Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 7th, 2016

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

- Given data, most likely value of a parameter

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

- Given data, most likely value of a parameter
- Game theory: given other player's strategy, action that maximizes utility

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

- Given data, most likely value of a parameter
- Game theory: given other player's strategy, action that maximizes utility
- Across substantive areas: what is the optimal action, strategy, prediction?

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

- Given data, most likely value of a parameter
- Game theory: given other player's strategy, action that maximizes utility
- Across substantive areas: what is the optimal action, strategy, prediction?
How to Optimize

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

- Given data, most likely value of a parameter
- Game theory: given other player's strategy, action that maximizes utility
- Across substantive areas: what is the optimal action, strategy, prediction?
How to Optimize
- When functions are well behaved and known \rightsquigarrow analytic solutions

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

- Given data, most likely value of a parameter
- Game theory: given other player's strategy, action that maximizes utility
- Across substantive areas: what is the optimal action, strategy, prediction?
How to Optimize
- When functions are well behaved and known \rightsquigarrow analytic solutions
- Differentiate, set equal to zero, solve

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

- Given data, most likely value of a parameter
- Game theory: given other player's strategy, action that maximizes utility
- Across substantive areas: what is the optimal action, strategy, prediction?

How to Optimize

- When functions are well behaved and known \rightsquigarrow analytic solutions
- Differentiate, set equal to zero, solve
- Check end points and use second derivative test

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

- Given data, most likely value of a parameter
- Game theory: given other player's strategy, action that maximizes utility
- Across substantive areas: what is the optimal action, strategy, prediction?

How to Optimize

- When functions are well behaved and known \rightsquigarrow analytic solutions
- Differentiate, set equal to zero, solve
- Check end points and use second derivative test
- More difficult problems \rightsquigarrow computational solutions

Optimization

Political scientists are often concerned with finding extrema: maxima or minima

- Given data, most likely value of a parameter
- Game theory: given other player's strategy, action that maximizes utility
- Across substantive areas: what is the optimal action, strategy, prediction?

How to Optimize

- When functions are well behaved and known \rightsquigarrow analytic solutions
- Differentiate, set equal to zero, solve
- Check end points and use second derivative test
- More difficult problems \rightsquigarrow computational solutions

Intuition: Optimization with Derivatives, Known well behaved functions

Rolle's Theorem

Intuition: Optimization with Derivatives, Known well behaved functions

- Rolle's theorem guarantee's that, at some point, $f^{\prime}(x)=0$

Intuition: Optimization with Derivatives, Known well behaved functions

- Rolle's theorem guarantee's that, at some point, $f^{\prime}(x)=0$
- Intuition from proof-what happens as we approach from the left?

Intuition: Optimization with Derivatives, Known well behaved functions

- Rolle's theorem guarantee's that, at some point, $f^{\prime}(x)=0$
- Intuition from proof-what happens as we approach from the left?
- Intuition from proof-what happens as we approach from the right?

Intuition: Optimization with Derivatives, Known well behaved functions

- Rolle's theorem guarantee's that, at some point, $f^{\prime}(x)=0$
- Intuition from proof-what happens as we approach from the left?
- Intuition from proof-what happens as we approach from the right?
- critical intuition first, second derivatives

Second Derivatives

Definition

Suppose $f: \Re \rightarrow \Re$ is differentiable. Recall we write this as f^{\prime} and suppose that $f^{\prime}: \Re \rightarrow \Re$. Then if the limit,

$$
\lim _{x \rightarrow x_{0}} R(x)=\frac{f^{\prime}(x)-f^{\prime}\left(x_{0}\right)}{x-x_{0}}
$$

exists, we call this the second derivative at $x_{0}, f^{\prime \prime}\left(x_{0}\right)$.

Example of Second Derivatives

$$
\begin{aligned}
f(x) & =x \\
f^{\prime}(x) & =1 \\
f^{\prime \prime}(x) & =0
\end{aligned}
$$

Example of Second Derivatives

$$
\begin{aligned}
f(x) & =e^{x} \\
f^{\prime}(x) & =e^{x} \\
f^{\prime \prime}(x) & =e^{x}
\end{aligned}
$$

Example of Second Derivatives

$$
\begin{aligned}
f(x) & =\log (x) \\
f^{\prime}(x) & =\frac{1}{x} \\
f^{\prime \prime}(x) & =\frac{-1}{x^{2}}
\end{aligned}
$$

Example of Second Derivatives

$$
\begin{aligned}
f(x) & =\frac{1}{x} \\
f^{\prime}(x) & =\frac{-1}{x^{2}} \\
f^{\prime \prime}(x) & =\frac{2}{x^{3}}
\end{aligned}
$$

Example of Second Derivatives

$$
\begin{aligned}
f(x) & =-x^{2}+20 \\
f^{\prime}(x) & =-2 x \\
f^{\prime \prime}(x) & =-2
\end{aligned}
$$

Approximating functions and second order conditions

Theorem
Taylor's Theorem Suppose $f: \Re \rightarrow \Re, f(x)$ is infinitely differentiable function. Then, the taylor expansion of $f(x)$ around a is given by

$$
\begin{aligned}
& f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots \\
& f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

R Code!

