Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 8th, 2016

Justin Grimmer (Stanford University)

Methodology |



Integration

- Derivatives ~~ rates of change

- Integrals~~ area under a curve

- Connection: fundamental theorem of calculus

- Some antiderivative formulas

- Algebra of Integrals

- Improper Integrals

- Monte Carlo principle

- Integrate a lot in probability theory, we'll review more then
- Infinite Series
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- Approximated area =
> f(xi-1)(xi — xi-1)

- As partitions become
more refined, they
improve
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Area Under a Curve

x"2
7 - Approximated area =
n
21 F(xim1)(xi — xi-1)
7 - As partitions become
- more refined, they
7w improve
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Definition

Suppose f : )t — R. We will define the Riemann Integral as fab f(x)dx. If

this exists then we say f is integrable on [a, b] and call fab f(x)dx the
integral of f.
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Definition

Suppose f : )t — R. We will define the Riemann Integral as fab f(x)dx. If
this exists then we say f is integrable on [a, b] and call fab f(x)dx the
integral of f.
Theorem
Suppose f : [a, b] — R is a continuous function. Then f is integrable

=} (=) = E £ DA
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Definition
Suppose f : )t — R. We will define the Riemann Integral as fab f(x)dx. If

this exists then we say f is integrable on [a, b] and call fab f(x)dx the
integral of f.

Theorem
Suppose f : [a, b] — R is a continuous function. Then f is integrable

Theorem
Suppose f : [a,b] — R is a monotonic function. Then f is integrable
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Some Counterexamples

Suppose f : [0,1] — %
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Some Counterexamples

Suppose f : [0,1] — %

1
1
/ —dx
0 X
represent is infinite.

Then 1 is not integrable on [a, b] because the area that the integral would
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Some Counterexamples
Suppose f : [0,1] — %
1
1
/ —dx
o X

Then 1 is not integrable on [a, b] because the area that the integral would
represent is infinite.

f(x) = 1if x rational

= 0 if x irrational
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Some Counterexamples

Suppose f : [0,1] — %

1
/ldx
OX

Then 1 is not integrable on [a, b] because the area that the integral would
represent is infinite.

f(x) = 1if x rational

= 0 if x irrational
Not integrable, because every interval will contain a discontinuous jump
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Fundamental Theorem of Calculus
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Fundamental Theorem of Calculus

much easier

A deep connection between derivatives and integrals makes integration
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Fundamental Theorem of Calculus

A deep connection between derivatives and integrals makes integration
much easier

Theorem

Fundamental Theorem of Calculus Suppose f : [a, b] — R and that f is
differentiable on [a, b] and that its derivative, f', is integrable. Then,

b
/a Fx)dx = F(b)— f(a)
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Recipe for Definite Integration

- Calculate antiderivative
- Evaluate at b

- Evaluate at a
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Some Classic Antiderivative Formulas

antiderivative = indefinite integral

/1dx = x+c

/kdx = kx+c¢

Xn+1
/x"dx = +c
n+1
1
/—dx = logx+c
X
/exdx = e +c
X
/axdx - ? +c
log a
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Uniform Distribution
Suppose f : ® — R, with
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Uniform Distribution
Suppose f : ® — R, with

1if x €[0,1]
= 0 otherwise

What is the area under f(x) from [0,1/2]?
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Uniform Distribution
Suppose f : ® — R, with

1if x €[0,1]
= 0 otherwise

What is the area under f(x) from [0,1/2]?

1/2 1/2
/ f(x)dx = / ldx
0 0
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Uniform Distribution
Suppose f : ® — R, with

f(x) 1if x €[0,1]
f(x) = 0 otherwise

What is the area under f(x) from [0,1/2]?

