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Multivariate Optimization
Optimizing multivariate functions

- Parameters β = (β1, β2, . . . , βn) such that f (β|X ,Y ) is maximized

- Policy x ∈ <n that maximizes U(x)

- Weights π = (π1, π2, . . . , πK ) such that a weighted average of
forecasts f = (f1, f2, . . . , fk) have minimum loss

min
π

= −(
K∑
j=1

πj fj − y)2

Today we’ll describe analytic and computational approaches to
optimization

- Analytic recipe for optimization

- Computational optimization
- Multivariate Newton-Raphson
- BFGS
- Approximate Optimization: k-means
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Multivariate Optimization

Definition

Let x ∈ <n and let δ > 0. Define a neighborhood of x , B(x , δ), as the set
of points such that,

B(x , δ) = {y ∈ <n : ||x − y || < δ}

Definition

Suppose f : X → < with X ⊂ <n. A vector x∗ ∈ X is a global maximum
if , for all other x ∈ X

f (x∗) > f (x)

A vector x local is a local maximum if there is a neighborhood around x local,
Q ⊂ X such that, for all x ∈ Q,

f (x local) > f (x)
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Multivariate Optimization

Definition

A set X ⊂ Rn is compact if it is closed and bounded

Theorem

Multivariate Extreme Value Theorem Suppose f : X → < be continuous
and X ⊂ <n and X compact. Then f takes on its maximum and minimum
values on X .

We’re going to come up with the multivariate equivalent of the first order
and second order conditions now
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Gradient

Definition

Suppose f : X → <n with X ⊂ <1 is a differentiable function. Define the
gradient vector of f at x0, ∇f (x0) as,

∇f (x0) =

(
∂f (x0)

∂x1
,
∂f (x0)

∂x2
,
∂f (x0)

∂x3
, . . . ,

∂f (x0)

∂xn

)
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Gradient First Order Condition

Theorem

Suppose f : X → <1, X ⊂ <n. Suppose a ∈ X is a local extremum. Then,

∇f (a) = 0

= (0, 0, . . . , 0)

- Proof (intuition): same as one dimensional case (left-hand, right
hand), just do it dimension by dimension

- Critical Values:

1) Maximum
2) Minimum
3) Saddle point

- Second Derivative Test!
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Second Order Conditions: Hessian

Definition

Suppose f : X → <1 , X ⊂ <n, with f a twice differentiable function. We
will define the Hessian matrix as the matrix of second derivatives at
x∗ ∈ X ,

H(f )(x∗) =


∂2f

∂x1∂x1
(x∗) ∂2f

∂x1∂x2
(x∗) . . . ∂2f

∂x1∂xn
(x∗)

∂2f
∂x2∂x1

(x∗) ∂2f
∂x2∂x2

(x∗) . . . ∂2f
∂x2∂xn

(x∗)
...

...
. . .

...
∂2f

∂xn∂x1
(x∗) ∂2f

∂xn∂x2
(x∗) . . . ∂2f

∂xn∂xn
(x∗)


General test  Two Dimensional Test  Example
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Hessians

Definition

Consider n × n matrix A. If, for all x ∈ <n where x 6= 0:

x
′
Ax > 0 A is positive definite

x
′
Ax < 0 A is negative definite

If x ′Ax > 0 for some x and x ′Ax < 0 for other x , then we say A is
indefinite
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Approximating functions and second order conditions

Theorem

Taylor’s Theorem Suppose f : < → <, f (x) is infinitely differentiable
function. Then, the taylor expansion of f (x) around a is given by

f (x) = f (a) +
f
′
(a)

1!
(x − a) +

f
′′

(a)

2!
(x − a)2 +

f
′′′

(a)

3!
(x − a)3 + . . .

f (x) =
∞∑
n=0

f n(a)

n!
(x − a)n
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Example Function

Suppose a = 0 and f (x) = ex . Then,

f
′
(x) = ex

f
′′

(x) = ex

...
...

