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Where are we going?

Probability Theory:

1) Mathematical model of uncertainty

2) Foundation for statistical inference

3) Continues our development of key skills

- Proofs [precision in thinking, useful for formulating arguments]
- Statistical computing [basis for much of what you’ll do in graduate

school]
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Model of Probability

Three parts to our probability model

1) Sample space: set of all things that could happen

2) Events: subsets of the sample space

3) Probability: chance of an event
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Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect
all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: S = {W ,N}
- Two incumbents: S = {(W ,W ), (W ,N), (N,W ), (N,N)}
- 435 incumbents: S = 2435 possible outcomes

2) Number of countries signing treaties

- S = {0, 1, 2, . . . , 194}
3) Duration of cabinets

- All non-negative real numbers: [0,∞)
- S = {x : 0 ≤ x <∞}

Key point: this defines all possible realizations
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Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
E ⊂ S

Plain English: Outcomes from the sample space, collected in set
Congressional Election Example

- One incumbent:
- E = W
- F = N

- Two Incumbents:
- E = {(W ,N), (W ,W )}
- F = {(N,N)}

- 435 Incumbents:
- Outcome of 2010 election: one event
- All outcomes where Dems retain control of House: one event

Notation: x is an “element” of a set E :

x ∈ E
{N ,N} ∈ E
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Events: Subsets of Sample Space

E is a set

: collection of distinct objects.
Recall three operations on sets (like E ) to create new sets:
Consider two example sets (from two incumbent example):

E = {(W ,W ), (W ,N)}
F = {(N,N), (W ,N)}
S = {(W ,W ), (W ,N), (N,W ), (N,N)}

Operations determine what lies in new set Enew

1) Union: ∪
- All objects that appear in either set
- E new = E ∪ F = {(W ,W ), (W ,N), (N,N)}

2) Intersection: ∩
- All objects that appear in both sets
- E new = E ∩ F = {(W ,N)}
- Sometimes written as EF
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- Sometimes written as EF
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3) Complement of set E : E c

- All objects in S that aren’t in E
- E c = {(N,W ), (N,N)}
- F c = {(N,W ), (W ,W )}
- S = < and E = [0, 1]. What is E c?
- What is Sc

?

∅

Suppose E = W , F = N. Then E ∩ F = ∅ (there is nothing that lies in
both sets)
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Events: Subsets of Sample Space

Definition

Suppose E and F are events. If E ∩ F = ∅ then we’ll say E and F are
mutually exclusive

- Mutual exclusivity 6= independence

- E and E c are mutually exclusive events

Examples:

- Suppose S = {H,T}. Then E = H and F = T , then E ∩ F = ∅
- Suppose S = {(H,H), (H,T ), (T ,H), (T ,T )}. E = {(H,H)},
F = {(H,H), (T ,H)}, and G = {(H,T ), (T ,T )}

- E ∩ F = (H,H)
- E ∩ G = ∅
- F ∩ G = ∅

- Suppose S = <+. E = {x : x > 10} and F = {x : x < 5}. Then
E ∩ F = ∅.
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Events: Subsets of the Sample Space

Definition

Suppose we have events E1,E2, . . . ,EN .
Define:

∪Ni=1Ei = E1 ∪ E2 ∪ E3 ∪ . . . ∪ EN

∪Ni=1Ei is the set of outcomes that occur at least once in E1, . . . ,EN .

Define:

∩Ni=1Ei = E1 ∩ E2 ∩ . . . ∩ EN

∩Ni=1Ei is the set of outcomes that occur in each Ei
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Probability

1) Sample Space: set of all things that could happen

2) Events: subsets of sample space

3) Probability: chance of event

- P is a function
- Domain: all events E
- Describes relative likelihood of all E (events)

Justin Grimmer (Stanford University) Methodology I September 14th, 2016 10 / 32



Probability

1) Sample Space: set of all things that could happen

2) Events: subsets of sample space

3) Probability: chance of event

- P is a function
- Domain: all events E
- Describes relative likelihood of all E (events)

Justin Grimmer (Stanford University) Methodology I September 14th, 2016 10 / 32



Probability

1) Sample Space: set of all things that could happen

2) Events: subsets of sample space

3) Probability: chance of event

- P is a function
- Domain: all events E
- Describes relative likelihood of all E (events)