/01/2 f(x)dx

1/2
= / ldx
0

1/2
= X\o/
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Uniform Distribution
Suppose f : ® — R, with

f(x) = 1lifxe]0,1]
f(x) = 0 otherwise
What is the area under f(x) from [0,1/2]?
1/2 1/2
/ f(x)dx = / ldx
0 0
1/2
= X\o/
= (1/2)=(0)
= 1/2
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Uniform Distribution
Suppose f : ® — R, with

f(x)

1if x €[0,1]
f(x) = 0 otherwise

What is the area under f(x) from

[0,1/2]?
1/2 1/2
/0 f(x)dx = /0 ldx
= "
= (1/2)=(0)

= 1)2
We will call f(x) =1 the uniform distribution.
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Example 2: Area Under a Line

Suppose f : & — R, with

flx) =
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Example 2: Area Under a Line

Suppose f : & — R, with

flx) =
Evaluate the [, f(x)dx
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Example 2: Area Under a Line

Suppose f : & — R, with

X

flx) =
Evaluate the [, f(x)dx

/; f(x)dx = /thdx
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Example 2: Area Under a Line

Suppose f : & — R, with

flx) =
Evaluate the [, f(x)dx

/2 t F(x)dx
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Example 2: Area Under a Line

Suppose f : & — R, with

~
2
T2 2
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Example 2: Area Under a Line

Suppose f : & — R, with

_ X
2
2 22
- 272
2 4 ¢2
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Integration Facts

Theorem

If fi,f, : [a,b] = R and fi, f, are integrable on [a,b], then
) Consider the interval [a, b] and c € [a, b]. Then

fi(c) = fi(c) =
/a f, (x)dx

/ fl(x dx+/ fl(x
(fi(c) — A(a) +
f(b) — fi(a)

0

(A(b) = fi(c))

Methodology |




Theorem

Iff,,f, : [a,b] — R and f], f, are integrable on [a,b] and f, has
antiderivative is f; and f, has antiderivative f5, then
ii) Forci,co € R then

b b
/ (@fl(x) + ah())d = a / (x)dx + e

/be/(x)dx

a
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Challenge Problems

1
/ xdx
0
1
/(x2+x+1)dx
0

[een

X
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Theorem

f(x) = f(a)-l-%(x—a)-l—fz(!a)(x—a)2+f3—(!a)(x—a)3-l-.
) = 3 P gy
n=0 ’

Approximating functions and second order conditions

Taylor’s Theorem Suppose f : R — R, f(x) is infinitely differentiable
function. Then, the taylor expansion of f(x) around a is given by
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Notice that:

Justin Grimmer (Stanford University)

f(a) + /X f(t)dty

f(x) —f(a)
f(a) + f(x) — f(a) = f(x)
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Notice that:

/ £ (a)dts
< n,
/ / f (tz)dtzdtl

f(x)

f(a) + /X f(t)dty

f(x) —f(a)
f(a) + f(x) — f(a) = f(x)

f a +/ dtl —|—/ / t2 dl’zdtl

f'(a)(x — a)

/X (£ (1)~ F () dts = F(x) — £(2) —  (3)(x — 3)
f(a)+f (x — a) + f(x) — F(a) — F (a)(x — a) = F(x)

Methodology |



Notice that:

flx) = f(a)+/:f’(t1)dt1

/Xf’(tl)df1 — f(x) - £(a)
f(x) = f(a)+f(x)—f(a)=f(x)

fix) = f(a +/ dt1+/ / (t2)dtydt,
/X Fla)d = f(a)(x—a)

/ / (t)dbdt = / (£ (1)~ F () dts = F(x) — £(2) —  (3)(x — 3)
f(x) = f(a)+f (x—a)+f(x)—f(a) - f (a)(x — a) = F(x)

Next step:

f(x) = f(a +/a f(a)dt1+// dtht1+/ / / " (t3)dtstoty

Qe

Justin Grimmer (Stanford University) Methodology |



1) We have shown this is true for first derivative k = 1.
2) Suppose it is true for k. Let's show it is true for k + 1.

f(x) = Pis1+ Resa
f(X) = P+

X_ak+1 tri1
e [ / AR L

Flip bounds on the remaineder term and you realize it contains R and
that the additional term cancels out the new f¥*1 term.

Can obtain error bounds with computation of remainder. Because
expansion around each point is necessarily finite as k — oo remainder goes

to zero.

Justin Grimmer (Stanford University) Methodology | September 8th, 2016 16 / 46



More Fundamental Theorem of Calculus
Theorem

Suppose f' : [a, b] — R is integrable on [a,b] and suppose that its

antiderivative is f(x). Define F(t) = fat f'(x)dx fora <t < b. Then,

FI(X()) is f/(Xo).

