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Where We’ve Been, Where We’re Going

Calculus: Analyze behavior of functions on real line

- Convergence

- Differentiation

- Integration

Linear Algebra

- Data stored in matrices

- Higher dimensional spaces

- complex world, condition on many factors
- flood of big data, store in many dimensions

- Linear Algebra:

- Algebra of matrices
- Geometry of high dimensional space
- Calculus (multivariable) in many dimensions

Very important for regression(!!!!)
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Points + Vectors

- A point in <1

- 1
- π
- e

- An ordered pair in <2 = <× <
- (1, 2)
- (0, 0)
- (π, e)

- An ordered triple in <3 = <× <× <
- (3.1, 4.5, 6.11132)

...

- An ordered n-tuple in <n = <× <× . . .×<
- (a1, a2, . . . , an)
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Points and Vectors

Definition

A point x ∈ <n is an ordered n-tuple, (x1, x2, . . . , xn). The vector x ∈ <n

is the arrow pointing from the origin (0, 0, . . . , 0) to x .
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One Dimensional Example

−1 −0.5 0 0.5 1
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Three Dimensional Example

- (Latitude, Longitude, Elevation)

- (1, 2, 3)

- (0, 1, 0)
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N-Dimensional Example

- Individual campaign donation records

x = (1000, 0, 10, 50, 15, 4, 0, 0, 0, . . . , 2400000000)

- Counties have proportion of vote for Obama

y = (0.8, 0.5, 0.6, . . . , 0.2)

- Run experiment, assess feeling thermometer of elected official

t = (0, 100, 50, 70, 80, . . . , 100)
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Arithmetic with Vectors

Definition

Suppose u and v are vectors u, v ∈ <n,

u = (u1, u2, u3, . . . , un)

v = (v1, v2, v3, . . . , vn)

We will say u = v if u1 = v1, u2 = v2, . . . , un = vn
Define the sum of u + v as

u + v = (u1 + v1, u2 + v2, u3 + v3, . . . , un + vn)

Suppose k ∈ <. We will call k a scalar.
Define ku as the scalar product

ku = (ku1, ku2, . . . , kun)
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Examples

Suppose:

u = (1, 2, 3, 4, 5)

v = (1, 1, 1, 1, 1)

k = 2

Then,

u + v = (1 + 1, 2 + 1, 3 + 1, 4 + 1, 5 + 1) = (2, 3, 4, 5, 6)

ku = (2× 1, 2× 2, 2× 3, 2× 4, 2× 5) = (2, 4, 6, 8, 10)

kv = (2× 1, 2× 1, 2× 1, 2× 1, 2× 1) = (2, 2, 2, 2, 2)
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Properties of Arithmetic

Challenge Proofs—we can do these!

Theorem

Suppose that u, v ,w ∈ <n and k and l are scalars.

a) u + v = v + u

Proof.

u + v = (u1 + v1, u2 + v2, . . . , un + vn)

= (v1 + u1, v2 + u2, . . . , vn + un)

= v + u
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Properties of Arithmetic

Challenge Proofs—we can do these!

Theorem

Suppose that u, v ,w ∈ <n and k and l are scalars.

b) u + 0 = 0 + u = u

Proof.

u + 0 = (u1 + 0, u2 + 0, . . . , un + 0)

= (0 + u1, 0 + u2, . . . , 0 + un) = 0 + u
= (u1, u2, . . . , un)

= u
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Properties of Arithmetic

Challenge Proofs—we can do these!

Theorem

Suppose that u, v ,w ∈ <n and k and l are scalars.

c) (l + k)u = l(u) + k(u)

Proof.

