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Multivariable Calculus

Functions of many variables:
1) Policies may be multidimensional (policy provision and pork buy off)

2) Countries may invest in offensive and defensive resources for fighting
wars

3) Ethnicity and resources could affect investment
Today:

0) Determinant
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) Eigenvector/Diagonalization
)

2) Partial Derivatives, Gradients, Jacobians, and Hessians
)
)

Multivariate functions
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Total Derivative, Implicit Differentiation, Implicit Function Theorem

Multivariate Integration
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Determinant

Suppose we have a square (n x n) matrix A

az
A determinant is a function that assigns a number to square matrices

a a
A — 11 a12
a1
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Determinant

Facts needed to define determinant :
Definition

A permutation of the set of integers {1,2,...,J} is an arrangement of
these integers in some order without omissions or repetition.

For example, consider {1,2,3,4}
{3,2,1,4}
{4,3,2,1}

If we have J integers then there are J! permutations
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Determinant

Definition
An inversion occurs when a larger integer occurs before a smaller integer
in a permutation

Even permutation: total inversions are even

Odd permutation: total inversions are odd

Count the inversions
{3,2,1}
{1,2,3}
{3,1,2}
{2,1,3}
{1,3,2}
{2,3,1}
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Determinant

Definition
For a square nxn matrix A, we will call an elementary product an n

element long product, with no two components coming from the same row

or column. We will call a signed elementary product one that multiplies
odd permutations of the column numbers by —1.
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Determinant

Definition
For a square nxn matrix A, we will call an elementary product an n
element long product, with no two components coming from the same row

or column. We will call a signed elementary product one that multiplies
odd permutations of the column numbers by —1.

a1 a12
a1 ax
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Determinant

Definition
For a square nxn matrix A, we will call an elementary product an n

element long product, with no two components coming from the same row

or column. We will call a signed elementary product one that multiplies
odd permutations of the column numbers by —1.

ail 412 a3
a axp» ax
a31 4932 as3
There are n! elementary products
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Determinant

Definition

Suppose A is an n x n matrix. Define the determinant function det(A) to

be the sum of signed elementary products from A. Call det(A) the
determinant of A
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Determinant

Definition

Suppose A is an n x n matrix. Define the determinant function det(A) to

be the sum of signed elementary products from A. Call det(A) the
determinant of A

Suppose A is a 2 X 2 matrix
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Determinant

Definition

Suppose A is an n x n matrix. Define the determinant function det(A) to

be the sum of signed elementary products from A. Call det(A) the
determinant of A

Suppose A is a 2 X 2 matrix

det(A) = det ("’” 312)

a1 ax
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Determinant

Definition

Suppose A is an n x n matrix. Define the determinant function det(A) to

be the sum of signed elementary products from A. Call det(A) the
determinant of A

Suppose A is a 2 X 2 matrix

det(A) = det ("’” 312)

az1 a2
= d114822 — d124a21
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Determinant

Definition

Suppose A is an n x n matrix. Define the determinant function det(A) to

be the sum of signed elementary products from A. Call det(A) the
determinant of A

Suppose A is a 3 x 3 matrix.
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Determinant

Definition

Suppose A is an n x n matrix. Define the determinant function det(A) to

be the sum of signed elementary products from A. Call det(A) the
determinant of A

Suppose A is a 3 x 3 matrix.

d11 412 413
det(A) = det| axy axm ax3

a31 432 ass
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Determinant

Definition
Suppose A is an n x n matrix. Define the determinant function det(A) to

be the sum of signed elementary products from A. Call det(A) the
determinant of A

Suppose A is a 3 x 3 matrix.

d11 412 413
det(A) = det| axy axm ax3

a31 432 ass
= 311822333 — 3114823832 — 3123214833
+a12a23a31 + 213321332 — 313822331
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Determinant

Definition
Suppose A is an n x n matrix. Define the determinant function det(A) to

be the sum of signed elementary products from A. Call det(A) the
determinant of A

Suppose A is a 3 x 3 matrix.

d11 412 413
det(A) = det| axy axm ax3

a31 432 ass
= 311822333 — 3114823832 — 3123214833
+a12a23a31 + 213321332 — 313822331

R Code!
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An Introduction to Eigenvectors, Values, and
Diagonalization

Definition

Suppose A is an N x N matrix and X\ is a scalar.
If

Ax = Mx

Then x is an eigenvector and X\ is the associated eigenvalue

o
Justin Grimmer (Stanford University) Methodology |




An Introduction to Eigenvectors, Values, and
Diagonalization

Definition

Suppose A is an N x N matrix and X\ is a scalar.
If

Ax = Mx

Then x is an eigenvector and X\ is the associated eigenvalue

- A stretches the eigenvector x

] = =
Justin Grimmer (Stanford University) Methodology |




An Introduction to Eigenvectors, Values, and
Diagonalization

Definition

Suppose A is an N x N matrix and X\ is a scalar.
If

Ax = Mx

Then x is an eigenvector and X\ is the associated eigenvalue

- A stretches the eigenvector x
- A stretches x by A

] = =
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An Introduction to Eigenvectors, Values, and
Diagonalization

Definition

Suppose A is an N x N matrix and X\ is a scalar.
If

Ax = Mx

Then x is an eigenvector and X\ is the associated eigenvalue

- A stretches the eigenvector x
- A stretches x by A

- To find eigenvectors/values: (eigen in R )

