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Multivariate Optimization

Optimizing multivariate functions
- Parameters 3 = (01, B2, - .., Bn) such that f(3|X, Y) is maximized
- Policy x € R" that maximizes U(x)

- Weights 7 = (71, 72, ..., 7k) such that a weighted average of
forecasts f = (f1, f, ..., fx) have minimum loss
K
T 2
min = (Zlﬂjij y)
J:

Today we'll describe analytic and computational approaches to
optimization
- Analytic recipe for optimization
- Computational optimization
- Multivariate Newton-Raphson

- BFGS
- Approximate Optimization: k-means
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Multivariate Optimization
Definition

Let x € R" and let § > 0. Define a neighborhood of x, B(x,0), as the set
of points such that,

B(x,0) = {yeR":|jx—yll <3}

Definition

Suppose f : X — R with X C R". A vector x* € X is a global maximum
if, for all other x € X

f(x*) > f(x)

A vector x'°%! js a local maximum if there is a neighborhood around x'°<?/,
Q C X such that, for all x € Q,

F(xP) > f(x)
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Multivariate Optimization

Definition
A set X C R" is compact if it is closed and bounded

Theorem

Multivariate Extreme Value Theorem Suppose f : X — R be continuous
and X C R" and X compact. Then f takes on its maximum and minimum
values on X.

V.

We're going to come up with the multivariate equivalent of the first order
and second order conditions now
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Gradient

Definition

gradient vector of f at xo, Vf(xo) as,

Suppose f : X — R" with X C R! is a differentiable function. Define the

Vi(xo) = (5';()()‘10) Of(x0) OF(xo)

T Oxo

8f(x0)
8X3 s

’8xn)
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Gradient First Order Condition

Theorem

Suppose f : X — R, X C R". Suppose a € X is a local extremum. Then,
Vf(a) =

hand), just do it dimension by dimension
- Critical Values:

1) Maximum
2) Minimum
3) Saddle point

- Proof (intuition): same as one dimensional case (left-hand, right

- Second Derivative Test!

Justin Grimmer (Stanford University)

o F
Methodology |



Second Order Conditions: Hessian

Definition

Suppose f : X — Rt , X C R", with f a twice differentiable function. We
will define the Hessian matrix as the matrix of second derivatives at

x*e X,
0> f O*f 9 f
B (X) Bqo (X7 T (X7
0*f x* 9*f *) O*f (X*)
H( f) (x*) — 8X2 8X1 6X28X2 8X28X,,
82f' O*f . 82f'
OxnOx1 ( *) OxpnOxo ( *) OxpOxn ( *)
General test ~» Two Dimensional Test ~» Example
=] = E z 9ace
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Hessians

Definition
Consider n x n matrix A. If, for all x € R" where x # 0

xAx > 0Ais positive definite
xAx < 0Ais negative definite
indefinite

If X' Ax > 0 for some x and x' Ax < 0 for other x, then we say A is
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Theorem

f(x) = f(a)-l-%(x—a)-l—fz(!a)(x—a)2+f3—(!a)(x—a)3-l-.
) = 3 P gy
n=0 ’

Approximating functions and second order conditions

Taylor’s Theorem Suppose f : R — R, f(x) is infinitely differentiable
function. Then, the taylor expansion of f(x) around a is given by
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Example Function

Suppose a = 0 and f(x) = €*. Then,

e
f'(x) = €
This implies
x _ 1 x> X3 x"
et = +X+§+§"'+H+
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Multivariate Taylor's Theorem

Theorem

Suppose f : R" — R is a three-times continously differentiable function,
then around a € R",

f(lx) =

f(a) + VF(a)(x — a) + 5(x — a) H(F)(a)(x — a) + R(a,x)
where Fx.2)

a2 Oasx —a
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Intuition for Quadratic Form

Suppose x* is some critical value,

fx) =

f(x*)+ VF(x*)(x —x*) + (x — 1x

2
f(x)—f(x*) =

H()(X)(x — x) + R(x", x
0(x — x™) + (

x——x*

> X IH(E)(xT)(x — x7) + R(x", x)
For x near x*, R(x*,x) ~ 0

H(f)(x*) positive definite — f(x) > f(x*) — local minimum
H(f)(x*) negative definite — f(x) < f(x*) — local maximum
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Theorem

