Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 14th, 2016

Where are we going?

Probability Theory:

1) Mathematical model of uncertainty
2) Foundation for statistical inference
3) Continues our development of key skills

- Proofs [precision in thinking, useful for formulating arguments]
- Statistical computing [basis for much of what you'll do in graduate school]

Model of Probability

Three parts to our probability model

Model of Probability

Three parts to our probability model

1) Sample space: set of all things that could happen

Model of Probability

Three parts to our probability model

1) Sample space: set of all things that could happen
2) Events: subsets of the sample space

Model of Probability

Three parts to our probability model

1) Sample space: set of all things that could happen
2) Events: subsets of the sample space
3) Probability: chance of an event

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly
Examples:

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: $S=\{W, N\}$

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: $S=\{W, N\}$
- Two incumbents: $S=\{(W, W),(W, N),(N, W),(N, N)\}$

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: $S=\{W, N\}$
- Two incumbents: $S=\{(W, W),(W, N),(N, W),(N, N)\}$
- 435 incumbents: $S=2^{435}$ possible outcomes

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: $S=\{W, N\}$
- Two incumbents: $S=\{(W, W),(W, N),(N, W),(N, N)\}$
- 435 incumbents: $S=2^{435}$ possible outcomes

2) Number of countries signing treaties

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: $S=\{W, N\}$
- Two incumbents: $S=\{(W, W),(W, N),(N, W),(N, N)\}$
- 435 incumbents: $S=2^{435}$ possible outcomes

2) Number of countries signing treaties

- $S=\{0,1,2, \ldots, 194\}$

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: $S=\{W, N\}$
- Two incumbents: $S=\{(W, W),(W, N),(N, W),(N, N)\}$
- 435 incumbents: $S=2^{435}$ possible outcomes

2) Number of countries signing treaties

$$
-S=\{0,1,2, \ldots, 194\}
$$

3) Duration of cabinets

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: $S=\{W, N\}$
- Two incumbents: $S=\{(W, W),(W, N),(N, W),(N, N)\}$
- 435 incumbents: $S=2^{435}$ possible outcomes

2) Number of countries signing treaties

- $S=\{0,1,2, \ldots, 194\}$

3) Duration of cabinets

- All non-negative real numbers: $[0, \infty)$

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: $S=\{W, N\}$
- Two incumbents: $S=\{(W, W),(W, N),(N, W),(N, N)\}$
- 435 incumbents: $S=2^{435}$ possible outcomes

2) Number of countries signing treaties

- $S=\{0,1,2, \ldots, 194\}$

3) Duration of cabinets

- All non-negative real numbers: $[0, \infty)$
- $S=\{x: 0 \leq x<\infty\}$

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly
Examples:

1) House of Representatives: Elections Every 2 Years

- One incumbent: $S=\{W, N\}$
- Two incumbents: $S=\{(W, W),(W, N),(N, W),(N, N)\}$
- 435 incumbents: $S=2^{435}$ possible outcomes

2) Number of countries signing treaties

- $S=\{0,1,2, \ldots, 194\}$

3) Duration of cabinets

- All non-negative real numbers: $[0, \infty)$
- $S=\{x: 0 \leq x<\infty\}$

Key point: this defines all possible realizations

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=\mathrm{W}$

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=\mathrm{W}$
- $F=N$

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=W$
- $F=N$
- Two Incumbents:

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=\mathrm{W}$
- $F=N$
- Two Incumbents:

$$
-E=\{(W, N),(W, W)\}
$$

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=\mathrm{W}$
- $F=N$
- Two Incumbents:
- $E=\{(W, N),(W, W)\}$
- $F=\{(N, N)\}$

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=\mathrm{W}$
- $F=N$
- Two Incumbents:
- $E=\{(W, N),(W, W)\}$
- $F=\{(N, N)\}$
- 435 Incumbents:

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=\mathrm{W}$
- $F=\mathrm{N}$
- Two Incumbents:
- $E=\{(W, N),(W, W)\}$
- $F=\{(N, N)\}$
- 435 Incumbents:
- Outcome of 2010 election: one event

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=\mathrm{W}$
- $F=\mathrm{N}$
- Two Incumbents:
- $E=\{(W, N),(W, W)\}$
- $F=\{(N, N)\}$
- 435 Incumbents:
- Outcome of 2010 election: one event
- All outcomes where Dems retain control of House: one event

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=W$
- $F=\mathrm{N}$
- Two Incumbents:
- $E=\{(W, N),(W, W)\}$
- $F=\{(N, N)\}$
- 435 Incumbents:
- Outcome of 2010 election: one event
- All outcomes where Dems retain control of House: one event Notation:

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=\mathrm{W}$
- $F=\mathrm{N}$
- Two Incumbents:
- $E=\{(W, N),(W, W)\}$
- $F=\{(N, N)\}$
- 435 Incumbents:
- Outcome of 2010 election: one event
- All outcomes where Dems retain control of House: one event Notation: x is an "element" of a set E :

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.
$E \subset S$
Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
- $E=\mathrm{W}$
- $F=\mathrm{N}$
- Two Incumbents:
- $E=\{(W, N),(W, W)\}$
- $F=\{(N, N)\}$
- 435 Incumbents:
- Outcome of 2010 election: one event
- All outcomes where Dems retain control of House: one event Notation: x is an "element" of a set E :
$x \in E$

Events: Subsets of Sample Space

E is a set

Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Events: Subsets of Sample Space

E is a set: collection of distinct objects. Recall three operations on sets (like E) to create new sets:

Events: Subsets of Sample Space

E is a set: collection of distinct objects. Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

