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Optimization

Political scientists are often concerned with finding extrema: maxima or
minima

- Given data, most likely value of a parameter

- Game theory: given other player’s strategy, action that maximizes
utility

- Across substantive areas: what is the optimal action, strategy,
prediction?

How to Optimize

- When functions are well behaved and known  analytic solutions

- Differentiate, set equal to zero, solve
- Check end points and use second derivative test

- More difficult problems computational solutions
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Intuition: Optimization with Derivatives, Known well
behaved functions
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Rolle's Theorem

x

f(
x)

f'(x) = 0 

- Rolle’s theorem
guarantee’s that, at
some point, f

′
(x) = 0

- Intuition from
proof—what happens as
we approach from the
left?

- Intuition from
proof—what happens as
we approach from the
right?

- critical intuition first,
second derivatives
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Second Derivatives

Definition

Suppose f : < → < is differentiable. Recall we write this as f
′

and
suppose that f

′
: < → <. Then if the limit,

lim
x→x0

R(x) =
f
′
(x)− f

′
(x0)

x − x0

exists, we call this the second derivative at x0, f
′′

(x0).
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Example of Second Derivatives

f (x) = x

f
′
(x) = 1

f
′′

(x) = 0
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Example of Second Derivatives

f (x) = log(x)

f
′
(x) =

1

x

f
′′

(x) =
−1

x2
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Example of Second Derivatives

f (x) =
1

x

f
′
(x) =

−1

x2

f
′′

(x) =
2

x3
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Example of Second Derivatives

f (x) = −x2 + 20

f
′
(x) = −2x

f
′′

(x) = −2
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Approximating functions and second order conditions

Theorem

Taylor’s Theorem Suppose f : < → <, f (x) is infinitely differentiable
function. Then, the taylor expansion of f (x) around a is given by

f (x) = f (a) +
f
′
(a)

1!
(x − a) +

f
′′

(a)

2!
(x − a)2 +

f
′′′

(a)

3!
(x − a)3 + . . .

f (x) =
∞∑
n=0

f n(a)

n!
(x − a)n
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R Code!
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Concavity, Convexity, Inflections

Second derivatives provide further information about functions
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Concave Up/ Convex

Definition

Suppose f : [a, b]→ < is a twice differentiable function. If, for all
x ∈ [a, b] and y ∈ [a, b] and t ∈ (0, 1)

f ((1− t)x + ty) < (1− t)f (x) + tf (y)

We say that f is strictly concave up or convex. Equivalently if f
′′

(x) > 0
for all x ∈ [a, b], we say that f is strictly concave up.
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Concave Up, Graphical Test
f (x) = ex , [1, 4]
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Concave Up, Second Derivative
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ex > 0 for all x ∈ [1, 4]

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 11 / 1



Concave Up, Second Derivative

0 1 2 3 4 5

0
50

10
0

15
0

e^(x)

X

f(
x) f (x) = ex

f
′
(x) = ex

f
′′

(x) = ex

ex > 0 for all x ∈ [1, 4]

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 11 / 1



Concave Up, Second Derivative

0 1 2 3 4 5

0
50

10
0

15
0

e^(x)

X

f(
x) f (x) = ex

f
′
(x) = ex

f
′′

(x) = ex

ex > 0 for all x ∈ [1, 4]

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 11 / 1



Concave Up, Second Derivative

0 1 2 3 4 5

0
50

10
0

15
0

e^(x)

X

f(
x) f (x) = ex

f
′
(x) = ex

f
′′

(x) = ex

ex > 0 for all x ∈ [1, 4]

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 11 / 1



Concave Up, Second Derivative

0 1 2 3 4 5

0
50

10
0

15
0

e^(x)

X

f(
x) f (x) = ex

f
′
(x) = ex

f
′′

(x) = ex

ex > 0 for all x ∈ [1, 4]

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 11 / 1



Concave Down

Definition

Suppose f : [a, b]→ < is a twice differentiable function. If, for all
x ∈ [a, b] and y ∈ [a, b] and t ∈ (0, 1)

f ((1− t)x + ty) > (1− t)f (x) + tf (y)

We say that f is strictly concave down. Equivalently if f
′′

(x) < 0 for all
x ∈ [a, b], we say that f is strictly concave down.
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Concave Down
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- Show Concave down with graph test for x ∈ [1, 4]

- Show concave down with second derivative test for x ∈ [1, 4]
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Optimization

Theorem

Extreme Value Theorem Suppose f : [a, b]→ < and that f is continuous.
Then f obtains its extreme value on [a, b].

