
Math Camp

Justin Grimmer

Associate Professor
Department of Political Science

Stanford University

September 9th, 2016

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 1 / 61

Where We’ve Been, Where We’re Going

Calculus: Analyze behavior of functions on real line

- Convergence

- Differentiation

- Integration

Linear Algebra

- Data stored in matrices

- Higher dimensional spaces

- complex world, condition on many factors
- flood of big data, store in many dimensions

- Linear Algebra:

- Algebra of matrices
- Geometry of high dimensional space
- Calculus (multivariable) in many dimensions

Very important for regression(!!!!)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 2 / 61

Points + Vectors

- A point in <1

- 1
- π
- e

- An ordered pair in <2 = <× <
- (1, 2)
- (0, 0)
- (π, e)

- An ordered triple in <3 = <× <× <
- (3.1, 4.5, 6.11132)

...

- An ordered n-tuple in <n = <× <× . . .×<
- (a1, a2, . . . , an)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 3 / 61

Points and Vectors

Definition

A point x ∈ <n is an ordered n-tuple, (x1, x2, . . . , xn). The vector x ∈ <n

is the arrow pointing from the origin (0, 0, . . . , 0) to x .

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 4 / 61

One Dimensional Example

−1 −0.5 0 0.5 1

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 5 / 61

One Dimensional Example

−1 −0.5 0 0.5 1

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 5 / 61

One Dimensional Example

−1 −0.5 0 0.5 1

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 5 / 61

Two Dimensional Example

−1

−1

−0.5

−0.5

0
0

0.5

0.5

1

1

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 6 / 61

Two Dimensional Example

−1

−1

−0.5

−0.5

0
0

0.5

0.5

1

1

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 6 / 61

Two Dimensional Example

−1

−1

−0.5

−0.5

0
0

0.5

0.5

1

1

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 6 / 61

Three Dimensional Example

- (Latitude, Longitude, Elevation)

- (1, 2, 3)

- (0, 1, 0)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 7 / 61

N-Dimensional Example

- Individual campaign donation records

x = (1000, 0, 10, 50, 15, 4, 0, 0, 0, . . . , 2400000000)

- Counties have proportion of vote for Obama

y = (0.8, 0.5, 0.6, . . . , 0.2)

- Run experiment, assess feeling thermometer of elected official

t = (0, 100, 50, 70, 80, . . . , 100)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 8 / 61

Arithmetic with Vectors

Definition

Suppose u and v are vectors u, v ∈ <n,

u = (u1, u2, u3, . . . , un)

v = (v1, v2, v3, . . . , vn)

We will say u = v if u1 = v1, u2 = v2, . . . , un = vn
Define the sum of u + v as

u + v = (u1 + v1, u2 + v2, u3 + v3, . . . , un + vn)

Suppose k ∈ <. We will call k a scalar.
Define ku as the scalar product

ku = (ku1, ku2, . . . , kun)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 9 / 61

Examples

Suppose:

u = (1, 2, 3, 4, 5)

v = (1, 1, 1, 1, 1)

k = 2

Then,

u + v = (1 + 1, 2 + 1, 3 + 1, 4 + 1, 5 + 1) = (2, 3, 4, 5, 6)

ku = (2× 1, 2× 2, 2× 3, 2× 4, 2× 5) = (2, 4, 6, 8, 10)

kv = (2× 1, 2× 1, 2× 1, 2× 1, 2× 1) = (2, 2, 2, 2, 2)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 10 / 61

Properties of Arithmetic

Challenge Proofs—we can do these!

Theorem

Suppose that u, v ,w ∈ <n and k and l are scalars.

a) u + v = v + u

Proof.

u + v = (u1 + v1, u2 + v2, . . . , un + vn)

= (v1 + u1, v2 + u2, . . . , vn + un)

= v + u

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 11 / 61

Properties of Arithmetic

Challenge Proofs—we can do these!

Theorem

Suppose that u, v ,w ∈ <n and k and l are scalars.

a) u + v = v + u

Proof.

u + v = (u1 + v1, u2 + v2, . . . , un + vn)

= (v1 + u1, v2 + u2, . . . , vn + un)

= v + u

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 11 / 61

Properties of Arithmetic

Challenge Proofs—we can do these!

Theorem

Suppose that u, v ,w ∈ <n and k and l are scalars.

b) u + 0 = 0 + u = u

Proof.

u + 0 = (u1 + 0, u2 + 0, . . . , un + 0)

= (0 + u1, 0 + u2, . . . , 0 + un) = 0 + u
= (u1, u2, . . . , un)

= u

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 12 / 61

Properties of Arithmetic

Challenge Proofs—we can do these!

