Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 13th, 2016

Multivariate Optimization

Optimizing multivariate functions

- Parameters $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ such that $f(\boldsymbol{\beta} \mid \boldsymbol{X}, \boldsymbol{Y})$ is maximized
- Policy $\boldsymbol{x} \in \Re^{n}$ that maximizes $U(\boldsymbol{x})$
- Weights $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{K}\right)$ such that a weighted average of forecasts $\boldsymbol{f}=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ have minimum loss

$$
\min _{\pi}=-\left(\sum_{j=1}^{K} \pi_{j} f_{j}-y\right)^{2}
$$

Today we'll describe analytic and computational approaches to optimization

- Analytic recipe for optimization
- Computational optimization
- Multivariate Newton-Raphson
- BFGS
- Approximate Optimization: k-means

Multivariate Optimization

Definition

Let $\boldsymbol{x} \in \Re^{n}$ and let $\delta>0$. Define a neighborhood of $\boldsymbol{x}, B(\boldsymbol{x}, \delta)$, as the set of points such that,

$$
B(\boldsymbol{x}, \delta)=\left\{\boldsymbol{y} \in \Re^{n}:\|\boldsymbol{x}-\boldsymbol{y}\|<\delta\right\}
$$

Definition

Suppose $f: X \rightarrow \Re$ with $X \subset \Re^{n}$. A vector $\boldsymbol{x}^{*} \in X$ is a global maximum if, for all other $\boldsymbol{x} \in X$

$$
f\left(\boldsymbol{x}^{*}\right)>f(\boldsymbol{x})
$$

A vector $\boldsymbol{x}^{\text {local }}$ is a local maximum if there is a neighborhood around $\boldsymbol{x}^{\text {local }}$, $Q \subset X$ such that, for all $x \in Q$,

$$
f\left(\boldsymbol{x}^{\text {local }}\right)>f(\boldsymbol{x})
$$

Multivariate Optimization

Definition

A set $X \subset R^{n}$ is compact if it is closed and bounded

```
Theorem
Multivariate Extreme Value Theorem Suppose \(f: X \rightarrow \Re\) be continuous and \(X \subset \Re^{n}\) and \(X\) compact. Then \(f\) takes on its maximum and minimum values on \(X\).
```

We're going to come up with the multivariate equivalent of the first order and second order conditions now

Gradient

Definition

Suppose $f: X \rightarrow \Re^{n}$ with $X \subset \Re^{1}$ is a differentiable function. Define the gradient vector of f at $\boldsymbol{x}_{0}, \nabla f\left(x_{0}\right)$ as,

$$
\nabla f\left(x_{0}\right)=\left(\frac{\partial f\left(x_{0}\right)}{\partial x_{1}}, \frac{\partial f\left(x_{0}\right)}{\partial x_{2}}, \frac{\partial f\left(x_{0}\right)}{\partial x_{3}}, \ldots, \frac{\partial f\left(x_{0}\right)}{\partial x_{n}}\right)
$$

Gradient First Order Condition

Theorem
Suppose $f: X \rightarrow \Re^{1}, X \subset \Re^{n}$. Suppose $\mathbf{a} \in X$ is a local extremum. Then,

$$
\begin{aligned}
\nabla f(\boldsymbol{a}) & =\mathbf{0} \\
& =(0,0, \ldots, 0)
\end{aligned}
$$

- Proof (intuition): same as one dimensional case (left-hand, right hand), just do it dimension by dimension
- Critical Values:

1) Maximum
2) Minimum
3) Saddle point

- Second Derivative Test!

Second Order Conditions: Hessian

Definition

Suppose $f: X \rightarrow \Re^{1}, X \subset \Re^{n}$, with f a twice differentiable function. We will define the Hessian matrix as the matrix of second derivatives at $x^{*} \in X$,

$$
\boldsymbol{H}(f)\left(x^{*}\right)=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}\left(x^{*}\right) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\left(x^{*}\right) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}\left(x^{*}\right) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}\left(x^{*}\right) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}\left(x^{*}\right) & \cdots & \frac{\partial^{2} f f}{\partial x_{2} \partial x_{n}}\left(x^{*}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}\left(x^{*}\right) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}\left(x^{*}\right) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}\left(x^{*}\right)
\end{array}\right)
$$

General test \rightsquigarrow Two Dimensional Test \rightsquigarrow Example

Hessians

Definition
Consider $n \times n$ matrix \boldsymbol{A}. If, for all $\boldsymbol{x} \in \Re^{n}$ where $\boldsymbol{x} \neq 0$:

$$
\begin{aligned}
& \boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}>0 \boldsymbol{A} \text { is positive definite } \\
& \boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}<0 \boldsymbol{A} \text { is negative definite }
\end{aligned}
$$

If $\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}>0$ for some \boldsymbol{x} and $\boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}<0$ for other \boldsymbol{x}, then we say \boldsymbol{A} is indefinite