Concavity, Convexity, Inflections

Second derivatives provide further information about functions

Concavity, Convexity, Inflections

Second derivatives provide further information about functions

Concave Up/ Convex

Definition

Suppose $f:[a, b] \rightarrow \Re$ is a twice differentiable function. If, for all $x \in[a, b]$ and $y \in[a, b]$ and $t \in(0,1)$

$$
f((1-t) x+t y)<(1-t) f(x)+t f(y)
$$

We say that f is strictly concave up or convex. Equivalently if $f^{\prime \prime}(x)>0$ for all $x \in[a, b]$, we say that f is strictly concave up.

Concave Up, Graphical Test

 $f(x)=e^{x},[1,4]$$e^{\wedge}(x)$

Concave Up, Graphical Test

 $f(x)=e^{x},[1,4]$$e^{\wedge}(x)$

Concave Up, Graphical Test

$$
f(x)=e^{x},[1,4]
$$

$e^{\wedge}(x)$

Concave Up, Graphical Test

$f(x)=e^{x},[1,4]$
$e^{\wedge}(x)$

Concave Up, Graphical Test

$f(x)=e^{x},[1,4]$
$e^{\wedge}(x)$

Concave Up, Graphical Test

$$
f(x)=e^{x},[1,4]
$$

$e^{\wedge}(x)$

Concave Up, Graphical Test

$$
f(x)=e^{x},[1,4]
$$

$e^{\wedge}(x)$

Concave Up, Second Derivative

$e^{\wedge}(x)$

$e^{x}>0$ for all $x \in[1,4]$

Concave Down

Definition

Suppose $f:[a, b] \rightarrow \Re$ is a twice differentiable function. If, for all $x \in[a, b]$ and $y \in[a, b]$ and $t \in(0,1)$

$$
f((1-t) x+t y)>(1-t) f(x)+t f(y)
$$

We say that f is strictly concave down. Equivalently if $f^{\prime \prime}(x)<0$ for all $x \in[a, b]$, we say that f is strictly concave down.

Concave Down

$\log (x)$

- Show Concave down with graph test for $x \in[1,4]$
- Show concave down with second derivative test for $x \in[1,4]$

Optimization

Theorem
Extreme Value Theorem Suppose $f:[a, b] \rightarrow \Re$ and that f is continuous.
Then f obtains its extreme value on $[a, b]$.

Corollary

Suppose $f:[a, b] \rightarrow \Re$, that f is continuous and differentiable, and that $f(a)$ nor $f(b)$ is the extreme value. Then f obtains its maximum on (a, b) and if $f\left(x_{0}\right)$ is the extreme value of $f x_{0} \in(a, b)$ then, $f^{\prime}\left(x_{0}\right)=0$.

Extrema on End Points

$$
f(x)=x
$$

Maximum in Middle, Concave Down

$$
f(x)=-x^{2}+5
$$

Rolle's Theorem

Minimum in Interior, Concave Up $f(x)=x^{2}+9 x+9$

Local Optima

$f(x)=\sin (x)$

Inflection points

$$
f(x)=x^{3}
$$

Framework for Optimization

Recipe for optimization

Framework for Optimization

Recipe for optimization

- Find $f^{\prime}(x)$.

Framework for Optimization

Recipe for optimization

- Find $f^{\prime}(x)$.
- Set $f^{\prime}(x)=0$ and solve for x. Call all x_{0} such that $f^{\prime}\left(x_{0}\right)=0$ critical values.

Framework for Optimization

Recipe for optimization

- Find $f^{\prime}(x)$.
- Set $f^{\prime}(x)=0$ and solve for x. Call all x_{0} such that $f^{\prime}\left(x_{0}\right)=0$ critical values.
- Find $f^{\prime \prime}(x)$. Evaluate at each x_{0}.