How can we show this?
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Challenge Proofs

- Show that 1u = u
- Show that u +−1u = 0
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Inner Product

Definition

Suppose u ∈ <n and v ∈ <n then define u · v ,

u · v = u1v1 + u2v2 + . . .+ unvn

=
N∑
i=1

uivi
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Examples

Suppose u = (1, 2, 3) and v = (2, 3, 1). Then,

u · v = 1× 2 + 2× 3 + 3× 1

= 2 + 6 + 3

= 11

Suppose y = (y1, y2, . . . , yN) and 1 = (1, 1, 1, . . . , 1). Then,

y · 1 = y1 + y2 + . . .+ yn

=
n∑

i=1

yi
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R Code

Create a vector in R

vec <- c(1, 2, 3, 4, 5)

vec<- c()

vec[1]<- 1

vec[2]<- 2

vec[3]<- 3

vec[4]<- 4

vec[5]<- 5

x1<- c(2, 2, 3, 2)

x2<- c(5, 3, 1, 3)

add <- x1 + x2

add

[1] 7 5 4 5

scalar<- 10 *x1

scalar

[1] 20 20 30 20

output<- x1 %*% x2

output

[,1]

[1,] 25
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Challenge Problems

- Suppose v = (1, 4, 1, 4) and w = (4, 1, 4, 1). Calculate: v ·w
- Prove v ·w = w · v
- Super hard: prove v · v ≥ 0 and v · v = 0 if and only if v = 0.
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Vector Length

x_1

x_
2

- Pythogorean Theorem:
Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61



Vector Length

x_1

x_
2

a

- Pythogorean Theorem:
Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61



Vector Length

x_1

x_
2

a

b

- Pythogorean Theorem:
Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61



Vector Length

x_1

x_
2

a

b
c =

 (a^2 + b^2)^(1/2)
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Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61



Vector Length

x_1

x_
2

a

b
c =

 (a^2 + b^2)^(1/2)

- Pythogorean Theorem:
Side with length a

- Side with length b and
right triangle

- c =
√
a2 + b2

- This is generally true

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 19 / 61



Vector Length

Definition

Suppose v ∈ <n. Then, we will define its length as

||v || = (v · v)1/2

= (v21 + v22 + v23 + . . .+ v2n )1/2
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Calculating a Length

Example 1: suppose x = (1, 1, 1) .

||x || = (x · x)1/2

= (1 + 1 + 1)1/2

=
√

3

Example 2: R code for length function
len.vec<- function(x) {
p1< − sqrt(x% ∗%x)
return(p1)

}
x <- c(1,1,1)

len.vec(x)

[,1]

[1,] 1.732051
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Coding Problem

Let’s calculate the length of some vectors

- Write a function to assess the length of a vector.

- Use it to calculate the length of:

- y<- c(10, 20, 30, 40)

- x<- seq(1, 1000*pi, len=1000)
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Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7
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Length of document:

||Doc1|| ≡
√
Doc1 ·Doc1

=
√

(1, 1, 3, . . . , 5)′(1, 1, 3, . . . , 5)

=
√

12 + 12 + 32 + 52

= 6

Cosine of the angle between documents:

cos θ ≡
(

Doc1

||Doc1||

)
·
(

Doc2

||Doc2||

)
=

7

6× 2.24
= 0.52
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cos θ ≡
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)
·
(

Doc2
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Measuring Similarity

Documents in space → measure similarity/dissimilarity

What properties should similarity measure have?

- Maximum: document with itself

- Minimum: documents have no words in common (orthogonal )

- Increasing when more of same words used

- ? s(a, b) = s(b, a).
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Measuring Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d 
2

Measure 1: Inner product

(2, 1)
′ · (1, 4) = 6
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0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d 
2

Problem(?): length dependent

(4, 2)
′
(1, 4) = 12

a · b = ||a|| × ||b|| × cos θ
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0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d 
2

θ

Problem(?): length dependent

(4, 2)
′
(1, 4) = 12

a · b = ||a|| × ||b|| × cos θ
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Cosine Similarity

cos θ: removes document length from similarity measure

cos θ =

(
a

||a||

)
·
(

b

||b||

)
(4, 2)

||(4, 2)||
= (0.89, 0.45)