Approximating functions and second order conditions

Theorem
Taylor's Theorem Suppose $f: \Re \rightarrow \Re, f(x)$ is infinitely differentiable function. Then, the taylor expansion of $f(x)$ around a is given by

$$
\begin{aligned}
& f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots \\
& f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Example Function

Suppose $a=0$ and $f(x)=e^{x}$. Then,

$$
\begin{aligned}
f^{\prime}(x) & =e^{x} \\
f^{\prime \prime}(x) & =e^{x} \\
\vdots & \vdots \\
f^{n}(x) & =e^{x}
\end{aligned}
$$

This implies

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \ldots+\frac{x^{n}}{n!}+\ldots
$$

Multivariate Taylor's Theorem

Theorem

Suppose $f: \Re^{n} \rightarrow \Re$ is a three-times continously differentiable function, then around $\mathbf{a} \in \Re^{n}$,

$$
f(x)=f(a)+\nabla f(a)(x-a)+\frac{1}{2}(\boldsymbol{x}-\boldsymbol{a})^{\prime} \mathbf{H}(f)(\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})+R(\boldsymbol{a}, \boldsymbol{x})
$$

where $\frac{R(\boldsymbol{x}, \mathbf{a})}{\|\boldsymbol{x}-\mathbf{a}\|^{2}} \rightarrow 0$ as $\boldsymbol{x} \rightarrow \boldsymbol{a}$

Intuition for Quadratic Form

Suppose \boldsymbol{x}^{*} is some critical value,
$f(\boldsymbol{x})=f\left(\boldsymbol{x}^{*}\right)+\nabla f\left(\boldsymbol{x}^{*}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)+\left(\boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{*}\right) \mathbf{H}(f)\left(x^{*}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)+R\left(\boldsymbol{x}^{*}, \boldsymbol{x}\right.$

$$
f(\boldsymbol{x})-f\left(\boldsymbol{x}^{*}\right)=0\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)+\left(\boldsymbol{x}-\frac{1}{2} \boldsymbol{x}^{*}\right) \mathbf{H}(f)\left(\boldsymbol{x}^{*}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)+R\left(\boldsymbol{x}^{*}, \boldsymbol{x}\right)
$$

For \boldsymbol{x} near $\boldsymbol{x}^{*}, R\left(\boldsymbol{x}^{*}, \boldsymbol{x}\right) \approx 0$
$\boldsymbol{H}(f)\left(\boldsymbol{x}^{*}\right)$ positive definite $\rightarrow f(\boldsymbol{x})>f\left(\boldsymbol{x}^{*}\right) \rightarrow$ local minimum $\boldsymbol{H}(f)\left(\boldsymbol{x}^{*}\right)$ negative definite $\rightarrow f(\boldsymbol{x})<f\left(\boldsymbol{x}^{*}\right) \rightarrow$ local maximum

Theorem
Second Derivative Test

- If $\boldsymbol{H}(f)(\boldsymbol{a})$ is positive definite then \boldsymbol{a} is a local minimum
- If $\boldsymbol{H}(f)(\boldsymbol{a})$ is negative definite then \mathbf{a} is a local maximum
- If $\boldsymbol{H}(f)(\boldsymbol{a})$ is indefinite then \boldsymbol{a} is a saddle point

Second Derivative Test

Many ways to assess definiteness \rightsquigarrow use determinant
Theorem
Two Dimensional, Second Derivative Test. Suppose $f: X \rightarrow \Re$ with $X \subset \Re^{2}$ and f twice differentiable. Write the Hessian of f at a critical value \mathbf{a},

$$
\boldsymbol{H}(f)(\boldsymbol{a})=\left(\begin{array}{ll}
A & B \\
B & C
\end{array}\right)
$$

Then, we can conduct the second derivative test as:

- $A C-B^{2}>0$ and $A>0 \rightsquigarrow$ positive definite $\rightsquigarrow \boldsymbol{a}$ is a local minimum
- $A C-B^{2}>0$ and $A<0 \rightsquigarrow$ negative definite $\rightsquigarrow \boldsymbol{a}$ is a local maximum
- $A C-B^{2}<0 \rightsquigarrow$ indefinite \rightsquigarrow saddle point
- $A C-B^{2}=0$ inconclusive

Multivariate Recipe

1) Calculate gradient
2) Set equal to zero, solve system of equations
3) Calculate Hessian
4) Assess Hessian at critical values
5) Boundary values? (if relevant)

Example 1: A Simple Optimization Problem

Suppose $f: \Re^{2} \rightarrow \Re$ with

$$
f\left(x_{1}, x_{2}\right)=3\left(x_{1}+2\right)^{2}+4\left(x_{2}+4\right)^{2}
$$

Calculate gradient

$$
\begin{aligned}
\nabla f(\boldsymbol{x}) & =\left(6 x_{1}+12,8 x_{2}+32\right) \\
\mathbf{0} & =\left(6 x_{1}^{*}+12,8 x_{2}^{*}+32\right)
\end{aligned}
$$