Framework for Optimization

Recipe for optimization

- Find $f^{\prime}(x)$.
- Set $f^{\prime}(x)=0$ and solve for x. Call all x_{0} such that $f^{\prime}\left(x_{0}\right)=0$ critical values.
- Find $f^{\prime \prime}(x)$. Evaluate at each x_{0}.
- If $f^{\prime \prime}(x)>0$, Concave up, local minimum

Framework for Optimization

Recipe for optimization

- Find $f^{\prime}(x)$.
- Set $f^{\prime}(x)=0$ and solve for x. Call all x_{0} such that $f^{\prime}\left(x_{0}\right)=0$ critical values.
- Find $f^{\prime \prime}(x)$. Evaluate at each x_{0}.
- If $f^{\prime \prime}(x)>0$, Concave up, local minimum
- If $f^{\prime \prime}(x)<0$, Concave down, local maximum

Framework for Optimization

Recipe for optimization

- Find $f^{\prime}(x)$.
- Set $f^{\prime}(x)=0$ and solve for x. Call all x_{0} such that $f^{\prime}\left(x_{0}\right)=0$ critical values.
- Find $f^{\prime \prime}(x)$. Evaluate at each x_{0}.
- If $f^{\prime \prime}(x)>0$, Concave up, local minimum
- If $f^{\prime \prime}(x)<0$, Concave down, local maximum
- If $f^{\prime \prime}(x)=0$, No knowledge-local minimum, maximum, or inflection point

Framework for Optimization

Recipe for optimization

- Find $f^{\prime}(x)$.
- Set $f^{\prime}(x)=0$ and solve for x. Call all x_{0} such that $f^{\prime}\left(x_{0}\right)=0$ critical values.
- Find $f^{\prime \prime}(x)$. Evaluate at each x_{0}.
- If $f^{\prime \prime}(x)>0$, Concave up, local minimum
- If $f^{\prime \prime}(x)<0$, Concave down, local maximum
- If $f^{\prime \prime}(x)=0$, No knowledge-local minimum, maximum, or inflection point
- Check End Points!

Example 1: $f(x)=-x^{2}, x \in[-3,3]$

$$
-x^{\wedge} 2
$$

Example 1: $f(x)=-x^{2}, x \in[-3,3]$

Example 1: $f(x)=-x^{2}, x \in[-3,3]$

1) Critical Value:

$$
\begin{aligned}
f^{\prime}(x) & =-2 x \\
0 & =-2 x^{*} \\
x^{*} & =0
\end{aligned}
$$

Example 1: $f(x)=-x^{2}, x \in[-3,3]$

1) Critical Value:

$$
\begin{aligned}
f^{\prime}(x) & =-2 x \\
0 & =-2 x^{*} \\
x^{*} & =0
\end{aligned}
$$

2) Second Derivative:

$$
\begin{aligned}
f^{\prime}(x) & =-2 x \\
f^{\prime \prime}(x) & =-2
\end{aligned}
$$

$f^{\prime \prime}(x)<0$, local maximum

Example 1: $f(x)=-x^{2}, x \in[-3,3]$

1) Critical Value:

$$
\begin{aligned}
f^{\prime}(x) & =-2 x \\
0 & =-2 x^{*} \\
x^{*} & =0
\end{aligned}
$$

2) Second Derivative:

$$
\begin{aligned}
f^{\prime}(x) & =-2 x \\
f^{\prime \prime}(x) & =-2
\end{aligned}
$$

$f^{\prime \prime}(x)<0$, local maximum

Example 1: $f(x)=-x^{2}, x \in[-3,3]$

3) Check end points

$$
\begin{aligned}
f(0) & =-0^{2}=0 \\
f(-3) & =-(-3)^{2}=-9 \\
f(3) & =-(3)^{2}=-9
\end{aligned}
$$

Example 2: $f(x)=x^{3}, x \in[-3,3]$

$\mathbf{x}^{\wedge} 3$

Example 2: $f(x)=x^{3}, x \in[-3,3]$

1) Critical Values:

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2} \\
0 & =3\left(x^{*}\right)^{2} \\
x^{*} & =0
\end{aligned}
$$

Example 2: $f(x)=x^{3}, x \in[-3,3]$

1) Critical Values:

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2} \\
0 & =3\left(x^{*}\right)^{2} \\
x^{*} & =0
\end{aligned}
$$

2) Second Derivative:

$$
\begin{aligned}
f^{\prime \prime}(x) & =6 x \\
f^{\prime \prime}(0) & =0
\end{aligned}
$$