] = =
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An Introduction to Eigenvectors, Values, and
Diagonalization

Definition

Suppose A is an N x N matrix and X\ is a scalar.
If

Ax = Mx

Then x is an eigenvector and X\ is the associated eigenvalue

- A stretches the eigenvector x
- A stretches x by A

- To find eigenvectors/values: (eigen in R )
m Find X that solves det(A — \I) =0

] = =
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An Introduction to Eigenvectors, Values, and
Diagonalization

Definition

Suppose A is an N x N matrix and X\ is a scalar.
If

Ax = Mx

Then x is an eigenvector and X\ is the associated eigenvalue

- A stretches the eigenvector x
- A stretches x by A
- To find eigenvectors/values: (eigen in R )

m Find X that solves det(A — \I) =0
m Find vectors in null space of:

] = =
Justin Grimmer (Stanford University) Methodology |




An Introduction to Eigenvectors, Values, and
Diagonalization

Definition

Suppose A is an N x N matrix and X\ is a scalar.
If

Ax = Mx

Then x is an eigenvector and X\ is the associated eigenvalue

- A stretches the eigenvector x
- A stretches x by A
- To find eigenvectors/values: (eigen in R )

m Find X that solves det(A — \I) =0
m Find vectors in null space of:

(A=) = 0

] = =
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An Introduction to Eigenvectors, Values, and
Diagonalization

Theorem

Suppose A is an invertible N x N matrix. Then A has N distinct

eigenvalues and N linearly independent eigenvectors. Further, we can write
A as,

A 0 ... 0
0 A 0

A = - w
0 0 ... Ay

where W = (w1, way,...,wp) is an N x N matrix with the N
eigenvectors as column vectors.

] = =
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Proof:
Note

Justin Grimmer (Stanford University)
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Examples of Diagonalization

Suppose A is an N x N invertible matrix with eigenvalues
A= (A1, A\2,...,\y) and eigenvectors W. Calculate AA = A?

AA = WAW wAw!
A1 O
0 X\
= wil . .
0 0
A2 02
0 A
- w| . 7
0 0

Justin Grimmer (Stanford University) Methodology |
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Multivariate Functions

f(x1,x) = x1+x
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Multivariate Functions

f(xi,x) = x12 +x22

fix_1,x 2)
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Multivariate Functions

f(x1,x) = sin(xq)cos(x2)

101,x2)
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Multivariate Functions

fxa, ) = —(x—5)°—(y—2)

fix_1,x_2)
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Multivariate Functions

f(le X2, X3)

Justin Grimmer (Stanford University)
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Multivariate Functions

Justin Grimmer (Stanford University)

Methodology |

...7XN)

oo XN



Multivariate Functions

Definition

Suppose f : R" — RY. We will call f a multivariate function. We will
commonly write,

f(x) = f(x1,x2,x3,...,Xn)

-RT=R x RxRx...R
~—
cartesian
- The function we consider will take n inputs and output a single
number (that lives in 1, or the real line)
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Example 1

f(x1,x2,x3)

Evaluate at x = (x1,x2,x3) = (2,3,2)

£(2,3,2)

X1+ X0 + X3

2+3+2

= 7

Justin Grimmer (Stanford University)
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Example 1

fla,2) = x+x+xx
Evaluate at w = (w1, wp) = (1,2)

flwi,wo) = wi+ws+wiws
= 14+24+1x%x2
= 5
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Justin Grimmer (Stanford University)
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RV,

[m] = = =
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RV,
Suppose that legislator i’s utility is a U : ®N — R! and is given by,

o & E E E 2AC0
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RV,
Suppose that legislator i’s utility is a U : ®N — R! and is given by,
U(x)

U(x1, x2, ..., xn)

o & E E E 2AC0
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RV,
Suppose that legislator i’s utility is a U : ®N — R! and is given by,
U(X) = U(Xl,Xz, . ,XN)

—(a =) = (e — p2)® — ... — (xn — i)

o & E E E 2 Q
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RV,
Suppose that legislator i’s utility is a U : ®N — R! and is given by,

U(X) = U(Xl,Xz,...,XN)
= —(a—m)—(e—pm)—...— (xn—pun)?

N
= = (5w’
=1
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RV,
Suppose that legislator i’s utility is a U : ®N — R! and is given by,

U(X) = U(Xl,XQ,...,XN)
= —(a—m)—(e—pm)—...— (xn—pun)?

N
= = (5w’
=1

Suppose 1 = (1. jiz, .- -, i) = (0,0, .., 0).
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RN.

Suppose that legislator i's utility is a U : RN — R and is given by,

U(X) = U(Xl,XQ,...,XN)
= —(a—m)—(e—pm)—...— (xn—pun)?

N
= = (5w
=1

Suppose p = (p1, pi2, - - -, un) = (0,0,...,0). Evaluate legislator’s utility
for a policy proposal of m=(1,1,...,1).
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RN.

Suppose that legislator i's utility is a U : RN — R and is given by,

U(X) = U(Xl,XQ,...,XN)
= —(a—m)—(e—pm)—...— (xn—pun)?

N
= = (5w
=1

Suppose p = (p1, pi2, - - -, un) = (0,0,...,0). Evaluate legislator’s utility
for a policy proposal of m=(1,1,...,1).

Um) = U(1,1,...,1)
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RN.