Corollary

Suppose f : [a, b]→ <, that f is continuous and differentiable, and that
f (a) nor f (b) is the extreme value. Then f obtains its maximum on (a, b)
and if f (x0) is the extreme value of f x0 ∈ (a, b) then, f

′
(x0) = 0.
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Extrema on End Points
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Maximum in Middle, Concave Down

f (x) = −x2 + 5.
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Rolle's Theorem
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Minimum in Interior, Concave Up
f (x) = x2 + 9x + 9
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Local Optima
f (x) = sin(x)
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Inflection points
f (x) = x3
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Framework for Optimization

Recipe for optimization

- Find f
′
(x).

- Set f
′
(x) = 0 and solve for x . Call all x0 such that f

′
(x0) = 0 critical

values.

- Find f
′′

(x). Evaluate at each x0.

- If f
′′

(x) > 0, Concave up, local minimum
- If f

′′
(x) < 0, Concave down, local maximum

- If f
′′

(x) = 0, No knowledge—local minimum, maximum, or inflection
point

- Check End Points!
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Example 1: f (x) = −x2, x ∈ [−3, 3]
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Example 1: f (x) = −x2, x ∈ [−3, 3]

1) Critical Value:

f
′
(x) = −2x

0 = −2x∗

x∗ = 0

2) Second Derivative:

f
′
(x) = −2x

f
′′

(x) = −2

f
′′

(x) < 0, local maximum
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Example 1: f (x) = −x2, x ∈ [−3, 3]

3) Check end points

f (0) = −02 = 0

f (−3) = −(−3)2 = −9

f (3) = −(3)2 = −9
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Example 2: f (x) = x3, x ∈ [−3, 3]
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Example 2: f (x) = x3, x ∈ [−3, 3]

1) Critical Values:

f
′
(x) = 3x2

0 = 3(x∗)2

x∗ = 0

2) Second Derivative:

f
′′

(x) = 6x

f
′′

(0) = 0

No information
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Example 2: f (x) = x3, x ∈ [−3, 3]

3) Check End Points:

f (0) = 03 = 0

f (−3) = −33 = −27

f (3) = 33 = 27

Neither maximum nor minimum, saddle point
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Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.

Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model
A large literature in Congress supposes legislators and policies can be
situated in policy space
Suppose legislator i and policies x , i ∈ <.
Define legislator i ’s utility as, U : < → <,

Ui (x) = −(x − µ)2

Ui (x) = −x2 + 2xµ− µ2

What is i ’s optimal policy over the range x ∈ [µ− 2, µ+ 2]?

U
′
i (x) = −2(x − µ)

0 = −2x∗ + 2µ

x∗ = µ

Second Derivative Test

U
′′
i (x) = −2 < 0→ Concave Down

We call µ legislator i ’s ideal point
Justin Grimmer (Stanford University) Methodology I September 7th, 2016 25 / 1



Example 3: Spatial Model

Ui (µ) = −(µ− µ)2 = 0

Ui (µ− 2) = −(µ− 2− µ)2 = −4

Ui (µ+ 2) = −(µ+ 2− µ)2 = −4

Maximize utility at µ
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Example 4: Maximum Likelihood Estimation

In 350a, we’ll learn about parameters from data.

Here is an example likelihood function: We want to find the Maximum
likelihood estimate

f (µ) =
N∏
i=1

exp(
−(Yi − µ)2

2
)

= exp(−(Y1 − µ)2

2
)× . . .× exp(−(YN − µ)2

2
)

= exp(−
∑N

i=1(Yi − µ)2

2
)

Theorem

Suppose f : < → (0,∞). If x0 maximizes f , then x0 maximizes log(f (x)).
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Example 4: Maximum LIkelihood Estimation

log f (µ) = log

(
exp(−

∑N
i=1(Yi − µ)2

2
)

)

= −
∑N

i=1(Yi − µ)2

2
)

= −1

2

(
N∑
i=1

Y 2
i − 2µ

N∑
i=1

Yi + N × µ2

)
∂ log f (µ)

∂µ
= −1

2

(
−2

N∑
i=1

Yi + 2Nµ

)
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Example 4: Maximum Likelihood Estimation

0 = −1

2

(
−

N∑
i=1

Yi + 2Nµ∗

)

2
N∑
i=1

Yi = 2Nµ∗

∑N
i=1 Yi

N
= µ∗

Ȳ = µ∗

Second Derivative Test

f
′
(µ) = −1

2

(
−2

N∑
i=1

Yi + 2Nµ

)
f
′′

(µ) = −N

−N < 0, concave down, maximum(!!)
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Ȳ = µ∗

Second Derivative Test

f
′
(µ) = −1

2

(
−2

N∑
i=1

Yi + 2Nµ

)
f
′′

(µ) = −N

−N < 0, concave down, maximum(!!)