Second Derivative Test

- If H(f)(a) is positive definite then a is a local minimum

- If H(f)(a) is negative definite then a is a local maximum
- If H(f)(a) is indefinite then a is a saddle point
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Second Derivative Test

Many ways to assess definiteness ~» use determinant

Theorem

Two Dimensional, Second Derivative Test. Suppose f : X — R with
X C R2 and f twice differentiable. Write the Hessian of f at a critical

value a,
Hea) = (5 ¢)

Then, we can conduct the second derivative test as:

- AC — B? >0 and A > 0 ~ positive definite ~ a is a local minimum

- AC — B? >0 and A < 0 ~ negative definite ~ a is a local maximum

- AC — B? < 0 ~ indefinite ~ saddle point

- AC — B2 =0 inconclusive
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Multivariate Recipe

1
2

) Calculate gradient
)
3) Calculate Hessian
)
)

Set equal to zero, solve system of equations

4
5

Assess Hessian at critical values

Boundary values? (if relevant)
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Example 1: A Simple Optimization Problem
Suppose f : R? — R with

f(Xl, X2) = 3(X1 + 2)2 + 4(X2 + 4)2
Calculate gradient

Vf(x) (6X1 +12,8x + 32)
0 = (6x5 +12,8x; +32)
We now solve the system of equations to yield x;

—2and x; = —4
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Example 1: A Simple Optimization Problem

HNK) = (g )

det(H(f)(x*)) = 48 and 6 > 0 so H(f)(x*) is positive definite. local
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Example 2: Two Dimensional Ideal Points

Suppose legislators are considering legislation x € #2. And suppose
legislator i has utility function U; : 2 — R,

Ux)i = —(xa—mp)?— (e —m)?
What is legislator i's optimal policy?

Vi(x) = (=20 — p1), —2(x2 — p2))
Vi(x)=0

—20q = m)

—2(x — p2)
Solving yields x;' = p11 and x5 = po.

Il
o
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Example 2: Two Dimensional ldeal Points

Ux)i = —(xa1—p)?— (o — )

Call pp = (p1, p2)
The Hessian at the critical value is

U, U,
H(f)( ) — ax%axl (“) 8x58x (“)
g CU(w) ()
%2051 W) Bxp0,
(=2 0
N 0 -2
So, 2% —2—0=14 >0 and —2 < 0 ~~ negative definite, maximum
p = (p1, p2) are legislator i's two dimensional ideal point.
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Example 3: Maximum Likelihood Estimation, Normal
Distribution
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Suppose that we draw an independent and identically distributed random
sample of n observations from a normal distribution,
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Suppose that we draw an independent and identically distributed random
sample of n observations from a normal distribution,

Y; ~ Normal(yu,0o?)
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Suppose that we draw an independent and identically distributed random
sample of n observations from a normal distribution,

Y; ~ Normal(yu,0o?)
Y = (Y1, Y2,...,Yh)
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Suppose that we draw an independent and identically distributed random
sample of n observations from a normal distribution,

Y; ~ Normal(yu,0o?)
Y —

= (Y1, Y2,...,Y))
Our task:
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Suppose that we draw an independent and identically distributed random
sample of n observations from a normal distribution,

Y; ~ Normal(yu,0o?)
Y —

= (Y1, Y2,...,Y))
Our task:

- Obtain likelihood (summary estimator)
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Suppose that we draw an independent and identically distributed random
sample of n observations from a normal distribution,

Y; ~ Normal(yu,0o?)

Y = (Yi,Y2,...,Yn)
Our task:

- Obtain likelihood (summary estimator)

- Derive maximum likelihood estimators for 1 and o2

Justin Grimmer (Stanford University) Methodology | September 13th, 2016 20 / 38



Example 3: Maximum Likelihood Estimation, Normal
Distribution

Suppose that we draw an independent and identically distributed random
sample of n observations from a normal distribution,

Y; ~ Normal(yu,0o?)
Y = (Yi,Y2,...,Yn)
Our task:

- Obtain likelihood (summary estimator)
- Derive maximum likelihood estimators for 1 and o2

- Characterize sampling distribution
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Example 3: Maximum Likelihood Estimation, Normal
Distribution
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

n
Lw,o?lY) o []F(Ylno%)
i=1
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

n
Lw,o?lY) o []F(Ylno%)

i=1
| |
pale V2mo?
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

n
Lw,o?lY) o []F(Ylno%)

i=1

II” - O

i1 27T0'

exp[- Y0, (]
(27T)n/20-2n/2
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

n
Luo®ly) o TV

i=1

II” - O

i1 27T0'

o[- 27, O5 4]
(27T)n/20-2n/2
Taking the logarithm, we have
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Lw,o?lY) o []F(Ylno%)

i=1
)2
m]ﬁ”“—mg”l
1 V2mo?