Suppose that legislator i's utility is a U : RN — R and is given by,

U(X) = U(Xl,XQ,...,XN)
= —(a—m)—(e—pm)—...— (xn—pun)?

N
= = (5w
=1

Suppose p = (p1, pi2, - - -, un) = (0,0,...,0). Evaluate legislator’s utility
for a policy proposal of m=(1,1,...,1).

Um) = U(1,1,...,1)
= —(1-02—-(1-0—...—(1-0)
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RN.

Suppose that legislator i's utility is a U : RN — R and is given by,

U(X) = U(Xl,XQ,...,XN)
= —(a—m)—(e—pm)—...— (xn—pun)?

N
= = (5w
=1

Suppose p = (p1, pi2, - - -, un) = (0,0,...,0). Evaluate legislator’s utility
for a policy proposal of m=(1,1,...,1).
Um) = U(1,1,...,1)
= —(1-02—-(1-02—...—(1-0)?
N

- _21
j=1
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Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x € RN.

Suppose that legislator i's utility is a U : RN — R and is given by,

U(X) = U(Xl,XQ,...,XN)
= —(a—m)—(e—pm)—...— (xn—pun)?

N
= = (5w
=1

Suppose p = (p1, pi2, - - -, un) = (0,0,...,0). Evaluate legislator’s utility
for a policy proposal of m=(1,1,...,1).
Um) = U(1,1,...,1)
= —(1-02—-(1-02—...—(1-0)?
N

= > 1=-N
j=1
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Regression Models and Randomized Treatments
Often we administer randomized experiments:

Justin Grimmer (Stanford University)

o F
Methodology |



Regression Models and Randomized Treatments
Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and
wonder if individual / turns out to vote, Vote;

o F
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Regression Models and Randomized Treatments
Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and
wonder if individual / turns out to vote, Vote;

- T =1 (treated): voter receives mobilization

o F
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Regression Models and Randomized Treatments
Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and
wonder if individual 7 turns out to vote, Vote;

- T =1 (treated): voter receives mobilization

- T =0 (control): voter does not receive mobilization

o F
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Regression Models and Randomized Treatments

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and
wonder if individual 7 turns out to vote, Vote;

- T =1 (treated): voter receives mobilization
- T =0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x> is a participant's
age:
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Regression Models and Randomized Treatments

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and
wonder if individual 7 turns out to vote, Vote;

- T =1 (treated): voter receives mobilization
- T =0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x> is a participant's
age:

f( T,Xz) = Pr(Vote; = 1|T,X2)
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Regression Models and Randomized Treatments

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and
wonder if individual 7 turns out to vote, Vote;

- T =1 (treated): voter receives mobilization
- T =0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x> is a participant's
age:

f( T,Xz) = Pr(Vote; = 1|T,X2)
= Po+B1T + Boxo
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Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and
wonder if individual 7 turns out to vote, Vote;

- T =1 (treated): voter receives mobilization
- T =0 (control): voter does not receive mobilization
Suppose we find the following regression model, where x> is a participant's
age:
f( T,Xz) = Pr(Vote; = 1|T,X2)
= Pot+ 5T+ faxe

We can calculate the effect of the experiment as:
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Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and
wonder if individual 7 turns out to vote, Vote;

- T =1 (treated): voter receives mobilization
- T =0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x> is a participant's
age:

f(T,Xz) = Pr(Vote,-:1|T,x2)
= Po+B1T + Boxo

We can calculate the effect of the experiment as:

f(T=1,x)—f(T=0,x) = Lo+ P11+ Baxo — (Bo + $10 + fax2)
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Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and
wonder if individual 7 turns out to vote, Vote;

- T =1 (treated): voter receives mobilization
- T =0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x> is a participant's
age:

f(T,Xz) = Pr(Vote,-:1|T,x2)
= Po+B1T + Boxo

We can calculate the effect of the experiment as:

f(T=1,%)—f(T=0,x) = Bo+ P11+ Baxz — (o + 510 + f2x2)
= Bo—Po+ (1 —0)+ B2(x2 — x2)
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Regression Models and Randomized Treatments

Often we administer randomized experiments:
The most recent wave of interest began with voter mobilization, and
wonder if individual 7 turns out to vote, Vote;

- T =1 (treated): voter receives mobilization
- T =0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x> is a participant's
age:

f(T,Xz) = Pr(Vote,-:1|T,x2)
= Po+B1T + Boxo

We can calculate the effect of the experiment as:

f(T=1,%)—f(T=0,x) = Bo+ P11+ Baxz — (o + 510 + f2x2)
= Bo—Po+ (1 —0)+ B2(x2 — x2)
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Multivariate Derivative

Definition

Suppose f : X — R, where X C R". f(x) = f(x1,%,...,xn). If the
limit,

0 0

8_x,~f(x0) = % (X01, X025 - - - s X0is X0i415 - - - » XON)

~ lim f(xo1, X02, - - -, X0;i + h, ... xon) — f(x01, X02,
h—0 h

exists then we call this the partial derivative of f with respect to x; at the value
X0 = (Xo1, X02; - - - s XON)-

...,Xo,',...,XQN)

o F
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Rules for Taking Partial Derivatives

Partial Derivative: %(x,)
Xi
- Treat each instance of x; as a variable that we would differentiate
before
- Treat each instance of x_; = (X1, X2, X3, ..., Xj—1, Xji+1,---,Xn) @S a
constant
o <& = E z 9ace
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Example Partial Derivatives

f(x)