Theorem

Suppose that u, v ,w ∈ <n and k and l are scalars.

b) u + 0 = 0 + u = u

Proof.

u + 0 = (u1 + 0, u2 + 0, . . . , un + 0)

= (0 + u1, 0 + u2, . . . , 0 + un) = 0 + u
= (u1, u2, . . . , un)

= u

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 12 / 61

Properties of Arithmetic

Challenge Proofs—we can do these!

Theorem

Suppose that u, v ,w ∈ <n and k and l are scalars.

c) (l + k)u = l(u) + k(u)

Proof.

How can we show this?

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 13 / 61

Challenge Proofs

- Show that 1u = u
- Show that u +−1u = 0

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 14 / 61

Inner Product

Definition

Suppose u ∈ <n and v ∈ <n then define u · v ,

u · v = u1v1 + u2v2 + . . .+ unvn

=
N∑
i=1

uivi

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 15 / 61

Examples

Suppose u = (1, 2, 3) and v = (2, 3, 1). Then,

u · v = 1× 2 + 2× 3 + 3× 1

= 2 + 6 + 3

= 11

Suppose y = (y1, y2, . . . , yN) and 1 = (1, 1, 1, . . . , 1). Then,

y · 1 = y1 + y2 + . . .+ yn

=
n∑

i=1

yi

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 16 / 61

R Code

Create a vector in R

vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

R Code

Create a vector in R
vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 17 / 61

Challenge Problems

- Suppose v = (1, 4, 1, 4) and w = (4, 1, 4, 1). Calculate: v ·w
- Prove v ·w = w · v
- Super hard: prove v · v ≥ 0 and v · v = 0 if and only if v = 0.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 18 / 61

Vector Length

x_1

x_
2

- Pythogorean Theorem:
Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61

Vector Length

x_1

x_
2

a

- Pythogorean Theorem:
Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61

Vector Length

x_1

x_
2

a

b

- Pythogorean Theorem:
Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61

Vector Length

x_1

x_
2

a

b
c =

 (a^2 + b^2)^(1/2)

- Pythogorean Theorem:
Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61

Vector Length

x_1

x_
2

a

b
c =

 (a^2 + b^2)^(1/2)

- Pythogorean Theorem:
Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61

Vector Length

Definition

Suppose v ∈ <n. Then, we will define its length as

||v || = (v · v)1/2

= (v21 + v22 + v23 + . . .+ v2n)1/2

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 20 / 61

Calculating a Length

Example 1: suppose x = (1, 1, 1) .

||x || = (x · x)1/2

= (1 + 1 + 1)1/2

=
√

3

Example 2: R code for length function
len.vec<- function(x) {
p1< − sqrt(x% ∗%x)
return(p1)

}
x <- c(1,1,1)

len.vec(x)

[,1]

[1,] 1.732051

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 21 / 61

Coding Problem

Let’s calculate the length of some vectors

- Write a function to assess the length of a vector.

- Use it to calculate the length of:

- y<- c(10, 20, 30, 40)

- x<- seq(1, 1000*pi, len=1000)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 22 / 61

Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 23 / 61

Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 23 / 61

Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 23 / 61

Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 23 / 61

Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful

Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 23 / 61

Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 23 / 61

Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 23 / 61

Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 23 / 61

Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 23 / 61

Length of document:

||Doc1|| ≡
√
Doc1 ·Doc1

=
√

(1, 1, 3, . . . , 5)′(1, 1, 3, . . . , 5)

=
√

12 + 12 + 32 + 52

= 6

Cosine of the angle between documents:

cos θ ≡
(

Doc1

||Doc1||

)
·
(

Doc2

||Doc2||

)
=

7

6× 2.24
= 0.52

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 24 / 61

Length of document:

||Doc1|| ≡
√
Doc1 ·Doc1

=
√

(1, 1, 3, . . . , 5)′(1, 1, 3, . . . , 5)

=
√

12 + 12 + 32 + 52

= 6

Cosine of the angle between documents:

cos θ ≡
(

Doc1

||Doc1||

)
·
(

Doc2

||Doc2||

)
=

7

6× 2.24
= 0.52

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 24 / 61

Length of document:

||Doc1|| ≡
√
Doc1 ·Doc1

=
√

(1, 1, 3, . . . , 5)′(1, 1, 3, . . . , 5)