We now solve the system of equations to yield $x_{1}^{*}=-2$ and $x_{2}^{*}=-4$

Example 1: A Simple Optimization Problem

$$
\mathbf{H}(f)\left(x^{*}\right)=\left(\begin{array}{ll}
6 & 0 \\
0 & 8
\end{array}\right)
$$

$\operatorname{det}\left(\mathbf{H}(f)\left(\boldsymbol{x}^{*}\right)\right)=48$ and $6>0$ so $\mathbf{H}(f)\left(\boldsymbol{x}^{*}\right)$ is positive definite. local minimum

Example 2: Two Dimensional Ideal Points

Suppose legislators are considering legislation $\boldsymbol{x} \in \Re^{2}$. And suppose legislator i has utility function $U_{i}: \Re^{2} \rightarrow \Re$,

$$
U(\boldsymbol{x})_{i}=-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}
$$

What is legislator i 's optimal policy?
$\nabla f(\boldsymbol{x})=\left(-2\left(x_{1}-\mu_{1}\right),-2\left(x_{2}-\mu_{2}\right)\right)$
$\nabla f(\boldsymbol{x})=\mathbf{0}$

$$
\begin{aligned}
& -2\left(x_{1}^{*}-\mu_{1}\right)=0 \\
& -2\left(x_{2}^{*}-\mu_{2}\right)=0
\end{aligned}
$$

Solving yields $x_{1}^{*}=\mu_{1}$ and $x_{2}^{*}=\mu_{2}$.

Example 2: Two Dimensional Ideal Points

$$
U(x)_{i}=-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}
$$

Call $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)$
The Hessian at the critical value is

$$
\begin{aligned}
\boldsymbol{H}(f)(\boldsymbol{\mu}) & =\left(\begin{array}{cc}
\frac{\partial^{2} U_{i}}{\partial x_{2} \partial x_{1}}(\boldsymbol{\mu}) & \frac{\partial^{2} U_{i}}{\partial x_{i} \partial x_{2}}(\boldsymbol{\mu}) \\
\frac{\partial^{2} U_{i}}{\partial x_{2} \partial x_{1}}(\boldsymbol{\mu}) & \frac{\partial^{2} U_{i}}{\partial x_{2} \partial x_{2}}(\boldsymbol{\mu})
\end{array}\right) \\
& =\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right)
\end{aligned}
$$

So, $-2 *-2-0=4>0$ and $-2<0 \rightsquigarrow$ negative definite, maximum $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)$ are legislator i 's two dimensional ideal point.

Example 3: Maximum Likelihood Estimation, Normal Distribution

Example 3: Maximum Likelihood Estimation, Normal Distribution

Suppose that we draw an independent and identically distributed random sample of n observations from a normal distribution,

Example 3: Maximum Likelihood Estimation, Normal Distribution

Suppose that we draw an independent and identically distributed random sample of n observations from a normal distribution,

$$
Y_{i} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

Suppose that we draw an independent and identically distributed random sample of n observations from a normal distribution,

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\
\boldsymbol{Y} & =\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)
\end{aligned}
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

Suppose that we draw an independent and identically distributed random sample of n observations from a normal distribution,

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\
\boldsymbol{Y} & =\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)
\end{aligned}
$$

Our task:

Example 3: Maximum Likelihood Estimation, Normal Distribution

Suppose that we draw an independent and identically distributed random sample of n observations from a normal distribution,

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\
\boldsymbol{Y} & =\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)
\end{aligned}
$$

Our task:

- Obtain likelihood (summary estimator)

Example 3: Maximum Likelihood Estimation, Normal Distribution

Suppose that we draw an independent and identically distributed random sample of n observations from a normal distribution,

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\
\boldsymbol{Y} & =\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)
\end{aligned}
$$

Our task:

- Obtain likelihood (summary estimator)
- Derive maximum likelihood estimators for μ and σ^{2}

Example 3: Maximum Likelihood Estimation, Normal Distribution

Suppose that we draw an independent and identically distributed random sample of n observations from a normal distribution,

$$
\begin{aligned}
Y_{i} & \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\
\boldsymbol{Y} & =\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)
\end{aligned}
$$

Our task:

- Obtain likelihood (summary estimator)
- Derive maximum likelihood estimators for μ and σ^{2}
- Characterize sampling distribution