(2, 1)

||(2, 1)||
= (0.89, 0.45)

(1, 4)

||(1, 4)||
= (0.24, 0.97)

(0.89, 0.45)
′
(0.24, 0.97) = 0.65
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Cosine Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d 
2
θ

cos θ: removes document length from similarity measure

Project onto Hypersphere
cos θ → Inverse distance on Hypersphere
von Mises Fisher distribution : distribution on sphere surface
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Matrices

Definition

A Matrix is a rectangular array of numbers

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


If A has m rows n columns we will say that A is an m × n matrix.
Suppose X and Y are m × n matrices. Then X = Y if xij = yij for all i
and j
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Simple Examples

I =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


If I is an n × n matrix we will call an identity matrix.
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Simple Examples

X =

(
1 2 3
2 1 4

)
X is an 2× 3 matrix

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 31 / 61



Matrix Algebra

Definition

Suppose X and Y are m × n matrices. Then define

X + Y =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

+


y11 y12 . . . y1n
y21 y22 . . . y2n

...
...

. . .
...

ym1 ym2 . . . ymn



=


x11 + y11 x12 + y12 . . . x1n + y1n
x21 + y21 x22 + y22 . . . x2n + y2n

...
...

. . .
...

xm1 + ym1 xm2 + ym2 . . . xmn + ymn
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Matrix Algebra

Definition

Suppose X is an m × n matrix and k ∈ <. Then,

kX =


kx11 kx12 . . . kx1n
kx21 kx22 . . . kx2n

...
...

. . .
...

kxm1 kxm2 . . . kxmn


Prove theorems about this tonight
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R Code

Using matrix command mat1<- matrix(NA, nrow=3, ncol=2) ##

Creating matrix

mat1[1,1]<- 1

mat1[1,2]<- 2

mat1[2,1]<- 1

mat1[2,2]<- 4

mat1[3,1]<- exp(1)

mat1[3,2]<- 4
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R Code

Using rbind
r1<- c(1, 2)

r2<- c(1, 4)

r3<- c(exp(1) , 4)

mat1<- rbind(r1, r2, r3)
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R Code

Using cbind
c1<- c(1, 1, exp(1) )

c2<- c(2, 4, 4)
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R Code

dim(mat1)

[1] 3 2

mat1 + mat1

[,1] [,2]

[1,] 2.000000 4

[2,] 2.000000 8

[3,] 5.436564 8
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R Code

What if the matrices are of different dimension
mat1<- matrix(1, nrow=3, ncol=2)

mat2<- matrix(2, nrow=10, ncol=3)

mat1 + mat2

Error in mat1 + mat2 : non-conformable arrays
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Matrix Transpose

We will use matrix transpose to flip the dimensionality of a matrix

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



X
′

=


x11 x21 . . . xm1

x12 x22 . . . xm2
...

... ¨
...

x1n x2n . . . xmn


If X is an m × n then X

′
is n ×m.

If X = X
′

then we say X is symmetric.
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Matrix Transpose

Example 1: X =

(
4 1 2
1 2 3

)
then X

′
=

4 1
1 2
2 3


In R

mat1<- matrix(c(1, 2, 3), nrow=3, ncol=2)

mat2<- t(mat1)

dim(mat1)

3 2

dim(mat2)

2 3
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Matrix Multiplication
How do we multiply matrices?

Because we want to use matrix multiplication to solve equations we won’t
use an intuitive definition
Suppose we have two matrices

X =

(
1 1
1 1

)
, Y =

(
1 2
3 4

)
We will create a new matrix A by matrix multiplication:

A = XY

=

(
1 1
1 1

)(
1 2
3 4

)

=

1× 1 + 1× 3 1× 2 + 1× 4
1× 1 + 1× 3 1× 2 + 1× 4


=

(
4 6
4 6

)
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Matrix Multiplication

Definition

Suppose X is an m × n matrix and Y is an n × k matrix. Then define the
matrix A an m × k matrix that obtains from multiplying X and Y as,

A = XY

=


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn



y11 y12 . . . y1k
y21 y22 . . . y2k

...
...