)2
expl- 7y Dot
(27T)n/20-2n/2

Taking the logarithm, we have

n

Yi* 2
_ _Z( 1)

¢ 202
i=1

I, 0?|Y)

- glog(27r) — g log(c?) + ¢
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Lw,o?lY) o []F(Ylno%)

i=1
)2
e
1 V2mo?
n Y —p)?
expl= Y7y Vo]
(27T)n/20-2n/2
Taking the logarithm, we have
2yy — 5w on LN
(1, 0%Y) = ; o2 5 log(2) —  log(0?) + ¢
~ (Yi—p) n 2 /
= - — =
Iz; 52 5 og(c) + ¢
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Example 3: Log-Likelihood Plot

- In R, drew 10,000 realizations from
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Example 3: Log-Likelihood Plot

- In R, drew 10,000 realizations from

Y

~

Normal(0.25, 100)
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Example 3: Log-Likelihood Plot

- In R, drew 10,000 realizations from

Y

~

Normal(0.25, 100)

- Used realized values y; evaluate /(u, o2|y)
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Example 3: Log-Likelihood Plot

—-28200
-28400
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Example 3: Log-Likelihood Plot

—-28200
-28400

I3

1=

>

S
—-28600
—-28800
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Let’s find 7i and 52 that maximizes log-likelihood.
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Let’s find 7i and 52 that maximizes log-likelihood.

(p,?|Y) =

n
(Yi—nu)? n
"D o g loele
i=1
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Let’s find 7i and 52 that maximizes log-likelihood.

n
I(u, oY)

N N ) S
— ; 52 5 log(c°) + ¢
0l(n,0)|Y) =2V —p)
ou N ; 202
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

Let’s find 7i and 52 that maximizes log-likelihood.

n
I, 5%|Y)

(Vi — p)? 2
— _;M—2Iog(a)+c
ol(n,0®)|Y) _ z": 2(Yi — p)
ou P 202
01(11,07)Y) Pl :
e T 202 254 (Yi=n)
i=1
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

_ 22(\’, — Ii)
0= —~ 257
n 1 <&
T - \// *\2
0 252 T 254 171( )
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

2(Y; — 1)
0 = - _
; 202
n 1 & .
0 = otz 2 (Yiu )’
i=1
Solving for fi and &2 yields,
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

0 — _é 2(26_2 i)
0 = —T;—i—% n(Y, Wy
i=1
Solving for fi and &2 yields,
0= 277’1 Y
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Example 3: Maximum Likelihood Estimation, Normal
Distribution
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Example 3: Maximum Likelihood Estimation, Normal
Distribution
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

0 I(u,0%Y)  0%1(p,0%Y)
~ ~2N Ou2 0020
H(f)(,u,a2) = (fﬁ/(uﬁﬂw) 82/(u,aillLY)>
0020

0202
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Example 3: Maximum Likelihood Estimation, Normal
Distribution

0 I(u,0%Y)  0%1(p,0%Y)
~ ~2N Ou2 0020
H(f)(,u,a2) = (aﬂ(,ﬁﬂw) 82/(u,ailfY)>
0020

0202
Taking derivatives and evaluating at MLE's yields,
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Example 3: Maximum Likelihood Estimation,
Distribution

Normal

0 I(u,0%Y)  0%1(p,0%Y)
~ ~2N Ou2 0020
H(f)(,u,a2) = (aﬂ(,ﬁﬂw) 82/(u,ailfY)>
0020

0202
Taking derivatives and evaluating at MLE's yields,

PN = 0
H(f)(p,,o‘z) = (f (:2';2>
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Example 3: Maximum Likelihood Estimation,
Distribution

Normal

I(p,02Y)  0%I(u,0?|Y)
~ 2 o2
H(f)(1,5%) = (azl(i,’ézm T

Pl Y))
0520 0202
Taking derivatives and evaluating at MLE's yields,

R = 0
H(f)(:ua 02) = (%2 (:2’7)2>

det(H(f)(11,52)) = n?/3° and —n/5? < 0 ~» maximum
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Computational Optimization

Analytic solutions: often hard.
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Computational Optimization

Analytic solutions: often hard.