] = =
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More Fundamental Theorem of Calculus
Theorem
Suppose f' : [a, b] — R is integrable on [a,b] and suppose that its

antiderivative is f(x). Define F(t) = fat f'(x)dx fora <t < b. Then,
FI(X()) is f/(Xo).

Proof.
intuition F(t) = [1 f (x)dx = f(t) — f(a).
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More Fundamental Theorem of Calculus

Theorem

Suppose f' : [a, b] — R is integrable on [a,b] and suppose that its
antiderivative is f(x). Define F(t) = [If (x)dx fora <t < b. Then,
FI(X()) is f/(Xo).

Proof.

intuition F(t) = f; f'(x)dx = f(t) — f(a).
Now, we want to take the derivative of F(t) and evaluate at xp and the
derivative of f(t) — f(a) and evaluate at xp

Justin Grimmer (Stanford University) Methodology |



More Fundamental Theorem of Calculus

Theorem

Suppose f' : [a, b] — R is integrable on [a,b] and suppose that its
antiderivative is f(x). Define F(t) = [If (x)dx fora <t < b. Then,
FI(X()) is f/(Xo).

Proof.

intuition F(t) = f; f'(x)dx = f(t) — f(a).
Now, we want to take the derivative of F(t) and evaluate at xp and the
derivative of f(t) — f(a) and evaluate at xp

0 0
() = 5 (F() - £(3))
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More Fundamental Theorem of Calculus

Theorem

Suppose f' : [a, b] — R is integrable on [a,b] and suppose that its
antiderivative is f(x). Define F(t) = [If (x)dx fora <t < b. Then,
FI(X()) is f/(Xo).

Proof.

intuition F(t) = f; f'(x)dx = f(t) — f(a).
Now, we want to take the derivative of F(t) and evaluate at xp and the
derivative of f(t) — f(a) and evaluate at xp

0 0
() = 5 (F() - £(3))

FO)o = (6o
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More Fundamental Theorem of Calculus
Theorem

Suppose f' : [a, b] — R is integrable on [a,b] and suppose that its
antiderivative is f(x). Define F(t) = [If (x)dx fora <t < b. Then,
FI(X()) is f/(Xo).

Proof.

intuition F(t) = f; f'(x)dx = f(t) — f(a).
Now, we want to take the derivative of F(t) and evaluate at xp and the
derivative of f(t) — f(a) and evaluate at xp

0 0
() = 5 (F() - £(3))

F(O)o = ()

/

Fl(x) = f(x)

Justin Grimmer (Stanford University) Methodology |



Uniform Cumulative Density Function

Suppose that £ — R, f'(x) =1 for x € [0,1] and f'(x) = 0 otherwise.
Define,

F(t) = /Ot f'(x)dx

t
= / ldx = x|§
0

Cumulative Density Function
e e
@ | @ |
S S
o | o |
S s
= T
= =
S S
o o
S s
° L o |
S S
T T T T 1 T T T T 1
0.5 0.0 05 10 15 05 0.0 05 10 15
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Improper Integrals

Discount rates: valuing the future.

We'll do discrete time with infinite series, we can do them in continuous
time with integrals

vV = / e Otdt
0

- How do we evaluate this integral?
- Improper integrals

- Continuous infinite series

Justin Grimmer (Stanford University)
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Definition

Definition

Consider f : [a,00) — R. If the limit

t
tll)n;o /a f(x)dx
exists then we will say [° f(x)dx converges to L. Otherwise, we say it
diverges.

Also apply definition for

[e.9]

- 7 F(x)dx = im0 [ F(x)dx
- %

f(x)dx = limeo_oo limy o0 [ F(x)dx.

Justin Grimmer (Stanford University)
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When do Integrals Converge?

Example 1
f(x)=1/x.

1 t1
/ —dx = lim / —dx
1 X t—=oo J1 X

lim
t—00
(log )

lim
t—00

Does not converge

Justin Grimmer (Stanford University) Methodology |

(log x)[1

— lim
t—00

(log1)



When do Integrals Converge?

