Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 12th, 2016

Multivariable Calculus

Functions of many variables:

1) Policies may be multidimensional (policy provision and pork buy off)
2) Countries may invest in offensive and defensive resources for fighting wars
3) Ethnicity and resources could affect investment

Today:
0) Determinant
0) Eigenvector/Diagonalization

1) Multivariate functions
2) Partial Derivatives, Gradients, Jacobians, and Hessians
3) Total Derivative, Implicit Differentiation, Implicit Function Theorem
4) Multivariate Integration

Determinant

Suppose we have a square $(n \times n)$ matrix A

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

A determinant is a function that assigns a number to square matrices

Determinant

Facts needed to define determinant :
Definition
A permutation of the set of integers $\{1,2, \ldots, J\}$ is an arrangement of these integers in some order without omissions or repetition.

For example, consider $\{1,2,3,4\}$
$\{3,2,1,4\}$
$\{4,3,2,1\}$
If we have J integers then there are J ! permutations

Determinant

Definition

An inversion occurs when a larger integer occurs before a smaller integer in a permutation

Even permutation: total inversions are even
Odd permutation: total inversions are odd
Count the inversions
$\{3,2,1\}$
$\{1,2,3\}$
$\{3,1,2\}$
$\{2,1,3\}$
$\{1,3,2\}$
$\{2,3,1\}$

Determinant

Definition

For a square nxn matrix A, we will call an elementary product an n element long product, with no two components coming from the same row or column. We will call a signed elementary product one that multiplies odd permutations of the column numbers by -1 .

Determinant

Definition

For a square nxn matrix A, we will call an elementary product an n element long product, with no two components coming from the same row or column. We will call a signed elementary product one that multiplies odd permutations of the column numbers by -1 .

```
(\begin{array}{ll}{\mp@subsup{a}{11}{}}&{\mp@subsup{a}{12}{}}\\{\mp@subsup{a}{21}{}}&{\mp@subsup{a}{22}{}}\end{array})
```


Determinant

Definition

For a square nxn matrix A, we will call an elementary product an n element long product, with no two components coming from the same row or column. We will call a signed elementary product one that multiplies odd permutations of the column numbers by -1 .

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

There are n ! elementary products

Determinant

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function $\operatorname{det}(A)$ to be the sum of signed elementary products from A. Call $\operatorname{det}(A)$ the determinant of A

Determinant

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function $\operatorname{det}(A)$ to be the sum of signed elementary products from A. Call $\operatorname{det}(A)$ the determinant of A

Suppose A is a 2×2 matrix

Determinant

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function $\operatorname{det}(A)$ to be the sum of signed elementary products from A. Call $\operatorname{det}(A)$ the determinant of A

Suppose A is a 2×2 matrix

$$
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

Determinant

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function $\operatorname{det}(A)$ to be the sum of signed elementary products from A. Call $\operatorname{det}(A)$ the determinant of A

Suppose A is a 2×2 matrix

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \\
& =a_{11} a_{22}-a_{12} a_{21}
\end{aligned}
$$

Determinant

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function $\operatorname{det}(A)$ to be the sum of signed elementary products from A. Call $\operatorname{det}(A)$ the determinant of A

Suppose A is a 3×3 matrix.

Determinant

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function $\operatorname{det}(A)$ to be the sum of signed elementary products from A. Call $\operatorname{det}(A)$ the determinant of A

Suppose A is a 3×3 matrix.

$$
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

Determinant

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function $\operatorname{det}(A)$ to be the sum of signed elementary products from A. Call $\operatorname{det}(A)$ the determinant of A

Suppose A is a 3×3 matrix.

$$
\begin{aligned}
\operatorname{det}(A)= & \operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \\
= & a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33} \\
& +a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

Determinant

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function $\operatorname{det}(A)$ to be the sum of signed elementary products from A. Call $\operatorname{det}(A)$ the determinant of A

Suppose A is a 3×3 matrix.

$$
\begin{aligned}
\operatorname{det}(A)= & \operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \\
= & a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33} \\
& +a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

R Code!

An Introduction to Eigenvectors, Values, and Diagonalization
Definition
Suppose \boldsymbol{A} is an $N \times N$ matrix and λ is a scalar. If

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

Then \boldsymbol{x} is an eigenvector and λ is the associated eigenvalue

An Introduction to Eigenvectors, Values, and Diagonalization
Definition
Suppose \boldsymbol{A} is an $N \times N$ matrix and λ is a scalar. If

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

Then \boldsymbol{x} is an eigenvector and λ is the associated eigenvalue

- \boldsymbol{A} stretches the eigenvector \boldsymbol{x}

An Introduction to Eigenvectors, Values, and Diagonalization
Definition
Suppose \boldsymbol{A} is an $N \times N$ matrix and λ is a scalar. If

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

Then \boldsymbol{x} is an eigenvector and λ is the associated eigenvalue

- \boldsymbol{A} stretches the eigenvector \boldsymbol{x}
- \boldsymbol{A} stretches \boldsymbol{x} by λ

An Introduction to Eigenvectors, Values, and Diagonalization
Definition
Suppose \boldsymbol{A} is an $N \times N$ matrix and λ is a scalar.
If

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

Then \boldsymbol{x} is an eigenvector and λ is the associated eigenvalue

- \boldsymbol{A} stretches the eigenvector \boldsymbol{x}
- \boldsymbol{A} stretches \boldsymbol{x} by λ
- To find eigenvectors/values: (eigen in R)

An Introduction to Eigenvectors, Values, and Diagonalization

Definition
Suppose \boldsymbol{A} is an $N \times N$ matrix and λ is a scalar.
If

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

Then \boldsymbol{x} is an eigenvector and λ is the associated eigenvalue

- \boldsymbol{A} stretches the eigenvector \boldsymbol{x}
- \boldsymbol{A} stretches \boldsymbol{x} by λ
- To find eigenvectors/values: (eigen in R)
- Find λ that solves $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$

An Introduction to Eigenvectors, Values, and Diagonalization

Definition
Suppose \boldsymbol{A} is an $N \times N$ matrix and λ is a scalar.
If

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

Then \boldsymbol{x} is an eigenvector and λ is the associated eigenvalue

- \boldsymbol{A} stretches the eigenvector \boldsymbol{x}
- \boldsymbol{A} stretches \boldsymbol{x} by λ
- To find eigenvectors/values: (eigen in R)
- Find λ that solves $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$
- Find vectors in null space of:

An Introduction to Eigenvectors, Values, and Diagonalization
Definition
Suppose \boldsymbol{A} is an $N \times N$ matrix and λ is a scalar.
If

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

Then \boldsymbol{x} is an eigenvector and λ is the associated eigenvalue

- \boldsymbol{A} stretches the eigenvector \boldsymbol{x}
- \boldsymbol{A} stretches \boldsymbol{x} by λ
- To find eigenvectors/values: (eigen in R)
- Find λ that solves $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$
- Find vectors in null space of:

$$
(\boldsymbol{A}-\lambda \boldsymbol{I})=0
$$

An Introduction to Eigenvectors, Values, and Diagonalization

Theorem
Suppose \boldsymbol{A} is an invertible $N \times N$ matrix. Then \boldsymbol{A} has N distinct eigenvalues and N linearly independent eigenvectors. Further, we can write A as,

$$
\boldsymbol{A}=\boldsymbol{W}\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{N}
\end{array}\right) \boldsymbol{W}^{-1}
$$

where $\boldsymbol{W}=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{N}\right)$ is an $N \times N$ matrix with the N eigenvectors as column vectors.