= f(Xl, X2)
= xX1+x
Partial derivative, with respect to x; at (xo1, x02)
Of (x1,x2)
Ix1 |(X01,X02) = 1+ 0|X01,X02
=1

Justin Grimmer (Stanford University)
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Example Partial Derivatives

f(x)

f(le X2, X3)

x12 log(x1) + x2x1x3 + x32

Justin Grimmer (Stanford University)
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Example Partial Derivatives

f(x) =

f(le X2, X3)

x12 log(x1) + x2x1x3 + x32

What is the partial derivative with respect to x;7?
xo = (X01, X02, X03)-

Evaluated at

of (x 1
8—>(<1)|X° = 2xqlog(x1) + X12x_1 + x2X3/x,

2x01 log(x01) + Xo1 + X02%03

Justin Grimmer (Stanford University)
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Example Partial Derivatives

f(X) f(X17 X2, X3)
X3¢ log(x1) + xax1x3 + X3

What is the partial derivative with respect to x17 x»7
xo = (o1, X02, X03)-

Evaluated at
Of (x)
O—XQIXO X1X3|xq

Xp1X03

Justin Grimmer (Stanford University)
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Example Partial Derivatives

f(X) = I‘T(Xl7 X2, X3)

= x?log(x1) + xox1x3 + X3

What is the partial derivative with respect to x17 x»? x37 Evaluated at
X0 = (Xo01, X02, X03)-

of (x
8%3)"(0 = x1x2 + 2x3|x,

= Xo1X02 + 2X03
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Rate of Change, Linear Regression

Suppose we regress Approval; rate for Obama in month i on Employ; and
Gas;. We obtain the following model:

Approval;

0.8 — 0.5Employ; — 0.25Gas;

We are modeling Approval; = f(Employ;, Gas;). What is partial derivative
with respect to employment?

Of (Employ;, Gas;)
OEmploy;

-0.5

Justin Grimmer (Stanford University)
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Gradient

Definition
Suppose f : X — R with X C R" is a differentiable function. Define the
gradient vector of f at xo, Vf(xg) as,

- af(Xo) 8f(X0) 8f(X0) 8f(x0)
Vi(xo) = ( Ox1 = Ox = Ox3 T 0Ox,

- The gradient points in the direction that the function is increasing in
the fastest direction

- We'll use this to do optimization (both analytic and computational)
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Example Gradient Calculation

Suppose

f(x) = flxa,x,....xn)
= X12-|-X22+...-|-X3

oy
i=1
Then V£(x*) is
VIi(x*) = (2x{,2x5,...,2x})
So if x* =(3,3,...,3) then

Vi(x*) = (2%3,2%3,...,2%3)
~ (6,6,....6)
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Second Partial Derivative

Definition

Suppose f : X — R where X C R" and suppose that
Then we define,

6f(x1gf(,"”’x") exists.
O’f(x) 0 [0f(x)
oxj0x; — Ox; \ 0x;
- Second derivative could be with respect to x; or with some other
variable x;

- Nagging question: does order matter?

Justin Grimmer (Stanford University)
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Second Partial Derivative: Order Doesn't Matter

Theorem

02 .
0x;0x; flx

Young's Theorem Let f : X — R with X C R" be a twice differentiable
function on all of X. Then for any i, j, at all x* € X,

2 .
= aon &

Justin Grimmer (Stanford University)
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Second Order Partial Derivates

f(x) = xx
Then,

82 )
DO f(x) 2x;

82
8X18X2 f(X) = 4X1X2

82 )
8)(28)(2 f(x) 2X1
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Hessians

Definition

Suppose f : X — Rt , X C R", with f a twice differentiable function. We

will define the Hessian matrix as the matrix of second derivatives at
x*e X,

>*f 9*f
8X128x1 (X*) 8X126x2 ( *) Tt Ox10Xn (X*)
SOF_(x%) (x*) ﬁ( x*)
H ( f) (X*) — 8X28X'1 8X28X2 8X28X7
Of . 62f . 821‘.
OxpOx1 (X*) OxpOxp ( *) T Oxp0Xn (X*)

- Hessians are symmetric
- They describe curvature of a function (think, how bended)

- Will be the basis for second derivative test for multivariate
optimization

Justin Grimmer (Stanford University) Methodology |



An Example
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An Example

Suppose f : R3 — R, with
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An Example

Suppose f : R3 — R, with

f(Xl, X27X3)
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An Example
Suppose f : R3 — R, with
f(X17X27X3)

X1 X0 X3

VF(x) = (2xx3x3,2x3x0x3, 2x2 %3, x3)
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An Example

Suppose f : R3 — R, with

f(x1,x,x3) =

XX
2.2 7.2 2582
Vi(x) = (2x1x3x3, 2X{ X0X3, 2X7 X5, X3)

H(f)(x)

2
2x5

2 2 2
x5 Axixoxs  Axix5x3
= dx1x0 x32 2x12 x\%
4xq X22 X3 4Xf X2X3

4X12 X2X3

Justin Grimmer (Stanford University)
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Functions with Multidimensional Codomains

Definition

Suppose f : R™ — R". We will call f a multivariate function. We will
commonly write,

?(X)
flx) = 2(x)

f,,(.x)

Justin Grimmer (Stanford University)
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Example Functions
Suppose f : R — R?,

f(t) = (2.V(1)
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Example Functions

Suppose f : R? — R2 defined as

rcos@
f(r.0) = (rsin 9)

Justin Grimmer (Stanford University)
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Example Functions

Suppose we have some policy x € ®M. Suppose we have N legislators
where legislator i has utility

M

> (g — pi)?

j=1

Ui(x) =
We can describe the utility of all legislators to the proposal as

Zjl\il —(x — Mlj)2
) = > *(’.9' — o))

M-

j=1 (XJ - :U’NJ')2

Justin Grimmer (Stanford University)
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Jacobian

Definition

Suppose f : X — R", where X C R™, with f a differentiable function.