Justin Grimmer (Stanford University) Methodology I September 7th, 2016 29 / 1



Example 4: Maximum Likelihood Estimation

0 = −1

2

(
−

N∑
i=1

Yi + 2Nµ∗

)

2
N∑
i=1

Yi = 2Nµ∗

∑N
i=1 Yi

N
= µ∗
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Example 5: IR Bargaining (from Jim Fearon, Part 1)
Countries fight wars, usually to get stuff.

- Suppose two countries 1, 2 are fighting for something they value at v .

- Each country decides to invest a1 ∈ [0, 1] and a2 ∈ [0, 1].

- The probability of country 1 winning the war is

p(a1, a2) =
an1

an1 + an2

- Country 1’s utility is given by

U1(a1) = 1− a1︸ ︷︷ ︸
cost

+ p(a1, a2)v︸ ︷︷ ︸
Expected Benefit

= 1− a1 +
an1

an1 + an2
v

- Suppose country 2 selected value x . What should country 1 invest to
maximize utility?
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Example 5: IR War (from Jim Fearon, Part 1)

∂U1(a1)

∂a1
= −1 +

nan−1
1 (an1 + xn)− (nan−1

1 an1)

(an1 + xn)2
v

= −1 +
nan−1

1 xn

(an1 + xn)2
v

Set n = 1 (for simplicity)

0 = −1 +
x

(a1 + x)2
v

a∗1 =
√
v
√
x − x

(0.1)

Second derivative!

U
′′
1 (a1) =

−2vx

(a1 + x)3
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Example 5: IR Bargaining (from Jim Fearon, Part 1)

One more—check endpoints

a∗1 = 0, if
√
v
√
x − x < 0

a∗1 = 0, if
√
v <
√
x

a∗1 =
√
v
√
x − x otherwise
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Optimization Challenge Problem
- Suppose a candidate is attempting to mobilize voters. Suppose that

for each investment of x ∈ [0,∞) the candidate receives return of
x1/2, but incurs cost of ax . So, candidate utility is,

Ui = x1/2 − ax

What is the optimal investment x∗?
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Computational Optimization Approaches

Analytic (Closed form) Often difficult, impractical, or unavailable

Computational iterative algorithm that converges to a solution
(hopefully the right one!)

- Methods for optimization:

- Newton’s method and related methods
- Gradient descent (ascent)
- Expectation Maximization
- Genetic Optimization
- Branch and Bound ...
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Newton-Raphson Method

Iterative procedure to find a root

Often solving for x when f (x) = 0 is hard complicated function
Solving for x when f (x) is linear easy
Approximate with tangent line, iteratively update
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Tangent Line
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Tangent Line

Formula for Tangent line at x0:

g(x) = f
′
(x0)(x − x0) + f (x0)

We’ll use formula for tangent line to generate updates
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Newton-Raphson Method

Suppose we have some initial guess x0. We’re going to approximate f
′
(x)

with the tangent line to generate a new guess

g(x) = f
′′

(x0)(x − x0) + f
′
(x0)

0 = f
′′

(x0)(x1 − x0) + f
′
(x0)

x1 = x0 −
f
′
(x0)

f ′′(x0)

Perform iteratively until change in |xt+1 − xt | < threshold
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Example Function
f (x) = x3 + 2x2 − 1 find x that maximizes f (x) with x ∈ [−3, 0]
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f
′
(x) = 3x2 + 4x

f
′′

(x) = 6x + 4

Suppose we have guess xt then the next step is:

xt+1 = xt −
3x2

t + 4xt
6xt + 4
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x∗ = −1.3333
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What is Happening with the Roots
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To the R Code!
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Today/Tomorrow

- A Framework for optimization

- Analytic: pencil and paper math
- Computational: iterative algorithm that aids in solution

- Integration: antidifferentation/area finding
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