Events: Subsets of Sample Space

E is a set: collection of distinct objects. Recall three operations on sets (like E) to create new sets: Consider two example sets (from two incumbent example):

$$
E=\{(W, W),(W, N)\}
$$

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\}
\end{aligned}
$$

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Operations determine what lies in new set $E^{\text {new }}$

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Operations determine what lies in new set $E^{\text {new }}$

1) Union: \cup

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Operations determine what lies in new set $E^{\text {new }}$

1) Union: \cup

- All objects that appear in either set

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Operations determine what lies in new set $E^{\text {new }}$

1) Union: \cup

- All objects that appear in either set
- $E^{\text {new }}=E \cup F=\{(W, W),(W, N),(N, N)\}$

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Operations determine what lies in new set $E^{\text {new }}$

1) Union: \cup

- All objects that appear in either set
- $E^{\text {new }}=E \cup F=\{(W, W),(W, N),(N, N)\}$

2) Intersection: \cap

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Operations determine what lies in new set $E^{\text {new }}$

1) Union: \cup

- All objects that appear in either set
- $E^{\text {new }}=E \cup F=\{(W, W),(W, N),(N, N)\}$

2) Intersection: \cap

- All objects that appear in both sets

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Operations determine what lies in new set $E^{\text {new }}$

1) Union: \cup

- All objects that appear in either set
- $E^{\text {new }}=E \cup F=\{(W, W),(W, N),(N, N)\}$

2) Intersection: \cap

- All objects that appear in both sets
- $E^{\text {new }}=E \cap F=\{(W, N)\}$

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Operations determine what lies in new set $E^{\text {new }}$

1) Union: \cup

- All objects that appear in either set
- $E^{\text {new }}=E \cup F=\{(W, W),(W, N),(N, N)\}$

2) Intersection: \cap

- All objects that appear in both sets
- $E^{\text {new }}=E \cap F=\{(W, N)\}$
- Sometimes written as $E F$

Events: Subsets of Sample Space

E is a set: collection of distinct objects.
Recall three operations on sets (like E) to create new sets:
Consider two example sets (from two incumbent example):

$$
\begin{aligned}
& E=\{(W, W),(W, N)\} \\
& F=\{(N, N),(W, N)\} \\
& S=\{(W, W),(W, N),(N, W),(N, N)\}
\end{aligned}
$$

Operations determine what lies in new set $E^{\text {new }}$

1) Union: \cup

- All objects that appear in either set
- $E^{\text {new }}=E \cup F=\{(W, W),(W, N),(N, N)\}$

2) Intersection: \cap

- All objects that appear in both sets
- $E^{\text {new }}=E \cap F=\{(W, N)\}$
- Sometimes written as $E F$

3) Complement of set $E: E^{c}$
4) Complement of set $E: E^{c}$

- All objects in S that aren't in E

3) Complement of set $E: E^{c}$

- All objects in S that aren't in E
- $E^{c}=\{(N, W),(N, N)\}$

3) Complement of set $E: E^{c}$

- All objects in S that aren't in E
- $E^{c}=\{(N, W),(N, N)\}$
- $F^{c}=\{(N, W),(W, W)\}$

3) Complement of set $E: E^{c}$

- All objects in S that aren't in E
- $E^{c}=\{(N, W),(N, N)\}$
- $F^{c}=\{(N, W),(W, W)\}$
- $S=\Re$ and $E=[0,1]$. What is $E^{c} ?$

3) Complement of set $E: E^{c}$

- All objects in S that aren't in E
- $E^{c}=\{(N, W),(N, N)\}$
- $F^{c}=\{(N, W),(W, W)\}$
- $S=\Re$ and $E=[0,1]$. What is E^{c} ?
- What is S^{c} ?

3) Complement of set $E: E^{c}$

- All objects in S that aren't in E
- $E^{c}=\{(N, W),(N, N)\}$
- $F^{c}=\{(N, W),(W, W)\}$
- $S=\Re$ and $E=[0,1]$. What is E^{c} ?
- What is S^{c} ? \emptyset

3) Complement of set $E: E^{c}$

- All objects in S that aren't in E
- $E^{c}=\{(N, W),(N, N)\}$
- $F^{c}=\{(N, W),(W, W)\}$
- $S=\Re$ and $E=[0,1]$. What is E^{c} ?
- What is S^{c} ? \emptyset

Suppose $E=W, F=N$. Then $E \cap F=\emptyset$ (there is nothing that lies in both sets)

Events: Subsets of Sample Space

Definition

Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

Events: Subsets of Sample Space

Definition

Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence

Events: Subsets of Sample Space

Definition
Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^{c} are mutually exclusive events

Events: Subsets of Sample Space

Definition
Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^{c} are mutually exclusive events

Examples:

Events: Subsets of Sample Space

Definition
Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^{c} are mutually exclusive events

Examples:

- Suppose $S=\{H, T\}$. Then $E=H$ and $F=T$, then $E \cap F=\emptyset$

Events: Subsets of Sample Space

Definition

Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^{c} are mutually exclusive events

Examples:

- Suppose $S=\{H, T\}$. Then $E=H$ and $F=T$, then $E \cap F=\emptyset$
- Suppose $S=\{(H, H),(H, T),(T, H),(T, T)\} . E=\{(H, H)\}$, $F=\{(H, H),(T, H)\}$, and $G=\{(H, T),(T, T)\}$

Events: Subsets of Sample Space

Definition

Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^{c} are mutually exclusive events

Examples:

- Suppose $S=\{H, T\}$. Then $E=H$ and $F=T$, then $E \cap F=\emptyset$
- Suppose $S=\{(H, H),(H, T),(T, H),(T, T)\} . E=\{(H, H)\}$, $F=\{(H, H),(T, H)\}$, and $G=\{(H, T),(T, T)\}$
- $E \cap F=(H, H)$

Events: Subsets of Sample Space

Definition

Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^{c} are mutually exclusive events

Examples:

- Suppose $S=\{H, T\}$. Then $E=H$ and $F=T$, then $E \cap F=\emptyset$
- Suppose $S=\{(H, H),(H, T),(T, H),(T, T)\} . E=\{(H, H)\}$, $F=\{(H, H),(T, H)\}$, and $G=\{(H, T),(T, T)\}$
- $E \cap F=(H, H)$
- $E \cap G=\emptyset$

Events: Subsets of Sample Space

Definition

Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^{c} are mutually exclusive events

Examples:

- Suppose $S=\{H, T\}$. Then $E=H$ and $F=T$, then $E \cap F=\emptyset$
- Suppose $S=\{(H, H),(H, T),(T, H),(T, T)\} . E=\{(H, H)\}$, $F=\{(H, H),(T, H)\}$, and $G=\{(H, T),(T, T)\}$
- $E \cap F=(H, H)$
- $E \cap G=\emptyset$
- $F \cap G=\emptyset$

Events: Subsets of Sample Space

Definition

Suppose E and F are events. If $E \cap F=\emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^{c} are mutually exclusive events

Examples:

- Suppose $S=\{H, T\}$. Then $E=H$ and $F=T$, then $E \cap F=\emptyset$
- Suppose $S=\{(H, H),(H, T),(T, H),(T, T)\} . E=\{(H, H)\}$, $F=\{(H, H),(T, H)\}$, and $G=\{(H, T),(T, T)\}$
- $E \cap F=(H, H)$
- $E \cap G=\emptyset$
- $F \cap G=\emptyset$
- Suppose $S=\Re_{+} . E=\{x: x>10\}$ and $F=\{x: x<5\}$. Then $E \cap F=\emptyset$.

Events: Subsets of the Sample Space

Definition

Suppose we have events $E_{1}, E_{2}, \ldots, E_{N}$.
Define:

$$
\cup_{i=1}^{N} E_{i}=E_{1} \cup E_{2} \cup E_{3} \cup \ldots \cup E_{N}
$$

$\cup_{i=1}^{N} E_{i}$ is the set of outcomes that occur at least once in E_{1}, \ldots, E_{N}.

Events: Subsets of the Sample Space

Definition

Suppose we have events $E_{1}, E_{2}, \ldots, E_{N}$.
Define:

$$
\cup_{i=1}^{N} E_{i}=E_{1} \cup E_{2} \cup E_{3} \cup \ldots \cup E_{N}
$$

$\cup_{i=1}^{N} E_{i}$ is the set of outcomes that occur at least once in E_{1}, \ldots, E_{N}. Define:

$$
\cap_{i=1}^{N} E_{i}=E_{1} \cap E_{2} \cap \ldots \cap E_{N}
$$

$\cap_{i=1}^{N} E_{i}$ is the set of outcomes that occur in each E_{i}

Probability

Probability

1) Sample Space: set of all things that could happen

Probability

1) Sample Space: set of all things that could happen
2) Events: subsets of sample space

Probability

1) Sample Space: set of all things that could happen
2) Events: subsets of sample space
3) Probability: chance of event

Probability

1) Sample Space: set of all things that could happen
2) Events: subsets of sample space
3) Probability: chance of event

- P is a function

Probability

1) Sample Space: set of all things that could happen
2) Events: subsets of sample space
3) Probability: chance of event

- P is a function
- Domain: all events E

Probability

Definition

All probability functions, P, satisfy three axioms:

Probability

Definition

All probability functions, P, satisfy three axioms:

1) For all events E,

Probability

Definition

All probability functions, P, satisfy three axioms:

1) For all events E,

$$
0 \leq P(E) \leq 1
$$

Probability

Definition

All probability functions, P, satisfy three axioms:

1) For all events E,

$$
0 \leq P(E) \leq 1
$$

2) $P(S)=1$

Probability

Definition

All probability functions, P, satisfy three axioms:

1) For all events E,

$$
0 \leq P(E) \leq 1
$$

2) $P(S)=1$
3) For all sequences of mutually exclusive events $E_{1}, E_{2}, \ldots, E_{N}$ (where N can go to infinity)

Probability

Definition

All probability functions, P, satisfy three axioms:

1) For all events E,

$$
0 \leq P(E) \leq 1
$$

2) $P(S)=1$
3) For all sequences of mutually exclusive events $E_{1}, E_{2}, \ldots, E_{N}$ (where N can go to infinity)

$$
P\left(\cup_{i=1}^{N} E_{i}\right)=\sum_{i=1}^{N} P\left(E_{i}\right)
$$

Probability

Probability

- Suppose we are flipping a fair coin. Then $P(H)=P(T)=1 / 2$

Probability

- Suppose we are flipping a fair coin. Then $P(H)=P(T)=1 / 2$
- Suppose we are rolling a six-sided die. Then $P(1)=1 / 6$

Probability

- Suppose we are flipping a fair coin. Then $P(H)=P(T)=1 / 2$
- Suppose we are rolling a six-sided die. Then $P(1)=1 / 6$
- Suppose we are flipping a pair of fair coins. Then $P(H, H)=1 / 4$

Example: Congressional Elections

One candidate example:

Example: Congressional Elections

One candidate example:

- $P(W)$: probability incumbent wins

Example: Congressional Elections

One candidate example:

- $P(W)$: probability incumbent wins
- $P(N)$: probability incumbent loses

Example: Congressional Elections

One candidate example:

- $P(W)$: probability incumbent wins
- $P(N)$: probability incumbent loses

Two candidate example:

Example: Congressional Elections

One candidate example:

- $P(W)$: probability incumbent wins
- $P(N)$: probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win

Example: Congressional Elections

One candidate example:

- $P(W)$: probability incumbent wins
- $P(N)$: probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win
- $P(\{W, W\},\{W, N\}):$ probability incumbent 1 wins

Example: Congressional Elections

One candidate example:

- $P(W)$: probability incumbent wins
- $P(N)$: probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win
- $P(\{W, W\},\{W, N\})$: probability incumbent 1 wins

Full House example:

Example: Congressional Elections

One candidate example:

- $P(W)$: probability incumbent wins
- $P(N)$: probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win
- $P(\{W, W\},\{W, N\})$: probability incumbent 1 wins

Full House example:

- P(\{All Democrats Win\}) (Cox, McCubbins (1993, 2005), Party Brand Argument)

Example: Congressional Elections

One candidate example:

- $P(W)$: probability incumbent wins
- $P(N)$: probability incumbent loses

Two candidate example:

- $P(\{W, W\})$: probability both incumbents win
- $P(\{W, W\},\{W, N\})$: probability incumbent 1 wins

Full House example:

- P(\{All Democrats Win\}) (Cox, McCubbins (1993, 2005), Party Brand Argument)
We'll use data to infer these things

Properties of Probability

We can derive intuitive properties of probability theory.

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition
$P(\emptyset)=0$

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition
$P(\emptyset)=0$

Proof.

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition
$P(\emptyset)=0$

Proof.

Define $E_{1}=S$ and $E_{2}=\emptyset$,

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition
$P(\emptyset)=0$

Proof.

Define $E_{1}=S$ and $E_{2}=\emptyset$,

$$
1=P(S)=P(S \cup \emptyset)=P\left(E_{1} \cup E_{2}\right)
$$

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition
$P(\emptyset)=0$

Proof.

Define $E_{1}=S$ and $E_{2}=\emptyset$,

$$
\begin{aligned}
1=P(S)=P(S \cup \emptyset) & =P\left(E_{1} \cup E_{2}\right) \\
1 & =P\left(E_{1}\right)+P\left(E_{2}\right)
\end{aligned}
$$

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition
$P(\emptyset)=0$

Proof.

Define $E_{1}=S$ and $E_{2}=\emptyset$,

$$
\begin{aligned}
1=P(S)=P(S \cup \emptyset) & =P\left(E_{1} \cup E_{2}\right) \\
1 & =P\left(E_{1}\right)+P\left(E_{2}\right) \\
1 & =P(S)+P(\emptyset)
\end{aligned}
$$

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition
$P(\emptyset)=0$

Proof.

Define $E_{1}=S$ and $E_{2}=\emptyset$,

$$
\begin{aligned}
1=P(S)=P(S \cup \emptyset) & =P\left(E_{1} \cup E_{2}\right) \\
1 & =P\left(E_{1}\right)+P\left(E_{2}\right) \\
1 & =P(S)+P(\emptyset) \\
1 & =1+P(\emptyset)
\end{aligned}
$$

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition
$P(\emptyset)=0$

Proof.

Define $E_{1}=S$ and $E_{2}=\emptyset$,

$$
\begin{aligned}
1=P(S)=P(S \cup \emptyset) & =P\left(E_{1} \cup E_{2}\right) \\
1 & =P\left(E_{1}\right)+P\left(E_{2}\right) \\
1 & =P(S)+P(\emptyset) \\
1 & =1+P(\emptyset) \\
0 & =P(\emptyset)
\end{aligned}
$$

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition
$P(\emptyset)=0$

Proof.

Define $E_{1}=S$ and $E_{2}=\emptyset$,

$$
\begin{aligned}
1=P(S)=P(S \cup \emptyset) & =P\left(E_{1} \cup E_{2}\right) \\
1 & =P\left(E_{1}\right)+P\left(E_{2}\right) \\
1 & =P(S)+P(\emptyset) \\
1 & =1+P(\emptyset) \\
0 & =P(\emptyset)
\end{aligned}
$$

Properties of Probability

Properties of Probability

Proposition
$P(E)=1-P\left(E^{c}\right)$

Properties of Probability

Proposition
$P(E)=1-P\left(E^{c}\right)$
Proof.

Properties of Probability

Proposition

$P(E)=1-P\left(E^{c}\right)$
Proof.
Note that, $S=E \cup E^{c}$. And that $E \cap E^{c}=\emptyset$.

Properties of Probability

Proposition

$P(E)=1-P\left(E^{c}\right)$
Proof.
Note that, $S=E \cup E^{c}$. And that $E \cap E^{c}=\emptyset$. Therefore,

Properties of Probability

Proposition
$P(E)=1-P\left(E^{c}\right)$

Proof.

Note that, $S=E \cup E^{c}$. And that $E \cap E^{c}=\emptyset$. Therefore,

$$
1=P(S)=P\left(E \cup E^{c}\right)
$$

Properties of Probability

Proposition
$P(E)=1-P\left(E^{c}\right)$

Proof.

Note that, $S=E \cup E^{c}$. And that $E \cap E^{c}=\emptyset$. Therefore,

$$
\begin{aligned}
1=P(S) & =P\left(E \cup E^{c}\right) \\
1 & =P(E)+P\left(E^{c}\right)
\end{aligned}
$$

Properties of Probability

Proposition
$P(E)=1-P\left(E^{c}\right)$

Proof.