. . .
...

yn1 yn2 . . . ynk


=

 x11y11 + x12y21 + . . .+ x1nyn1 . . . x11y1k + x12y2k + . . .+ x1nynk
...

. . .
...

xm1y11 + xm2y21 + . . .+ xmnyn1 . . . xm1y11 + xm2y12 + . . .+ xmnynk
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Definition

Suppose X is an m × n matrix and Y is an n × k matrix. Write the row

vectors of X =


x1

x2
...

xm

 and Y as column vector Y =
(
y1 y2 . . . yk

)
.

Then the m × k matrix A = XY can be written as

A =


x1 · y1 x1 · y2 . . . x1 · yk

x2 · y1 x2 · y2 . . . x2 · yk
...

...
. . .

...
xm · y1 xm · y2 . . . xm · yk
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Matrix Multiplication

Let’s work on an example together!

X =

(
1 4 5

10 2 3

)
Y =

2 3
1 5
3 5

 What is XY ?

Not all matrices can be multiplied.
Matrix AB exists only if the number of columns in A = number of rows in
B. If AB exists we will say the matrices are conformable
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Matrix Multiplication with a Vector

Suppose X =

2 3 4 5
1 5 1 2
3 5 3 4

 a 3× 4 matrix and that v =


3
3
4

10

 a 4× 1

matrix (or a column vector) what is
Xv?
What is X

′
v?
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Algebraic Properties

Suppose X is an m × n matrix and Y is an n × k matrix. Suppose that

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 as the identity matrix and that k ∈ Re.

- XY 6= YX in general !!!! (but it could)

- XI = X (let’s talk it out!)

- (X
′
)
′

= X
- (XY )

′
= Y

′
X

′

- (kX )
′

= kX
′

- (X + Y )
′

= X
′

+ Y
′
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Examples, Implenting in R

R and matrix multiplication
X<- matrix(NA, nrow=2, ncol=3)

Y<- matrix(NA, nrow=3, ncol=2)

X[1,]<- c(1, 4, 5)

X[2,]<- c(10, 2, 3)

Y[1,]<- c(2, 3)

Y[2,]<- c(1, 5)

Y[3,]<- c(3, 5)

A<- X%*%Y

> A

[,1] [,2]

[1,] 21 48

[2,] 31 55
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Matrix Inversion

Big topic: suppose X is an n × n matrix. We want to find the matrix X−1

such that

X−1X = XX−1 = I

where I is the n × n identity matrix.
Why?

- Regression

- Solving systems of equations

- Will provide intuition about “colinearity”, “fixed effects”, “treatment
designs” and what we can learn as social scientists

Calculate  Properties of Inverses  when do inverses exist  
Application to regression analysis
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Some Motivating Examples

Consider the following equations:

x1 + x2 + x3 = 0

0x1 + 0x2 + x3 = 5

(0.1)

A =

1 1 1
0 5 0
0 0 3


x = (x1, x2, x3)
b = (0, 5, 6)
The system of equations are now,

Ax = b

A−1 exists if and only if Ax = b has only one solution.
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Matrix Inversion, Definition

Definition

Suppose X is an n × n matrix. We will call X−1 the inverse of X if

X−1X = XX−1 = I

If X−1 exists then X is invertible. If X−1 does not exist, then we will say
X is singular.
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Matrix Inversion
You’ll never invert a matrix by hand.
We’re going to use R
X<- matrix(NA, nrow=3, ncol=3)

X[1,]<- c(2, 3, 4)

X[2,]<- c(3, 1, 3)

X[3,]<- c(2, 4, 2)

X.inv<- solve(X)

> X.inv

[,1] [,2] [,3]