Define the Jacobian of f at x as

J(F)(x) =

of

1

Ot
X1

o
on,

Oxp

of
X2

Justin Grimmer (Stanford University)
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Example of Jacobian

rcos@
f(r.0) = (rﬂn@)
—rgnﬁ)

a0 = (g

sin 6

Justin Grimmer (Stanford University)
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Implicit Functions and Differentiation
We have defined functions explicitly

Y = f(x)

We might also have an implicit function:

2 2
e 4
i
n
© 4
- 3
n
3 4
T
<
=,
T T T T
-1.0 -0.5 0.0 0.5 1.0
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Implicit Function Theorem (From Avi Acharya’s Notes)
Definition

Suppose X CR™ and Y C R. Let f : XU Y — R be a differentiable
function (with continuous partial derivatives). Let (x*,y*) € X U'Y such

that
of (x*, y*)
Oy 7 0
f(x*,y*) = 0

y
[m] = =
Justin Grimmer (Stanford University) Methodology |
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Implicit Function Theorem (From Avi Acharya's Notes)
Definition

Suppose X CR™ and Y C R. Let f : XU Y — R be a differentiable

function (with continuous partial derivatives). Let (x*,y*) € X U'Y such
that

of (x*, y*)
Oy 7 0
fix*,y*) = 0

Then there exists B C R" such that there is a differentiable function
g : B — R such that x* € B then g(x*) = y* and f(x,g(x)) =0. The
derivative of g for x € B is given by

of

g _ o5
. of
ax, 5

it
<

Justin Grimmer (Stanford University) Methodology |
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Example 1: Implicit Function Theorem

Suppose that the equation is

1 X2+ 2
0 = xX2+y°—1
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Example 1: Implicit Function Theorem

Suppose that the equation is
X2+ y2
x2+y?—1

y =

V1-—x2ify>0
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Example 1: Implicit Function Theorem

Suppose that the equation

is

= X242
0 = xX2+y°—1

y = V1-x2ify>0

y =

—V1-x2ify<0
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Example 1: Implicit Function Theorem
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Example 1: Implicit Function Theorem

of
dx
of
dy
of
dy

Justin Grimmer (Stanford University)
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2y =21—-x2ify >0

2y = =2

Methodology |

1-x2ify<0



Example 1: Implicit Function Theorem

of
Ix
of
dy
of
dy
0g(x)

Ox [

Justin Grimmer (Stanford University)

2x

2y =21—-x2ify >0

2y = =2

_OfJox
of Jay
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Example 1: Implicit Function Theorem

of
Ix
of
dy
of
dy
0g(x)

Ox [

Justin Grimmer (Stanford University)

2x
2y =21—-x2ify >0
2y = —21—-x2ify <0
_OfJox
af [dy
2
—2X0— X0 ify >0
4 1-x2

Methodology |



Example 1: Implicit Function Theorem

of
Ix
of
dy
of
dy
0g(x)

Ox [

Justin Grimmer (Stanford University)

2x
2y =21—-x2ify >0

2y = —21—-x2ify <0

_OfJox
of /Dy
_2x I ify>0
2y \/1—x8
2
y 1/1—X3
o F
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Implicit Function Theorem: Frequently Asked Questions

- Q: What's the deal with the implicit function theorem failing?

Justin Grimmer (Stanford University)
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Implicit Function Theorem: Frequently Asked Questions

- Q: What's the deal with the implicit function theorem failing?
- A: Consider our proposed solution

y = V1-—x2

dy X

% V1-x2
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Implicit Function Theorem: Frequently Asked Questions

- Q: What's the deal with the implicit function theorem failing?
- A: Consider our proposed solution

y = V1-—x2
8_y L X
ox

V1 — x2
As x — 1 or x — —1 this derivative diverges
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Implicit Function Theorem: Frequently Asked Questions

- Q: What's the deal with the implicit function theorem failing?
- A: Consider our proposed solution

y = V1-—x2

dy X
Ox Vv1—x?