...

f n(x) = ex

This implies

ex = 1 + x +
x2

2!
+

x3

3!
. . .+

xn

n!
+ . . .
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Multivariate Taylor’s Theorem

Theorem

Suppose f : <n → < is a three-times continously differentiable function,
then around a ∈ <n,

f (x) = f (a) +∇f (a)(x − a) +
1

2
(x − a)

′
H(f )(a)(x − a) + R(a, x)

where R(x ,a)
||x−a||2 → 0 as x → a
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Intuition for Quadratic Form

Suppose x∗ is some critical value,

f (x) = f (x∗) +∇f (x∗)(x − x∗) + (x − 1

2
x∗)H(f )(x∗)(x − x∗) + R(x∗, x)

f (x)− f (x∗) = 0(x − x∗) + (x − 1

2
x∗)H(f )(x∗)(x − x∗) + R(x∗, x)

For x near x∗, R(x∗, x) ≈ 0

H(f )(x∗) positive definite → f (x) > f (x∗) → local minimum
H(f )(x∗) negative definite → f (x) < f (x∗) → local maximum
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Theorem

Second Derivative Test

- If H(f )(a) is positive definite then a is a local minimum

- If H(f )(a) is negative definite then a is a local maximum

- If H(f )(a) is indefinite then a is a saddle point
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Second Derivative Test

Many ways to assess definiteness  use determinant

Theorem

Two Dimensional, Second Derivative Test. Suppose f : X → < with
X ⊂ <2 and f twice differentiable. Write the Hessian of f at a critical
value a,

H(f )(a) =

(
A B
B C

)
Then, we can conduct the second derivative test as:

- AC − B2 > 0 and A > 0  positive definite  a is a local minimum

- AC −B2 > 0 and A < 0  negative definite  a is a local maximum

- AC − B2 < 0  indefinite  saddle point

- AC − B2 = 0 inconclusive
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Multivariate Recipe

1) Calculate gradient

2) Set equal to zero, solve system of equations

3) Calculate Hessian

4) Assess Hessian at critical values

5) Boundary values? (if relevant)
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Example 1: A Simple Optimization Problem

Suppose f : <2 → < with

f (x1, x2) = 3(x1 + 2)2 + 4(x2 + 4)2

Calculate gradient

∇f (x) = (6x1 + 12, 8x2 + 32)

0 = (6x∗1 + 12, 8x∗2 + 32)

We now solve the system of equations to yield x∗1 = −2 and x∗2 = −4
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Example 1: A Simple Optimization Problem

H(f )(x∗) =

(
6 0
0 8

)
det(H(f )(x∗)) = 48 and 6 > 0 so H(f )(x∗) is positive definite. local
minimum
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Example 2: Two Dimensional Ideal Points

Suppose legislators are considering legislation x ∈ <2. And suppose
legislator i has utility function Ui : <2 → <,

U(x)i = −(x1 − µ1)2 − (x2 − µ2)2

What is legislator i ’s optimal policy?
∇f (x) = (−2(x1 − µ1),−2(x2 − µ2))
∇f (x) = 0

−2(x∗1 − µ1) = 0

−2(x∗2 − µ2) = 0

Solving yields x∗1 = µ1 and x∗2 = µ2.
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Example 2: Two Dimensional Ideal Points

U(x)i = −(x1 − µ1)2 − (x2 − µ2)2

Call µ = (µ1, µ2)
The Hessian at the critical value is

H(f )(µ) =

(
∂2Ui
∂x1∂x1

(µ) ∂2Ui
∂x1∂x2

(µ)
∂2Ui
∂x2∂x1

(µ) ∂2Ui
∂x2∂x2

(µ)

)

=

(
−2 0
0 −2

)
So, −2 ∗ −2− 0 = 4 > 0 and −2 < 0  negative definite, maximum
µ = (µ1, µ2) are legislator i ’s two dimensional ideal point.
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Suppose that we draw an independent and identically distributed random
sample of n observations from a normal distribution,

Yi ∼ Normal(µ, σ2)

Y = (Y1,Y2, . . . ,Yn)

Our task:

- Obtain likelihood (summary estimator)

- Derive maximum likelihood estimators for µ and σ2

- Characterize sampling distribution
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

L(µ, σ2|Y ) ∝
n∏

i=1

f (Yi |µ, σ2)

∝
N∏
i=1

exp[− (Yi−µ)2
2σ2 ]

√
2πσ2

∝
exp[−

∑n
i=1

(Yi−µ)2
2σ2 ]