Computational solutions: simplify. Trade offs
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Computational Optimization

Analytic solutions: often hard.

Computational solutions: simplify. Trade offs
- Newton-Raphson: expensive
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Computational Optimization

Analytic solutions: often hard.
Computational solutions: simplify. Trade offs

- Newton-Raphson: expensive

- BFGS: less expensive
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Computational Optimization

Analytic solutions: often hard.

Computational solutions: simplify. Trade offs
- Newton-Raphson: expensive

- BFGS: less expensive

- EM-like optimization: solve intractable problems, parallelizable
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Multivariate Newton Raphson

Suppose f : R” — R. Suppose we have guess x;.
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Multivariate Newton Raphson
Suppose f : R” — R. Suppose we have guess x;.

Then our update is:
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Multivariate Newton Raphson

Suppose f : R” — R. Suppose we have guess x;.

Then our update is:
xes1 = xe—H(F)(x:) TV F(xe)
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Multivariate Newton Raphson

Suppose f : R” — R. Suppose we have guess x;.

Then our update is:
xes1 = xe—H(F)(x:) TV F(xe)
Derivation (intuition):
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Multivariate Newton Raphson

Suppose f : R” — R. Suppose we have guess x;.

Then our update is:
xes1 = xe—H(F)(x:) TV F(xe)

Derivation (intuition): Approximate function with tangent plane.
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Multivariate Newton Raphson

Suppose f : R” — R. Suppose we have guess x;.

Then our update is:
Xt41 = Xp— H(f)(xterf(xt)
Derivation (intuition): Approximate function with tangent plane.

Find
value of x;y1 that makes the plane equal to zero. Update again.
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Multivariate Newton Raphson

Suppose f : R” — R. Suppose we have guess x;.

Then our update is:
xes1 = xe—H(F)(x:) TV F(xe)

Derivation (intuition): Approximate function with tangent plane.

value of x;y1 that makes the plane equal to zero. Update again.
R Code

Find
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Multivariate Newton Raphson
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Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)
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Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)
- Very sensitive to starting points
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Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)
- Very sensitive to starting points

- ldeally: method that exploits Newton-like structure, but is cheaper
and more robust
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Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)
- Very sensitive to starting points

- ldeally: method that exploits Newton-like structure, but is cheaper
and more robust

BFGS: Quasi-Newton method
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Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)

- Very sensitive to starting points

- ldeally: method that exploits Newton-like structure, but is cheaper
and more robust

BFGS: Quasi-Newton method
R code
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Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.
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Optimization that is Both Discrete and Continuous
K-means: most commonly used clustering algorithm.

Story: Data are grouped in K clusters and each cluster has a center or
mean.
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Optimization that is Both Discrete and Continuous
K-means: most commonly used clustering algorithm.

Story: Data are grouped in K clusters and each cluster has a center or
mean.

— Two types of parameters to estimate
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Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.

Story: Data are grouped in K clusters and each cluster has a center or
mean.

— Two types of parameters to estimate
1) For each cluster j, (j =1,...,K)
rij =Indicator, Document / assigned to cluster j
ri = (rlj, R, rNj)

r=(ry,ry,...,r) (N x K matrix)
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Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.

Story: Data are grouped in K clusters and each cluster has a center or
mean.

— Two types of parameters to estimate

1) For each cluster j, (j =1,...,K)
rij =Indicator, Document / assigned to cluster j
ri = (ry,rnj, ..., )
r=(ry,ry,...,r) (N x K matrix)

2) For each cluster j

w; a cluster center for cluster j.

l’l‘_] = (Mljv/*@ja s ’,uMJ)

u]
8
I
i
it
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Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.

Story: Data are grouped in K clusters and each cluster has a center or
mean.