Proof:
Note

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{W} & =\left(\lambda_{1} \boldsymbol{w}_{1} \lambda_{2} \boldsymbol{w}_{2} \ldots \lambda_{N} \boldsymbol{w}_{N}\right) \\
& =\boldsymbol{W} \boldsymbol{\Lambda} \\
\boldsymbol{A} & =\boldsymbol{W} \boldsymbol{\Lambda} \boldsymbol{W}^{-1}
\end{aligned}
$$

Examples of Diagonalization

Suppose \boldsymbol{A} is an $N \times N$ invertible matrix with eigenvalues $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)$ and eigenvectors \boldsymbol{W}. Calculate $\boldsymbol{A} \boldsymbol{A}=\boldsymbol{A}^{2}$

$$
\begin{aligned}
\boldsymbol{A A} & =\boldsymbol{W} \boldsymbol{\wedge} \boldsymbol{W}^{-1} \boldsymbol{W} \boldsymbol{\wedge} \boldsymbol{W}^{-1} \\
& =\boldsymbol{W}\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{N}
\end{array}\right)\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{N}
\end{array}\right) \boldsymbol{W}^{-1} \\
& =\boldsymbol{W}\left(\begin{array}{cccc}
\lambda_{1}^{2} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{N}^{2}
\end{array}\right) \boldsymbol{W}^{-1}
\end{aligned}
$$

Multivariate Functions

$$
f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}
$$

Multivariate Functions

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

Multivariate Functions

$$
f\left(x_{1}, x_{2}\right)=\sin \left(x_{1}\right) \cos \left(x_{2}\right)
$$

Multivariate Functions

$$
f\left(x_{1}, x_{2}\right)=-(x-5)^{2}-(y-2)^{2}
$$

Multivariate Functions

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}
$$

Multivariate Functions

$$
\begin{aligned}
f(\boldsymbol{x}) & =f\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =x_{1}+x_{2}+\ldots+x_{N} \\
& =\sum_{i=1}^{N} x_{i}
\end{aligned}
$$

Multivariate Functions

Definition
Suppose $f: \Re^{n} \rightarrow \Re^{1}$. We will call f a multivariate function. We will commonly write,

$$
f(\boldsymbol{x})=f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

- $\Re^{n}=\Re \underbrace{\times}_{\text {cartesian }} \Re \times \Re \times \ldots \Re$
- The function we consider will take n inputs and output a single number (that lives in \Re^{1}, or the real line)

Example 1

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}
$$

Evaluate at $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)=(2,3,2)$

$$
\begin{aligned}
f(2,3,2) & =2+3+2 \\
& =7
\end{aligned}
$$

Example 1

$$
f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}+x_{1} x_{2}
$$

Evaluate at $\boldsymbol{w}=\left(w_{1}, w_{2}\right)=(1,2)$

$$
\begin{aligned}
f\left(w_{1}, w_{2}\right) & =w_{1}+w_{2}+w_{1} w_{2} \\
& =1+2+1 \times 2 \\
& =5
\end{aligned}
$$

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$.

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$.
Suppose that legislator i^{\prime} s utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$.
Suppose that legislator $i^{\prime} s$ utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

$$
U(\boldsymbol{x})=U\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$.
Suppose that legislator i's utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

$$
\begin{aligned}
U(\boldsymbol{x}) & =U\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}-\ldots-\left(x_{N}-\mu_{N}\right)^{2}
\end{aligned}
$$

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$.
Suppose that legislator $i^{\prime} s$ utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

$$
\begin{aligned}
U(\boldsymbol{x}) & =U\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}-\ldots-\left(x_{N}-\mu_{N}\right)^{2} \\
& =-\sum_{j=1}^{N}\left(x_{j}-\mu_{j}\right)^{2}
\end{aligned}
$$

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$.
Suppose that legislator $i^{\prime} s$ utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

$$
\begin{aligned}
U(\boldsymbol{x}) & =U\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}-\ldots-\left(x_{N}-\mu_{N}\right)^{2} \\
& =-\sum_{j=1}^{N}\left(x_{j}-\mu_{j}\right)^{2}
\end{aligned}
$$

Suppose $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)=(0,0, \ldots, 0)$.

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$. Suppose that legislator $i^{\prime} s$ utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

$$
\begin{aligned}
U(\boldsymbol{x}) & =U\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}-\ldots-\left(x_{N}-\mu_{N}\right)^{2} \\
& =-\sum_{j=1}^{N}\left(x_{j}-\mu_{j}\right)^{2}
\end{aligned}
$$

Suppose $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)=(0,0, \ldots, 0)$. Evaluate legislator's utility for a policy proposal of $\boldsymbol{m}=(1,1, \ldots, 1)$.

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$. Suppose that legislator $i^{\prime} s$ utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

$$
\begin{aligned}
U(\boldsymbol{x}) & =U\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}-\ldots-\left(x_{N}-\mu_{N}\right)^{2} \\
& =-\sum_{j=1}^{N}\left(x_{j}-\mu_{j}\right)^{2}
\end{aligned}
$$

Suppose $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)=(0,0, \ldots, 0)$. Evaluate legislator's utility for a policy proposal of $\boldsymbol{m}=(1,1, \ldots, 1)$.

$$
U(\boldsymbol{m})=U(1,1, \ldots, 1)
$$

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$. Suppose that legislator $i^{\prime} s$ utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

$$
\begin{aligned}
U(\boldsymbol{x}) & =U\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}-\ldots-\left(x_{N}-\mu_{N}\right)^{2} \\
& =-\sum_{j=1}^{N}\left(x_{j}-\mu_{j}\right)^{2}
\end{aligned}
$$

Suppose $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)=(0,0, \ldots, 0)$. Evaluate legislator's utility for a policy proposal of $\boldsymbol{m}=(1,1, \ldots, 1)$.

$$
\begin{aligned}
U(\boldsymbol{m}) & =U(1,1, \ldots, 1) \\
& =-(1-0)^{2}-(1-0)^{2}-\ldots-(1-0)^{2}
\end{aligned}
$$

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$. Suppose that legislator $i^{\prime} s$ utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

$$
\begin{aligned}
U(\boldsymbol{x}) & =U\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}-\ldots-\left(x_{N}-\mu_{N}\right)^{2} \\
& =-\sum_{j=1}^{N}\left(x_{j}-\mu_{j}\right)^{2}
\end{aligned}
$$

Suppose $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)=(0,0, \ldots, 0)$. Evaluate legislator's utility for a policy proposal of $\boldsymbol{m}=(1,1, \ldots, 1)$.

$$
\begin{aligned}
U(\boldsymbol{m}) & =U(1,1, \ldots, 1) \\
& =-(1-0)^{2}-(1-0)^{2}-\ldots-(1-0)^{2} \\
& =-\sum_{j=1}^{N} 1
\end{aligned}
$$

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.
Suppose that policy is N dimensional-or $\boldsymbol{x} \in \Re^{N}$. Suppose that legislator $i^{\prime} s$ utility is a $U: \Re^{N} \rightarrow \Re^{1}$ and is given by,

$$
\begin{aligned}
U(\boldsymbol{x}) & =U\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =-\left(x_{1}-\mu_{1}\right)^{2}-\left(x_{2}-\mu_{2}\right)^{2}-\ldots-\left(x_{N}-\mu_{N}\right)^{2} \\
& =-\sum_{j=1}^{N}\left(x_{j}-\mu_{j}\right)^{2}
\end{aligned}
$$

Suppose $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)=(0,0, \ldots, 0)$. Evaluate legislator's utility for a policy proposal of $\boldsymbol{m}=(1,1, \ldots, 1)$.

$$
\begin{aligned}
U(\boldsymbol{m}) & =U(1,1, \ldots, 1) \\
& =-(1-0)^{2}-(1-0)^{2}-\ldots-(1-0)^{2} \\
& =-\sum_{j=1}^{N} 1=-N
\end{aligned}
$$

Regression Models and Randomized Treatments

Often we administer randomized experiments:

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

- $T=1$ (treated): voter receives mobilization

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

- $T=1$ (treated): voter receives mobilization
- $T=0$ (control): voter does not receive mobilization

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

- $T=1$ (treated): voter receives mobilization
- $T=0$ (control): voter does not receive mobilization

Suppose we find the following regression model, where x_{2} is a participant's age:

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

- $T=1$ (treated): voter receives mobilization
- $T=0$ (control): voter does not receive mobilization