(2π)n/2σ2n/2

Taking the logarithm, we have

l(µ, σ2|Y ) = −
n∑

i=1

(Yi − µ)2

2σ2
− n

2
log(2π)− n

2
log(σ2) + c

= −
n∑

i=1

(Yi − µ)2

2σ2
− n

2
log(σ2) + c

′
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Example 3: Log-Likelihood Plot
- In R, drew 10,000 realizations from

Yi ∼ Normal(0.25, 100)

- Used realized values yi evaluate l(µ, σ2|y)
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Let’s find µ̂ and σ̂2 that maximizes log-likelihood.

l(µ, σ2|Y ) = −
n∑

i=1

(Yi − µ)2

2σ2
− n

2
log(σ2) + c

′

∂l(µ, σ2)|Y )

∂µ
=

n∑
i=1

2(Yi − µ)

2σ2

∂l(µ, σ2)|Y )

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(Yi − µ)2
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

0 = −
n∑

i=1

2(Yi − µ̂)

2σ̂2

0 = − n

2σ̂2
+

1

2σ̂4

n∑
i=1

(Yi − µ∗)2

Solving for µ̂ and σ̂2 yields,

µ̂ =

∑n
i=1 Yi

n

σ̂2 =
1

n

n∑
i=1

(Yi − Y )2
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

H(f )(µ̂, σ̂2) =

(
∂2l(µ,σ2|Y )

∂µ2
∂2l(µ,σ2|Y )
∂σ2∂µ

∂2l(µ,σ2|Y )
∂σ2∂µ

∂2l(µ,σ2|Y )
∂2σ2

)
Taking derivatives and evaluating at MLE’s yields,

H(f )(µ̂, σ̂2) =
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Computational Optimization

Analytic solutions: often hard.

Computational solutions: simplify. Trade offs

- Newton-Raphson: expensive

- BFGS: less expensive

- EM-like optimization: solve intractable problems, parallelizable
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Multivariate Newton Raphson

Suppose f : <n → <. Suppose we have guess x t .

Then our update is:

x t+1 = x t −H(f )(x t)
−1∇f (x t)

Derivation (intuition): Approximate function with tangent plane. Find
value of xt+1 that makes the plane equal to zero. Update again.
R Code
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Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)

- Very sensitive to starting points

- Ideally: method that exploits Newton-like structure, but is cheaper
and more robust

BFGS: Quasi-Newton method
R code
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Optimization that is Both Discrete and Continuous
K-means: most commonly used clustering algorithm.

Story: Data are grouped in K clusters and each cluster has a center or
mean.
→ Two types of parameters to estimate

1) For each cluster j , (j = 1, . . . ,K )

rij =Indicator, Document i assigned to cluster j

r j = (r1j , r2j , . . . , rNj)

r = (r ′
1, r

′
2, . . . , r

′
K ) (N × K matrix)

2) For each cluster j

µj a cluster center for cluster j .

µj = (µ1j , µ2j , . . . , µMj)

Notation. Representation of document i :

y i = (yi1, yi2, . . . , yiM)
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Specifying the Method

1) Assume Euclidean distance between objects.

2) Objective function

f (r ,µ, y) =
N∑
i=1

K∑
j=1

rij

(
M∑

m=1

(yim − µkm)2

)

Goal:
Choose r∗ and µ∗ to minimize f (r ,µ, y)
Two observations:

- If K = N f (r∗,µ∗, y) = 0 (Minimum)

- Each observation in own cluster
- µi = y i

- If K = 1, f (r∗,µ∗, y) = N × σ2
- Each observation in one cluster
- Center: average of documents

Justin Grimmer (Stanford University) Methodology I September 13th, 2016 30 / 38



Specifying the Method

1) Assume Euclidean distance between objects.

2) Objective function

f (r ,µ, y) =
N∑
i=1

K∑
j=1

rij

(
M∑

m=1

(yim − µkm)2

)

Goal:

Choose r∗ and µ∗ to minimize f (r ,µ, y)
Two observations:

- If K = N f (r∗,µ∗, y) = 0 (Minimum)

- Each observation in own cluster
- µi = y i

- If K = 1, f (r∗,µ∗, y) = N × σ2
- Each observation in one cluster
- Center: average of documents

Justin Grimmer (Stanford University) Methodology I September 13th, 2016 30 / 38



Specifying the Method

1) Assume Euclidean distance between objects.