Example 2
f(x) =%

. 1,
- tllg;o_;h
1 1
= lim -+ =
tsoo t 1
= 0+1

Justin Grimmer (Stanford University) Methodology |



Substitution (slides borrowed from math.hmc.edu)
Sometimes, antidifferentiating is hard

/ (x? — 1)*2xdx

But we can use substitution to simplify. Suspend disbelief and set
u = x2-1

du = 2xdx
Rewriting the original,

/ (2 — 14 (2xdx) =

Justin Grimmer (Stanford University)

o F
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Substitution Rule (slides borrowed from math.hmc.edu)

Just chain rule in reverse. We know that the antiderivative of

/ fe())g (dx = F(g(x)

So, with substitution rule, we look for ways to set up chain rule

Justin Grimmer (Stanford University)
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Substitution Rule (slides borrowed from math.hmc.edu)

/—e_xdx

u = —x
du = —dx
/e“du = e'+c¢
= e +c

u]
8
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i
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Substitution Rule (slides borrowed from math.hmc.edu)

We can also multiply by 1 (creatively) to set up substitution rule

/e‘zxdx = —%/—26_2"dx

u = -—-2x
du = -—2dx
1 1
—E/e“du = —Ee“+c
_ 1 —2x
= 26 +c

Justin Grimmer (Stanford University) Methodology |



Example: Exponential Distribution

Suppose f : [0,00) — R, with f(x) = e~ *. Evaluate

/ e *dx
0

t
= l|im / e *dx
t—00 0

I Xt

= Mim —e o

= lim —e f41
t—00

— 0+1

We will call f(x) = e~ the exponential distribution

Justin Grimmer (Stanford University)
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Integration by Parts

Consider:

/ x cos(x)dx
That is hard to integrate.

Instead we'll use Integration by parts

Justin Grimmer (Stanford University)
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Define:

Justin Grimmer (Stanford University)

Integration by Parts
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Define:

Let's differentiate g(x)

Justin Grimmer (Stanford University)

Integration by Parts
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Define:

Justin Grimmer (Stanford University)

Integration by Parts
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Integration by Parts
Define:

g(x)
Let's differentiate g(x)

g (x) '
So, antidifferentiating g'(x) yields

u (x)v(x) + v (x)u(x)

Justin Grimmer (Stanford University)
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Integration by Parts
Define:

Let's differentiate g(x)

g(x) =

u' (x)v(x) + v (x)u(x)
So, antidifferentiating g'(x) yields

/ g (x)dx

Justin Grimmer (Stanford University)
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Integration by Parts
Define:

Let's differentiate g(x)

g(x) = u()v(x)+ Vv (x)u(x)

So, antidifferentiating g'(x) yields

/ g (x)dx = / u (x)v(x)dx + / u(x)v
/

u(x)v(x)+c —/ul(x)v(x)dx =

Justin Grimmer (Stanford University) Methodology |



Integration by Parts
Define:

Let's differentiate g(x)

g(x) = u()v(x)+ Vv (x)u(x)

So, antidifferentiating g'(x) yields

/ g (x)dx = / '
u(x)v(x) + c — / U (x)v(x)dx = / u(x)v' (x)dx
/

uv—/vdu =

Justin Grimmer (Stanford University) Methodology |



Integration by Parts
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Integration by Parts

Justin Grimmer (Stanford University)
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Integration by Parts

Justin Grimmer (Stanford University)
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Integration by Parts

du

Justin Grimmer (Stanford University)
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x cos(x)dx

X



Integration by Parts

Justin Grimmer (Stanford University)

du
dv

x cos(x)dx

X

= cos(x)
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Integration by Parts

Justin Grimmer (Stanford University)

du
dv

/ x cos(x)dx

cos(x)

sin(x)
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Integration by Parts

/ x cos(x)dx

u = x

du =1

dv = cos(x)
v = sin(x)

/xcos(x)dx = xsin(x)—/sin(x)ldx

u]
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Integration by Parts

/ x cos(x)dx

u = x

du =1

dv = cos(x)
v = sin(x)

/xcos(x)dx = xsin(x)—/sin(x)ldx

= xsin(x) + cos(x)

u]
8
I

i
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S
»
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Integration by Parts

Challenge:

/ exp(x) cos(x)dx
/ log(x)dx

/ arctan(x)dx

Justin Grimmer (Stanford University)
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Integration by Parts

Challenge:

/ exp(x) cos(x)dx
/ log(x)dx

/ arctan(x)dx

Wolfram Alpha (briefly)

Justin Grimmer (Stanford University)
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Monte Carlo and Integration (via Jackman)

Suppose that we want to compute some integral [*° xf(x)dx, but f(x) is
complicated.