Suppose we find the following regression model, where x_{2} is a participant's age:

$$
f\left(T, x_{2}\right)=\operatorname{Pr}\left(\text { Vote }_{i}=1 \mid T, x_{2}\right)
$$

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

- $T=1$ (treated): voter receives mobilization
- $T=0$ (control): voter does not receive mobilization

Suppose we find the following regression model, where x_{2} is a participant's age:

$$
\begin{aligned}
f\left(T, x_{2}\right) & =\operatorname{Pr}\left(\text { Vote }_{i}=1 \mid T, x_{2}\right) \\
& =\beta_{0}+\beta_{1} T+\beta_{2} x_{2}
\end{aligned}
$$

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

- $T=1$ (treated): voter receives mobilization
- $T=0$ (control): voter does not receive mobilization

Suppose we find the following regression model, where x_{2} is a participant's age:

$$
\begin{aligned}
f\left(T, x_{2}\right) & =\operatorname{Pr}\left(\text { Vote }_{i}=1 \mid T, x_{2}\right) \\
& =\beta_{0}+\beta_{1} T+\beta_{2} x_{2}
\end{aligned}
$$

We can calculate the effect of the experiment as:

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

- $T=1$ (treated): voter receives mobilization
- $T=0$ (control): voter does not receive mobilization

Suppose we find the following regression model, where x_{2} is a participant's age:

$$
\begin{aligned}
f\left(T, x_{2}\right) & =\operatorname{Pr}\left(\text { Vote }_{i}=1 \mid T, x_{2}\right) \\
& =\beta_{0}+\beta_{1} T+\beta_{2} x_{2}
\end{aligned}
$$

We can calculate the effect of the experiment as:

$$
f\left(T=1, x_{2}\right)-f\left(T=0, x_{2}\right)=\beta_{0}+\beta_{1} 1+\beta_{2} x_{2}-\left(\beta_{0}+\beta_{1} 0+\beta_{2} x_{2}\right)
$$

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

- $T=1$ (treated): voter receives mobilization
- $T=0$ (control): voter does not receive mobilization

Suppose we find the following regression model, where x_{2} is a participant's age:

$$
\begin{aligned}
f\left(T, x_{2}\right) & =\operatorname{Pr}\left(\text { Vote }_{i}=1 \mid T, x_{2}\right) \\
& =\beta_{0}+\beta_{1} T+\beta_{2} x_{2}
\end{aligned}
$$

We can calculate the effect of the experiment as:

$$
\begin{aligned}
f\left(T=1, x_{2}\right)-f\left(T=0, x_{2}\right) & =\beta_{0}+\beta_{1} 1+\beta_{2} x_{2}-\left(\beta_{0}+\beta_{1} 0+\beta_{2} x_{2}\right) \\
& =\beta_{0}-\beta_{0}+\beta_{1}(1-0)+\beta_{2}\left(x_{2}-x_{2}\right)
\end{aligned}
$$

Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, Vote ${ }_{i}$

- $T=1$ (treated): voter receives mobilization
- $T=0$ (control): voter does not receive mobilization

Suppose we find the following regression model, where x_{2} is a participant's age:

$$
\begin{aligned}
f\left(T, x_{2}\right) & =\operatorname{Pr}\left(\text { Vote }_{i}=1 \mid T, x_{2}\right) \\
& =\beta_{0}+\beta_{1} T+\beta_{2} x_{2}
\end{aligned}
$$

We can calculate the effect of the experiment as:

$$
\begin{aligned}
f\left(T=1, x_{2}\right)-f\left(T=0, x_{2}\right) & =\beta_{0}+\beta_{1} 1+\beta_{2} x_{2}-\left(\beta_{0}+\beta_{1} 0+\beta_{2} x_{2}\right) \\
& =\beta_{0}-\beta_{0}+\beta_{1}(1-0)+\beta_{2}\left(x_{2}-x_{2}\right) \\
& =\beta_{1}
\end{aligned}
$$

Multivariate Derivative

Definition

Suppose $f: X \rightarrow \Re^{1}$, where $X \subset \Re^{n} . f(\boldsymbol{x})=f\left(x_{1}, x_{2}, \ldots, x_{N}\right)$. If the limit,

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} f\left(x_{0}\right) & =\frac{\partial}{\partial x_{i}} f\left(x_{01}, x_{02}, \ldots, x_{0 i}, x_{0 i+1}, \ldots, x_{0 N}\right) \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{01}, x_{02}, \ldots, x_{0 i}+h, \ldots x_{0 N}\right)-f\left(x_{01}, x_{02}, \ldots, x_{0 i}, \ldots, x_{0 N}\right)}{h}
\end{aligned}
$$

exists then we call this the partial derivative of f with respect to x_{i} at the value $\boldsymbol{x}_{0}=\left(x_{01}, x_{02}, \ldots, x_{0 N}\right)$.

Rules for Taking Partial Derivatives

Partial Derivative: $\frac{\partial f(\boldsymbol{x})}{\partial x_{i}}$

- Treat each instance of x_{i} as a variable that we would differentiate before
- Treat each instance of $\boldsymbol{x}_{-i}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$ as a constant

Example Partial Derivatives

$$
\begin{aligned}
f(\boldsymbol{x}) & =f\left(x_{1}, x_{2}\right) \\
& =x_{1}+x_{2}
\end{aligned}
$$

Partial derivative, with respect to x_{1} at $\left(x_{01}, x_{02}\right)$

$$
\begin{aligned}
\left.\frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{1}}\right|_{\left(x_{01}, x_{02}\right)} & =1+\left.0\right|_{x_{01}, x_{02}} \\
& =1
\end{aligned}
$$

Example Partial Derivatives

$$
\begin{aligned}
f(\boldsymbol{x}) & =f\left(x_{1}, x_{2}, x_{3}\right) \\
& =x_{1}^{2} \log \left(x_{1}\right)+x_{2} x_{1} x_{3}+x_{3}^{2}
\end{aligned}
$$

Example Partial Derivatives

$$
\begin{aligned}
f(\boldsymbol{x}) & =f\left(x_{1}, x_{2}, x_{3}\right) \\
& =x_{1}^{2} \log \left(x_{1}\right)+x_{2} x_{1} x_{3}+x_{3}^{2}
\end{aligned}
$$

What is the partial derivative with respect to x_{1} ?
Evaluated at $x_{0}=\left(x_{01}, x_{02}, x_{03}\right)$.

$$
\begin{aligned}
\left.\frac{\partial f(\boldsymbol{x})}{\partial x_{1}}\right|_{x_{0}} & =2 x_{1} \log \left(x_{1}\right)+x_{1}^{2} \frac{1}{x_{1}}+\left.x_{2} x_{3}\right|_{x_{0}} \\
& =2 x_{01} \log \left(x_{01}\right)+x_{01}+x_{02} x_{03}
\end{aligned}
$$

Example Partial Derivatives

$$
\begin{aligned}
f(\boldsymbol{x}) & =f\left(x_{1}, x_{2}, x_{3}\right) \\
& =x_{1}^{2} \log \left(x_{1}\right)+x_{2} x_{1} x_{3}+x_{3}^{2}
\end{aligned}
$$

What is the partial derivative with respect to x_{1} ? x_{2} ?
Evaluated at $\boldsymbol{x}_{0}=\left(x_{01}, x_{02}, x_{03}\right)$.

$$
\begin{aligned}
\left.\frac{\partial f(\boldsymbol{x})}{\partial x_{2}}\right|_{x_{0}} & =\left.x_{1} x_{3}\right|_{x_{0}} \\
& =x_{01} x_{03}
\end{aligned}
$$

Example Partial Derivatives

$$
\begin{aligned}
f(\boldsymbol{x}) & =f\left(x_{1}, x_{2}, x_{3}\right) \\
& =x_{1}^{2} \log \left(x_{1}\right)+x_{2} x_{1} x_{3}+x_{3}^{2}
\end{aligned}
$$