Note that, $S=E \cup E^{c}$. And that $E \cap E^{c}=\emptyset$. Therefore,

$$
\begin{aligned}
1=P(S) & =P\left(E \cup E^{c}\right) \\
1 & =P(E)+P\left(E^{c}\right) \\
1-P\left(E^{c}\right) & =P(E)
\end{aligned}
$$

Properties of Probability

Proposition
$P(E)=1-P\left(E^{c}\right)$

Proof.

Note that, $S=E \cup E^{c}$. And that $E \cap E^{c}=\emptyset$. Therefore,

$$
\begin{aligned}
1=P(S) & =P\left(E \cup E^{c}\right) \\
1 & =P(E)+P\left(E^{c}\right) \\
1-P\left(E^{c}\right) & =P(E)
\end{aligned}
$$

Properties of Probability

Proposition
$P(E)=1-P\left(E^{c}\right)$
Proof.
Note that, $S=E \cup E^{c}$. And that $E \cap E^{c}=\emptyset$. Therefore,

$$
\begin{aligned}
1=P(S) & =P\left(E \cup E^{c}\right) \\
1 & =P(E)+P\left(E^{c}\right) \\
1-P\left(E^{c}\right) & =P(E)
\end{aligned}
$$

In words: Probability an outcome in E happens is 1 - probability an outcome in E doesn't.

Properties of Probability

Properties of Probability

Proposition
If $E \subset F$ then $P(E) \leq P(F)$.

Properties of Probability

Proposition
If $E \subset F$ then $P(E) \leq P(F)$.

Proof.

Properties of Probability

Proposition
If $E \subset F$ then $P(E) \leq P(F)$.

Proof.
We can write $F=E \cup\left(E^{c} \cap F\right)$. (Why?)

Properties of Probability

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.
Proof.
We can write $F=E \cup\left(E^{c} \cap F\right)$. (Why?)
Further, $\left(E^{c} \cap F\right) \cap E=\emptyset$

Properties of Probability

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.
Proof.
We can write $F=E \cup\left(E^{c} \cap F\right)$. (Why?)
Further, $\left(E^{c} \cap F\right) \cap E=\emptyset$
Then

Properties of Probability

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.
Proof.
We can write $F=E \cup\left(E^{c} \cap F\right)$. (Why?)
Further, $\left(E^{c} \cap F\right) \cap E=\emptyset$
Then
$P(F)=P(E)+P\left(E^{c} \cap F\right)$ (Done!)

Properties of Probability

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.
Proof.
We can write $F=E \cup\left(E^{c} \cap F\right)$. (Why?)
Further, $\left(E^{c} \cap F\right) \cap E=\emptyset$
Then
$P(F)=P(E)+P\left(E^{c} \cap F\right)($ Done! $)$

Properties of Probability

Proposition

If $E \subset F$ then $P(E) \leq P(F)$.

Proof.
We can write $F=E \cup\left(E^{c} \cap F\right)$. (Why?)
Further, $\left(E^{c} \cap F\right) \cap E=\emptyset$
Then
$P(F)=P(E)+P\left(E^{c} \cap F\right)$ (Done!)
As you add more "outcomes" to a set, it can't reduce the probability.

Examples in R

Simulation: use pseudo-random numbers, computers to gain evidence for claim
Tradeoffs:
Pro Deep understanding of problem, easier than proofs
Con Never as general, can be deceiving if not done carefully (also, never a monte carlo study that shows a new method is wrong)
Walk through R code to simulate these two results

To the R code!
4.2. Three different combination rules were used. We then tried to identify the rules used to combine individual drug predictions into a combination score. Letting P() indicate probability of sensitivity, the rules used are:

$$
\begin{aligned}
P(T F A C) & =P(T)+P(F)+P(A)+P(C)-P(T) P(F) P(A) P(C) \\
P(T E T) & =P(E T)=\max [P(E), P(T)], \text { and } \\
& 5
\end{aligned}
$$

Inclusion/Exclusion

Proposition

Suppose $E_{1}, E_{2}, \ldots, E_{n}$ are events. Then

$$
\begin{aligned}
P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)= & \sum_{i=1}^{N} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} \cap E_{i_{2}}\right)+\cdots \\
& +(-1)^{r+1} \sum_{i_{1}<i_{i}<\cdots<i_{r}} P\left(E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i_{r}}\right) \\
& +\cdots+(-1)^{n+1} P\left(E_{1} \cap E_{2} \cap \cdots E_{n}\right)
\end{aligned}
$$

Proof: Version 1, Intuition

- Suppose that we have an outcome.

Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.

Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\cup_{i=1}^{n} E_{i}$ (contributes once to $P\left(\cup_{i=1}^{n} E_{i}\right)$.

Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\cup_{i=1}^{n} E_{i}$ (contributes once to $P\left(\cup_{i=1}^{n} E_{i}\right)$.
- How many times on the other side? Suppose it appears in m of the E_{i} $m>0$

Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\cup_{i=1}^{n} E_{i}$ (contributes once to $P\left(\cup_{i=1}^{n} E_{i}\right)$.
- How many times on the other side? Suppose it appears in m of the E_{i} $m>0$

$$
\text { count }=\binom{m}{1}-\binom{m}{2}+\binom{m}{3}-\cdots+(-1)^{m+1}\binom{m}{m}
$$

Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\cup_{i=1}^{n} E_{i}$ (contributes once to $P\left(\cup_{i=1}^{n} E_{i}\right)$.
- How many times on the other side? Suppose it appears in m of the E_{i} $m>0$

$$
\begin{aligned}
& \text { count }=\binom{m}{1}-\binom{m}{2}+\binom{m}{3}-\cdots+(-1)^{m+1}\binom{m}{m} \\
& \text { count }=\sum_{i=1}^{m}\binom{m}{i}(-1)^{i+1}
\end{aligned}
$$

Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\cup_{i=1}^{n} E_{i}$ (contributes once to $P\left(\cup_{i=1}^{n} E_{i}\right)$.
- How many times on the other side? Suppose it appears in m of the E_{i} $m>0$

$$
\begin{aligned}
& \text { count }=\binom{m}{1}-\binom{m}{2}+\binom{m}{3}-\cdots+(-1)^{m+1}\binom{m}{m} \\
& \text { count }=\sum_{i=1}^{m}\binom{m}{i}(-1)^{i+1} \\
& \text { count }=-\sum_{i=1}^{m}\binom{m}{i}(-1)^{i}
\end{aligned}
$$

Proof: Version 1, intuition

$$
\text { count }=-\sum_{i=1}^{m}\binom{m}{i}(-1)^{i}
$$

Proof: Version 1, intuition

count $=-\sum_{i=1}^{m}\binom{m}{i}(-1)^{i}$
Binomial Theorem: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i}(x)^{n-i} y^{i}$.

Proof: Version 1, intuition

count $=-\sum_{i=1}^{m}\binom{m}{i}(-1)^{i}$
Binomial Theorem: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i}(x)^{n-i} y^{i}$.

$$
0=(-1+1)^{m}=\sum_{i=0}^{m}\binom{m}{i}(-1)^{i}
$$

Proof: Version 1, intuition

count $=-\sum_{i=1}^{m}\binom{m}{i}(-1)^{i}$
Binomial Theorem: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i}(x)^{n-i} y^{i}$.

$$
\begin{aligned}
0=(-1+1)^{m} & =\sum_{i=0}^{m}\binom{m}{i}(-1)^{i} \\
0 & =1+\sum_{i=1}^{m}\binom{m}{i}(-1)^{i}
\end{aligned}
$$

Proof: Version 1, intuition

count $=-\sum_{i=1}^{m}\binom{m}{i}(-1)^{i}$
Binomial Theorem: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i}(x)^{n-i} y^{i}$.

$$
\begin{aligned}
0=(-1+1)^{m} & =\sum_{i=0}^{m}\binom{m}{i}(-1)^{i} \\
0 & =1+\sum_{i=1}^{m}\binom{m}{i}(-1)^{i} \\
0 & =1-\text { count }
\end{aligned}
$$

Proof: Version 1, intuition

count $=-\sum_{i=1}^{m}\binom{m}{i}(-1)^{i}$
Binomial Theorem: $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i}(x)^{n-i} y^{i}$.

$$
\begin{aligned}
0=(-1+1)^{m} & =\sum_{i=0}^{m}\binom{m}{i}(-1)^{i} \\
0 & =1+\sum_{i=1}^{m}\binom{m}{i}(-1)^{i} \\
0 & =1-\text { count } \\
1 & =\text { count }
\end{aligned}
$$

Inclusion/Exclusion

Corollary

Suppose E_{1} and E_{2} are events. Then

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

R Code!

Proposition

Consider events E_{1} and E_{2}. Then

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right)-P\left(E_{1} \cap E_{2}^{c}\right)
$$

Proposition

Consider events E_{1} and E_{2}. Then

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right)-P\left(E_{1} \cap E_{2}^{c}\right)
$$

Proof.

$$
E_{1}=\left(E_{1} \cap E_{2}\right) \cup\left(E_{1} \cap E_{2}^{c}\right)
$$

Proposition

Consider events E_{1} and E_{2}. Then

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right)-P\left(E_{1} \cap E_{2}^{c}\right)
$$

Proof.

$$
\begin{aligned}
E_{1} & =\left(E_{1} \cap E_{2}\right) \cup\left(E_{1} \cap E_{2}^{c}\right) \\
P\left(E_{1}\right) & =P\left(E_{1} \cap E_{2}\right)+P\left(E_{1} \cap E_{2}^{c}\right)
\end{aligned}
$$

Proposition

Consider events E_{1} and E_{2}. Then

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right)-P\left(E_{1} \cap E_{2}^{c}\right)
$$

Proof.

$$
\begin{aligned}
E_{1} & =\left(E_{1} \cap E_{2}\right) \cup\left(E_{1} \cap E_{2}^{c}\right) \\
P\left(E_{1}\right) & =P\left(E_{1} \cap E_{2}\right)+P\left(E_{1} \cap E_{2}^{c}\right) \\
P\left(E_{1} \cap E_{2}\right) & =P\left(E_{1}\right)-P\left(E_{1} \cap E_{2}^{c}\right)
\end{aligned}
$$

Proposition

Boole's Inequality

$$
P\left(\cup_{i=1}^{N} E_{i}\right) \leq \sum_{i=1}^{N} P\left(E_{i}\right)
$$

Proposition

Boole's Inequality

$$
P\left(\cup_{i=1}^{N} E_{i}\right) \leq \sum_{i=1}^{N} P\left(E_{i}\right)
$$

Proof.

Proposition

Boole's Inequality

$$
P\left(\cup_{i=1}^{N} E_{i}\right) \leq \sum_{i=1}^{N} P\left(E_{i}\right)
$$

Proof.

Proceed by induction. Trivially true for $n=1$. Now assume the proposition is true for $n=k$ and consider $n=k+1$.