=
√

12 + 12 + 32 + 52

= 6

Cosine of the angle between documents:

cos θ ≡
(

Doc1

||Doc1||

)
·
(

Doc2

||Doc2||

)
=

7

6× 2.24
= 0.52

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 24 / 61

Length of document:

||Doc1|| ≡
√
Doc1 ·Doc1

=
√

(1, 1, 3, . . . , 5)′(1, 1, 3, . . . , 5)

=
√

12 + 12 + 32 + 52

= 6

Cosine of the angle between documents:

cos θ ≡
(

Doc1

||Doc1||

)
·
(

Doc2

||Doc2||

)
=

7

6× 2.24
= 0.52

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 24 / 61

Measuring Similarity

Documents in space → measure similarity/dissimilarity

What properties should similarity measure have?

- Maximum: document with itself

- Minimum: documents have no words in common (orthogonal)

- Increasing when more of same words used

- ? s(a, b) = s(b, a).

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 25 / 61

Measuring Similarity

Documents in space → measure similarity/dissimilarity
What properties should similarity measure have?

- Maximum: document with itself

- Minimum: documents have no words in common (orthogonal)

- Increasing when more of same words used

- ? s(a, b) = s(b, a).

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 25 / 61

Measuring Similarity

Documents in space → measure similarity/dissimilarity
What properties should similarity measure have?

- Maximum: document with itself

- Minimum: documents have no words in common (orthogonal)

- Increasing when more of same words used

- ? s(a, b) = s(b, a).

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 25 / 61

Measuring Similarity

Documents in space → measure similarity/dissimilarity
What properties should similarity measure have?

- Maximum: document with itself

- Minimum: documents have no words in common (orthogonal)

- Increasing when more of same words used

- ? s(a, b) = s(b, a).

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 25 / 61

Measuring Similarity

Documents in space → measure similarity/dissimilarity
What properties should similarity measure have?

- Maximum: document with itself

- Minimum: documents have no words in common (orthogonal)

- Increasing when more of same words used

- ? s(a, b) = s(b, a).

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 25 / 61

Measuring Similarity

Documents in space → measure similarity/dissimilarity
What properties should similarity measure have?

- Maximum: document with itself

- Minimum: documents have no words in common (orthogonal)

- Increasing when more of same words used

- ? s(a, b) = s(b, a).

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 25 / 61

Measuring Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2

Measure 1: Inner product

(2, 1)
′ · (1, 4) = 6

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 26 / 61

Measuring Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2

Measure 1: Inner product

(2, 1)
′ · (1, 4) = 6

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 26 / 61

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2

Problem(?): length dependent

(4, 2)
′
(1, 4) = 12

a · b = ||a|| × ||b|| × cos θ

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 27 / 61

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2

Problem(?): length dependent

(4, 2)
′
(1, 4) = 12

a · b = ||a|| × ||b|| × cos θ

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 27 / 61

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2

Problem(?): length dependent

(4, 2)
′
(1, 4) = 12

a · b = ||a|| × ||b|| × cos θ

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 27 / 61

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2

θ

Problem(?): length dependent

(4, 2)
′
(1, 4) = 12

a · b = ||a|| × ||b|| × cos θ

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 27 / 61

Cosine Similarity

cos θ: removes document length from similarity measure

cos θ =

(
a

||a||

)
·
(

b

||b||

)
(4, 2)

||(4, 2)||
= (0.89, 0.45)

(2, 1)

||(2, 1)||
= (0.89, 0.45)

(1, 4)

||(1, 4)||
= (0.24, 0.97)

(0.89, 0.45)
′
(0.24, 0.97) = 0.65

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Cosine Similarity

cos θ: removes document length from similarity measure

cos θ =

(
a

||a||

)
·
(

b

||b||

)

(4, 2)

||(4, 2)||
= (0.89, 0.45)

(2, 1)

||(2, 1)||
= (0.89, 0.45)

(1, 4)

||(1, 4)||
= (0.24, 0.97)

(0.89, 0.45)
′
(0.24, 0.97) = 0.65

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Cosine Similarity

cos θ: removes document length from similarity measure

cos θ =

(
a

||a||

)
·
(

b

||b||

)
(4, 2)

||(4, 2)||
= (0.89, 0.45)

(2, 1)

||(2, 1)||
= (0.89, 0.45)

(1, 4)

||(1, 4)||
= (0.24, 0.97)

