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Intuition: Optimization with Derivatives, Known well

behaved functions

Rolle's Theorem

f(x)=0

f(x)

-3 -2 -1 0

Justin Grimmer (Stanford University)

Methodology |

Rolle’s theorem
guarantee’s that, at
some point, f (x) =0
Intuition from
proof—what happens as

we approach from the
left?

Intuition from
proof—what happens as
we approach from the
right?

critical intuition first,
second derivatives

i
it
N
»
o)

] = =



Second Derivatives

Definition
Suppose f : R — R is differentiable. Recall we write this as f and
suppose that f : R — R. Then if the limit,

XI|_r;r)1<0 R(x)

)~ F ()

X — X0
exists, we call this the second derivative at xg, f (xp).
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Example of Second Derivatives
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Example of Second Derivatives

f(x) = log(x)

/ 1
f (X) = ;
1" _1

f(x) = 2
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Example of Second Derivatives
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Example of Second Derivatives

f(x) = —x2+20
fl(x) = —2x
flix) = -2
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Theorem

f(x) = f(a)-l-%(x—a)-l—fz(!a)(x—a)2+f3—(!a)(x—a)3-l-.
) = 3 P gy
n=0 ’

Approximating functions and second order conditions

Taylor’s Theorem Suppose f : R — R, f(x) is infinitely differentiable
function. Then, the taylor expansion of f(x) around a is given by
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Concavity, Convexity, Inflections

Second derivatives provide further information about functions
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Concavity, Convexity, Inflections

Second derivatives provide further information about functions

f(x)

Justin Grimmer (Stanford University)
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Concave Up,/ Convex

Definition

Suppose f : [a,b] — R is a twice differentiable function. If, for all
x € [a,b] and y € [a,b] and t € (0,1)
f((1—t)x + ty)

< (1=1t)f(x)+ tf(y)
We say that f is strictly concave up or convex. Equivalently if ' (x)>0
for all x € [a, b], we say that f is strictly concave up.
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Concave Up, Graphical Test
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Concave Up, Second Derivative
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Concave Up, Second Derivative
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Concave Up, Second Derivative
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Concave Down

Definition

Suppose f : [a,b] — R is a twice differentiable function. If, for all
x € [a,b] and y € [a,b] and t € (0,1)
f((1—t)x + ty)

> (1= t)f(x)+ tf(y)
We say that f is strictly concave down. Equivalently if fN(X) < 0 for all
x € [a, b], we say that f is strictly concave down.
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Concave Down

Log(x)
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f(x)
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- Show Concave down with graph test for x € [1, 4]

- Show concave down with second derivative test for x € [1,4]

=] (=)
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Optimization

Theorem

Extreme Value Theorem Suppose f : [a, b] — R and that f is continuous.
Then f obtains its extreme value on [a, b].

Corollary

Suppose f : [a,b] — R, that f is continuous and differentiable, and that
f(a) nor f(b) is the extreme value. Then f obtains its maximum on (a, b)
and if f(xo) is the extreme value of f xo € (a, b) then, f'(xo) = 0.
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Extrema on End Points

f(x) =x
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Maximum in Middle, Concave Down

f(x)=—x?>+5
Rolle's Theorem
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Minimum in Interior, Concave Up
f(x) =x>+9x+9

f(x)
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Local Optima
f(x) = sin(x)
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Inflection points
f(x) = x3
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Framework for Optimization

Recipe for optimization
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Framework for Optimization

Recipe for optimization
- Find f'(x).
- Set f'(x) = 0 and solve for x. Call all x such that f'(xo) = 0 critical
values.
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- If f”(x) > 0, Concave up, local minimum
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Framework for Optimization

Recipe for optimization
- Find f'(x).
- Set f'(x) = 0 and solve for x. Call all x such that f'(xo) = 0 critical
values.
- Find f"(x). Evaluate at each xp.

- If f”(x) > 0, Concave up, local minimum

1"

- If £ (x) < 0, Concave down, local maximum
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Framework for Optimization

Recipe for optimization
- Find f'(x).
- Set f'(x) = 0 and solve for x. Call all x such that f'(xp) = 0 critical
values.
- Find f"(x). Evaluate at each xp.