Justin Grimmer (Stanford University)
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Monte Carlo and Integration (via Jackman)

Suppose that we want to compute some integral [*° xf(x)dx, but f(x) is
complicated.

_ =)
f(x) = —exp<\/2_?“r>

Justin Grimmer (Stanford University)
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Monte Carlo and Integration (via Jackman)

Suppose that we want to compute some integral [* xf(x)dx, but f(x) is
complicated.

_ =)
f(x) = —exp(\/z—?#r>

Suppose we can generate random draws from f(x).

Justin Grimmer (Stanford University)
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Monte Carlo and Integration (via Jackman)

Suppose that we want to compute some integral [* xf(x)dx, but f(x) is
complicated.

_ =)
f(x) = —exp(\/z—?#r>

Suppose we can generate random draws from f(x).

X
di,d>, ds, ..., d7, then we can approximate this with:

Justin Grimmer (Stanford University)
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Monte Carlo and Integration (via Jackman)

Suppose that we want to compute some integral [* xf(x)dx, but f(x) is
complicated.

_ (x=p)?
flx) = =) (\/i;; )

Suppose we can generate random draws from f(x).

X
di,d>, ds, ..., d7, then we can approximate this with:

Expected Value

1 T
= T;di

Justin Grimmer (Stanford University)
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Monte Carlo and Integration (via Jackman)

Suppose that we want to compute some integral [* xf(x)dx, but f(x) is
complicated.

_ (x=p)?
flx) = =) (\/i;; )

Suppose we can generate random draws from f(x).

X
di,d>, ds, ..., d7, then we can approximate this with:

-
1
Expected Value = T Z d;

i=1
as T — oo,

Justin Grimmer (Stanford University)
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Monte Carlo and Integration (via Jackman)

Suppose that we want to compute some integral [* xf(x)dx, but f(x) is
complicated.

_ (x=p)?
flx) = =) (\/i;; )

Suppose we can generate random draws from f(x).

X
di,d>, ds, ..., d7, then we can approximate this with:

1 T
Expected Value = — E d;
T ¢
i=1
oo
as T — oo, Expected value — [* xf(x)dx
Justin Grimmer (Stanford University)
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Estimate

Justin

10

T T T T
0 200 400 600

Number of Draws

immer (Stanford University)

800 1000
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Estimate

Justin

10
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0 200 400 600

Number of Draws

immer (Stanford University)

800 1000
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Estimate

Justin

10

IA'AJM
T T T T T T
0 200 400 600 800 1000
Number of Draws
immer (Stanford University) Methodology |



R code for quantiles! MonteCarlo.R

Justin Grimmer (Stanford University)
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Infinite Series

- Interactions are often repeated

Countries: Fight now or fight later

- Congress: Caro, LBJ, and the Southern Strategy
- FDA: Do | approve this drug?

- Bargain: Do | make a deal now, or wait?

- General idea :

- Actions have continuation value:
- Value in the present time
- Stream of benefits in the future

- Infinite Series to model

Formal definition ~~ Heuristics ~» example problem (from JF)

Justin Grimmer (Stanford University) Methodology |



Infinite Series

Definition

An infinite series is a pair ({an};—1,{Sn}r—q) where {an} 2 is a
sequence and S, =Y ;4 ak.

Definition

The infinite series ({an},—q,{Sn}7q) converges if the sequence {Sp}7"
converges to S. We'll write this as,

ian = S
n=1

Justin Grimmer (Stanford University) Methodology |



Infinite Series

- Example 1

Justin Grimmer (Stanford University)
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Infinite Series
- Example 1

- an:{oalaov]woala"'v}

Justin Grimmer (Stanford University)
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Infinite Series

- Example 1

S5, ="

- a,=1{0,1,0,1,0,1, .