No information

Example 2: $f(x)=x^{3}, x \in[-3,3]$

3) Check End Points:

$$
\begin{aligned}
f(0) & =0^{3}=0 \\
f(-3) & =-3^{3}=-27 \\
f(3) & =3^{3}=27
\end{aligned}
$$

Neither maximum nor minimum, saddle point

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i's utility as, $U: \Re \rightarrow \Re$,

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i 's utility as, $U: \Re \rightarrow \Re$,

$$
U_{i}(x)=-(x-\mu)^{2}
$$

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i 's utility as, $U: \Re \rightarrow \Re$,

$$
\begin{aligned}
& U_{i}(x)=-(x-\mu)^{2} \\
& U_{i}(x)=-x^{2}+2 x \mu-\mu^{2}
\end{aligned}
$$

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i 's utility as, $U: \Re \rightarrow \Re$,

$$
\begin{aligned}
& U_{i}(x)=-(x-\mu)^{2} \\
& U_{i}(x)=-x^{2}+2 x \mu-\mu^{2}
\end{aligned}
$$

What is i 's optimal policy over the range $x \in[\mu-2, \mu+2]$?

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i 's utility as, $U: \Re \rightarrow \Re$,

$$
\begin{aligned}
& U_{i}(x)=-(x-\mu)^{2} \\
& U_{i}(x)=-x^{2}+2 x \mu-\mu^{2}
\end{aligned}
$$

What is i's optimal policy over the range $x \in[\mu-2, \mu+2]$?

$$
U_{i}^{\prime}(x)=-2(x-\mu)
$$

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i 's utility as, $U: \Re \rightarrow \Re$,

$$
\begin{aligned}
& U_{i}(x)=-(x-\mu)^{2} \\
& U_{i}(x)=-x^{2}+2 x \mu-\mu^{2}
\end{aligned}
$$

What is i's optimal policy over the range $x \in[\mu-2, \mu+2]$?

$$
\begin{aligned}
U_{i}^{\prime}(x) & =-2(x-\mu) \\
0 & =-2 x^{*}+2 \mu
\end{aligned}
$$

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i 's utility as, $U: \Re \rightarrow \Re$,

$$
\begin{aligned}
& U_{i}(x)=-(x-\mu)^{2} \\
& U_{i}(x)=-x^{2}+2 x \mu-\mu^{2}
\end{aligned}
$$

What is i's optimal policy over the range $x \in[\mu-2, \mu+2]$?

$$
\begin{aligned}
U_{i}^{\prime}(x) & =-2(x-\mu) \\
0 & =-2 x^{*}+2 \mu \\
x^{*} & =\mu
\end{aligned}
$$

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i 's utility as, $U: \Re \rightarrow \Re$,

$$
\begin{aligned}
& U_{i}(x)=-(x-\mu)^{2} \\
& U_{i}(x)=-x^{2}+2 x \mu-\mu^{2}
\end{aligned}
$$

What is i's optimal policy over the range $x \in[\mu-2, \mu+2]$?

$$
\begin{aligned}
U_{i}^{\prime}(x) & =-2(x-\mu) \\
0 & =-2 x^{*}+2 \mu \\
x^{*} & =\mu
\end{aligned}
$$

Second Derivative Test

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i 's utility as, $U: \Re \rightarrow \Re$,

$$
\begin{aligned}
& U_{i}(x)=-(x-\mu)^{2} \\
& U_{i}(x)=-x^{2}+2 x \mu-\mu^{2}
\end{aligned}
$$

What is i's optimal policy over the range $x \in[\mu-2, \mu+2]$?

$$
\begin{aligned}
U_{i}^{\prime}(x) & =-2(x-\mu) \\
0 & =-2 x^{*}+2 \mu \\
x^{*} & =\mu
\end{aligned}
$$

Second Derivative Test

$$
U_{i}^{\prime \prime}(x)=-2<0 \rightarrow \text { Concave Down }
$$

Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be situated in policy space
Suppose legislator i and policies $x, i \in \Re$.
Define legislator i 's utility as, $U: \Re \rightarrow \Re$,

$$
\begin{aligned}
& U_{i}(x)=-(x-\mu)^{2} \\
& U_{i}(x)=-x^{2}+2 x \mu-\mu^{2}
\end{aligned}
$$

What is i's optimal policy over the range $x \in[\mu-2, \mu+2]$?

$$
\begin{aligned}
U_{i}^{\prime}(x) & =-2(x-\mu) \\
0 & =-2 x^{*}+2 \mu \\
x^{*} & =\mu
\end{aligned}
$$

Second Derivative Test

$$
U_{i}^{\prime \prime}(x)=-2<0 \rightarrow \text { Concave Down }
$$

We call μ legislator i's ideal point

Example 3: Spatial Model

$$
\begin{aligned}
U_{i}(\mu) & =-(\mu-\mu)^{2}=0 \\
U_{i}(\mu-2) & =-(\mu-2-\mu)^{2}=-4 \\
U_{i}(\mu+2) & =-(\mu+2-\mu)^{2}=-4
\end{aligned}
$$

Maximize utility at μ

Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data.

Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data.
Here is an example likelihood function: We want to find the Maximum likelihood estimate

Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data.
Here is an example likelihood function: We want to find the Maximum likelihood estimate

$$
f(\mu)=\prod_{i=1}^{N} \exp \left(\frac{-\left(Y_{i}-\mu\right)^{2}}{2}\right)
$$

Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data.
Here is an example likelihood function: We want to find the Maximum likelihood estimate

$$
\begin{aligned}
f(\mu) & =\prod_{i=1}^{N} \exp \left(\frac{-\left(Y_{i}-\mu\right)^{2}}{2}\right) \\
& =\exp \left(-\frac{\left(Y_{1}-\mu\right)^{2}}{2}\right) \times \ldots \times \exp \left(-\frac{\left(Y_{N}-\mu\right)^{2}}{2}\right)
\end{aligned}
$$

Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data.
Here is an example likelihood function: We want to find the Maximum likelihood estimate

$$
\begin{aligned}
f(\mu) & =\prod_{i=1}^{N} \exp \left(\frac{-\left(Y_{i}-\mu\right)^{2}}{2}\right) \\
& =\exp \left(-\frac{\left(Y_{1}-\mu\right)^{2}}{2}\right) \times \ldots \times \exp \left(-\frac{\left(Y_{N}-\mu\right)^{2}}{2}\right) \\
& =\exp \left(-\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{2}\right)
\end{aligned}
$$

Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data.
Here is an example likelihood function: We want to find the Maximum likelihood estimate

$$
\begin{aligned}
f(\mu) & =\prod_{i=1}^{N} \exp \left(\frac{-\left(Y_{i}-\mu\right)^{2}}{2}\right) \\
& =\exp \left(-\frac{\left(Y_{1}-\mu\right)^{2}}{2}\right) \times \ldots \times \exp \left(-\frac{\left(Y_{N}-\mu\right)^{2}}{2}\right) \\
& =\exp \left(-\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{2}\right)
\end{aligned}
$$

Theorem
Suppose $f: \Re \rightarrow(0, \infty)$. If x_{0} maximizes f, then x_{0} maximizes $\log (f(x))$.

Example 4: Maximum Llkelihood Estimation

Example 4: Maximum Llkelihood Estimation

$$
\log f(\mu)=\log \left(\exp \left(-\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{2}\right)\right)
$$

Example 4: Maximum Llkelihood Estimation

$$
\begin{aligned}
\log f(\mu) & =\log \left(\exp \left(-\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{2}\right)\right) \\
& \left.=-\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{2}\right)
\end{aligned}
$$

Example 4: Maximum Llkelihood Estimation

$$
\begin{aligned}
\log f(\mu) & =\log \left(\exp \left(-\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{2}\right)\right) \\
& \left.=-\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{2}\right) \\
& =-\frac{1}{2}\left(\sum_{i=1}^{N} Y_{i}^{2}-2 \mu \sum_{i=1}^{N} Y_{i}+N \times \mu^{2}\right)
\end{aligned}
$$

Example 4: Maximum Llkelihood Estimation

$$
\begin{aligned}
\log f(\mu) & =\log \left(\exp \left(-\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{2}\right)\right) \\
& \left.=-\frac{\sum_{i=1}^{N}\left(Y_{i}-\mu\right)^{2}}{2}\right) \\
& =-\frac{1}{2}\left(\sum_{i=1}^{N} Y_{i}^{2}-2 \mu \sum_{i=1}^{N} Y_{i}+N \times \mu^{2}\right) \\
\frac{\partial \log f(\mu)}{\partial \mu} & =-\frac{1}{2}\left(-2 \sum_{i=1}^{N} Y_{i}+2 N \mu\right)
\end{aligned}
$$

Example 4: Maximum Likelihood Estimation

Example 4: Maximum Likelihood Estimation

$$
0=-\frac{1}{2}\left(-\sum_{i=1}^{N} Y_{i}+2 N \mu^{*}\right)
$$

Example 4: Maximum Likelihood Estimation

$$
\begin{aligned}
0 & =-\frac{1}{2}\left(-\sum_{i=1}^{N} Y_{i}+2 N \mu^{*}\right) \\
2 \sum_{i=1}^{N} Y_{i} & =2 N \mu^{*}
\end{aligned}
$$