Proposition

Boole's Inequality

$$
P\left(\cup_{i=1}^{N} E_{i}\right) \leq \sum_{i=1}^{N} P\left(E_{i}\right)
$$

Proof.
Proceed by induction. Trivially true for $n=1$. Now assume the proposition is true for $n=k$ and consider $n=k+1$.

$$
P\left(\cup_{i=1}^{k} E_{i} \cup E_{k+1}\right)=P\left(\cup_{i=1}^{k} E_{i}\right)+P\left(E_{k+1}\right)-P\left(\cup_{i=1}^{k} E_{i} \cap E_{k+1}\right)
$$

Proposition

Boole's Inequality

$$
P\left(\cup_{i=1}^{N} E_{i}\right) \leq \sum_{i=1}^{N} P\left(E_{i}\right)
$$

Proof.

Proceed by induction. Trivially true for $n=1$. Now assume the proposition is true for $n=k$ and consider $n=k+1$.

$$
P\left(\cup_{i=1}^{k} E_{i} \cup E_{k+1}\right)=P\left(\cup_{i=1}^{k} E_{i}\right)+P\left(E_{k+1}\right)-P\left(\cup_{i=1}^{k} E_{i} \cap E_{k+1}\right)
$$

$$
P\left(E_{k+1}\right)-P\left(\cup_{i=1}^{k} E_{i} \cap E_{k+1}\right) \leq P\left(E_{k+1}\right)
$$

Proof Continued

Proof Continued

$$
P\left(\cup_{i=1}^{k} E_{i}\right) \leq \sum_{i=1}^{k} P\left(E_{i}\right)
$$

Proof Continued

$$
\begin{aligned}
P\left(\cup_{i=1}^{k} E_{i}\right) & \leq \sum_{i=1}^{k} P\left(E_{i}\right) \\
P\left(\cup_{i=1}^{k} E_{i}\right)+P\left(E_{k+1}\right)-P\left(\cup_{i=1}^{k} E_{i} \cap E_{k+1}\right) & \leq \sum_{i=1}^{k} P\left(E_{i}\right)+P\left(E_{k+1}\right)
\end{aligned}
$$

Proof Continued

$$
\begin{aligned}
P\left(\cup_{i=1}^{k} E_{i}\right) & \leq \sum_{i=1}^{k} P\left(E_{i}\right) \\
P\left(\cup_{i=1}^{k} E_{i}\right)+P\left(E_{k+1}\right)-P\left(\cup_{i=1}^{k} E_{i} \cap E_{k+1}\right) & \leq \sum_{i=1}^{k} P\left(E_{i}\right)+P\left(E_{k+1}\right) \\
P\left(\cup_{i=1}^{k+1} E_{i}\right) & \leq \sum_{i=1}^{k+1} P\left(E_{i}\right)
\end{aligned}
$$

Proposition

Bonferroni's Inequality

$$
P\left(\cap_{i=1}^{n} E_{i}\right) \geq 1-\sum_{i=1}^{n} P\left(E_{i}^{c}\right)
$$

Proposition

Bonferroni's Inequality

$$
P\left(\cap_{i=1}^{n} E_{i}\right) \geq 1-\sum_{i=1}^{n} P\left(E_{i}^{c}\right)
$$

Proof.

$$
\cup_{i=1}^{n} E_{i}^{c}=\left(\cap_{i=1}^{n} E_{i}\right)^{c} \text {. So, }
$$

Proposition

Bonferroni's Inequality

$$
P\left(\cap_{i=1}^{n} E_{i}\right) \geq 1-\sum_{i=1}^{n} P\left(E_{i}^{c}\right)
$$

Proof.

$$
\cup_{i=1}^{n} E_{i}^{c}=\left(\cap_{i=1}^{n} E_{i}\right)^{c} \text {. So, }
$$

$$
P\left(\cup_{i=1}^{N} E_{i}^{c}\right) \leq \sum_{i=1}^{N} P\left(E_{i}^{c}\right)
$$

Proposition

Bonferroni's Inequality

$$
P\left(\cap_{i=1}^{n} E_{i}\right) \geq 1-\sum_{i=1}^{n} P\left(E_{i}^{c}\right)
$$

Proof.

$$
\cup_{i=1}^{n} E_{i}^{c}=\left(\cap_{i=1}^{n} E_{i}\right)^{c} \text {. So, }
$$

$$
\begin{aligned}
P\left(\cup_{i=1}^{N} E_{i}^{c}\right) & \leq \sum_{i=1}^{N} P\left(E_{i}^{c}\right) \\
P\left(\cup_{i=1}^{N} E_{i}^{c}\right) & \left.=P\left(\left(\cap_{i=1}^{n} E_{i}\right)^{c}\right)\right) \\
& =1-P\left(\cap_{i=1}^{n} E_{i}\right)
\end{aligned}
$$

Proposition

Bonferroni's Inequality

$$
P\left(\cap_{i=1}^{n} E_{i}\right) \geq 1-\sum_{i=1}^{n} P\left(E_{i}^{c}\right)
$$

Proof.
$\cup_{i=1}^{n} E_{i}^{c}=\left(\cap_{i=1}^{n} E_{i}\right)^{c}$. So,

$$
\begin{aligned}
P\left(\cup_{i=1}^{N} E_{i}^{c}\right) & \leq \sum_{i=1}^{N} P\left(E_{i}^{c}\right) \\
P\left(\cup_{i=1}^{N} E_{i}^{c}\right) & \left.=P\left(\left(\cap_{i=1}^{n} E_{i}\right)^{c}\right)\right) \\
& =1-P\left(\cap_{i=1}^{n} E_{i}\right) \\
P\left(\cap_{i=1}^{n} E_{i}\right) & \geq 1-\sum_{i=1}^{n} P\left(E_{i}^{c}\right)
\end{aligned}
$$