- If f”(x) > 0, Concave up, local minimum

- If £ (x) < 0, Concave down, local maximum

- If £ (x) =0, No knowledge—local minimum, maximum, or inflection
point
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Framework for Optimization

Recipe for optimization
- Find f'(x).
- Set f'(x) = 0 and solve for x. Call all x such that f'(xo) = 0 critical
values.
- Find f"(x). Evaluate at each xp.

- If f”(x) > 0, Concave up, local minimum

- If £ (x) < 0, Concave down, local maximum

- If £ (x) =0, No knowledge—local minimum, maximum, or inflection
point

- Check End Points!
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Example 1: f(x)
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Example 1: f(x)

1) Critical Value:
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—x2, x € [-3,3]

f(x) = —2x
0 = —2x*
x* =0
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Example 1: f(x) =

1) Critical Value:

2) Second Derivative:

f"(x) < 0, local maximum
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Example 1: f(x)

3) Check end points

Justin Grimmer (Stanford University)

= —x2, x € [-3,3]
f(0) = —02=0
f(—3) = —(-3)>=-9
f3) = —(3°=-9
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Example 2:

f(x) = x3, x €[-3,3]
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Example 2: f(x) = x3, x € [-3, 3]

1) Critical Values:
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Example 2: f(x) = x3, x € [-3, 3]

1) Critical Values:

f(x) = 3x°
0 = 3(x*)?
x* =0
2) Second Derivative:
f'(x) = 6x
f'(0) = 0

No information
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Example 2: f(x) = x3, x € [-3, 3]

3) Check End Points:

Neither maximum nor minimum, saddle point
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Example 3: Spatial Model
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A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x, i € R.
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Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x, i € R.

Define legislator i's utility as, U : R — R,
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Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x, i € R.
Define legislator i's utility as, U : R — R,

Ui(x) = —(x—p)?
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Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x, i € R.

Define legislator i's utility as, U : R — R,
Ux) = (- u)
Ui(x) = —x*42xp — p?

What is i's optimal policy over the range x € [ — 2, u + 2]?
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Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x, i € R.
Define legislator i's utility as, U : R — R,
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Example 3: Spatial Model
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situated in policy space
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Define legislator i's utility as, U : R — R,
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Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x, i € R.

Define legislator i's utility as, U : R — R,

Ulx) = —(x— )
Ui(x) = —x?42xp—p?
What is i's optimal policy over the range x € [ — 2, u + 2]?

Ui(x) = —2(x—p)
0 = —2x"+2u

*

xXT = pu
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Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x, i € R.
Define legislator i's utility as, U : R — R,

Ulx) = —(x—p)?
Ui(x) = —x?42xp—p?
What is i's optimal policy over the range x € [ — 2, u + 2]?
V) = —2(x—p)
0 —2x* 4+ 2p
x* 7
Second Derivative Test

o F =
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Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x, i € R.
Define legislator i's utility as, U : R — R,

U(x) = ~(x—n)’
Ui(x) = —x?42xp—p?
What is i's optimal policy over the range x € [ — 2, u + 2]?
Ui(x) = —2(x—p)
0 —2x* 4+ 2p
x* 7

Second Derivative Test

U'(x) = —2<0— Concave Down
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Example 3: Spatial Model

A large literature in Congress supposes legislators and policies can be
situated in policy space

Suppose legislator i and policies x, i € R.
Define legislator i's utility as, U : R — R,

U(x) = ~(x—n)’
Ui(x) = —x?42xp—p?
What is i's optimal policy over the range x € [ — 2, u + 2]?
Ui(x) = —2(x—p)
0 —2x* 4+ 2p
x* 7

Second Derivative Test
U/ (x) = —2<0— Concave Down
We call 1 legislator i's ideal point

o F =
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Example 3: Spatial Model

Un) = —(n—-n)=0
Up—2) = —(p—2-p)*=-4
Ulp+2) = —(n+2-p)°=-4
Maximize utility at p

o F
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Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data.
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Example 4: Maximum Likelihood Estimation
In 350a, we'll learn about parameters from data.

Here is an example likelihood function: We want to find the Maximum
likelihood estimate
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Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data

Here is an example likelihood function: We want to find the Maximum
likelihood estimate

(1) Hexp M) ——)
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Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data.