Example 4: Maximum Likelihood Estimation

$$
\begin{aligned}
0 & =-\frac{1}{2}\left(-\sum_{i=1}^{N} Y_{i}+2 N \mu^{*}\right) \\
2 \sum_{i=1}^{N} Y_{i} & =2 N \mu^{*} \\
\frac{\sum_{i=1}^{N} Y_{i}}{N} & =\mu^{*}
\end{aligned}
$$

Example 4: Maximum Likelihood Estimation

$$
\begin{aligned}
0 & =-\frac{1}{2}\left(-\sum_{i=1}^{N} Y_{i}+2 N \mu^{*}\right) \\
2 \sum_{i=1}^{N} Y_{i} & =2 N \mu^{*} \\
\frac{\sum_{i=1}^{N} Y_{i}}{N} & =\mu^{*} \\
\bar{Y} & =\mu^{*}
\end{aligned}
$$

Example 4: Maximum Likelihood Estimation

$$
\begin{aligned}
0 & =-\frac{1}{2}\left(-\sum_{i=1}^{N} Y_{i}+2 N \mu^{*}\right) \\
2 \sum_{i=1}^{N} Y_{i} & =2 N \mu^{*} \\
\frac{\sum_{i=1}^{N} Y_{i}}{N} & =\mu^{*} \\
\bar{Y} & =\mu^{*}
\end{aligned}
$$

Second Derivative Test

Example 4: Maximum Likelihood Estimation

$$
\begin{aligned}
0 & =-\frac{1}{2}\left(-\sum_{i=1}^{N} Y_{i}+2 N \mu^{*}\right) \\
2 \sum_{i=1}^{N} Y_{i} & =2 N \mu^{*} \\
\frac{\sum_{i=1}^{N} Y_{i}}{N} & =\mu^{*} \\
\bar{Y} & =\mu^{*}
\end{aligned}
$$

Second Derivative Test

$$
f^{\prime}(\mu)=-\frac{1}{2}\left(-2 \sum_{i=1}^{N} Y_{i}+2 N \mu\right)
$$

Example 4: Maximum Likelihood Estimation

$$
\begin{aligned}
0 & =-\frac{1}{2}\left(-\sum_{i=1}^{N} Y_{i}+2 N \mu^{*}\right) \\
2 \sum_{i=1}^{N} Y_{i} & =2 N \mu^{*} \\
\frac{\sum_{i=1}^{N} Y_{i}}{N} & =\mu^{*} \\
\bar{Y} & =\mu^{*}
\end{aligned}
$$

Second Derivative Test

$$
\begin{aligned}
f^{\prime}(\mu) & =-\frac{1}{2}\left(-2 \sum_{i=1}^{N} Y_{i}+2 N \mu\right) \\
f^{\prime \prime}(\mu) & =-N
\end{aligned}
$$

Example 5: IR Bargaining (from Jim Fearon, Part 1)

Countries fight wars, usually to get stuff.

Example 5: IR Bargaining (from Jim Fearon, Part 1)

Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.

Example 5: IR Bargaining (from Jim Fearon, Part 1)

Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
- Each country decides to invest $a_{1} \in[0,1]$ and $a_{2} \in[0,1]$.

Example 5: IR Bargaining (from Jim Fearon, Part 1)

Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
- Each country decides to invest $a_{1} \in[0,1]$ and $a_{2} \in[0,1]$.
- The probability of country 1 winning the war is

Example 5: IR Bargaining (from Jim Fearon, Part 1)

Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
- Each country decides to invest $a_{1} \in[0,1]$ and $a_{2} \in[0,1]$.
- The probability of country 1 winning the war is

$$
p\left(a_{1}, a_{2}\right)=\frac{a_{1}^{n}}{a_{1}^{n}+a_{2}^{n}}
$$

Example 5: IR Bargaining (from Jim Fearon, Part 1)

Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
- Each country decides to invest $a_{1} \in[0,1]$ and $a_{2} \in[0,1]$.
- The probability of country 1 winning the war is

$$
p\left(a_{1}, a_{2}\right)=\frac{a_{1}^{n}}{a_{1}^{n}+a_{2}^{n}}
$$

- Country 1's utility is given by

Example 5: IR Bargaining (from Jim Fearon, Part 1)

Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
- Each country decides to invest $a_{1} \in[0,1]$ and $a_{2} \in[0,1]$.
- The probability of country 1 winning the war is

$$
p\left(a_{1}, a_{2}\right)=\frac{a_{1}^{n}}{a_{1}^{n}+a_{2}^{n}}
$$

- Country 1's utility is given by

$$
\begin{aligned}
U_{1}\left(a_{1}\right) & =\underbrace{1-a_{1}}_{\text {cost }}+\underbrace{p\left(a_{1}, a_{2}\right) v}_{\text {Expected Benefit }} \\
& =1-a_{1}+\frac{a_{1}^{n}}{a_{1}^{n}+a_{2}^{n}} v
\end{aligned}
$$

Example 5: IR Bargaining (from Jim Fearon, Part 1)

Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
- Each country decides to invest $a_{1} \in[0,1]$ and $a_{2} \in[0,1]$.
- The probability of country 1 winning the war is

$$
p\left(a_{1}, a_{2}\right)=\frac{a_{1}^{n}}{a_{1}^{n}+a_{2}^{n}}
$$

- Country 1's utility is given by

$$
\begin{aligned}
U_{1}\left(a_{1}\right) & =\underbrace{1-a_{1}}_{\text {cost }}+\underbrace{p\left(a_{1}, a_{2}\right) v}_{\text {Expected Benefit }} \\
& =1-a_{1}+\frac{a_{1}^{n}}{a_{1}^{n}+a_{2}^{n}} v
\end{aligned}
$$

- Suppose country 2 selected value x. What should country 1 invest to maximize utility?

Example 5: IR Bargaining (from Jim Fearon, Part 1)

$$
n=1, v=0.5
$$

Example 5: IR War (from Jim Fearon, Part 1)

$$
\begin{aligned}
\frac{\partial U_{1}\left(a_{1}\right)}{\partial a_{1}} & =-1+\frac{n a_{1}^{n-1}\left(a_{1}^{n}+x^{n}\right)-\left(n a_{1}^{n-1} a_{1}^{n}\right)}{\left(a_{1}^{n}+x^{n}\right)^{2}} v \\
& =-1+\frac{n a_{1}^{n-1} x^{n}}{\left(a_{1}^{n}+x^{n}\right)^{2}} v
\end{aligned}
$$

Set $n=1$ (for simplicity)

$$
\begin{align*}
0 & =-1+\frac{x}{\left(a_{1}+x\right)^{2}} v \\
a_{1}^{*} & =\sqrt{v} \sqrt{x}-x \tag{0.1}
\end{align*}
$$

Second derivative!

$$
U_{1}^{\prime \prime}\left(a_{1}\right)=\frac{-2 v x}{\left(a_{1}+x\right)^{3}}
$$

Example 5: IR Bargaining (from Jim Fearon, Part 1)

One more—check endpoints

$$
\begin{aligned}
& a_{1}^{*}=0, \text { if } \sqrt{v} \sqrt{x}-x<0 \\
& a_{1}^{*}=0, \text { if } \sqrt{v}<\sqrt{x} \\
& a_{1}^{*}=\sqrt{v} \sqrt{x}-x \text { otherwise }
\end{aligned}
$$

Optimization Challenge Problem

- Suppose a candidate is attempting to mobilize voters. Suppose that for each investment of $x \in[0, \infty)$ the candidate receives return of $x^{1 / 2}$, but incurs cost of $a x$. So, candidate utility is,

$$
U_{i}=x^{1 / 2}-a x
$$

What is the optimal investment x^{*} ?

Computational Optimization Approaches

Analytic (Closed form) \rightsquigarrow Often difficult, impractical, or unavailable

Computational Optimization Approaches

Analytic (Closed form) \rightsquigarrow Often difficult, impractical, or unavailable Computational

Computational Optimization Approaches

Analytic (Closed form) \rightsquigarrow Often difficult, impractical, or unavailable Computational \rightsquigarrow iterative algorithm that converges to a solution (hopefully the right one!)

Computational Optimization Approaches

Analytic (Closed form) \rightsquigarrow Often difficult, impractical, or unavailable Computational \rightsquigarrow iterative algorithm that converges to a solution (hopefully the right one!)

- Methods for optimization:

Computational Optimization Approaches

Analytic (Closed form) \rightsquigarrow Often difficult, impractical, or unavailable Computational \rightsquigarrow iterative algorithm that converges to a solution (hopefully the right one!)

- Methods for optimization:
- Newton's method and related methods

Computational Optimization Approaches

Analytic (Closed form) \rightsquigarrow Often difficult, impractical, or unavailable Computational \rightsquigarrow iterative algorithm that converges to a solution (hopefully the right one!)