As x — 1 or x — —1 this derivative diverges
The intuition from the Implicit Function Theorem is that any function
g(x) = y there would need an “infinite” slope.
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Implicit Function Theorems: Frequently Asked Questions
- Q: What's the deal with the following equation?:
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Implicit Function Theorems: Frequently Asked Questions
- Q: What's the deal with the following equation?:

dg(x) _  Of/ox

ox  0Of/dy
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Implicit Function Theorems: Frequently Asked Questions
- Q: What's the deal with the following equation?:

dg(x) _  Of/ox
ox  0Of/dy
- A: Consider, first, the following example:
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Implicit Function Theorems: Frequently Asked Questions
- Q: What's the deal with the following equation?:

Jg(x)

_ OfJox
ox N

of /0y
- A: Consider, first, the following example:

0 —

f(x,y)

Justin Grimmer (Stanford University)
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Implicit Function Theorems: Frequently Asked Questions
- Q: What's the deal with the following equation?:

Jg(x)

_ OfJox
ox N

of /0y
- A: Consider, first, the following example:

= f(x,y)
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Implicit Function Theorems: Frequently Asked Questions
- Q: What's the deal with the following equation?:

Jg(x)

_ OfJox
ox N

of /0y
- A: Consider, first, the following example:

- f(X,y)
0 = x>—y
Oy
=7 _ 9
Ox X

Justin Grimmer (Stanford University)

Methodology |



Implicit Function Theorems: Frequently Asked Questions
- Q: What's the deal with the following equation?:

dg(x) _  Of/ox
ox  0Of/dy

- A: Consider, first, the following example:

0 = f(x,y)
0 = x° —y
oy
5 = 2x
of(x,y)/0x _ 2x _ Oy
of(x,y)/0y -1 0Ox
o S =, «E» =
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Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

dg(x) _  Of/ox
ox  Of/oy

- A: Consider, first, the following example:

0 = f(x,y)
0 = x° —y
oy
a = 2x
of(x,y)/0x _ 2x _ 0Oy
of(x,y)/dy -1 0Ox

In this example, the negative sign is “moving things to the other side”.

u]

8
I
i

it
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Implicit Function Theorems: Frequently Asked Questions

- Q: What's the deal with the following equation?:

0g(x) _ Of JOx
Ox of /0y

- A: Consider, first, the following example:

0 = f(x,y)
0 = x° —y
oy
a = 2x
of(x,y)/0x _ 2x _ 0Oy
of(x,y)/dy -1 0Ox

In this example, the negative sign is “moving things to the other side”.
In general, the negative sign will capture that we want to measure the
compensatory behavior of the function: how y moves in response to some

X; along a level curve
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Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual / earns pre-tax income y; > 0.
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Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual / earns pre-tax income y; > 0.
Total income Y =>"" . y;
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Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual / earns pre-tax income y; > 0.
Total income Y =>"" . y;

Per capita income: y = Y/n
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Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual / earns pre-tax income y; > 0.
Total income Y =>"" . y;

Per capita income: y = Y/n
Individuals pay a proportional tax t € (0,1)
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Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual / earns pre-tax income y; > 0.
Total income Y =>"" . y;

Per capita income: y = Y/n

Individuals pay a proportional tax t € (0,1)
Suppose:
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Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual / earns pre-tax income y; > 0.
Total income Y =>"" . y;

Per capita income: y = Y/n

Individuals pay a proportional tax t € (0,1)
Suppose:

Uty)) = yi(l—t°) +ty

Justin Grimmer (Stanford University) Methodology |



Example 2: Implicit Function Theorem (From Jim Fearon)

An individual's optimal tax rate is:

8l-jl'(tu yl) =
—— = =2yt
ot yit+y
0 = 2yt'+y
y «
2 = #
2y; '
Checking the second derivative:
an(tv yl)
AL AT A . 1Y
0%t Y

Justin Grimmer (Stanford University) Methodology |



Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function
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Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function
Define Marginal rate of Substitution as
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Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function
Define Marginal rate of Substitution as

MRS _AU(t,y)/ot Y (t)

Justin Grimmer (Stanford University)

o F
Methodology |



Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function
Define Marginal rate of Substitution as

oU(t,y;)/ot _ 0Y(t)
MRS = 30Ut yijoy: ~ ot
oU(t,y;)/ot = =2yit+y
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Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function
Define Marginal rate of Substitution as

MRS _AU(t,y)/ot Y (t)

8U(t,y,-)/8t =

—2yit+y
oU(t,yi/dyi

= (1-1%)

Justin Grimmer (Stanford University)
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Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function
Define Marginal rate of Substitution as

oU(t,y;)/ot _ 0Y(t)
MRS = Ut iy o
oU(t,y)/0t = =2yt+y
oU(t,yi/dy; = (1—1t%)
_ 2yit—y
MRS = Y

Justin Grimmer (Stanford University)
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Example 2: Implicit Function Theorem (From Jim Fearon)

Tax
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Multivariate Integration

Suppose we have a function f : X — R1,
with X C R2.
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Multivariate Integration

Suppose we have a function f : X — R!
with X C R2.

We will integrate a function over an area.
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Multivariate Integration

Suppose we have a function f : X — R1,
with X C R2.

We will integrate a function over an area.
Area under function.
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Multivariate Integration

Suppose we have a function f : X — R1,
with X C R2.

We will integrate a function over an area.
Area under function.

Suppose that area, A, is in 2-dimensions
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Multivariate Integration

Suppose we have a function f : X — R,

o
with X C R2. ]
We will integrate a function over an area. o
Area under function. °
Suppose that area, A, is in 2-dimensions " 9]

- AZ{X,yZXE[O,l],yE[O,].]} $7
?,

u]
8

I
i
it
S
»
i)
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Multivariate Integration

Suppose we have a function f : X — R,
with X C R2.

We will integrate a function over an area.
Area under function.