Example 3: Maximum Likelihood Estimation, Normal Distribution

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
L\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right) \propto \prod_{i=1}^{n} f\left(Y_{i} \mid \mu, \sigma^{2}\right)
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
\begin{aligned}
L\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right) & \propto \prod_{i=1}^{n} f\left(Y_{i} \mid \mu, \sigma^{2}\right) \\
& \propto \prod_{i=1}^{N} \frac{\exp \left[-\frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]}{\sqrt{2 \pi \sigma^{2}}}
\end{aligned}
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
\begin{aligned}
L\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right) & \propto \prod_{i=1}^{n} f\left(Y_{i} \mid \mu, \sigma^{2}\right) \\
& \propto \prod_{i=1}^{N} \frac{\exp \left[-\frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]}{\sqrt{2 \pi \sigma^{2}}} \\
& \propto \frac{\exp \left[-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]}{(2 \pi)^{n / 2} \sigma^{2 n / 2}}
\end{aligned}
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
\begin{aligned}
L\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right) & \propto \prod_{i=1}^{n} f\left(Y_{i} \mid \mu, \sigma^{2}\right) \\
& \propto \prod_{i=1}^{N} \frac{\exp \left[-\frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]}{\sqrt{2 \pi \sigma^{2}}} \\
& \propto \frac{\exp \left[-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]}{(2 \pi)^{n / 2} \sigma^{2 n / 2}}
\end{aligned}
$$

Taking the logarithm, we have

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
\begin{aligned}
L\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right) & \propto \prod_{i=1}^{n} f\left(Y_{i} \mid \mu, \sigma^{2}\right) \\
& \propto \prod_{i=1}^{N} \frac{\exp \left[-\frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]}{\sqrt{2 \pi \sigma^{2}}} \\
& \propto \frac{\exp \left[-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]}{(2 \pi)^{n / 2} \sigma^{2 n / 2}}
\end{aligned}
$$

Taking the logarithm, we have

$$
I\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)=-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)+c
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
\begin{aligned}
L\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right) & \propto \prod_{i=1}^{n} f\left(Y_{i} \mid \mu, \sigma^{2}\right) \\
& \propto \prod_{i=1}^{N} \frac{\exp \left[-\frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]}{\sqrt{2 \pi \sigma^{2}}} \\
& \propto \frac{\exp \left[-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right]}{(2 \pi)^{n / 2} \sigma^{2 n / 2}}
\end{aligned}
$$

Taking the logarithm, we have

$$
\begin{aligned}
I\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right) & =-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)+c \\
& =-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}-\frac{n}{2} \log \left(\sigma^{2}\right)+c^{\prime}
\end{aligned}
$$

Example 3: Log-Likelihood Plot

- In R, drew 10,000 realizations from

Example 3: Log-Likelihood Plot

- In R, drew 10,000 realizations from

$$
Y_{i} \sim \operatorname{Normal}(0.25,100)
$$

Example 3: Log-Likelihood Plot

- In R, drew 10,000 realizations from

$$
Y_{i} \sim \operatorname{Normal}(0.25,100)
$$

- Used realized values y_{i} evaluate $I\left(\mu, \sigma^{2} \mid \boldsymbol{y}\right)$

Example 3: Log-Likelihood Plot

Example 3: Log-Likelihood Plot

Example 3: Maximum Likelihood Estimation, Normal Distribution

Let's find $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ that maximizes log-likelihood.

Example 3: Maximum Likelihood Estimation, Normal Distribution

Let's find $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ that maximizes log-likelihood.

$$
I\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)=-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}-\frac{n}{2} \log \left(\sigma^{2}\right)+c^{\prime}
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

Let's find $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ that maximizes log-likelihood.

$$
\begin{aligned}
I\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right) & =-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}-\frac{n}{2} \log \left(\sigma^{2}\right)+c^{\prime} \\
\frac{\left.\partial I\left(\mu, \sigma^{2}\right) \mid \boldsymbol{Y}\right)}{\partial \mu} & =\sum_{i=1}^{n} \frac{2\left(Y_{i}-\mu\right)}{2 \sigma^{2}}
\end{aligned}
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

Let's find $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ that maximizes log-likelihood.

$$
\begin{aligned}
I\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right) & =-\sum_{i=1}^{n} \frac{\left(Y_{i}-\mu\right)^{2}}{2 \sigma^{2}}-\frac{n}{2} \log \left(\sigma^{2}\right)+c^{\prime} \\
\frac{\left.\partial I\left(\mu, \sigma^{2}\right) \mid \boldsymbol{Y}\right)}{\partial \mu} & =\sum_{i=1}^{n} \frac{2\left(Y_{i}-\mu\right)}{2 \sigma^{2}} \\
\frac{\left.\partial I\left(\mu, \sigma^{2}\right) \mid \boldsymbol{Y}\right)}{\partial \sigma^{2}} & =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(Y_{i}-\mu\right)^{2}
\end{aligned}
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
\begin{aligned}
& 0=-\sum_{i=1}^{n} \frac{2\left(Y_{i}-\widehat{\mu}\right)}{2 \widehat{\sigma}^{2}} \\
& 0=-\frac{n}{2 \widehat{\sigma}^{2}}+\frac{1}{2 \widehat{\sigma}^{4}} \sum_{i=1}^{n}\left(Y_{i}-\mu^{*}\right)^{2}
\end{aligned}
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
\begin{aligned}
& 0=-\sum_{i=1}^{n} \frac{2\left(Y_{i}-\widehat{\mu}\right)}{2 \widehat{\sigma}^{2}} \\
& 0=-\frac{n}{2 \widehat{\sigma}^{2}}+\frac{1}{2 \hat{\sigma}^{4}} \sum_{i=1}^{n}\left(Y_{i}-\mu^{*}\right)^{2}
\end{aligned}
$$