(0.89, 0.45)
′
(0.24, 0.97) = 0.65

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Cosine Similarity

cos θ: removes document length from similarity measure

cos θ =

(
a

||a||

)
·
(

b

||b||

)
(4, 2)

||(4, 2)||
= (0.89, 0.45)

(2, 1)

||(2, 1)||
= (0.89, 0.45)

(1, 4)

||(1, 4)||
= (0.24, 0.97)

(0.89, 0.45)
′
(0.24, 0.97) = 0.65

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Cosine Similarity

cos θ: removes document length from similarity measure

cos θ =

(
a

||a||

)
·
(

b

||b||

)
(4, 2)

||(4, 2)||
= (0.89, 0.45)

(2, 1)

||(2, 1)||
= (0.89, 0.45)

(1, 4)

||(1, 4)||
= (0.24, 0.97)

(0.89, 0.45)
′
(0.24, 0.97) = 0.65

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Cosine Similarity

cos θ: removes document length from similarity measure

cos θ =

(
a

||a||

)
·
(

b

||b||

)
(4, 2)

||(4, 2)||
= (0.89, 0.45)

(2, 1)

||(2, 1)||
= (0.89, 0.45)

(1, 4)

||(1, 4)||
= (0.24, 0.97)

(0.89, 0.45)
′
(0.24, 0.97) = 0.65

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Cosine Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2
θ

cos θ: removes document length from similarity measure

Project onto Hypersphere
cos θ → Inverse distance on Hypersphere
von Mises Fisher distribution : distribution on sphere surface

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Cosine Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2
θ

cos θ: removes document length from similarity measure
Project onto Hypersphere

cos θ → Inverse distance on Hypersphere
von Mises Fisher distribution : distribution on sphere surface

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Cosine Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2
θ

cos θ: removes document length from similarity measure
Project onto Hypersphere
cos θ → Inverse distance on Hypersphere

von Mises Fisher distribution : distribution on sphere surface

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Cosine Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d
2
θ

cos θ: removes document length from similarity measure
Project onto Hypersphere
cos θ → Inverse distance on Hypersphere
von Mises Fisher distribution : distribution on sphere surface

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 28 / 61

Matrices

Definition

A Matrix is a rectangular array of numbers

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


If A has m rows n columns we will say that A is an m × n matrix.
Suppose X and Y are m × n matrices. Then X = Y if xij = yij for all i
and j

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 29 / 61

Simple Examples

I =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


If I is an n × n matrix we will call an identity matrix.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 30 / 61

Simple Examples

X =

(
1 2 3
2 1 4

)
X is an 2× 3 matrix

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 31 / 61

Matrix Algebra

Definition

Suppose X and Y are m × n matrices. Then define

X + Y =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

+


y11 y12 . . . y1n
y21 y22 . . . y2n

...
...

. . .
...

ym1 ym2 . . . ymn



=


x11 + y11 x12 + y12 . . . x1n + y1n
x21 + y21 x22 + y22 . . . x2n + y2n

...
...

. . .
...

xm1 + ym1 xm2 + ym2 . . . xmn + ymn



Justin Grimmer (Stanford University) Methodology I September 9th, 2016 32 / 61

Matrix Algebra

Definition

Suppose X is an m × n matrix and k ∈ <. Then,

kX =


kx11 kx12 . . . kx1n
kx21 kx22 . . . kx2n

...
...

. . .
...

kxm1 kxm2 . . . kxmn


Prove theorems about this tonight

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 33 / 61

R Code

Using matrix command mat1<- matrix(NA, nrow=3, ncol=2) ##

Creating matrix

mat1[1,1]<- 1

mat1[1,2]<- 2

mat1[2,1]<- 1

mat1[2,2]<- 4

mat1[3,1]<- exp(1)

mat1[3,2]<- 4

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 34 / 61

R Code

Using rbind
r1<- c(1, 2)

r2<- c(1, 4)

r3<- c(exp(1) , 4)

mat1<- rbind(r1, r2, r3)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 34 / 61

R Code

Using cbind
c1<- c(1, 1, exp(1))

c2<- c(2, 4, 4)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 34 / 61

R Code

dim(mat1)

[1] 3 2

mat1 + mat1

[,1] [,2]

[1,] 2.000000 4

[2,] 2.000000 8

[3,] 5.436564 8

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 34 / 61

R Code

What if the matrices are of different dimension
mat1<- matrix(1, nrow=3, ncol=2)

mat2<- matrix(2, nrow=10, ncol=3)

mat1 + mat2

Error in mat1 + mat2 : non-conformable arrays

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 35 / 61

Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



X
′

=


x11 x21 . . . xm1

x12 x22 . . . xm2
...