2) Objective function

f (r ,µ, y) =
N∑
i=1

K∑
j=1

rij

(
M∑

m=1

(yim − µkm)2

)

Goal:
Choose r∗ and µ∗ to minimize f (r ,µ, y)

Two observations:

- If K = N f (r∗,µ∗, y) = 0 (Minimum)

- Each observation in own cluster
- µi = y i

- If K = 1, f (r∗,µ∗, y) = N × σ2
- Each observation in one cluster
- Center: average of documents

Justin Grimmer (Stanford University) Methodology I September 13th, 2016 30 / 38



Specifying the Method

1) Assume Euclidean distance between objects.

2) Objective function

f (r ,µ, y) =
N∑
i=1

K∑
j=1

rij

(
M∑

m=1

(yim − µkm)2

)

Goal:
Choose r∗ and µ∗ to minimize f (r ,µ, y)
Two observations:

- If K = N f (r∗,µ∗, y) = 0 (Minimum)

- Each observation in own cluster
- µi = y i

- If K = 1, f (r∗,µ∗, y) = N × σ2
- Each observation in one cluster
- Center: average of documents

Justin Grimmer (Stanford University) Methodology I September 13th, 2016 30 / 38



Specifying the Method

1) Assume Euclidean distance between objects

2) Objective function

3) Algorithm for optimization

Iterative algorithm, Each Iteration t

- Conditional on µt−1 (from previous iteration), choose r t

- Conditional on r t , choose µt

Repeat until convergence, measured as change in f .

Change = f (µt , r t , y)− f (µt−1, r t−1, y)

Justin Grimmer (Stanford University) Methodology I September 13th, 2016 31 / 38



Specifying the Method

f (r ,µ, y) =
N∑
i=1

K∑
j=1

rij

(
M∑

m=1

(yim − µkm)2

)

Algorithm for estimation:
Begin: initialize µt−1

1 ,µt−1
2 , . . . ,µt−1

K
Choose r t

r tij =

{
1 if j = arg mink

∑M
m=1(yim − µkm)2

0 otherwise ,
.

In words: Assign each document y i to the closest center µk
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f (r ,µ, y) =
N∑
i=1

K∑
j=1

rij

(
M∑

m=1

(yim − µkm)2

)

Conditional on r t , choose µt

Let’s focus on µk

f (r ,µk , y)k =
N∑
i=1

rik

(
M∑

m=1

(yim − µkm)2

)

Justin Grimmer (Stanford University) Methodology I September 13th, 2016 33 / 38



Focus on just µkm

f (r , µkm, y)km =
N∑
i=1

rik(yim − µkm)2

Quadratic: take derivative, set equal to zero (second derivative test works)

∂f (r , µkm, y)km
∂µkm

= −2
N∑
i=1

rik(yim − µkm)

2
N∑
i=1

rik(yim − µtkm) = 0

N∑
i=1

rikyim − µtkm
N∑
i=1

rik = 0

∑N
i=1 rikyim∑N
i=1 rik

= µtkm
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µt
k =

∑N
i=1 riky i∑N
i=1 rik

In words:

- µt
k is the average of documents assigned to the kth cluster

Algorithm, In Words

- Conditional on center estimates, assign documents to closest cluster
centers

- Conditional on document assignments, cluster centers are averages of
documents assigned to the cluster

Expectation-Maximization (EM) [connection guarantees convergence]

- Estimation of r  Expectation step (data augmentation)

- Estimation of µk  Maximization Step
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Visual Example
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Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)

- Either Reflect, Expand, or Contract (based on values)

- Converges to local extrema

Stochastic Optimization:

- Sample a subset of data, perform optimization

- Sample a new subset, perform optimization, combine with previous
sample

- Converges on local extrema (given regulatory conditions)

Genetic Optimization:

- Evaluate fitness of solutions

- Randomly select most fit, then combine

- Can converge to global maximum, but might require extensive run
time
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Where We Are Going

- Done with math component

- Start probability tomorrow
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