Exclusion

Proposition

Suppose Ei, Ey, ..., E, are events. Then

N
P(E1UE2U"'UE,7)

= ZP(E;)— Z P(E, NE,)+---
i=1 i1 <i>

+(_1)r+1

h<ip<-<liy

> P(E,NE,N---NE)
+-+ (-1)"P(EENEN---E)
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Proof: Version 1, Intuition

- Suppose that we have an outcome.
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- If it isn't in the event sequence, doesn't appear anywhere.
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Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.

- If it is in the event sequence, appears once in U_, E; (contributes
once to P(U_, E;).
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Proof: Version 1, Intuition

Suppose that we have an outcome.

If it isn't in the event sequence, doesn’t appear anywhere.

If it is in the event sequence, appears once in U?_; E; (contributes
once to P(U_, E;).

- How many times on the other side? Suppose it appears in m of the E;
m>0
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If it isn't in the event sequence, doesn’t appear anywhere.
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Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.

- If it is in the event sequence, appears once in U?_; E; (contributes
once to P(U_, E;).

- How many times on the other side? Suppose it appears in m of the E;
m>0

o = (3)-(3)+(5) ()

count = i(’f’)(—nfﬂ

u]
8
I
i
it
<
)

Justin Grimmer (Stanford University) Methodology |



Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.

- If it is in the event sequence, appears once in U?_; E; (contributes
once to P(U_, E;).

- How many times on the other side? Suppose it appears in m of the E;
m>0

count = <

count = i ’:7>(—1)"+1
count = —i('?)(—l)i
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Proof: Version 1, intuition

count =

-2 (DY
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Proof: Version 1, intuition

count = —>"", (T)(—l)i

Binomial Theorem: (x +y)" =7, (1) (x)""y'".
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Proof: Version 1, intuition

count = —>"", (T)(—l)i

Binomial Theorem: (x +y)" =7, (1) (x)""y'".

O=(-1+1)"

_ ; (T)(-l)"
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Proof: Version 1, intuition

count = — 337, (7)(~1)

Binomial Theorem: (x + y)

"= ()Y

0=(-1+1)" Zm:(m>

i=0
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Proof: Version 1, intuition

count = —>"", (T)(—l)i

Binomial Theorem: (x +y)" =7, (1) (x)""y'".

0=(-1+1)"
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Proof: Version 1, intuition

count = — Y7, (T)(-1)
Binomial Theorem: (x +y)" =7, (1) (x)""y'".

0=(-14+1)" = Zm:(’?)(—l)"

i=0
" /m
0 =1 -1)
+Z<i)( 1
i=1
0 = 1-—count
= count
=] =
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Inclusion /Exclusion

Corollary
Suppose E; and E;, are events. Then

P(El U E2) =

P(El) + P(EQ) — P(El N E2)
R Code!
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Proposition

Consider events E1 and E>. Then

P(El N E2)

P(E1) — P(E1 N ES)
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Proposition

Consider events E1 and E>. Then

P(El N E2) =

P(E1) — P(E1 N Ey)
Proof.

E =

(El N E2) U (El N E2C)
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Proposition

Consider events E1 and E>. Then

P(ElﬂEz) = P(El)—P(ElﬂEZC)
Proof.
EE = (ElﬂEz)U(ElﬂEf)
P(E1) = P(EiNE)+ P(E1NEy)

o F
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Proposition

Consider events E1 and E>. Then

P(El N E2) = P(El) - P(El N E2<:)
Proof.
EE = (ElﬂEz)U(ElﬂEf)
P(E1) = P(EiNE)+ P(E1NEy)
P(El N E2) = P(El) — P(El N Ezc)

DJ

o & E E DA
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Proposition

Boole's Inequality

P(UILLE)

1=

P(E;)
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Proposition

Boole's Inequality
N
P(UiZ.E) < ZP(E,)
i=1
Proof.
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Proposition

Boole's Inequality

P(UILLE)
Proof.

P(E;)

Proceed by induction. Trivially true for n = 1. Now assume the
proposition is true for n = k and consider n = k + 1.
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Proposition

Boole's Inequality

P(UILLE)
Proof.

N
< > P(E)

Proceed by induction. Trivially true for n = 1. Now assume the
proposition is true for n = k and consider n = k + 1.

P(Uf(zl E; U Ek+1)

P(Uf_1E7) + P(Exy1) — P(USZ1 Ei N Exi1)
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Proposition

Boole's Inequality

P(UILLE)
Proof.

N
< > P(E)

Proceed by induction. Trivially true for n = 1. Now assume the
proposition is true for n = k and consider n = k + 1.