Here is an example likelihood function: We want to find the Maximum
likelihood estimate

N (Y. _ )2
) = [Lewn("0 1
i=1

— )2 )2
= eXp(—M) X ... X exp(—M

)
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Example 4: Maximum Likelihood Estimation
In 350a, we'll learn about parameters from data.

Here is an example likelihood function: We want to find the Maximum
likelihood estimate

(Y. _ )2
) = [Lew(" 0

u]
8
I
i
it
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Example 4: Maximum Likelihood Estimation

In 350a, we'll learn about parameters from data.

Here is an example
likelihood estimate

f(u)

Theorem

likelihood function: We want to find the Maximum

Suppose f : R — (0,00). If xo maximizes f, then xo maximizes log(f(x)).

J

Justin Grimmer (Stanford University)
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Example 4: Maximum Llkelihood Estimation
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Example 4: Maximum Llkelihood Estimation

log f(n) = log (exp(_zl{vﬂ(yi —p)?

fﬁ
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Example 4: Maximum Llkelihood Estimation

logf(u) = log (exp(_M

)
_ _M)
N 2
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Example 4: Maximum Llkelihood Estimation

logf(u) = log (exp(_M

)
_ _M)
N 2

1 N N
= - (ZYI-2—2/LZY,'+NX,U,2>
i=1 i=1
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Example 4: Maximum Llkelihood Estimation

)
1 N N
= - (ZW2—2MZY;+N><AL2
i=1
9 log f (1)
o

> vt
—2) v+ 2Nu)
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Example 4: Maximum Likelihood Estimation

Justin Grimmer (Stanford University)

Methodology |



Example 4: Maximum Likelihood Estimation

1 N
0= — (_ZY,-+2N#*>

i=1
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Example 4: Maximum Likelihood Estimation
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Example 4: Maximum Likelihood Estimation

1
o

N
—Z Y,'—i-2Np*>

i=1
N
23 Y = 2Np
i=1
N
Zi:l Y’ — N*
N

Justin Grimmer (Stanford University)

Methodology |



Example 4: Maximum Likelihood Estimation

1
0_—5(
N

N
—Z Yi +2Np*>
i=1

23 Y

= 2Nu*
i=1
N -
Y = u*
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Example 4: Maximum Likelihood Estimation

1
o

N
— Z Yi + 2Np*>
y i=1
23 Y
i=1

= 2Nu*
N
Zi:l Y’ — N*
N p—
Y = u*
Second Derivative Test
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Example 4: Maximum Likelihood Estimation

1
o

N
—Z Y,'—i-2Np*>

i=1
N
23 Y = 2Np
=1
N
Zi:l Y’ — N*
N
Y = u*
Second Derivative Test

i=1

1 N
Fln) = — <—2ZY,-+2NM>
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Example 4: Maximum Likelihood Estimation

1 N
0= — (—Z\’;+2NM*>

i=1
N
23 Y = 2Np
i=1

N
Zi:l Y’ — N*
N p—
Y = u*
Second Derivative Test

, 1 N
Fln) = — <—2ZY,-+2NM>

i=1
flu) = =N
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Example 5: IR Bargaining (from Jim Fearon, Part 1)
Countries fight wars, usually to get stuff.
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Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
- Each country decides to invest a; € [0, 1] and ay € [0, 1].
- The probability of country 1 winning the war is

an
P(al, 32) = !

n n
31+a2
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Example 5: IR Bargaining (from Jim Fearon, Part 1)
Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
Each country decides to invest a; € [0, 1] and ap € [0, 1].
- The probability of country 1 winning the war is

aj
n n
dy + ds

P(al, 32) =

Country 1's utility is given by
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Example 5: IR Bargaining (from Jim Fearon, Part 1)
Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
Each country decides to invest a; € [0, 1] and ap € [0, 1].
- The probability of country 1 winning the war is

at
ai,ay) =
Plar, a2) al + aj
- Country 1's utility is given by
Ui(a1) = 1—a1+ p(ar,az)v
~—~— —
cost Expected Benefit
an
= 1l—a+ p 1 SV
aj + aj
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Example 5: IR Bargaining (from Jim Fearon, Part 1)
Countries fight wars, usually to get stuff.