Suppose that area, A, is in 2-dimensions

- AZ{X,yZXE [071]7}/6 [071]}
-A={xy: X +y* <1}

Justin Grimmer (Stanford University) Methodology |
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Multivariate Integration

Suppose we have a function f : X — R,

o
with X C R2. N
We will integrate a function over an area. o]
Area under function. ™
Suppose that area, A, is in 2-dimensions o

- A={x,y:x€]0,1],y €[0,1]} |

-A={x,y: x> +y? <1} il

'-10 0.0 10 2.0
‘A:{X7y1X<y,X,y€(072)} X
=} = = E £ DA

Justin Grimmer (Stanford University) Methodology |



Multivariate Integration

Suppose we have a function f : X — R1,
with X C R2.

We will integrate a function over an area.
Area under function.

Suppose that area, A, is in 2-dimensions

- A:{X,yZXG [0?1]?}/6 [071]}
- A={xy:x*+y* <1}

—A:{X,y1X<y,X,y€(0,2)} . .
How do calculate the area under the function over these regions?

Justin Grimmer (Stanford University) Methodology |



Multivariate Integration
Definition

Suppose f : X — R where X C R". We will say that f is integrable over

A C X if we are able to calculate its area with refined partitions of A and
we will write the integral | = [, f(x)dA

] = =
Justin Grimmer (Stanford University) Methodology |
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Multivariate Integration

Definition
Suppose f : X — R where X C R". We will say that f is integrable over

A C X if we are able to calculate its area with refined partitions of A and
we will write the integral | = [, f(x)dA

That's horribly abstract. There is an extremely helpful theorem that makes
this manageable.
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Multivariate Integration

Definition
Suppose f : X — R where X C R". We will say that f is integrable over

A C X if we are able to calculate its area with refined partitions of A and
we will write the integral | = fA x)dA

That's horribly abstract. There is an extremely helpful theorem that makes
this manageable.

Theorem

Fubini's Theorem Suppose A = [a1, b1] X [a2, ba] X ... X [ap, bs] and that
f: A— R is integrable. Then

bn n—1 by
/f(X / / / / dX1dX2 dX,, 1dX,,

Justin Grimmer (Stanford University) Methodology |



Multivariate Integration Recipe

bn bn_1 by by
/ f(x)dA = / / / / f(x)dxidxa . .. dx,—1dx,
A an an—1 az ai

Justin Grimmer (Stanford University)
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Multivariate Integration Recipe

bn bn_1 by by
/ f(x)dA = / / / / f(x)dxidxa . .. dx,—1dxy
A an an—1 az ai

1) Start with the inside integral x; is the variable, everything else a
constant
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Multivariate Integration Recipe

by b1 by by
/ f(x)dA = / / / / f(x)dxidxa . .. dxy—1dxy
A an an—1 az ai

1) Start with the inside integral x; is the variable, everything else a
constant

2) Work inside to out, iterating
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Multivariate Integration Recipe

bn b,,71 b2 bl
/ f(x)dA = / / . / / f(x)dxidxa . .. dx,—1dx,
A dan an—1 az ai

1) Start with the inside integral x; is the variable, everything else a
constant

2) Work inside to out, iterating

3) At the last step, we should arrive at a number

Justin Grimmer (Stanford University) Methodology |



Intuition: Three Dimensional Jello Molds, a discussion
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Multivariate Uniform Distribution

Suppose f : [0,1] x [0,1] — R and f(x1,x2) = 1 for all
x1,% € [0,1] % [0,1]. What is [5 [ f(x)dxidx»?

1 1 1 1
//f(X)dX]_dXQ = //1dX1dX2
0 JO 0 JO
1
= /X1|(1)dX2
0
1
- / (1 - 0)dso
0

1
= / 1dX2
0

xl§
1
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Example 2

Suppose f : [a1, b1] X [a2, ba] — R is given by

f(Xl,XQ) =

X1X2

Justin Grimmer (Stanford University)
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Example 2
Suppose f : [a1, b1] X [a2, ba] — R is given by

f(Xl, X2)
Find [22 [ (x1, x2)dxy dxo

X1X2
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Example 2
Suppose f : [a1, b1] X [a2, ba] — R is given by

f(Xl, X2)
Find [22 [ (x1, x2)dxy dxo

X1X2

bz b1 b2 bl
/ / f(x1,x2)dxidxa = / / Xo X1 dxq dxo
ar a az a
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Example 2

Suppose f : [a1, b1] X [a2, ba] — R is given by

f(Xl, X2)

= X1X2

Find [22 [ (x1, x2)dxy dxo

bz b1 bl
/ / f(x1, x2)dxidxo / / Xox1 dxq dxo
a Jap

= —X2| 1C/Xg
[ 3
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Example 2

Suppose f : [a1, b1] X [a2, ba] — R is given by

f(Xl, X2)

= X1X2

Find [22 [ (x1, x2)dxy dxo

bz b1 bl
/ / f(x1,x2)dxidxa = / / Xox1 dxq dxo
a Jap

= —X2| 1C/Xg
[, 3

2 .2
by — af

by
1 > /a Xodxo

2
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Example 2

Suppose f : [a1, b1] X [a2, ba] — R is given by

f(Xl, X2)