Justin Grimmer (Stanford University) Methodology I September 14th, 2016 10 / 32



Probability

1) Sample Space: set of all things that could happen

2) Events: subsets of sample space

3) Probability: chance of event

- P is a function
- Domain: all events E
- Describes relative likelihood of all E (events)

Justin Grimmer (Stanford University) Methodology I September 14th, 2016 10 / 32



Probability

1) Sample Space: set of all things that could happen

2) Events: subsets of sample space

3) Probability: chance of event

- P is a function

- Domain: all events E
- Describes relative likelihood of all E (events)

Justin Grimmer (Stanford University) Methodology I September 14th, 2016 10 / 32



Probability

1) Sample Space: set of all things that could happen

2) Events: subsets of sample space

3) Probability: chance of event

- P is a function
- Domain: all events E

- Describes relative likelihood of all E (events)

Justin Grimmer (Stanford University) Methodology I September 14th, 2016 10 / 32



Probability

Definition

All probability functions, P, satisfy three axioms:

1) For all events E ,
0 ≤ P(E ) ≤ 1

2) P(S) = 1

3) For all sequences of mutually exclusive events E1,E2, . . . ,EN (where
N can go to infinity)
P
(
∪Ni=1Ei

)
=
∑N

i=1 P(Ei )
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Probability

- Suppose we are flipping a fair coin. Then P(H) = P(T ) = 1/2

- Suppose we are rolling a six-sided die. Then P(1) = 1/6

- Suppose we are flipping a pair of fair coins. Then P(H,H) = 1/4
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Example: Congressional Elections

One candidate example:

- P(W ): probability incumbent wins

- P(N): probability incumbent loses

Two candidate example:

- P({W ,W }): probability both incumbents win

- P({W ,W }, {W ,N}): probability incumbent 1 wins

Full House example:

- P({All Democrats Win}) (Cox, McCubbins (1993, 2005), Party
Brand Argument )

We’ll use data to infer these things
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Properties of Probability
We can derive intuitive properties of probability theory.

Using just the
axioms

Proposition

P(∅) = 0

Proof.

Define E1 = S and E2 = ∅,

1 = P(S) = P(S ∪ ∅) = P(E1 ∪ E2)

1 = P(E1) + P(E2)

1 = P(S) + P(∅)
1 = 1 + P(∅)
0 = P(∅)
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Properties of Probability

Proposition

P(E ) = 1− P(E c)

Proof.

Note that, S = E ∪ E c . And that E ∩ E c = ∅. Therefore,

1 = P(S) = P(E ∪ E c)

1 = P(E ) + P(E c)

1− P(E c) = P(E )

In words: Probability an outcome in E happens is 1− probability an
outcome in E doesn’t.
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Properties of Probability

Proposition

If E ⊂ F then P(E ) ≤ P(F ).

Proof.

We can write F = E ∪ (E c ∩ F ). (Why?)
Further, (E c ∩ F ) ∩ E = ∅
Then
P(F ) = P(E ) + P(E c ∩ F ) (Done!)

As you add more “outcomes” to a set, it can’t reduce the probability.
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Examples in R

Simulation: use pseudo-random numbers, computers to gain evidence for
claim
Tradeoffs:

Pro Deep understanding of problem, easier than proofs

Con Never as general, can be deceiving if not done carefully (also, never a
monte carlo study that shows a new method is wrong)

Walk through R code to simulate these two results
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To the R code!
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Inclusion/Exclusion

Proposition

Suppose E1,E2, . . . ,En are events. Then

P(E1 ∪ E2 ∪ · · · ∪ En) =
N∑
i=1

P(Ei )−
∑
i1<i2

P(Ei1 ∩ Ei2) + · · ·

+(−1)r+1
∑

i1<i2<···<ir

P(Ei1 ∩ Ei2 ∩ · · · ∩ Eir )

+ · · ·+ (−1)n+1P(E1 ∩ E2 ∩ · · ·En)
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Proof: Version 1, Intuition

- Suppose that we have an outcome.

- If it isn’t in the event sequence, doesn’t appear anywhere.

- If it is in the event sequence, appears once in ∪ni=1Ei (contributes
once to P(∪ni=1Ei ).