P(Uf(zl E; U Ek+1)

P(Uf_1E7) + P(Exy1) — P(USZ1 Ei N Exi1)
P(Ek41) — P(UfL1Ej N Exy1) < P(Ext1)
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Proof Continued
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Proof Continued

k
i lE) S ZP(EI)
P(UZ1Ei) + P(Exy1)

P(UY_E;i N Eiyq)

ZP

) + P(Ek+1)
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Proof Continued

P(UleEi)
P(UiZ1Ei) + P(Exy1)

P(UiZ1Ei M Exy1)

P(U E)
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Proposition
Bonferroni’s Inequality

P(NP1E) > 1-) P(Ef)
i=1
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Proposition
Bonferroni’s Inequality

P(NP1E) > 1-) P(Ef)
i=1

Proof.
P Ef = (N E)°. So,
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Proposition
Bonferroni’s Inequality

PN E) > 1= P(Ef)
i=1

Proof.
U Ef = (N1 Ei)°. So,

P(ULEf) < ) P(E)
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Proposition
Bonferroni’s Inequality

P(N7-1Ei)

Y

1- i P(EF)
i—1

Proof.
U Ef = (N1 Ei)°. So,

N
PUILLES) < > P(E)
i—1

P(ULLES) = P((NLE)))
= 1= P(NE)
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Proposition
Bonferroni’s Inequality

P(N7-1Ei)

Y

1- i P(EF)
i—1

Proof.
Uil B = (N1 B)<. So,
N

PUILLES) < > P(E)
i—1

PIULLES) = P(NI1E)))
= 1-P("1,4E)

n
P(N7-1Ei) 1-Y P(E)
i=1

A\
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Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning
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Formalized Probabilistic Reasoning: helps us to avoid silly reasoning
“What are the odds”
non-pattens that are missed

~> not great, but neither are all the other
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Formalized Probabilistic Reasoning: helps us to avoid silly reasoning
“What are the odds”
non-pattens that are missed

~> not great, but neither are all the other

“There is no way a candidate has a 80% chance of winning, the
forecasted vote share is only 55%"
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Formalized Probabilistic Reasoning: helps us to avoid silly reasoning
“What are the odds”
non-pattens that are missed

~> not great, but neither are all the other

“There is no way a candidate has a 80% chance of winning, the
forecasted vote share is only 55%" ~~ confuses different events
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Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning
“What are the odds” ~~ not great, but neither are all the other
non-pattens that are missed

“There is no way a candidate has a 80% chance of winning, the

forecasted vote share is only 55%" ~~ confuses different events

- “Group A has a higher rate of some behavior, therefore most of the
behavior is from group A"
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Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds” ~- not great, but neither are all the other
non-pattens that are missed

- "“There is no way a candidate has a 80% chance of winning, the
forecasted vote share is only 55%" ~~ confuses different events

- “Group A has a higher rate of some behavior, therefore most of the

behavior is from group A" ~~ confuses two different problems (explain
more tomorrow)
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Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds” ~- not great, but neither are all the other
non-pattens that are missed

- "“There is no way a candidate has a 80% chance of winning, the
forecasted vote share is only 55%" ~~ confuses different events

- “Group A has a higher rate of some behavior, therefore most of the
behavior is from group A" ~~ confuses two different problems (explain
more tomorrow)

- “This is a low probability event, therefore god designed it”
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Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds” ~- not great, but neither are all the other
non-pattens that are missed

- "“There is no way a candidate has a 80% chance of winning, the

forecasted vote share is only 55%" ~~ confuses different events

“Group A has a higher rate of some behavior, therefore most of the
behavior is from group A" ~~ confuses two different problems (explain
more tomorrow)

- “This is a low probability event, therefore god designed it" ~~ (1)
Even if we stipulate to a low probability event, intelligent design is an
assumption (2) Low probability obviously doesn't imply divine
intervention. Take 100 balls and let them sort into an undetermined
bins. You'll get a result, but probability of that result
= 1/(10%° x Number of Atoms in Universe)
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Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds” ~- not great, but neither are all the other
non-pattens that are missed

- "“There is no way a candidate has a 80% chance of winning, the

forecasted vote share is only 55%" ~~ confuses different events

“Group A has a higher rate of some behavior, therefore most of the
behavior is from group A" ~~ confuses two different problems (explain
more tomorrow)

- “This is a low probability event, therefore god designed it" ~~ (1)
Even if we stipulate to a low probability event, intelligent design is an
assumption (2) Low probability obviously doesn't imply divine
intervention. Take 100 balls and let them sort into an undetermined
bins. You'll get a result, but probability of that result
= 1/(10%° x Number of Atoms in Universe)

Easy Problems
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Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems
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Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems

Suppose we have a room full of N people. What is the probability at least
2 people have the same birthday?
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Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems

Suppose we have a room full of N people. What is the probability at least
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Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems
Suppose we have a room full of N people. What is the probability at least
2 people have the same birthday?

- Assuming leap year counts, N = 367 guarantees at least two people
with same birthday (pigeonhole principle)

- For N < 3677

- Examine via simulation
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Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating:

eHarmony matches you based on compatibility in the most important areas of
life - like values, character, intellect, sense of humor, and 25 other dimensions.
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Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating:
eHarmony matches you based on compatibility in the most important areas of

life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1):
Suppose dimensions are independent:
Pr(2 people agree) = 0.5

Pr(Exact) = Pr(Agree); x Pr(Agree), x ... x Pr(Agree),q
= 05x05x...x05
= 0.5%
1.8 x 107°

1in 536,870,912 people
Across many “variables” (events) agreement is harder
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Probability Theory

- Today: Introducing probability model

- Conditional probability, Bayes’ rule, and independence

Justin Grimmer (Stanford University)
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