... ¨
...

x1n x2n . . . xmn


If X is an m × n then X

′
is n ×m.

If X = X
′

then we say X is symmetric.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 36 / 61

Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



X
′

=


x11 x21 . . . xm1

x12 x22 . . . xm2
...

... ¨
...

x1n x2n . . . xmn


If X is an m × n then X

′
is n ×m.

If X = X
′

then we say X is symmetric.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 36 / 61

Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



X
′

=


x11

x21 . . . xm1

x12

x22 . . . xm2

...

... ¨
...

x1n

x2n . . . xmn



If X is an m × n then X
′

is n ×m.
If X = X

′
then we say X is symmetric.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 36 / 61

Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



X
′

=


x11 x21

. . . xm1

x12 x22

. . . xm2

...
...

¨
...

x1n x2n

. . . xmn



If X is an m × n then X
′

is n ×m.
If X = X

′
then we say X is symmetric.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 36 / 61

Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



X
′

=


x11 x21 . . .

xm1

x12 x22 . . .

xm2

...
... ¨

...

x1n x2n . . .

xmn



If X is an m × n then X
′

is n ×m.
If X = X

′
then we say X is symmetric.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 36 / 61

Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



X
′

=


x11 x21 . . . xm1

x12 x22 . . . xm2
...

... ¨
...

x1n x2n . . . xmn



If X is an m × n then X
′

is n ×m.
If X = X

′
then we say X is symmetric.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 36 / 61

Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



X
′

=


x11 x21 . . . xm1

x12 x22 . . . xm2
...

... ¨
...

x1n x2n . . . xmn


If X is an m × n then X

′
is n ×m.

If X = X
′

then we say X is symmetric.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 36 / 61

Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



X
′

=


x11 x21 . . . xm1

x12 x22 . . . xm2
...

... ¨
...

x1n x2n . . . xmn


If X is an m × n then X

′
is n ×m.

If X = X
′

then we say X is symmetric.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 36 / 61

Matrix Transpose

Example 1: X =

(
4 1 2
1 2 3

)
then X

′
=

4 1
1 2
2 3


In R

mat1<- matrix(c(1, 2, 3), nrow=3, ncol=2)

mat2<- t(mat1)

dim(mat1)

3 2

dim(mat2)

2 3

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 37 / 61

Matrix Multiplication
How do we multiply matrices?

Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4


=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition

Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4


=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4


=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)

We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4


=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4


=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4


=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4


=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3

1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4



=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4

1× 1 + 1× 3 1× 2 + 1× 4



=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3

1× 2 + 1× 4



=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4



=

(
4 6
4 6

)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication
How do we multiply matrices?
Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4


=

(
4 6
4 6

)
Justin Grimmer (Stanford University) Methodology I September 9th, 2016 38 / 61

Matrix Multiplication

Definition

Suppose X is an m × n matrix and Y is an n × k matrix. Then define the
matrix A an m × k matrix that obtains from multiplying X and Y as,

A = XY

=


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



y11 y12 . . . y1k
y21 y22 . . . y2k

...
...

. . .
...

yn1 yn2 . . . ynk


=

 x11y11 + x12y21 + . . .+ x1nyn1 . . . x11y1k + x12y2k + . . .+ x1nynk
...

. . .
...

xm1y11 + xm2y21 + . . .+ xmnyn1 . . . xm1y11 + xm2y12 + . . .+ xmnynk



Justin Grimmer (Stanford University) Methodology I September 9th, 2016 39 / 61

Definition

Suppose X is an m × n matrix and Y is an n × k matrix. Write the row

vectors of X =


x1

x2
...

xm

 and Y as column vector Y =
(
y1 y2 . . . yk

)
.

Then the m × k matrix A = XY can be written as

A =


x1 · y1 x1 · y2 . . . x1 · yk

x2 · y1 x2 · y2 . . . x2 · yk
...

...
. . .

...
xm · y1 xm · y2 . . . xm · yk



Justin Grimmer (Stanford University) Methodology I September 9th, 2016 40 / 61

Matrix Multiplication

Let’s work on an example together!

X =

(
1 4 5

10 2 3

)
Y =

2 3
1 5
3 5

 What is XY ?