- Methods for optimization:
- Newton's method and related methods
- Gradient descent (ascent)

Computational Optimization Approaches

Analytic (Closed form) \rightsquigarrow Often difficult, impractical, or unavailable Computational \rightsquigarrow iterative algorithm that converges to a solution (hopefully the right one!)

- Methods for optimization:
- Newton's method and related methods
- Gradient descent (ascent)
- Expectation Maximization

Computational Optimization Approaches

Analytic (Closed form) \rightsquigarrow Often difficult, impractical, or unavailable Computational \rightsquigarrow iterative algorithm that converges to a solution (hopefully the right one!)

- Methods for optimization:
- Newton's method and related methods
- Gradient descent (ascent)
- Expectation Maximization
- Genetic Optimization

Computational Optimization Approaches

Analytic (Closed form) \rightsquigarrow Often difficult, impractical, or unavailable Computational \rightsquigarrow iterative algorithm that converges to a solution (hopefully the right one!)

- Methods for optimization:
- Newton's method and related methods
- Gradient descent (ascent)
- Expectation Maximization
- Genetic Optimization
- Branch and Bound ...

Newton-Raphson Method

Iterative procedure to find a root

Newton-Raphson Method

Iterative procedure to find a root
Often solving for x when $f(x)=0$ is hard \rightsquigarrow complicated function

Newton-Raphson Method

Iterative procedure to find a root
Often solving for x when $f(x)=0$ is hard \rightsquigarrow complicated function Solving for x when $f(x)$ is linear \rightsquigarrow easy

Newton-Raphson Method

Iterative procedure to find a root
Often solving for x when $f(x)=0$ is hard \rightsquigarrow complicated function Solving for x when $f(x)$ is linear \rightsquigarrow easy
Approximate with tangent line, iteratively update

Tangent Line

Tangent Line

Formula for Tangent line at x_{0} :

Tangent Line

Formula for Tangent line at x_{0} :

$$
g(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

Tangent Line

Formula for Tangent line at x_{0} :

$$
g(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

Tangent Line

Formula for Tangent line at x_{0} :

$$
g(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

Tangent Line

Formula for Tangent line at x_{0} :

$$
g(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

Newton-Raphson Method

Suppose we have some initial guess x_{0}. We're going to approximate $f^{\prime}(x)$ with the tangent line to generate a new guess

Newton-Raphson Method

Suppose we have some initial guess x_{0}. We're going to approximate $f^{\prime}(x)$ with the tangent line to generate a new guess

$$
g(x)=f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+f^{\prime}\left(x_{0}\right)
$$

Newton-Raphson Method

Suppose we have some initial guess x_{0}. We're going to approximate $f^{\prime}(x)$ with the tangent line to generate a new guess

$$
\begin{aligned}
g(x) & =f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+f^{\prime}\left(x_{0}\right) \\
0 & =f^{\prime \prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)+f^{\prime}\left(x_{0}\right)
\end{aligned}
$$

Newton-Raphson Method

Suppose we have some initial guess x_{0}. We're going to approximate $f^{\prime}(x)$ with the tangent line to generate a new guess

$$
\begin{aligned}
g(x) & =f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+f^{\prime}\left(x_{0}\right) \\
0 & =f^{\prime \prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)+f^{\prime}\left(x_{0}\right) \\
x_{1} & =x_{0}-\frac{f^{\prime}\left(x_{0}\right)}{f^{\prime \prime}\left(x_{0}\right)}
\end{aligned}
$$

Example Function

$f(x)=x^{3}+2 x^{2}-1$ find x that maximizes $f(x)$ with $x \in[-3,0]$

$$
x^{\wedge} 3+2 x^{\wedge} 2-1
$$

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}+4 x \\
f^{\prime \prime}(x) & =6 x+4
\end{aligned}
$$

Suppose we have guess x_{t} then the next step is:

$$
x_{t+1}=x_{t}-\frac{3 x_{t}^{2}+4 x_{t}}{6 x_{t}+4}
$$

$x^{\wedge} 3+2 x^{\wedge} 2-1$

$x^{*}=-1.3333$

$x^{\wedge} 3+2 x^{\wedge} 2-1$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

What is Happening with the Roots

$$
3 x^{\wedge} 2+4 x
$$

$x^{\wedge} 3+2 x^{\wedge} 2-1$

To the R Code!

Today/Tomorrow

- A Framework for optimization
- Analytic: pencil and paper math
- Computational: iterative algorithm that aids in solution
- Integration: antidifferentation/area finding