Solving for $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ yields,

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
\begin{aligned}
& 0=-\sum_{i=1}^{n} \frac{2\left(Y_{i}-\widehat{\mu}\right)}{2 \widehat{\sigma}^{2}} \\
& 0=-\frac{n}{2 \widehat{\sigma}^{2}}+\frac{1}{2 \widehat{\sigma}^{4}} \sum_{i=1}^{n}\left(Y_{i}-\mu^{*}\right)^{2}
\end{aligned}
$$

Solving for $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ yields,

$$
\widehat{\mu}=\frac{\sum_{i=1}^{n} Y_{i}}{n}
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

$$
\begin{aligned}
& 0=-\sum_{i=1}^{n} \frac{2\left(Y_{i}-\widehat{\mu}\right)}{2 \widehat{\sigma}^{2}} \\
& 0=-\frac{n}{2 \widehat{\sigma}^{2}}+\frac{1}{2 \widehat{\sigma}^{4}} \sum_{i=1}^{n}\left(Y_{i}-\mu^{*}\right)^{2}
\end{aligned}
$$

Solving for $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ yields,

$$
\begin{aligned}
\widehat{\mu} & =\frac{\sum_{i=1}^{n} Y_{i}}{n} \\
\widehat{\sigma}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
\end{aligned}
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

Example 3: Maximum Likelihood Estimation, Normal Distribution

Example 3: Maximum Likelihood Estimation, Normal Distribution

$\mathbf{H}(f)\left(\widehat{\mu}, \hat{\sigma}^{2}\right)=\left(\begin{array}{ll}\frac{\partial^{2}\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial \alpha^{2}} & \frac{\partial^{2} l\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial \mu^{2}} \\ \left.\frac{\partial^{2}(\mu)}{\partial \sigma^{2} \partial \mu} \sigma^{2} \right\rvert\, \boldsymbol{Y} \\ \partial \sigma^{2} \partial \mu & \frac{\partial^{2} l\left(\mu, \sigma^{2} \mid()\right)}{\partial^{2} \sigma^{2}}\end{array}\right)$
Taking derivatives and evaluating at MLE's yields,

Example 3: Maximum Likelihood Estimation, Normal Distribution

$\mathbf{H}(f)\left(\widehat{\mu}, \widehat{\sigma}^{2}\right)=\left(\begin{array}{ll}\frac{\partial^{2} l\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial \mu^{2}} & \frac{\partial^{2} l\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial \sigma^{2} \partial \mu} \\ \frac{\partial^{2} l\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial \sigma^{2} \partial \mu} & \frac{\partial^{2} l\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial^{2} \sigma^{2}}\end{array}\right)$
Taking derivatives and evaluating at MLE's yields,

$$
\mathbf{H}(f)\left(\widehat{\mu}, \widehat{\sigma}^{2}\right)=\left(\begin{array}{cc}
\frac{-n}{\hat{\sigma}^{2}} & 0 \\
0 & \frac{-n}{\left(\widehat{\sigma}^{2}\right)^{2}}
\end{array}\right)
$$

Example 3: Maximum Likelihood Estimation, Normal Distribution

$\mathbf{H}(f)\left(\widehat{\mu}, \widehat{\sigma}^{2}\right)=\left(\begin{array}{ll}\frac{\partial^{2} l\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial \mu^{2}} & \frac{\partial^{2} l\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial \sigma^{2} \partial \mu} \\ \frac{\partial^{2} l\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial \sigma^{2} \partial \mu} & \frac{\partial^{2} l\left(\mu, \sigma^{2} \mid \boldsymbol{Y}\right)}{\partial^{2} \sigma^{2}}\end{array}\right)$
Taking derivatives and evaluating at MLE's yields,

$$
\mathbf{H}(f)\left(\widehat{\mu}, \widehat{\sigma}^{2}\right)=\left(\begin{array}{cc}
\frac{-n}{\hat{\sigma}^{2}} & 0 \\
0 & \frac{-n}{\left(\hat{\sigma}^{2}\right)^{2}}
\end{array}\right)
$$

$\operatorname{det}\left(\mathbf{H}(f)\left(\widehat{\mu}, \widehat{\sigma}^{2}\right)\right)=n^{2} / \widehat{\sigma}^{5}$ and $-n / \widehat{\sigma}^{2}<0 \rightsquigarrow$ maximum

Computational Optimization

Analytic solutions: often hard.