Not all matrices can be multiplied.
Matrix AB exists only if the number of columns in A = number of rows in
B. If AB exists we will say the matrices are conformable

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 41 / 61

Matrix Multiplication

Let’s work on an example together!

X =

(
1 4 5

10 2 3

)
Y =

2 3
1 5
3 5

 What is XY ?

Not all matrices can be multiplied.
Matrix AB exists only if the number of columns in A = number of rows in
B. If AB exists we will say the matrices are conformable

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 41 / 61

Matrix Multiplication with a Vector

Suppose X =

2 3 4 5
1 5 1 2
3 5 3 4

 a 3× 4 matrix and that v =


3
3
4

10

 a 4× 1

matrix (or a column vector) what is
Xv?
What is X

′
v?

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 42 / 61

Algebraic Properties

Suppose X is an m × n matrix and Y is an n × k matrix. Suppose that

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 as the identity matrix and that k ∈ Re.

- XY 6= YX in general !!!! (but it could)

- XI = X (let’s talk it out!)

- (X
′
)
′

= X
- (XY)

′
= Y

′
X

′

- (kX)
′

= kX
′

- (X + Y)
′

= X
′

+ Y
′

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 43 / 61

Examples, Implenting in R

R and matrix multiplication
X<- matrix(NA, nrow=2, ncol=3)

Y<- matrix(NA, nrow=3, ncol=2)

X[1,]<- c(1, 4, 5)

X[2,]<- c(10, 2, 3)

Y[1,]<- c(2, 3)

Y[2,]<- c(1, 5)

Y[3,]<- c(3, 5)

A<- X%*%Y

> A

[,1] [,2]

[1,] 21 48

[2,] 31 55

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 44 / 61

Matrix Inversion

Big topic: suppose X is an n × n matrix. We want to find the matrix X−1

such that

X−1X = XX−1 = I

where I is the n × n identity matrix.
Why?

- Regression

- Solving systems of equations

- Will provide intuition about “colinearity”, “fixed effects”, “treatment
designs” and what we can learn as social scientists

Calculate Properties of Inverses when do inverses exist
Application to regression analysis

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 45 / 61

Some Motivating Examples

Consider the following equations:

x1 + x2 + x3 = 0

0x1 + 0x2 + x3 = 5

(0.1)

A =

1 1 1
0 5 0
0 0 3


x = (x1, x2, x3)
b = (0, 5, 6)
The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 46 / 61

Some Motivating Examples
Consider the following equations:

x1 + x2 + x3 = 0

x1 + x2 + 0x3 = 0

0x1 + x2 + x3 = 0

x1 + 0x2 + x3 = 0

A =

1 1 1
0 5 0
0 0 3


x = (x1, x2, x3)
b = (0, 5, 6)
The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 46 / 61

Some Motivating Examples

Consider the following equations:

x1 + x2 + x3 = 0

0x1 + 5x2 + 0x3 = 5

0x1 + 0x2 + 3x3 = 6

A =

1 1 1
0 5 0
0 0 3


x = (x1, x2, x3)
b = (0, 5, 6)
The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 46 / 61

Some Motivating Examples

Consider the following equations:

x1 + x2 + x3 = 0

0x1 + 5x2 + 0x3 = 5

0x1 + 0x2 + 3x3 = 6

A =

1 1 1
0 5 0
0 0 3



x = (x1, x2, x3)
b = (0, 5, 6)
The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 46 / 61

Some Motivating Examples

Consider the following equations:

x1 + x2 + x3 = 0

0x1 + 5x2 + 0x3 = 5

0x1 + 0x2 + 3x3 = 6

A =

1 1 1
0 5 0
0 0 3


x = (x1, x2, x3)

b = (0, 5, 6)
The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 46 / 61

Some Motivating Examples

Consider the following equations:

x1 + x2 + x3 = 0

0x1 + 5x2 + 0x3 = 5

0x1 + 0x2 + 3x3 = 6

A =

1 1 1
0 5 0
0 0 3


x = (x1, x2, x3)
b = (0, 5, 6)

The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 46 / 61

Some Motivating Examples

Consider the following equations:

x1 + x2 + x3 = 0

0x1 + 5x2 + 0x3 = 5

0x1 + 0x2 + 3x3 = 6

A =

1 1 1
0 5 0
0 0 3


x = (x1, x2, x3)
b = (0, 5, 6)
The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 46 / 61