— Two types of parameters to estimate

1) For each cluster j, (j =1,...,K)
rij =Indicator, Document / assigned to cluster j
rj = (rij, r2j, .- nj)
r=(ry,ry,...,r) (N x K matrix)

2) For each cluster j
w; a cluster center for cluster j.
K= (MlijZja s ?)LLMJ)

Notation. Representation of document i:

yi = (YIlaYI27-~7YiM)
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Specifying the Method

) Assume Euclidean distance between objects
2) Objective function

i=1 j=1

f(ﬂﬂay = erlj (Z(YIm Nkm) >
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Specifying the Method

) Assume Euclidean distance between objects
2) Objective function

i=1 j=1
Goal:

f(ﬂﬂay = erlj (Z(YIm Nkm) >
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Specifying the Method

) Assume Euclidean distance between objects
2) Objective function

f(r.p,y)

i=1 j=1
Goal:

Yy, (z<y,m ) )

Choose r* and p* to minimize f(r,pu,y)
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Specifying the Method

1) Assume Euclidean distance between objects.
2) Objective function

f(ﬂliay erlj (Z(y:m Nkm) >
i=1 j=1
Goal:
Choose r* and p* to minimize f(r,pu,y)
Two observations:
-IfK =N f(r*,p*, y) =0 (Minimum)
- Each observation in own cluster
- K=Y
-IfK =1, f(r,u*,y) = N x o2
- Each observation in one cluster
- Center: average of documents
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Specifying the Method

1) Assume Euclidean distance between objects
2) Objective function

3) Algorithm for optimization

Iterative algorithm, Each lteration t

- Conditional on pt~1 (from previous iteration), choose rt

- Conditional on rt, choose ut
Repeat until convergence, measured as change in f.

Change =

Fuf,r'y) = f(u = r 7l y)
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Specifying the Method

f(rop,y)

- 230 (3 o)

i=1 j=1

Algorithm for estimation
TN INT t—1 t—1 t—1

Begin: initialize p; ", py 7, . .o e

Choose rt

t_ 'fj = arg ming Z:\n/lzl(yim - Mkm)2
y 0 otherwise

In words: Assign each document y; to the closest center
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f(r.my) = eru Z(y,m
Conditional on rt, choose

i=1 j=1
t
Let's focus on gy

- Mkm)2
f(r Mg, Y

M

Zrlk Z Yim ,Ufkm)2
m=1
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Focus on just pxm

2

f(r7 Mkm7Y)km

Z rik (Yim — Mkm)2

i=1

Quadratic: take derivative, set equal to zero (second derivative test works)
OF(r, fokem: ¥ ) km

N

- 9 v
a,ukm Iz:; f:k(y:m Hkm)

N
2Zfik(y,'m—ﬂzt<m) =0
i=1

N N

t
§ rik}/im—ﬂkmg rigw. = 0
i=1 i=1

SN | FikYim
Z,,'V=1 lik

t
= HMim
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N
_ Z,-zl riky
SN ri

In words:

- p} is the average of documents assigned to the k™ cluster
Algorithm, In Words
centers

- Conditional on center estimates, assign documents to closest cluster

- Conditional on document assignments, cluster centers are averages of
documents assigned to the cluster

Expectation-Maximization (EM) [connection guarantees convergence]

- Estimation of r ~» Expectation step (data augmentation)
- Estimation of p, ~» Maximization Step
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Visual Example
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Many Optimization Procedures!!!
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Nelder Mead:

- Evaluate points on a simplex (triangle)

- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema
Stochastic Optimization:

sample

- Sample a subset of data, perform optimization
- Sample a new subset, perform optimization, combine with previous
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Stochastic Optimization:
- Sample a subset of data, perform optimization

- Sample a new subset, perform optimization, combine with previous
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- Converges on local extrema (given regulatory conditions)
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Many Optimization Procedures!!!
Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema
Stochastic Optimization:
- Sample a subset of data, perform optimization

- Sample a new subset, perform optimization, combine with previous
sample

- Converges on local extrema (given regulatory conditions)
Genetic Optimization:
- Evaluate fitness of solutions
- Randomly select most fit, then combine
- Can converge to global maximum, but might require extensive run

time
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Where We Are Going

- Done with math component
- Start probability tomorrow
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