What is the partial derivative with respect to x_{1} ? x_{2} ? x_{3} ? Evaluated at $x_{0}=\left(x_{01}, x_{02}, x_{03}\right)$.

$$
\begin{aligned}
\left.\frac{\partial f(\boldsymbol{x})}{\partial x_{3}}\right|_{x_{0}} & =x_{1} x_{2}+\left.2 x_{3}\right|_{x_{0}} \\
& =x_{01} x_{02}+2 x_{03}
\end{aligned}
$$

Rate of Change, Linear Regression

Suppose we regress Approval ${ }_{i}$ rate for Obama in month i on Employ ${ }_{i}$ and Gas $_{i}$. We obtain the following model:

$$
\text { Approval }_{i}=0.8-0.5 \mathrm{Employ}_{i}-0.25 \mathrm{Gas}_{i}
$$

We are modeling Approval $_{i}=f\left(\right.$ Employ $_{i}$, Gas $\left._{i}\right)$. What is partial derivative with respect to employment?

$$
\frac{\partial f\left(\text { Employ }_{i}, \text { Gas }_{i}\right)}{\partial \text { Employ }_{i}}=-0.5
$$

Gradient

Definition

Suppose $f: X \rightarrow \Re^{1}$ with $X \subset \Re^{n}$ is a differentiable function. Define the gradient vector of f at $\boldsymbol{x}_{0}, \nabla f\left(\boldsymbol{x}_{0}\right)$ as,

$$
\nabla f\left(\boldsymbol{x}_{0}\right)=\left(\frac{\partial f\left(\boldsymbol{x}_{0}\right)}{\partial x_{1}}, \frac{\partial f\left(\boldsymbol{x}_{0}\right)}{\partial x_{2}}, \frac{\partial f\left(\boldsymbol{x}_{0}\right)}{\partial x_{3}}, \ldots, \frac{\partial f\left(\boldsymbol{x}_{0}\right)}{\partial x_{n}}\right)
$$

- The gradient points in the direction that the function is increasing in the fastest direction
- We'll use this to do optimization (both analytic and computational)

Example Gradient Calculation

Suppose

$$
\begin{aligned}
f(\boldsymbol{x}) & =f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \\
& =\sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

Then $\nabla f\left(\boldsymbol{x}^{*}\right)$ is

$$
\nabla f\left(x^{*}\right)=\left(2 x_{1}^{*}, 2 x_{2}^{*}, \ldots, 2 x_{n}^{*}\right)
$$

So if $\boldsymbol{x}^{*}=(3,3, \ldots, 3)$ then

$$
\begin{aligned}
\nabla f\left(x^{*}\right) & =(2 * 3,2 * 3, \ldots, 2 * 3) \\
& =(6,6, \ldots, 6)
\end{aligned}
$$

Second Partial Derivative

Definition

Suppose $f: X \rightarrow \Re$ where $X \subset \Re^{n}$ and suppose that $\frac{\partial f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{i}}$ exists. Then we define,

$$
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{j} \partial x_{i}} \equiv \frac{\partial}{\partial x_{j}}\left(\frac{\partial f(\boldsymbol{x})}{\partial x_{i}}\right)
$$

- Second derivative could be with respect to x_{i} or with some other variable x_{j}
- Nagging question: does order matter?

Second Partial Derivative: Order Doesn't Matter

Theorem
Young's Theorem Let $f: X \rightarrow \Re$ with $X \subset \Re^{n}$ be a twice differentiable function on all of X. Then for any i, j, at all $\boldsymbol{x}^{*} \in X$,

$$
\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f\left(\boldsymbol{x}^{*}\right)=\frac{\partial^{2}}{\partial x_{j} \partial x_{i}} f\left(\boldsymbol{x}^{*}\right)
$$

Second Order Partial Derivates

$$
f(x)=x_{1}^{2} x_{2}^{2}
$$

Then,

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x_{1} \partial x_{1}} f(\boldsymbol{x})=2 x_{2}^{2} \\
& \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} f(\boldsymbol{x})=4 x_{1} x_{2} \\
& \frac{\partial^{2}}{\partial x_{2} \partial x_{2}} f(\boldsymbol{x})=2 x_{1}^{2}
\end{aligned}
$$

Hessians

Definition

Suppose $f: X \rightarrow \Re^{1}$, $X \subset \Re^{n}$, with f a twice differentiable function. We will define the Hessian matrix as the matrix of second derivatives at $\boldsymbol{x}^{*} \in X$,

$$
\boldsymbol{H}(f)\left(\boldsymbol{x}^{*}\right)=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}\left(\boldsymbol{x}^{*}\right) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\left(\boldsymbol{x}^{*}\right) & \ldots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}\left(\boldsymbol{x}^{*}\right) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}\left(\boldsymbol{x}^{*}\right) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}\left(\boldsymbol{x}^{*}\right) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}\left(\boldsymbol{x}^{*}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}\left(\boldsymbol{x}^{*}\right) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}\left(\boldsymbol{x}^{*}\right) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}\left(\boldsymbol{x}^{*}\right)
\end{array}\right)
$$

- Hessians are symmetric
- They describe curvature of a function (think, how bended)
- Will be the basis for second derivative test for multivariate optimization

An Example

An Example

Suppose $f: \Re^{3} \rightarrow \Re$, with

An Example

Suppose $f: \Re^{3} \rightarrow \Re$, with

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2} x_{3}^{2}
$$

An Example

Suppose $f: \Re^{3} \rightarrow \Re$, with

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2} x_{3}^{2}
$$

$$
\nabla f(\boldsymbol{x})=\left(2 x_{1} x_{2}^{2} x_{3}^{2}, 2 x_{1}^{2} x_{2} x_{3}^{2}, 2 x_{1}^{2} x_{2}^{2}, x_{3}\right)
$$

An Example

Suppose $f: \Re^{3} \rightarrow \Re$, with

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2} x_{3}^{2}
$$

$$
\begin{aligned}
\nabla f(\boldsymbol{x}) & =\left(2 x_{1} x_{2}^{2} x_{3}^{2}, 2 x_{1}^{2} x_{2} x_{3}^{2}, 2 x_{1}^{2} x_{2}^{2}, x_{3}\right) \\
\boldsymbol{H}(f)(\boldsymbol{x}) & =\left(\begin{array}{ccc}
2 x_{2}^{2} x_{3}^{2} & 4 x_{1} x_{2} x_{3}^{2} & 4 x_{1} x_{2}^{2} x_{3} \\
4 x_{1} x_{2} x_{3}^{2} & 2 x_{1}^{2} x_{3}^{2} & 4 x_{1}^{2} x_{2} x_{3} \\
4 x_{1} x_{2}^{2} x_{3} & 4 x_{1}^{2} x_{2} x_{3} & 2 x_{1}^{2} x_{2}^{2}
\end{array}\right)
\end{aligned}
$$

Functions with Multidimensional Codomains

Definition

Suppose $f: \Re^{m} \rightarrow \Re^{n}$. We will call f a multivariate function. We will commonly write,

$$
f(\boldsymbol{x})=\left(\begin{array}{c}
f_{1}(\boldsymbol{x}) \\
f_{2}(\boldsymbol{x}) \\
\vdots \\
f_{n}(\boldsymbol{x})
\end{array}\right)
$$

Example Functions

Suppose $f: \Re \rightarrow \Re^{2}$,

$$
f(t)=\left(t^{2}, \sqrt{(t)}\right)
$$

Example Functions

Suppose $f: \Re^{2} \rightarrow \Re^{2}$ defined as

$$
f(r, \theta)=\binom{r \cos \theta}{r \sin \theta}
$$

Example Functions

Suppose we have some policy $\boldsymbol{x} \in \Re^{M}$. Suppose we have N legislators where legislator i has utility

$$
U_{i}(\boldsymbol{x})=\sum_{j=1}^{M}-\left(x_{j}-\mu_{i j}\right)^{2}
$$

We can describe the utility of all legislators to the proposal as

$$
f(\boldsymbol{x})=\left(\begin{array}{c}
\sum_{j=1}^{M}-\left(x_{j}-\mu_{1 j}\right)^{2} \\
\sum_{j=1}^{M}-\left(x_{j}-\mu_{2 j}\right)^{2} \\
\vdots \\
\sum_{j=1}^{M}-\left(x_{j}-\mu_{N j}\right)^{2}
\end{array}\right)
$$