Some Motivating Examples

Consider the following equations:

x1 + x2 + x3 = 0

0x1 + 5x2 + 0x3 = 5

0x1 + 0x2 + 3x3 = 6

A =

1 1 1
0 5 0
0 0 3


x = (x1, x2, x3)
b = (0, 5, 6)
The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 46 / 61

Some Motivating Examples

Consider the following equations:

x1 + x2 + x3 = 0

0x1 + 5x2 + 0x3 = 5

0x1 + 0x2 + 3x3 = 6

A =

1 1 1
0 5 0
0 0 3


x = (x1, x2, x3)
b = (0, 5, 6)
The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 46 / 61

Matrix Inversion, Definition

Definition

Suppose X is an n × n matrix. We will call X−1 the inverse of X if

X−1X = XX−1 = I

If X−1 exists then X is invertible. If X−1 does not exist, then we will say
X is singular.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 47 / 61

Matrix Inversion
You’ll never invert a matrix by hand.
We’re going to use R
X<- matrix(NA, nrow=3, ncol=3)

X[1,]<- c(2, 3, 4)

X[2,]<- c(3, 1, 3)

X[3,]<- c(2, 4, 2)

X.inv<- solve(X)

> X.inv

[,1] [,2] [,3]

[1,] -0.5 0.5 0.25

[2,] 0.0 -0.2 0.30

[3,] 0.5 -0.1 -0.35

X.inv%*%X

[,1] [,2] [,3]

[1,] 1 0.000000e+00 -2.220446e-16

[2,] 0 1.000000e+00 0.000000e+00

[3,] 0 -2.220446e-16 1.000000e+00

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 48 / 61

Matrix Inversion

1) Calculate Inverses

2) Properties of Inverses

Theorem

The inverse of matrix X , X−1, is unique

Proof.
By way of contradiction, suppose not. Then there are at least two
matrices A and C such that AX = I and CX = I
This implies that,

AXC = (AX)C

= IC
= C

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 49 / 61

Matrix Inversion

1) Calculate Inverses

2) Properties of Inverses

Theorem

The inverse of matrix X , X−1, is unique

Proof.
By way of contradiction, suppose not. Then there are at least two
matrices A and C such that AX = I and CX = I
This implies that,

AXC = (AX)C

= IC
= C

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 49 / 61

Matrix Inversion

1) Calculate Inverses

2) Properties of Inverses

Theorem

The inverse of matrix X , X−1, is unique

Proof.
By way of contradiction, suppose not. Then there are at least two
matrices A and C such that AX = I and CX = I
This implies that,

AXC = (AX)C

= IC
= C

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 49 / 61

Matrix Inversion

But it also implies that

AXC = A(XC)

= A(I)

= A

So C = AXC = A or C = A but this contradicts our assumption that
there are two unique inverses.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 50 / 61

Matrix Inversion

Theorem

Suppose A has inverse A−1 and B has inverse B−1. Then,

(AB)−1 = B−1A−1

Proof.
We need to show that (B−1A−1)(AB) = (AB)(B−1A−1) = I .

(B−1A−1)(AB) = B−1(A−1A)B
= B−1IB
= B−1B
= I

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 51 / 61

Matrix Inversion

Theorem

Suppose A has inverse A−1 and B has inverse B−1. Then,

(AB)−1 = B−1A−1

Proof.
We need to show that (B−1A−1)(AB) = (AB)(B−1A−1) = I .

(B−1A−1)(AB) = B−1(A−1A)B
= B−1IB
= B−1B
= I

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 51 / 61

Matrix Inversion

(AB)(B−1A−1) = A(BB−1)A−1

= AIA−1

= AA−1

= I

So AB is invertible and (AB)−1 = B−1A−1.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 52 / 61

Challenge Inversion Proofs

- Show that (A−1)−1 = A.

- Show that (kA)−1 = 1
kA−1

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 53 / 61

Matrix Inversion

1) How to Calculate an Inverse

2) Inversion properties

3) When do inverses exist?

Linear Independence: not repeated information in matrix will be the key
(for both inversion and regressions)

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 54 / 61

Matrix Inversion: Existence

Definition

Suppose we have a set of vectors S = {v1, v2, . . . , v r}
And consider the system of equations

k1v1 + k2v2 + . . .+ krv r = 0

If the only solution is k1 = 0, k2 = 0, k3 = 0, . . . , kr = 0 then we say that
the set is linearly independent. If there are other solutions, then the set is
linearly dependent.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 55 / 61

Matrix Inversion: Existence

Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1)
Can we write this as a combination of other vectors?

no!
Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (1, 2, 3).
Can we write this as a combination of other vectors?

v4 = v1 + 2v2 + 3v3

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 56 / 61

Matrix Inversion: Existence

Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1)
Can we write this as a combination of other vectors? no!

Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (1, 2, 3).
Can we write this as a combination of other vectors?

v4 = v1 + 2v2 + 3v3

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 56 / 61

Matrix Inversion: Existence

Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1)
Can we write this as a combination of other vectors? no!
Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (1, 2, 3).
Can we write this as a combination of other vectors?

v4 = v1 + 2v2 + 3v3

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 56 / 61

Matrix Inversion: Existence

Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1)
Can we write this as a combination of other vectors? no!
Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (1, 2, 3).
Can we write this as a combination of other vectors?

v4 = v1 + 2v2 + 3v3

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 56 / 61

Matrix Inversion: Existence

Theorem

Suppose v1, v2, . . . , vK ∈ <n. If K > n then the set is linearly dependent

- v1 = (v11, v21, . . . , vn1)

- Says that if there are more vectors in the set than elements in each
vector, one must be linearly dependent

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 57 / 61

Matrix Inversion: Existence

Theorem

Suppose v1, v2, . . . , vK ∈ <n. If K > n then the set is linearly dependent

- v1 = (v11, v21, . . . , vn1)

- Says that if there are more vectors in the set than elements in each
vector, one must be linearly dependent

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 57 / 61

Matrix Inversion: Existence

Theorem

Suppose v1, v2, . . . , vK ∈ <n. If K > n then the set is linearly dependent

- v1 = (v11, v21, . . . , vn1)

- Says that if there are more vectors in the set than elements in each
vector, one must be linearly dependent

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 57 / 61

Matrix Inversion: Existence

We care because of the following theorem

Theorem

Suppose X is an n × n matrix. Recall we can write this matrix as


x1

x2
...

xn

.

Then X has an inverse if and only if S = {x1, x2, . . . , xn} is linearly
independent

If this is true, we say X has full rank

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 58 / 61

Linear Regression

In 350a you learn about linear regression. For each i (individual) we
observe covariates xi1, xi2, . . . , xik and independent variable Yi . Then,

Y1 = β0 + β1x11 + β2x12 + . . .+ βkx1k

Y2 = β0 + β1x21 + β2x22 + . . .+ βkx2k
...

...
...

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik
...

...
...

Yn = β0 + β1xn1 + β2xn2 + . . .+ βkxnk

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 59 / 61

Linear Regression

In 350a you learn about linear regression. For each i (individual) we
observe covariates xi1, xi2, . . . , xik and independent variable Yi . Then,

Y1 = β0 + β1x11 + β2x12 + . . .+ βkx1k

Y2 = β0 + β1x21 + β2x22 + . . .+ βkx2k
...

...
...

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik
...

...
...

Yn = β0 + β1xn1 + β2xn2 + . . .+ βkxnk

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 59 / 61

Linear Regression

In 350a you learn about linear regression. For each i (individual) we
observe covariates xi1, xi2, . . . , xik and independent variable Yi . Then,

Y1 = β0 + β1x11 + β2x12 + . . .+ βkx1k

Y2 = β0 + β1x21 + β2x22 + . . .+ βkx2k
...

...
...

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik

...
...

...

Yn = β0 + β1xn1 + β2xn2 + . . .+ βkxnk

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 59 / 61

Linear Regression

In 350a you learn about linear regression. For each i (individual) we
observe covariates xi1, xi2, . . . , xik and independent variable Yi . Then,

Y1 = β0 + β1x11 + β2x12 + . . .+ βkx1k

Y2 = β0 + β1x21 + β2x22 + . . .+ βkx2k
...

...
...

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik
...

...
...

Yn = β0 + β1xn1 + β2xn2 + . . .+ βkxnk

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 59 / 61

Linear Regression

- Define x i = (1, xi1, xi2, . . . , xik)

- Define X =


x1

x2
...

xn


- Define β = (β0, β1, . . . , βk)

- Define Y = (Y1,Y2, . . . ,Yn).

Then we can write

Y = Xβ

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 60 / 61

Linear Regression

Y = Xβ

X
′
Y = X

′
Xβ

(X
′
X)−1X

′
Y = (X

′
X)−1X

′
Xβ

(X
′
X)−1X

′
Y = β

Big question: is (X
′
X)−1 invertible?

We’ll investigate in homework!

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 61 / 61