= X1X2

Find [22 [ (x1, x2)dxy dxo

bz b1 bl
/ / f(x1,x2)dxidxa = / / Xox1 dxq dxo
a Jap

= —X2| 1C/Xg
[, 3

2 .2
by — af

by
= > /a Xpdxo

2
b2

- a X_22|b2
N 2 2 '@

o F
Methodology |
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Example 2
Suppose f : [a1, b1] X [a2, ba] — R is given by

f(x1,x2) = x1x

Find [22 [ (x1, x2)dxy dxo

bz b1 bl
/ / f(x1,x2)dxidxa = / / Xox1 dxq dxo
a Jap
= - X2 ! ng
/a ) 2 | al

p2 — 32 by
= L / Xodxo
2 o

_ b% B a% X_22|b2
- 2 2 %2

2 242 2
by — aj by — a3

2 2
&

[m]
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Example 3: Exponential Distributions
Suppose f : §R%r — R and that

Justin Grimmer (Stanford University)
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Example 3: Exponential Distributions
Suppose f : §R%r — R and that

Find:
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f(X17 X2) =
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Example 3: Exponential Distributions
Suppose f : §R%r — R and that

f(x1,x2) = 2exp(—x1)exp(—2x2)

Find:

/000 /000 f(x1,x2) =
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Example 3: Exponential Distributions
Suppose f : §Ri — R and that

f(x1, %) = 2exp(—x1)exp(—2x)

Find:

/ / f(x1,%) = 2/ / exp(—x1) exp(—2x2) dxy dxz
o Jo o Jo
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Example 3: Exponential Distributions
Suppose f : §R3_ — R and that

f(x1, %) = 2exp(—x1)exp(—2x)

Find:

/ / f(x1,%) = 2/ / exp(—x1) exp(—2x2) dxy dxz
o Jo o Jo

2/ exp(—xl)dxl/ exp(—2x;)dxz
0 0
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Example 3: Exponential Distributions
Suppose f : §R3_ — R and that

f(x1, %) = 2exp(—x1)exp(—2x)

Find:

/ / f(x1,%) = 2/ / exp(—x1) exp(—2x2) dxy dxz
o Jo o Jo

2/ exp(—xl)dxl/ exp(—2x;)dxz
0 0

= 2= (X))~ expl -2 )
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Example 3: Exponential Distributions
Suppose f : §R3_ — R and that

f(x1, %) = 2exp(—x1)exp(—2x)

Find:

/ / f(x1,%) = 2/ / exp(—x1) exp(—2x2) dxy dxz
o Jo o Jo

= 2/ exp(—xl)dxl/ exp(—2xz)dxz
0 0

= 2= (X))~ expl -2 )

: 1. 1
2 {(— X1I|_r>noo exp(—x1) + 1)(—5 lel_r>noO exp(—2x) + 5)

u]
8
I
i
it
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Example 3: Exponential Distributions
Suppose f : §R3_ — R and that

f(x1, %) = 2exp(—x1)exp(—2x)

Find:

/000 /Ooo f(x1,x2) =

Justin Grimmer (Stanford University)

2/000 /000 exp(—x1) exp(—2xz)dxy dxz

2/000 exp(—x1)dxy /000 exp(—2xz)dxz

2~ exp(~x)[5") (5 (- 2)[5")

2 (- Jim exp(-x) + (- fim_exp(-25) + 3)
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Example 3: Exponential Distributions
Suppose f : §R3_ — R and that

f(x1, %) = 2exp(—x1)exp(—2x)

Find:

/000 /Ooo f(x1,x2) =

Justin Grimmer (Stanford University)
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Challenge Problems

1) Find fol fol X1 + Xxodxy dxo
2) Demonstrate that

b ra a rb
/ / X1 — 3X2 dX1 dX2 = / / X1 — 3X2 dX2 dX1
0 Jo 0 JoO

Justin Grimmer (Stanford University)

Methodology |



More Complicated Bounds of Integration

So far, we have integrated over rectangles. But often, we are interested in
more complicated regions

o
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1.0

0.0
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More Complicated Bounds of Integration

So far, we have integrated over rectangles. But often, we are interested in
more complicated regions

o
N

1.0

0.0

-1.0 0.0 1.0 2.0
X

How do we do this?
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Example 4: More Complicated Regions

Suppose f :[0,1] x [0,1] — R, f(x1,x2) = x1 + x2. Find area of function
where x; < x».

Trick: we need to determine bound. If x; < x2, x; can take on any value

from 0 to x»
1 X2
// f(x) = / / X1 + xodxy dxo
x1<x2 0 0
1 1.2
= / X2X1|6(2dX2+/ ﬁ32
0 0o 2
1 1.2
= /x22de+/ l
0 0o 2
3

3
X2

Justin Grimmer (Stanford University) Methodology |



Consider the same function and let's switch the bounds.

...

Justin Grimmer (Stanford University)

1 1
/ / x1 + xodxodxy
0 X1
1 1.2
1 X2
/ X1X2|X1 —l—/ ? dexl
0 0

2 3
X1 X1, X1 X
2|o 3|o'1‘2 6|O
1 1+1 1
2 3 2 6
3
1-=
6
1
2
] = =
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Example 5: More Complicated Regions

Suppose f[0,1] x [0,1] — R, f(x1,x2) = 1. What is the area of
x1 +xo < 17 Where is x; + x» < 1?7 Where, x; <1 —x

1 1—xp
// f(X)dX = / / ].dX1X2
x1+x2<1 0 JO
1
= / X1|é_X2dX2
0

- /01(1 — x2)dxa

2
X
= ol — 72|<1)
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