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds"

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55% "

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55% " \rightsquigarrow confuses different events

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55% " \rightsquigarrow confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group A "

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55% " \rightsquigarrow confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group $A " \rightsquigarrow$ confuses two different problems (explain more tomorrow)

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55% " \rightsquigarrow confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group $A " \rightsquigarrow$ confuses two different problems (explain more tomorrow)
- "This is a low probability event, therefore god designed it"

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55% " \rightsquigarrow confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group $A " \rightsquigarrow$ confuses two different problems (explain more tomorrow)
- "This is a low probability event, therefore god designed it"

Even if we stipulate to a low probability event, intelligent design is an assumption (2) Low probability obviously doesn't imply divine intervention. Take 100 balls and let them sort into an undetermined bins. You'll get a result, but probability of that result $=1 /\left(10^{29} \times\right.$ Number of Atoms in Universe $)$

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" \rightsquigarrow not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55% " \rightsquigarrow confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group $A " \rightsquigarrow$ confuses two different problems (explain more tomorrow)
- "This is a low probability event, therefore god designed it"

Even if we stipulate to a low probability event, intelligent design is an assumption (2) Low probability obviously doesn't imply divine intervention. Take 100 balls and let them sort into an undetermined bins. You'll get a result, but probability of that result $=1 /\left(10^{29} \times\right.$ Number of Atoms in Universe $)$

Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems

Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems Suppose we have a room full of N people. What is the probability at least 2 people have the same birthday?

Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems
Suppose we have a room full of N people. What is the probability at least 2 people have the same birthday?

- Assuming leap year counts, $N=367$ guarantees at least two people with same birthday (pigeonhole principle)

Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems
Suppose we have a room full of N people. What is the probability at least 2 people have the same birthday?

- Assuming leap year counts, $N=367$ guarantees at least two people with same birthday (pigeonhole principle)
- For $N<367$?

Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems
Suppose we have a room full of N people. What is the probability at least 2 people have the same birthday?

- Assuming leap year counts, $N=367$ guarantees at least two people with same birthday (pigeonhole principle)
- For $N<367$?
- Examine via simulation

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary $(0,1)$:

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary $(0,1)$: Suppose dimensions are independent:

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:
$\operatorname{Pr}(2$ people agree $)=0.5$

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:
$\operatorname{Pr}(2$ people agree $)=0.5$

$$
\operatorname{Pr}(\text { Exact })=\operatorname{Pr}(\text { Agree })_{1} \times \operatorname{Pr}(\text { Agree })_{2} \times \ldots \times \operatorname{Pr}(\text { Agree })_{29}
$$

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:
$\operatorname{Pr}(2$ people agree $)=0.5$

$$
\begin{aligned}
\operatorname{Pr}(\text { Exact }) & =\operatorname{Pr}(\text { Agree })_{1} \times \operatorname{Pr}(\text { Agree })_{2} \times \ldots \times \operatorname{Pr}(\text { Agree })_{29} \\
& =0.5 \times 0.5 \times \ldots \times 0.5
\end{aligned}
$$

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:
$\operatorname{Pr}(2$ people agree $)=0.5$

$$
\begin{aligned}
\operatorname{Pr}(\text { Exact }) & =\operatorname{Pr}(\text { Agree })_{1} \times \operatorname{Pr}(\text { Agree })_{2} \times \ldots \times \operatorname{Pr}(\text { Agree })_{29} \\
& =0.5 \times 0.5 \times \ldots \times 0.5 \\
& =0.5^{29}
\end{aligned}
$$

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:
$\operatorname{Pr}(2$ people agree $)=0.5$

$$
\begin{aligned}
\operatorname{Pr}(\text { Exact }) & =\operatorname{Pr}(\text { Agree })_{1} \times \operatorname{Pr}(\text { Agree })_{2} \times \ldots \times \operatorname{Pr}(\text { Agree })_{29} \\
& =0.5 \times 0.5 \times \ldots \times 0.5 \\
& =0.5^{29} \\
& \approx 1.8 \times 10^{-9}
\end{aligned}
$$

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary $(0,1)$: Suppose dimensions are independent:
$\operatorname{Pr}(2$ people agree $)=0.5$

$$
\begin{aligned}
\operatorname{Pr}(\text { Exact }) & =\operatorname{Pr}(\text { Agree })_{1} \times \operatorname{Pr}(\text { Agree })_{2} \times \ldots \times \operatorname{Pr}(\text { Agree })_{29} \\
& =0.5 \times 0.5 \times \ldots \times 0.5 \\
& =0.5^{29} \\
& \approx 1.8 \times 10^{-9}
\end{aligned}
$$

1 in 536,870,912 people

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary $(0,1)$: Suppose dimensions are independent:
$\operatorname{Pr}(2$ people agree $)=0.5$

$$
\begin{aligned}
\operatorname{Pr}(\text { Exact }) & =\operatorname{Pr}(\text { Agree })_{1} \times \operatorname{Pr}(\text { Agree })_{2} \times \ldots \times \operatorname{Pr}(\text { Agree })_{29} \\
& =0.5 \times 0.5 \times \ldots \times 0.5 \\
& =0.5^{29} \\
& \approx 1.8 \times 10^{-9}
\end{aligned}
$$

1 in 536,870,912 people
Across many "variables" (events) agreement is harder

Probability Theory

- Today: Introducing probability model
- Conditional probability, Bayes' rule, and independence