Jacobian

Definition
Suppose $f: X \rightarrow \Re^{n}$, where $X \subset \Re^{m}$, with f a differentiable function. Define the Jacobian of f at \boldsymbol{x} as

$$
\boldsymbol{J}(f)(\boldsymbol{x})=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{m}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{x_{1}} & \frac{\partial f_{n}}{x_{2}} & \cdots & \frac{\partial f_{n}}{x_{m}}
\end{array}\right)
$$

Example of Jacobian

$$
\begin{gathered}
f(r, \theta)=\binom{r \cos \theta}{r \sin \theta} \\
J(f)(r, \theta)=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
\end{gathered}
$$

Implicit Functions and Differentiation

We have defined functions explicitly

$$
Y=f(x)
$$

We might also have an implicit function:

$$
1=x^{2}+y^{2}
$$

Implicit Function Theorem (From Avi Acharya's Notes)

Definition
Suppose $X \subset \Re^{m}$ and $Y \subset \Re$. Let $f: X \cup Y \rightarrow \Re$ be a differentiable function (with continuous partial derivatives). Let $\left(x^{*}, y^{*}\right) \in X \cup Y$ such that

$$
\begin{array}{r}
\frac{\partial f\left(x^{*}, y^{*}\right)}{\partial y} \neq 0 \\
f\left(x^{*}, y^{*}\right)=0
\end{array}
$$

Implicit Function Theorem (From Avi Acharya's Notes)

Definition

Suppose $X \subset \Re^{m}$ and $Y \subset \Re$. Let $f: X \cup Y \rightarrow \Re$ be a differentiable function (with continuous partial derivatives). Let $\left(\boldsymbol{x}^{*}, y^{*}\right) \in X \cup Y$ such that

$$
\begin{aligned}
\frac{\partial f\left(\boldsymbol{x}^{*}, y^{*}\right)}{\partial y} & \neq 0 \\
f\left(\boldsymbol{x}^{*}, y^{*}\right) & =0
\end{aligned}
$$

Then there exists $B \subset \Re^{n}$ such that there is a differentiable function $g: B \rightarrow \Re$ such that $x^{*} \in B$ then $g\left(x^{*}\right)=y^{*}$ and $f(x, g(x))=0$. The derivative of g for $x \in B$ is given by

$$
\frac{\partial g}{\partial x_{j}}=-\frac{\frac{\partial f}{\partial x_{j}}}{\frac{\partial f}{\partial y}}
$$

Example 1: Implicit Function Theorem

Suppose that the equation is

$$
\begin{aligned}
& 1=x^{2}+y^{2} \\
& 0=x^{2}+y^{2}-1
\end{aligned}
$$

Example 1: Implicit Function Theorem

Suppose that the equation is

$$
\begin{aligned}
& 1=x^{2}+y^{2} \\
& 0=x^{2}+y^{2}-1
\end{aligned}
$$

$$
y=\sqrt{1-x^{2}} \text { if } y>0
$$

Example 1: Implicit Function Theorem

Suppose that the equation is

$$
\begin{aligned}
& 1=x^{2}+y^{2} \\
& 0=x^{2}+y^{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& y=\sqrt{1-x^{2}} \text { if } y>0 \\
& y=-\sqrt{1-x^{2}} \text { if } y<0
\end{aligned}
$$

Example 1: Implicit Function Theorem

Example 1: Implicit Function Theorem

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x \\
& \frac{\partial f}{\partial y}=2 y=2 \sqrt{1-x^{2}} \text { if } \mathrm{y}>0 \\
& \frac{\partial f}{\partial y}=2 y=-2 \sqrt{1-x^{2}} \text { if } \mathrm{y}<0
\end{aligned}
$$

Example 1: Implicit Function Theorem

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =2 x \\
\frac{\partial f}{\partial y} & =2 y=2 \sqrt{1-x^{2}} \text { if } \mathrm{y}>0 \\
\frac{\partial f}{\partial y} & =2 y=-2 \sqrt{1-x^{2}} \text { if } \mathrm{y}<0 \\
\left.\frac{\partial g(x)}{\partial x}\right|_{x_{0}} & =-\frac{\partial f / \partial x}{\partial f / \partial y}
\end{aligned}
$$

Example 1: Implicit Function Theorem

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =2 x \\
\frac{\partial f}{\partial y} & =2 y=2 \sqrt{1-x^{2}} \text { if } y>0 \\
\frac{\partial f}{\partial y} & =2 y=-2 \sqrt{1-x^{2}} \text { if } \mathrm{y}<0 \\
\left.\frac{\partial g(x)}{\partial x}\right|_{x_{0}} & =-\frac{\partial f / \partial x}{\partial f / \partial y} \\
& =-\frac{2 x_{0}}{2 y}=-\frac{x_{0}}{\sqrt{1-x_{0}^{2}}} \text { if } y>0
\end{aligned}
$$

Example 1: Implicit Function Theorem

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =2 x \\
\frac{\partial f}{\partial y} & =2 y=2 \sqrt{1-x^{2}} \text { if } \mathrm{y}>0 \\
\frac{\partial f}{\partial y} & =2 y=-2 \sqrt{1-x^{2}} \text { if } \mathrm{y}<0 \\
\left.\frac{\partial g(x)}{\partial x}\right|_{x_{0}} & =-\frac{\partial f / \partial x}{\partial f / \partial y} \\
& =-\frac{2 x_{0}}{2 y}=-\frac{x_{0}}{\sqrt{1-x_{0}^{2}}} \text { if } \mathrm{y}>0 \\
& =-\frac{2 x_{0}}{2 y}=\frac{x_{0}}{\sqrt{1-x_{0}^{2}}} \text { if } \mathrm{y}<0
\end{aligned}
$$

Implicit Function Theorem: Frequently Asked Questions

- Q: What's the deal with the implicit function theorem failing?

Implicit Function Theorem: Frequently Asked Questions

- Q: What's the deal with the implicit function theorem failing?
- A: Consider our proposed solution

$$
\begin{aligned}
y & =\sqrt{1-x^{2}} \\
\frac{\partial y}{\partial x} & =-\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Implicit Function Theorem: Frequently Asked Questions

- Q: What's the deal with the implicit function theorem failing?
- A: Consider our proposed solution

$$
\begin{aligned}
y & =\sqrt{1-x^{2}} \\
\frac{\partial y}{\partial x} & =-\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

As $x \rightarrow 1$ or $x \rightarrow-1$ this derivative diverges

Implicit Function Theorem: Frequently Asked Questions

- Q: What's the deal with the implicit function theorem failing?
- A: Consider our proposed solution

$$
\begin{aligned}
y & =\sqrt{1-x^{2}} \\
\frac{\partial y}{\partial x} & =-\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

As $x \rightarrow 1$ or $x \rightarrow-1$ this derivative diverges
The intuition from the Implicit Function Theorem is that any function $g(x)=y$ there would need an "infinite" slope.

Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

$$
\frac{\partial g(x)}{\partial x}=-\frac{\partial f / \partial x}{\partial f / \partial y}
$$

Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

$$
\frac{\partial g(x)}{\partial x}=-\frac{\partial f / \partial x}{\partial f / \partial y}
$$

- A: Consider, first, the following example:

Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

$$
\frac{\partial g(x)}{\partial x}=-\frac{\partial f / \partial x}{\partial f / \partial y}
$$

- A: Consider, first, the following example:

$$
0=f(x, y)
$$

Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

$$
\frac{\partial g(x)}{\partial x}=-\frac{\partial f / \partial x}{\partial f / \partial y}
$$

- A: Consider, first, the following example:

$$
\begin{aligned}
& 0=f(x, y) \\
& 0=x^{2}-y
\end{aligned}
$$

Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

$$
\frac{\partial g(x)}{\partial x}=-\frac{\partial f / \partial x}{\partial f / \partial y}
$$

- A: Consider, first, the following example:

$$
\begin{aligned}
0 & =f(x, y) \\
0 & =x^{2}-y \\
\frac{\partial y}{\partial x} & =2 x
\end{aligned}
$$

Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

$$
\frac{\partial g(x)}{\partial x}=-\frac{\partial f / \partial x}{\partial f / \partial y}
$$

- A: Consider, first, the following example:

$$
\begin{aligned}
0 & =f(x, y) \\
0 & =x^{2}-y \\
\frac{\partial y}{\partial x} & =2 x \\
\frac{\partial f(x, y) / \partial x}{\partial f(x, y) / \partial y} & =\frac{2 x}{-1}=-\frac{\partial y}{\partial x}
\end{aligned}
$$

Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

$$
\frac{\partial g(x)}{\partial x}=-\frac{\partial f / \partial x}{\partial f / \partial y}
$$

- A: Consider, first, the following example:

$$
\begin{aligned}
0 & =f(x, y) \\
0 & =x^{2}-y \\
\frac{\partial y}{\partial x} & =2 x \\
\frac{\partial f(x, y) / \partial x}{\partial f(x, y) / \partial y} & =\frac{2 x}{-1}=-\frac{\partial y}{\partial x}
\end{aligned}
$$

In this example, the negative sign is "moving things to the other side".

Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

$$
\frac{\partial g(x)}{\partial x}=-\frac{\partial f / \partial x}{\partial f / \partial y}
$$

- A: Consider, first, the following example:

$$
\begin{aligned}
0 & =f(x, y) \\
0 & =x^{2}-y \\
\frac{\partial y}{\partial x} & =2 x \\
\frac{\partial f(x, y) / \partial x}{\partial f(x, y) / \partial y} & =\frac{2 x}{-1}=-\frac{\partial y}{\partial x}
\end{aligned}
$$

In this example, the negative sign is "moving things to the other side". In general, the negative sign will capture that we want to measure the compensatory behavior of the function: how y moves in response to some x_{i} along a level curve

Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual i earns pre-tax income $y_{i}>0$.

Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual i earns pre-tax income $y_{i}>0$. Total income $Y=\sum_{i=1}^{n} y_{i}$

Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual i earns pre-tax income $y_{i}>0$. Total income $Y=\sum_{i=1}^{n} y_{i}$
Per capita income: $\bar{y}=Y / n$

Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual i earns pre-tax income $y_{i}>0$.
Total income $Y=\sum_{i=1}^{n} y_{i}$
Per capita income: $\bar{y}=Y / n$
Individuals pay a proportional $\operatorname{tax} t \in(0,1)$

Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual i earns pre-tax income $y_{i}>0$.
Total income $Y=\sum_{i=1}^{n} y_{i}$
Per capita income: $\bar{y}=Y / n$
Individuals pay a proportional $\operatorname{tax} t \in(0,1)$
Suppose:

Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual i earns pre-tax income $y_{i}>0$.
Total income $Y=\sum_{i=1}^{n} y_{i}$
Per capita income: $\bar{y}=Y / n$
Individuals pay a proportional $\operatorname{tax} t \in(0,1)$
Suppose:

$$
U_{i}\left(t, y_{i}\right)=y_{i}\left(1-t^{2}\right)+t \bar{y}
$$

Example 2: Implicit Function Theorem (From Jim Fearon)

An individual's optimal tax rate is:

$$
\begin{aligned}
\frac{\partial U_{i}\left(t, y_{i}\right)}{\partial t} & =-2 y_{i} t+\bar{y} \\
0 & =-2 y_{i} t^{*}+\bar{y} \\
\frac{\bar{y}}{2 y_{i}} & =t_{i}^{*}
\end{aligned}
$$

Checking the second derivative:

$$
\frac{\partial U_{i}\left(t, y_{i}\right)}{\partial^{2} t}=-2 y_{i}
$$

Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function

Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function Define Marginal rate of Substitution as

Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function Define Marginal rate of Substitution as

$$
\mathrm{MRS}=-\frac{\partial U\left(t, y_{i}\right) / \partial t}{\partial U\left(t, y_{i} / \partial y_{i}\right.}=\frac{\partial Y(t)}{\partial t}
$$

Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function Define Marginal rate of Substitution as

$$
\begin{gathered}
\mathrm{MRS}=-\frac{\partial U\left(t, y_{i}\right) / \partial t}{\partial U\left(t, y_{i} / \partial y_{i}\right.}=\frac{\partial Y(t)}{\partial t} \\
\partial U\left(t, y_{i}\right) / \partial t=-2 y_{i} t+\bar{y}
\end{gathered}
$$

Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function Define Marginal rate of Substitution as

$$
\mathrm{MRS}=-\frac{\partial U\left(t, y_{i}\right) / \partial t}{\partial U\left(t, y_{i} / \partial y_{i}\right.}=\frac{\partial Y(t)}{\partial t}
$$

$$
\begin{aligned}
\partial U\left(t, y_{i}\right) / \partial t & =-2 y_{i} t+\bar{y} \\
\partial U\left(t, y_{i} / \partial y_{i}\right. & =\left(1-t^{2}\right)
\end{aligned}
$$

Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function Define Marginal rate of Substitution as

$$
\mathrm{MRS}=-\frac{\partial U\left(t, y_{i}\right) / \partial t}{\partial U\left(t, y_{i} / \partial y_{i}\right.}=\frac{\partial Y(t)}{\partial t}
$$

$$
\begin{aligned}
\partial U\left(t, y_{i}\right) / \partial t & =-2 y_{i} t+\bar{y} \\
\partial U\left(t, y_{i} / \partial y_{i}\right. & =\left(1-t^{2}\right) \\
\text { MRS } & =\frac{2 y_{i} t-\bar{y}}{1-t^{2}}
\end{aligned}
$$

Example 2: Implicit Function Theorem (From Jim Fearon)

Multivariate Integration

Suppose we have a function $f: X \rightarrow \Re^{1}$, with $X \subset \Re^{2}$.

Multivariate Integration

Suppose we have a function $f: X \rightarrow \Re^{1}$, with $X \subset \Re^{2}$.
We will integrate a function over an area.

Multivariate Integration

Suppose we have a function $f: X \rightarrow \Re^{1}$, with $X \subset \Re^{2}$.
We will integrate a function over an area.
Area under function.

Multivariate Integration

Suppose we have a function $f: X \rightarrow \Re^{1}$, with $X \subset \Re^{2}$.
We will integrate a function over an area.
Area under function.
Suppose that area, A, is in 2-dimensions

Multivariate Integration

Suppose we have a function $f: X \rightarrow \Re^{1}$, with $X \subset \Re^{2}$.
We will integrate a function over an area.
Area under function.
Suppose that area, A , is in 2-dimensions

- $A=\{x, y: x \in[0,1], y \in[0,1]\}$

Multivariate Integration

Suppose we have a function $f: X \rightarrow \Re^{1}$, with $X \subset \Re^{2}$.
We will integrate a function over an area.
Area under function.
Suppose that area, A , is in 2-dimensions

- $A=\{x, y: x \in[0,1], y \in[0,1]\}$
- $A=\left\{x, y: x^{2}+y^{2} \leq 1\right\}$

Multivariate Integration

Suppose we have a function $f: X \rightarrow \Re^{1}$, with $X \subset \Re^{2}$.
We will integrate a function over an area. Area under function.
Suppose that area, A , is in 2-dimensions

- $A=\{x, y: x \in[0,1], y \in[0,1]\}$
- $A=\left\{x, y: x^{2}+y^{2} \leq 1\right\}$
- $A=\{x, y: x<y, x, y \in(0,2)\}$

Multivariate Integration

Suppose we have a function $f: X \rightarrow \Re^{1}$, with $X \subset \Re^{2}$.
We will integrate a function over an area.
Area under function.
Suppose that area, A, is in 2-dimensions

- $A=\{x, y: x \in[0,1], y \in[0,1]\}$
- $A=\left\{x, y: x^{2}+y^{2} \leq 1\right\}$
- $A=\{x, y: x<y, x, y \in(0,2)\}$

How do calculate the area under the function over these regions?