- How many times on the other side? Suppose it appears in m of the Ei

m > 0

count =

(
m

1

)
−
(
m

2

)
+

(
m

3

)
− · · ·+ (−1)m+1

(
m

m

)
count =

m∑
i=1

(
m

i

)
(−1)i+1

count = −
m∑
i=1

(
m

i

)
(−1)i
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Proof: Version 1, intuition

count = −
∑m

i=1

(m
i

)
(−1)i

Binomial Theorem: (x + y)n =
∑n

i=0

(n
i

)
(x)n−iy i .

0 = (−1 + 1)m =
m∑
i=0

(
m

i

)
(−1)i

0 = 1 +
m∑
i=1

(
m

i

)
(−1)i

0 = 1− count

1 = count
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Inclusion/Exclusion

Corollary

Suppose E1 and E2 are events. Then

P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2)

R Code!
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Proposition

Consider events E1 and E2. Then

P(E1 ∩ E2) = P(E1)− P(E1 ∩ E c
2 )

Proof.

E1 = (E1 ∩ E2) ∪ (E1 ∩ E c
2 )

P(E1) = P(E1 ∩ E2) + P(E1 ∩ E c
2 )

P(E1 ∩ E2) = P(E1)− P(E1 ∩ E c
2 )
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Proposition

Boole’s Inequality

P(∪Ni=1Ei ) ≤
N∑
i=1

P(Ei )

Proof.
Proceed by induction. Trivially true for n = 1. Now assume the
proposition is true for n = k and consider n = k + 1.

P(∪ki=1Ei ∪ Ek+1) = P(∪ki=1Ei ) + P(Ek+1)− P(∪ki=1Ei ∩ Ek+1)

P(Ek+1)− P(∪ki=1Ei ∩ Ek+1) ≤ P(Ek+1)
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Proof Continued

P(∪ki=1Ei ) ≤
k∑

i=1

P(Ei )

P(∪ki=1Ei ) + P(Ek+1)− P(∪ki=1Ei ∩ Ek+1) ≤
k∑

i=1

P(Ei ) + P(Ek+1)

P(∪k+1
i=1 Ei ) ≤

k+1∑
i=1

P(Ei )
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Proposition

Bonferroni’s Inequality

P(∩ni=1Ei ) ≥ 1−
n∑

i=1

P(E c
i )

Proof.

∪ni=1E
c
i = (∩ni=1Ei )

c . So,

P(∪Ni=1E
c
i ) ≤

N∑
i=1

P(E c
i )

P(∪Ni=1E
c
i ) = P((∩ni=1Ei )

c))

= 1− P(∩ni=1Ei )

P(∩ni=1Ei ) ≥ 1−
n∑

i=1

P(E c
i )
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Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- “What are the odds”  not great, but neither are all the other
non-pattens that are missed

- “There is no way a candidate has a 80% chance of winning, the
forecasted vote share is only 55%”  confuses different events

- “Group A has a higher rate of some behavior, therefore most of the
behavior is from group A”  confuses two different problems (explain
more tomorrow)

- “This is a low probability event, therefore god designed it”  (1)
Even if we stipulate to a low probability event, intelligent design is an
assumption (2) Low probability obviously doesn’t imply divine
intervention. Take 100 balls and let them sort into an undetermined
bins. You’ll get a result, but probability of that result
= 1/(1029 × Number of Atoms in Universe)

Easy Problems
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Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems

Suppose we have a room full of N people. What is the probability at least
2 people have the same birthday?

- Assuming leap year counts, N = 367 guarantees at least two people
with same birthday (pigeonhole principle)

- For N < 367?

- Examine via simulation
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Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating:

Suppose (for example) 29 dimensions are binary (0,1):
Suppose dimensions are independent:
Pr(2 people agree) = 0.5

Pr(Exact) = Pr(Agree)1 × Pr(Agree)2 × . . .× Pr(Agree)29
= 0.5× 0.5× . . .× 0.5

= 0.529

≈ 1.8× 10−9

1 in 536,870,912 people
Across many “variables” (events) agreement is harder
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Probability Theory

- Today: Introducing probability model

- Conditional probability, Bayes’ rule, and independence
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