Computational Optimization

Analytic solutions: often hard.
Computational solutions: simplify. Trade offs

Computational Optimization

Analytic solutions: often hard.
Computational solutions: simplify. Trade offs

- Newton-Raphson: expensive

Computational Optimization

Analytic solutions: often hard.
Computational solutions: simplify. Trade offs

- Newton-Raphson: expensive
- BFGS: less expensive

Computational Optimization

Analytic solutions: often hard.
Computational solutions: simplify. Trade offs

- Newton-Raphson: expensive
- BFGS: less expensive
- EM-like optimization: solve intractable problems, parallelizable

Multivariate Newton Raphson

Suppose $f: \Re^{n} \rightarrow \Re$. Suppose we have guess \boldsymbol{x}_{t}.

Multivariate Newton Raphson

Suppose $f: \Re^{n} \rightarrow \Re$. Suppose we have guess \boldsymbol{x}_{t}. Then our update is:

Multivariate Newton Raphson

Suppose $f: \Re^{n} \rightarrow \Re$. Suppose we have guess \boldsymbol{x}_{t}. Then our update is:

$$
\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\mathbf{H}(f)\left(\boldsymbol{x}_{t}\right)^{-1} \nabla f\left(\boldsymbol{x}_{t}\right)
$$

Multivariate Newton Raphson

Suppose $f: \Re^{n} \rightarrow \Re$. Suppose we have guess \boldsymbol{x}_{t}. Then our update is:

$$
\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\mathbf{H}(f)\left(\boldsymbol{x}_{t}\right)^{-1} \nabla f\left(\boldsymbol{x}_{t}\right)
$$

Derivation (intuition):

Multivariate Newton Raphson

Suppose $f: \Re^{n} \rightarrow \Re$. Suppose we have guess \boldsymbol{x}_{t}. Then our update is:

$$
\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\mathbf{H}(f)\left(\boldsymbol{x}_{t}\right)^{-1} \nabla f\left(\boldsymbol{x}_{t}\right)
$$

Derivation (intuition): Approximate function with tangent plane.

Multivariate Newton Raphson

Suppose $f: \Re^{n} \rightarrow \Re$. Suppose we have guess \boldsymbol{x}_{t}. Then our update is:

$$
\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\mathbf{H}(f)\left(\boldsymbol{x}_{t}\right)^{-1} \nabla f\left(\boldsymbol{x}_{t}\right)
$$

Derivation (intuition): Approximate function with tangent plane. Find value of x_{t+1} that makes the plane equal to zero. Update again.

Multivariate Newton Raphson

Suppose $f: \Re^{n} \rightarrow \Re$. Suppose we have guess \boldsymbol{x}_{t}. Then our update is:

$$
\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}-\mathbf{H}(f)\left(\boldsymbol{x}_{t}\right)^{-1} \nabla f\left(\boldsymbol{x}_{t}\right)
$$

Derivation (intuition): Approximate function with tangent plane. Find value of x_{t+1} that makes the plane equal to zero. Update again. R Code

Multivariate Newton Raphson

Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)

Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)
- Very sensitive to starting points

Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)
- Very sensitive to starting points
- Ideally: method that exploits Newton-like structure, but is cheaper and more robust

Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)
- Very sensitive to starting points
- Ideally: method that exploits Newton-like structure, but is cheaper and more robust

BFGS: Quasi-Newton method

Multivariate Newton Raphson

- Expensive to calculate (requires inverting Hessian)
- Very sensitive to starting points
- Ideally: method that exploits Newton-like structure, but is cheaper and more robust

BFGS: Quasi-Newton method
R code

Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.

Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.
Story: Data are grouped in K clusters and each cluster has a center or mean.

Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.
Story: Data are grouped in K clusters and each cluster has a center or mean.
\rightarrow Two types of parameters to estimate

Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.
Story: Data are grouped in K clusters and each cluster has a center or mean.
\rightarrow Two types of parameters to estimate

1) For each cluster $j,(j=1, \ldots, K)$
$r_{i j}=$ Indicator, Document i assigned to cluster j
$\boldsymbol{r}_{j}=\left(r_{1 j}, r_{2 j}, \ldots, r_{N j}\right)$
$\boldsymbol{r}=\left(\boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime}, \ldots, \boldsymbol{r}_{K}^{\prime}\right)(N \times K$ matrix $)$

Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.
Story: Data are grouped in K clusters and each cluster has a center or mean.
\rightarrow Two types of parameters to estimate

1) For each cluster $j,(j=1, \ldots, K)$
$r_{i j}=$ Indicator, Document i assigned to cluster j
$\boldsymbol{r}_{j}=\left(r_{1 j}, r_{2 j}, \ldots, r_{N j}\right)$
$\boldsymbol{r}=\left(\boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime}, \ldots, \boldsymbol{r}_{K}^{\prime}\right)(N \times K$ matrix $)$
2) For each cluster j
$\boldsymbol{\mu}_{j}$ a cluster center for cluster j.
$\boldsymbol{\mu}_{j}=\left(\mu_{1 j}, \mu_{2 j}, \ldots, \mu_{M j}\right)$