Multivariate Integration

Definition

Suppose $f: X \rightarrow \Re$ where $X \subset \Re^{n}$. We will say that f is integrable over $A \subset X$ if we are able to calculate its area with refined partitions of A and we will write the integral $I=\int_{A} f(\boldsymbol{x}) d \boldsymbol{A}$

Multivariate Integration

Definition

Suppose $f: X \rightarrow \Re$ where $X \subset \Re^{n}$. We will say that f is integrable over $A \subset X$ if we are able to calculate its area with refined partitions of A and we will write the integral $I=\int_{A} f(\boldsymbol{x}) d \boldsymbol{A}$

That's horribly abstract. There is an extremely helpful theorem that makes this manageable.

Multivariate Integration

Definition

Suppose $f: X \rightarrow \Re$ where $X \subset \Re^{n}$. We will say that f is integrable over $A \subset X$ if we are able to calculate its area with refined partitions of A and we will write the integral $I=\int_{A} f(\boldsymbol{x}) d \boldsymbol{A}$

That's horribly abstract. There is an extremely helpful theorem that makes this manageable.

Theorem

Fubini's Theorem Suppose $A=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \ldots \times\left[a_{n}, b_{n}\right]$ and that $f: A \rightarrow \Re$ is integrable. Then

$$
\int_{A} f(\boldsymbol{x}) d \boldsymbol{A}=\int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \ldots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(\boldsymbol{x}) d x_{1} d x_{2} \ldots d x_{n-1} d x_{n}
$$

Multivariate Integration Recipe

$$
\int_{A} f(\boldsymbol{x}) d \boldsymbol{A}=\int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \ldots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(\boldsymbol{x}) d x_{1} d x_{2} \ldots d x_{n-1} d x_{n}
$$

Multivariate Integration Recipe

$$
\int_{A} f(\boldsymbol{x}) d \boldsymbol{A}=\int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \ldots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(\boldsymbol{x}) d x_{1} d x_{2} \ldots d x_{n-1} d x_{n}
$$

1) Start with the inside integral x_{1} is the variable, everything else a constant

Multivariate Integration Recipe

$$
\int_{\boldsymbol{A}} f(\boldsymbol{x}) d \boldsymbol{A}=\int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \ldots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(\boldsymbol{x}) d x_{1} d x_{2} \ldots d x_{n-1} d x_{n}
$$

1) Start with the inside integral x_{1} is the variable, everything else a constant
2) Work inside to out, iterating

Multivariate Integration Recipe

$$
\int_{A} f(\boldsymbol{x}) d \boldsymbol{A}=\int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \cdots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x) d x_{1} d x_{2} \ldots d x_{n-1} d x_{n}
$$

1) Start with the inside integral x_{1} is the variable, everything else a constant
2) Work inside to out, iterating
3) At the last step, we should arrive at a number

Intuition: Three Dimensional Jello Molds, a discussion

Multivariate Uniform Distribution

Suppose $f:[0,1] \times[0,1] \rightarrow \Re$ and $f\left(x_{1}, x_{2}\right)=1$ for all $x_{1}, x_{2} \in[0,1] \times[0,1]$. What is $\int_{0}^{1} \int_{0}^{1} f(x) d x_{1} d x_{2}$?

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} f(x) d x_{1} d x_{2} & =\int_{0}^{1} \int_{0}^{1} 1 d x_{1} d x_{2} \\
& =\left.\int_{0}^{1} x_{1}\right|_{0} ^{1} d x_{2} \\
& =\int_{0}^{1}(1-0) d x_{2} \\
& =\int_{0}^{1} 1 d x_{2} \\
& =\left.x_{2}\right|_{0} ^{1} \\
& =1
\end{aligned}
$$

Example 2

Suppose $f:\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \rightarrow \Re$ is given by

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}
$$

Example 2

Suppose $f:\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \rightarrow \Re$ is given by

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}
$$

Find $\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$

Example 2

Suppose $f:\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \rightarrow \Re$ is given by

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}
$$

Find $\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$

$$
\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} x_{2} x_{1} d x_{1} d x_{2}
$$

Example 2

Suppose $f:\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \rightarrow \Re$ is given by

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}
$$

Find $\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$

$$
\begin{aligned}
\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} & =\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} x_{2} x_{1} d x_{1} d x_{2} \\
& =\left.\int_{a_{2}}^{b_{2}} \frac{x_{1}^{2}}{2} x_{2}\right|_{a_{1}} ^{b_{1}} d x_{2}
\end{aligned}
$$

Example 2

Suppose $f:\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \rightarrow \Re$ is given by

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}
$$

Find $\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$

$$
\begin{aligned}
\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} & =\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} x_{2} x_{1} d x_{1} d x_{2} \\
& =\left.\int_{a_{2}}^{b_{2}} \frac{x_{1}^{2}}{2} x_{2}\right|_{a_{1}} ^{b_{1}} d x_{2} \\
& =\frac{b_{1}^{2}-a_{1}^{2}}{2} \int_{a_{2}}^{b_{2}} x_{2} d x_{2}
\end{aligned}
$$

Example 2

Suppose $f:\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \rightarrow \Re$ is given by

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}
$$

Find $\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$

$$
\begin{aligned}
\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} & =\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} x_{2} x_{1} d x_{1} d x_{2} \\
& =\left.\int_{a_{2}}^{b_{2}} \frac{x_{1}^{2}}{2} x_{2}\right|_{a_{1}} ^{b_{1}} d x_{2} \\
& =\frac{b_{1}^{2}-a_{1}^{2}}{2} \int_{a_{2}}^{b_{2}} x_{2} d x_{2} \\
& =\frac{b_{1}^{2}-a_{1}^{2}}{2}\left(\left.\frac{x_{2}^{2}}{2}\right|_{a_{2}} ^{b_{2}}\right)
\end{aligned}
$$

Example 2

Suppose $f:\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \rightarrow \Re$ is given by

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}
$$

Find $\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$

$$
\begin{aligned}
\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} & =\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} x_{2} x_{1} d x_{1} d x_{2} \\
& =\left.\int_{a_{2}}^{b_{2}} \frac{x_{1}^{2}}{2} x_{2}\right|_{a_{1}} ^{b_{1}} d x_{2} \\
& =\frac{b_{1}^{2}-a_{1}^{2}}{2} \int_{a_{2}}^{b_{2}} x_{2} d x_{2} \\
& =\frac{b_{1}^{2}-a_{1}^{2}}{2}\left(\left.\frac{x_{2}^{2}}{2} \right\rvert\, a_{a_{2}}\right) \\
& =\frac{b_{1}^{2}-a_{1}^{2}}{2} \frac{b_{2}^{2}-a_{2}^{2}}{2}
\end{aligned}
$$

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Find:

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Find:

$$
\int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{1}, x_{2}\right)=
$$

$$
=
$$

$$
=
$$

$$
=
$$

$$
=
$$

$$
=
$$

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Find:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{1}, x_{2}\right) & =2 \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right) d x_{1} d x_{2} \\
& = \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Find:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{1}, x_{2}\right) & =2 \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right) d x_{1} d x_{2} \\
& =2 \int_{0}^{\infty} \exp \left(-x_{1}\right) d x_{1} \int_{0}^{\infty} \exp \left(-2 x_{2}\right) d x_{2} \\
& = \\
& = \\
& = \\
& =
\end{aligned}
$$