_n
i=19n = 3
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Infinite Series

- Example 1

-5, =571
- Example 2

_n
i=19n = 3

Justin Grimmer (Stanford University)

Methodology |

- a,=1{0,1,0,1,0,1, .
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Infinite Series

- Example 1

S5, ="

- a,=1{0,1,0,1,0,1, .

i=19n =
- Example 2

1 o0
~an={sm

n=1
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Infinite Series
- Example 1
- a,=1{0,1,0,1,0,1

b ) ) 7"'7}
- Sn:zl';
- Example 2

i=1dn = 5 as n — oo clearly diverges
1 oo

o= {wdn )

- We know that

- 1_ 1
k(k+1) =k

k+1
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Infinite Series
- Example 1

- a,=1{0,1,0,1,0,1

b ) ) 7"'7}
- Sn:zl';
- Example 2

i=1dn = 5 as n — oo clearly diverges
1 o0
-

- We know that

—1_ 1
k(k+1)_k
- So, for n=m,

k+1
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Infinite Series
- Example 1

- a,=1{0,1,0,1,0,1

b ) ) 7"'7}
- Sp =37 1a,= 3 as n— oo clearly diverges
- Example 2

1 o0
- ={wm},,
- We know that k(k+1) = % -
- So, for n=m,

k+1

m
D a
i=1
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Infinite Series

- Example 1
- an —
- Sh= ZL

- Example 2

1 o0
~an={w ),

- We know that
- So, for n=m,

Justin Grimmer (Stanford University)

{0,1,0,1,0,1

o}

1

k+1

1 _
k(k+1)_k
>

-

1 1
1><2+2><3
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Infinite Series

- Example 1
- an:{oalaov]wovla"'v}
- Sp =37 1a,= 3 as n— oo clearly diverges

- Example 2
1 (oo}
-a={wm},
- We know that k(k+1) = % — #
- So, for n=m,
Sm = Zai
i=1
B 1 1 1
= 1x2ax3te (m)(m+1)
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Infinite Series
- Example 1

- a,

={0,1,0,1,0,1,...,}

- Sp =37 1a,= 3 as n— oo clearly diverges

- Example 2

1 o0
~an={w ),

- We know that

- So, for n=m,

Sm =

Justin Grimmer (Stanford University)

k(k+1)

- 1_ 1
=k TK
¥
i=1
1 n 1 n 1
I1x2 2x3 77 (m)(m+1)
1 1 n 1 1 1 1
1 2 2 3 m m+1
1
1— ——
m+1
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Infinite Series

- Example 1

- a,=1{0,1,0,1,0,1,...,}

- Sp =37 1a,= 3 as n— oo clearly diverges
- Example 2

~an={sm ),

- We know that k(k-s-l):%_%
- So, for n=m,
S = 3a
i=1
- iy
T o1x2 ' 2x3 7
1 1 1 1
S = —_Z - _Z
K (1 2)+<2 3)
1
pr— 1——
m+1

So S, converges on 1. (the sequence S, converges, just like we prove

other sequence convergence) o
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How Do We Assess Convergence?

Theorem

If {Sp}2, converges then {ap} 2 is converges to zero
- Necessary!

- But not sufficient
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Infinite Series Convergence

Example 1:
- dn= % Sny

Does this converge?

Justin Grimmer (Stanford University)
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Infinite Series Convergence

Suppose n = 2k
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Infinite Series Convergence

Suppose n = 2k

So = ltidi4iiio
" 2734 Tk
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Infinite Series Convergence

Suppose n = 2k

Sn

ity 2
2 34 2k

_ 1+1+(l+1)+<1+1+1+1)+...+(;+.
2 \3 ' 4 56 7 8 2k-141
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Infinite Series Convergence

Suppose n = 2k

1 1 1 1
o= 14+ ...
S +2+3+4+ o
= 1+1+ 1+1 + 1+1+1+1
o 2 3 4 5 6 7 8
1

\Y
—
_l’_
N
_|_
N
/\
—
v

+4(é>+...+2k—1<

Justin Grimmer (Stanford University) Methodology |



Infinite Series Convergence

Suppose n = 2k

1 1 1 1
o= 14+ ...
S +2+3+4+ o
= 1+1+ 1+1 + 1+1+1+ +
o 2 3 4 5 6 7 2k 1 +»1 2k
1

vV
—
+
N |
+
N
/_\
v
+
N~
/_\
| =
N———
_|_
N
»
I—l
7N
hg|~
N———
||
I\JI

We know that 1 + g does not converge.
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Infinite Series Convergence

Suppose n = 2k

1 1 1 1

o= 14+ ...