Optimization that is Both Discrete and Continuous

K-means: most commonly used clustering algorithm.
Story: Data are grouped in K clusters and each cluster has a center or mean.
\rightarrow Two types of parameters to estimate

1) For each cluster $j,(j=1, \ldots, K)$
$r_{i j}=$ Indicator, Document i assigned to cluster j

$$
\begin{aligned}
& \boldsymbol{r}_{j}=\left(r_{1 j}, r_{2 j}, \ldots, r_{N j}\right) \\
& \boldsymbol{r}=\left(\boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime}, \ldots, \boldsymbol{r}_{K}^{\prime}\right)(N \times K \text { matrix })
\end{aligned}
$$

2) For each cluster j
$\boldsymbol{\mu}_{j}$ a cluster center for cluster j.
$\boldsymbol{\mu}_{j}=\left(\mu_{1 j}, \mu_{2 j}, \ldots, \mu_{M j}\right)$
Notation. Representation of document i :

$$
\boldsymbol{y}_{i}=\left(y_{i 1}, y_{i 2}, \ldots, y_{i M}\right)
$$

Specifying the Method

1) Assume Euclidean distance between objects.
2) Objective function

$$
f(\boldsymbol{r}, \boldsymbol{\mu}, \boldsymbol{y})=\sum_{i=1}^{N} \sum_{j=1}^{K} r_{i j}\left(\sum_{m=1}^{M}\left(y_{i m}-\mu_{k m}\right)^{2}\right)
$$

Specifying the Method

1) Assume Euclidean distance between objects.
2) Objective function

$$
f(\boldsymbol{r}, \boldsymbol{\mu}, \boldsymbol{y})=\sum_{i=1}^{N} \sum_{j=1}^{K} r_{i j}\left(\sum_{m=1}^{M}\left(y_{i m}-\mu_{k m}\right)^{2}\right)
$$

Goal:

Specifying the Method

1) Assume Euclidean distance between objects.
2) Objective function

$$
f(\boldsymbol{r}, \boldsymbol{\mu}, \boldsymbol{y})=\sum_{i=1}^{N} \sum_{j=1}^{K} r_{i j}\left(\sum_{m=1}^{M}\left(y_{i m}-\mu_{k m}\right)^{2}\right)
$$

Goal:
Choose \boldsymbol{r}^{*} and $\boldsymbol{\mu}^{*}$ to minimize $f(\boldsymbol{r}, \boldsymbol{\mu}, \boldsymbol{y})$

Specifying the Method

1) Assume Euclidean distance between objects.
2) Objective function

$$
f(\boldsymbol{r}, \boldsymbol{\mu}, \boldsymbol{y})=\sum_{i=1}^{N} \sum_{j=1}^{K} r_{i j}\left(\sum_{m=1}^{M}\left(y_{i m}-\mu_{k m}\right)^{2}\right)
$$

Goal:
Choose \boldsymbol{r}^{*} and $\boldsymbol{\mu}^{*}$ to minimize $f(\boldsymbol{r}, \boldsymbol{\mu}, \boldsymbol{y})$
Two observations:

- If $K=N f\left(r^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{y}\right)=0$ (Minimum)
- Each observation in own cluster
- $\boldsymbol{\mu}_{i}=\boldsymbol{y}_{i}$
- If $K=1, f\left(r^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{y}\right)=N \times \sigma^{2}$
- Each observation in one cluster
- Center: average of documents

Specifying the Method

1) Assume Euclidean distance between objects
2) Objective function
3) Algorithm for optimization

Iterative algorithm, Each Iteration t

- Conditional on $\boldsymbol{\mu}^{t-1}$ (from previous iteration), choose \boldsymbol{r}^{t}
- Conditional on \boldsymbol{r}^{t}, choose $\boldsymbol{\mu}^{t}$

Repeat until convergence, measured as change in f.

$$
\text { Change }=f\left(\boldsymbol{\mu}^{t}, \boldsymbol{r}^{t}, \boldsymbol{y}\right)-f\left(\boldsymbol{\mu}^{t-1}, \boldsymbol{r}^{t-1}, \boldsymbol{y}\right)
$$

Specifying the Method

$$
f(\boldsymbol{r}, \boldsymbol{\mu}, \boldsymbol{y})=\sum_{i=1}^{N} \sum_{j=1}^{K} r_{i j}\left(\sum_{m=1}^{M}\left(y_{i m}-\mu_{k m}\right)^{2}\right)
$$

Algorithm for estimation: Begin: initialize $\boldsymbol{\mu}_{1}^{t-1}, \boldsymbol{\mu}_{2}^{t-1}, \ldots, \boldsymbol{\mu}_{K}^{t-1}$ Choose \boldsymbol{r}^{t}

$$
r_{i j}^{t}=\left\{\begin{array}{l}
1 \text { if } j=\arg \min _{k} \sum_{m=1}^{M}\left(y_{i m}-\mu_{k m}\right)^{2} \\
0 \text { otherwise }
\end{array}\right.
$$