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Find:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{1}, x_{2}\right) & =2 \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right) d x_{1} d x_{2} \\
& =2 \int_{0}^{\infty} \exp \left(-x_{1}\right) d x_{1} \int_{0}^{\infty} \exp \left(-2 x_{2}\right) d x_{2} \\
& =2\left(-\left.\exp (-x)\right|_{0} ^{\infty}\right)\left(-\left.\frac{1}{2} \exp \left(-2 x_{2}\right)\right|_{0} ^{\infty}\right) \\
& = \\
& = \\
& =
\end{aligned}
$$

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Find:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{1}, x_{2}\right) & =2 \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right) d x_{1} d x_{2} \\
& =2 \int_{0}^{\infty} \exp \left(-x_{1}\right) d x_{1} \int_{0}^{\infty} \exp \left(-2 x_{2}\right) d x_{2} \\
& =2\left(-\left.\exp (-x)\right|_{0} ^{\infty}\right)\left(-\left.\frac{1}{2} \exp \left(-2 x_{2}\right)\right|_{0} ^{\infty}\right) \\
& =2\left[\left(-\lim _{x_{1} \rightarrow \infty} \exp \left(-x_{1}\right)+1\right)\left(-\frac{1}{2} \lim _{x_{2} \rightarrow \infty} \exp \left(-2 x_{2}\right)+\frac{1}{2}\right)\right] \\
& = \\
& =
\end{aligned}
$$

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Find:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{1}, x_{2}\right) & =2 \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right) d x_{1} d x_{2} \\
& =2 \int_{0}^{\infty} \exp \left(-x_{1}\right) d x_{1} \int_{0}^{\infty} \exp \left(-2 x_{2}\right) d x_{2} \\
& =2\left(-\left.\exp (-x)\right|_{0} ^{\infty}\right)\left(-\left.\frac{1}{2} \exp \left(-2 x_{2}\right)\right|_{0} ^{\infty}\right) \\
& =2\left[\left(-\lim _{x_{1} \rightarrow \infty} \exp \left(-x_{1}\right)+1\right)\left(-\frac{1}{2} \lim _{x_{2} \rightarrow \infty} \exp \left(-2 x_{2}\right)+\frac{1}{2}\right)\right] \\
& =2\left[\frac{1}{2}\right] \\
& =
\end{aligned}
$$

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Find:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{1}, x_{2}\right) & =2 \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right) d x_{1} d x_{2} \\
& =2 \int_{0}^{\infty} \exp \left(-x_{1}\right) d x_{1} \int_{0}^{\infty} \exp \left(-2 x_{2}\right) d x_{2} \\
& =2\left(-\left.\exp (-x)\right|_{0} ^{\infty}\right)\left(-\left.\frac{1}{2} \exp \left(-2 x_{2}\right)\right|_{0} ^{\infty}\right) \\
& =2\left[\left(-\lim _{x_{1} \rightarrow \infty} \exp \left(-x_{1}\right)+1\right)\left(-\frac{1}{2} \lim _{x_{2} \rightarrow \infty} \exp \left(-2 x_{2}\right)+\frac{1}{2}\right)\right] \\
& =2\left[\frac{1}{2}\right] \\
& =1
\end{aligned}
$$

Example 3: Exponential Distributions

Suppose $f: \Re_{+}^{2} \rightarrow \Re$ and that

$$
f\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right)
$$

Find:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} f\left(x_{1}, x_{2}\right) & =2 \int_{0}^{\infty} \int_{0}^{\infty} \exp \left(-x_{1}\right) \exp \left(-2 x_{2}\right) d x_{1} d x_{2} \\
& =2 \int_{0}^{\infty} \exp \left(-x_{1}\right) d x_{1} \int_{0}^{\infty} \exp \left(-2 x_{2}\right) d x_{2} \\
& =2\left(-\left.\exp (-x)\right|_{0} ^{\infty}\right)\left(-\left.\frac{1}{2} \exp \left(-2 x_{2}\right)\right|_{0} ^{\infty}\right) \\
& =2\left[\left(-\lim _{x_{1} \rightarrow \infty} \exp \left(-x_{1}\right)+1\right)\left(-\frac{1}{2} \lim _{x_{2} \rightarrow \infty} \exp \left(-2 x_{2}\right)+\frac{1}{2}\right)\right] \\
& =2\left[\frac{1}{2}\right] \\
& =1
\end{aligned}
$$

Challenge Problems

1) Find $\int_{0}^{1} \int_{0}^{1} x_{1}+x_{2} d x_{1} d x_{2}$
2) Demonstrate that

$$
\int_{0}^{b} \int_{0}^{a} x_{1}-3 x_{2} d x_{1} d x_{2}=\int_{0}^{a} \int_{0}^{b} x_{1}-3 x_{2} d x_{2} d x_{1}
$$

More Complicated Bounds of Integration

So far, we have integrated over rectangles. But often, we are interested in more complicated regions

How do we do this?

More Complicated Bounds of Integration

So far, we have integrated over rectangles. But often, we are interested in more complicated regions

How do we do this?

Example 4: More Complicated Regions

Suppose $f:[0,1] \times[0,1] \rightarrow \Re, f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$. Find area of function where $x_{1}<x_{2}$.
Trick: we need to determine bound. If $x_{1}<x_{2}, x_{1}$ can take on any value from 0 to x_{2}

$$
\begin{aligned}
\iint_{x_{1}<x_{2}} f(\boldsymbol{x}) & =\int_{0}^{1} \int_{0}^{x_{2}} x_{1}+x_{2} d x_{1} d x_{2} \\
& =\left.\int_{0}^{1} x_{2} x_{1}\right|_{0} ^{x_{2}} d x_{2}+\left.\int_{0}^{1} \frac{x_{1}^{2}}{2}\right|_{0} ^{x_{2}} \\
& =\int_{0}^{1} x_{2}^{2} d x_{2}+\int_{0}^{1} \frac{x_{2}^{2}}{2} \\
& =\left.\frac{x_{2}^{3}}{3}\right|_{0} ^{1}+\left.\frac{x_{2}^{3}}{6}\right|_{0} ^{1} \\
& =\frac{1}{3}+\frac{1}{6} \\
& =\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

Consider the same function and let's switch the bounds.

$$
\begin{aligned}
\iint_{x_{1}<x_{2}} f(\boldsymbol{x}) & =\int_{0}^{1} \int_{x_{1}}^{1} x_{1}+x_{2} d x_{2} d x_{1} \\
& =\left.\int_{0}^{1} x_{1} x_{2}\right|_{x_{1}} ^{1}+\left.\int_{0}^{1} \frac{x_{2}^{2}}{2}\right|_{x_{1}} ^{1} d x_{1} \\
& =\int_{0}^{1} x_{1}-x_{1}^{2}+\int_{0}^{1} \frac{1}{2}-\frac{x_{1}^{2}}{2} d x_{1} \\
& =\left.\frac{x_{1}^{2}}{2}\right|_{0} ^{1}-\left.\frac{x_{1}^{3}}{3}\right|_{0} ^{1}+\left.\frac{x_{1}}{2}\right|_{0} ^{1}-\left.\frac{x_{1}^{3}}{6}\right|_{0} ^{1} \\
& =\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{6} \\
& =1-\frac{3}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

Example 5: More Complicated Regions

Suppose $f[0,1] \times[0,1] \rightarrow \Re, f\left(x_{1}, x_{2}\right)=1$. What is the area of $x_{1}+x_{2}<1$? Where is $x_{1}+x_{2}<1$? Where, $x_{1}<1-x_{2}$

$$
\begin{aligned}
\iint_{x_{1}+x_{2}<1} f(\boldsymbol{x}) d \boldsymbol{x} & =\int_{0}^{1} \int_{0}^{1-x_{2}} 1 d x_{1} x_{2} \\
& =\left.\int_{0}^{1} x_{1}\right|_{0} ^{1-x_{2}} d x_{2} \\
& =\int_{0}^{1}\left(1-x_{2}\right) d x_{2} \\
& =\left.x_{2}\right|_{0} ^{1}-\left.\frac{x_{2}^{2}}{2}\right|_{0} ^{1} \\
& =1-\left(\frac{1}{2}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