S +2+3+4+ o
= 1+1+ 1+1 + 1+1+1+ +
o 2 3 4 5 6 7 2k 1 +»1 2k

vV
—
+
N |
+
N
/_\
v
+
N~
/_\
| =
N———
_|_
N
»
I—l
7N
hg|~
N———
||
I\JI

We know that 1 + g does not converge.
And we know that S5, > 1+ § ~ does not converge (!!)
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Infinite Series Convergence

Suppose n = 2k

1 1 1 1
o= 14+ ...
S +2+3+4+ o
= 1+1+ 1+1 + 1+1+1+ +
o 2 3 4 5 6 7 2k 1 +»1 2k
1

vV
—
+
N |
+
N
/\
v
+
N~
/_\
| =
N———
_|_
N
k
I—l
7N
hg|~
N———
||
I\JI

We know that 1 + g does not converge.
And we know that S5, > 1+ § ~ does not converge (!!)

Theorem

S v & converges if and only if p > 1.

D—

u]
8
I

i
it
S
»
i)
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Geometric Series and Discount Rates

Definition

A geometric series is an infinite series such that a, = cr" and that
Sh=> g ocrk=ct+cr+cr?+crd+...cr"
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Geometric Series and Discount Rates

Definition

A geometric series is an infinite series such that a, = cr" and that
Sh=> g ocrk=ct+cr+cr?+crd+...cr"
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Geometric Series and Discount Rates
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Geometric Series and Discount Rates
Theorem

If |r| <1, then the geometric series converges to <. If |r| > 1, the
geometric series diverges
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Geometric Series and Discount Rates
Theorem

If |r| <1, then the geometric series converges to <. If |r| > 1, the
geometric series diverges

Proof.
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Geometric Series and Discount Rates
Theorem

If |r| <1, then the geometric series converges to <. If |r| > 1, the
geometric series diverges

Proof.
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Geometric Series and Discount Rates
Theorem

If |r| <1, then the geometric series converges to <. If |r| > 1, the
geometric series diverges

Proof.

1-nS, = (1- r)Zcrk

n
(1—r)Zcrk = chertcrtt. o -
k=0
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Geometric Series and Discount Rates
Theorem

If |r| <1, then the geometric series converges to <. If |r| > 1, the
geometric series diverges

Proof.

1-nS, = (1- r)Zcrk

n
(1—r)Zcrk = chertcrtt. o -
k=0

(cr+cr*+cr®+...cr" 4 ™)
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Geometric Series and Discount Rates

Theorem

If |r| <1, then the geometric series converges to <. If |r| > 1, the

geometric series diverges

Proof.

—~
—
|
~
~—
9
3
I

Justin Grimmer (Stanford University)
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Geometric Series and Discount Rates

Theorem

If |r| <1, then the geometric series converges to <. If |r| > 1, the

geometric series diverges

Proof.

Justin Grimmer (Stanford University)

c+erdcr’+ .. 4" —

(cr+cr*+cr®+...cr" 4 ™)

c—cr™t

1_rn+1
(+7)
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1—pntl
o= e (T)
1
= c
1—r
c <’1rf:> converges if and only if |r| < 1.

)<
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Discount Rates and IR (Fearon, Part 2)

Suppose states are choosing between attacking another country to obtain
a short time gain, or cooperating for peace

C D
C | 20,20 | 10,25
D | 25,10 | 15,15

Grim-trigger: cooperate, until defect. Then defect forever
Suppose states discount future § € [0, 1].

V(C) = 20+ 820+ 6220 + 6320 + ...
20

1-6
V(D) = 25+ 015+ 6°15 4 6315
15

— 2545
540

it
<
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When Will States Cooperate? (Fearon, Part 2)

V(D)

=
o
v

15
s 25 +6—

25
25(1 — 6)

V

(20 — 615)
106
5

vV V. V V

N| = O1
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Linear Algebra tomorrow!

Justin Grimmer (Stanford University)

Methodology |