[1,] -0.5 0.5 0.25

[2,] 0.0 -0.2 0.30

[3,] 0.5 -0.1 -0.35

X.inv%*%X

[,1] [,2] [,3]

[1,] 1 0.000000e+00 -2.220446e-16

[2,] 0 1.000000e+00 0.000000e+00

[3,] 0 -2.220446e-16 1.000000e+00
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Matrix Inversion

1) Calculate Inverses

2) Properties of Inverses

Theorem

The inverse of matrix X , X−1, is unique

Proof.
By way of contradiction, suppose not. Then there are at least two
matrices A and C such that AX = I and CX = I
This implies that,

AXC = (AX )C

= IC
= C
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Matrix Inversion

But it also implies that

AXC = A(XC )

= A(I )

= A

So C = AXC = A or C = A but this contradicts our assumption that
there are two unique inverses.
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Matrix Inversion

Theorem

Suppose A has inverse A−1 and B has inverse B−1. Then,

(AB)−1 = B−1A−1

Proof.
We need to show that (B−1A−1)(AB) = (AB)(B−1A−1) = I .

(B−1A−1)(AB) = B−1(A−1A)B
= B−1IB
= B−1B
= I
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Matrix Inversion

(AB)(B−1A−1) = A(BB−1)A−1

= AIA−1

= AA−1

= I

So AB is invertible and (AB)−1 = B−1A−1.
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Challenge Inversion Proofs

- Show that (A−1)−1 = A.

- Show that (kA)−1 = 1
kA−1
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Matrix Inversion

1) How to Calculate an Inverse

2) Inversion properties

3) When do inverses exist?

Linear Independence: not repeated information in matrix will be the key
(for both inversion and regressions)
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Matrix Inversion: Existence

Definition

Suppose we have a set of vectors S = {v1, v2, . . . , v r}
And consider the system of equations

k1v1 + k2v2 + . . .+ krv r = 0

If the only solution is k1 = 0, k2 = 0, k3 = 0, . . . , kr = 0 then we say that
the set is linearly independent. If there are other solutions, then the set is
linearly dependent.

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 55 / 61



Matrix Inversion: Existence

Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1)
Can we write this as a combination of other vectors?

no!
Consider v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (1, 2, 3).
Can we write this as a combination of other vectors?

v4 = v1 + 2v2 + 3v3
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Matrix Inversion: Existence

Theorem

Suppose v1, v2, . . . , vK ∈ <n. If K > n then the set is linearly dependent

- v1 = (v11, v21, . . . , vn1)

- Says that if there are more vectors in the set than elements in each
vector, one must be linearly dependent
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Matrix Inversion: Existence

We care because of the following theorem

Theorem

Suppose X is an n × n matrix. Recall we can write this matrix as


x1

x2
...

xn

.

Then X has an inverse if and only if S = {x1, x2, . . . , xn} is linearly
independent

If this is true, we say X has full rank
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Linear Regression

In 350a you learn about linear regression. For each i (individual) we
observe covariates xi1, xi2, . . . , xik and independent variable Yi . Then,

Y1 = β0 + β1x11 + β2x12 + . . .+ βkx1k

Y2 = β0 + β1x21 + β2x22 + . . .+ βkx2k
...

...
...

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik
...

...
...

Yn = β0 + β1xn1 + β2xn2 + . . .+ βkxnk
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Linear Regression

- Define x i = (1, xi1, xi2, . . . , xik)

- Define X =


x1

x2
...

xn


- Define β = (β0, β1, . . . , βk)

- Define Y = (Y1,Y2, . . . ,Yn).

Then we can write

Y = Xβ

Justin Grimmer (Stanford University) Methodology I September 9th, 2016 60 / 61



Linear Regression

Y = Xβ

X
′
Y = X

′
Xβ

(X
′
X )−1X

′
Y = (X

′
X )−1X

′
Xβ

(X
′
X )−1X

′
Y = β

Big question: is (X
′
X )−1 invertible?

We’ll investigate in homework!
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