In words: Assign each document \boldsymbol{y}_{i} to the closest center $\boldsymbol{\mu}_{k}$

$$
f(\boldsymbol{r}, \boldsymbol{\mu}, \boldsymbol{y})=\sum_{i=1}^{N} \sum_{j=1}^{K} r_{i j}\left(\sum_{m=1}^{M}\left(y_{i m}-\mu_{k m}\right)^{2}\right)
$$

Conditional on \boldsymbol{r}^{t}, choose $\boldsymbol{\mu}^{t}$
Let's focus on $\boldsymbol{\mu}_{k}$

$$
f\left(\boldsymbol{r}, \boldsymbol{\mu}_{k}, \boldsymbol{y}\right)_{k}=\sum_{i=1}^{N} r_{i k}\left(\sum_{m=1}^{M}\left(y_{i m}-\mu_{k m}\right)^{2}\right)
$$

Focus on just $\mu_{k m}$

$$
f\left(\boldsymbol{r}, \mu_{k m}, \boldsymbol{y}\right)_{k m}=\sum_{i=1}^{N} r_{i k}\left(y_{i m}-\mu_{k m}\right)^{2}
$$

Quadratic: take derivative, set equal to zero (second derivative test works)

$$
\begin{aligned}
\frac{\partial f\left(\boldsymbol{r}, \mu_{k m}, \boldsymbol{y}\right)_{k m}}{\partial \mu_{k m}} & =-2 \sum_{i=1}^{N} r_{i k}\left(y_{i m}-\mu_{k m}\right) \\
2 \sum_{i=1}^{N} r_{i k}\left(y_{i m}-\mu_{k m}^{t}\right) & =0 \\
\sum_{i=1}^{N} r_{i k} y_{i m}-\mu_{k m}^{t} \sum_{i=1}^{N} r_{i k} & =0 \\
\frac{\sum_{i=1}^{N} r_{i k} y_{i m}}{\sum_{i=1}^{N} r_{i k}} & =\mu_{k m}^{t}
\end{aligned}
$$

$$
\boldsymbol{\mu}_{k}^{t}=\frac{\sum_{i=1}^{N} r_{i k} \boldsymbol{y}_{i}}{\sum_{i=1}^{N} r_{i k}}
$$

In words:

- $\boldsymbol{\mu}_{k}^{t}$ is the average of documents assigned to the $k^{\text {th }}$ cluster Algorithm, In Words
- Conditional on center estimates, assign documents to closest cluster centers
- Conditional on document assignments, cluster centers are averages of documents assigned to the cluster
Expectation-Maximization (EM) [connection guarantees convergence]
- Estimation of $r \rightsquigarrow$ Expectation step (data augmentation)
- Estimation of $\boldsymbol{\mu}_{k} \rightsquigarrow$ Maximization Step

Visual Example

Visual Example

Visual Example

Visual Example

Many Optimization Procedures!!!

Many Optimization Procedures!!!

Nelder Mead:

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema

Stochastic Optimization:

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema

Stochastic Optimization:

- Sample a subset of data, perform optimization

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema

Stochastic Optimization:

- Sample a subset of data, perform optimization
- Sample a new subset, perform optimization, combine with previous sample

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema

Stochastic Optimization:

- Sample a subset of data, perform optimization
- Sample a new subset, perform optimization, combine with previous sample
- Converges on local extrema (given regulatory conditions)

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema

Stochastic Optimization:

- Sample a subset of data, perform optimization
- Sample a new subset, perform optimization, combine with previous sample
- Converges on local extrema (given regulatory conditions)

Genetic Optimization:

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema

Stochastic Optimization:

- Sample a subset of data, perform optimization
- Sample a new subset, perform optimization, combine with previous sample
- Converges on local extrema (given regulatory conditions)

Genetic Optimization:

- Evaluate fitness of solutions

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema

Stochastic Optimization:

- Sample a subset of data, perform optimization
- Sample a new subset, perform optimization, combine with previous sample
- Converges on local extrema (given regulatory conditions)

Genetic Optimization:

- Evaluate fitness of solutions
- Randomly select most fit, then combine

Many Optimization Procedures!!!

Nelder Mead:

- Evaluate points on a simplex (triangle)
- Either Reflect, Expand, or Contract (based on values)
- Converges to local extrema

Stochastic Optimization:

- Sample a subset of data, perform optimization
- Sample a new subset, perform optimization, combine with previous sample
- Converges on local extrema (given regulatory conditions)

Genetic Optimization:

- Evaluate fitness of solutions
- Randomly select most fit, then combine
- Can converge to global maximum, but might require extensive run time

Where We Are Going

- Done with math component
- Start probability tomorrow