- Suppose two countries 1,2 are fighting for something they value at v.
Each country decides to invest a; € [0, 1] and ap € [0, 1].
- The probability of country 1 winning the war is

at
a, ) = ——
Plar, a2) al + aj
- Country 1's utility is given by
Ui(a1) = 1—a1+ p(ar,az)v
~—~— —
cost Expected Benefit
an
= l-ai+ v
aj + aj

Suppose country 2 selected value x. What should country 1 invest to
maximize utility?
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Example 5: IR Bargaining (from Jim Fearon, Part 1)

n=1v=05

Utility

0.6

0.5

0.4
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Example 5: IR War (from Jim Fearon, Part 1)

dU1(a1) nal~t(a} + x") — (naf~tay)
= -1+ n n)2 v
EN (af + x™)
nan—lxn
- 141 =
RO
Set n =1 (for simplicity)
X
0 = -1
(a1 +x)2 "
ai = VvWx—x
(0.1)
Second derivative!
" —2vx
Up(a1) = ——=
1 ( 1) (31 n X)3
o <5 E z 9ac
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Example 5: IR Bargaining (from Jim Fearon, Part 1)

One more—check endpoints

al = 0,if Vyvx—x<0
aj 0, if Vv <+/x
aj = +/vy/x — x otherwise
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Optimization Challenge Problem

- Suppose a candidate is attempting to mobilize voters. Suppose that
for each investment of x € [0, c0) the candidate receives return of
xl/z, but incurs cost of ax. So, candidate utility is,

U = x? — ax

What is the optimal investment x*?

10

0.5

Utility
0.0

-05

-1.0

0.0 0.1 0.2 0.3 0.4 0.5 .
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Computational Optimization Approaches

Analytic (Closed form)~~ Often difficult, impractical, or unavailable
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Computational Optimization Approaches

Analytic (Closed form)~- Often difficult, impractical, or unavailable
Computational~ iterative algorithm that converges to a solution
(hopefully the right one!)

- Methods for optimization:

Newton's method and related methods
- Gradient descent (ascent)

Expectation Maximization

Genetic Optimization
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Computational Optimization Approaches

Analytic (Closed form)~- Often difficult, impractical, or unavailable
Computational~ iterative algorithm that converges to a solution
(hopefully the right one!)

- Methods for optimization:

- Newton's method and related methods
- Gradient descent (ascent)

Expectation Maximization

Genetic Optimization

Branch and Bound ...
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Newton-Raphson Method

Iterative procedure to find a root
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Newton-Raphson Method

Iterative procedure to find a root

Often solving for x when f(x) = 0 is hard~» complicated function
Solving for x when f(x) is linear~ easy

Approximate with tangent line, iteratively update
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Tangent Line
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Tangent Line

Formula for Tangent line at xg:
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Tangent Line

Formula for Tangent line at xg:

g(x) = f (x0)(x = x0) + f(x0)
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Formula for Tangent line at xg:
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Tangent Line

Formula for Tangent line at xg:

g(x) = f (x0)(x — x0) + f(x0)

Justin Grimmer (Stanford University)

Methodology |



Newton-Raphson Method

Suppose we have some initial guess xg. We're going to approximate f'(x)
with the tangent line to generate a new guess
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Suppose we have some initial guess xg. We're going to approximate f'(x)
with the tangent line to generate a new guess

g(x) = f (x0)(x —x) +f (x)
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Newton-Raphson Method

Suppose we have some initial guess xg. We're going to approximate f'(x)
with the tangent line to generate a new guess

g(x) f" (x0)(x — x0) + f (x0)
0 = f (x0)(x1—x0)+F (x)
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Newton-Raphson Method

Suppose we have some initial guess xg. We're going to approximate f'(x)
with the tangent line to generate a new guess

g(x) = f(x

)(x — x0) + f (x0)

0 = f (x0)(x1—x0)+F (x)
o f(x)
T o)
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Example Function

f(x) = x3 + 2x% — 1 find x that maximizes f(x) with x € [-3,0]

XN3+2x"2-1

40
|

30
|

20
|

f(x)

N —

-10
|

T T
-3 -2 -1 0

X
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fl(x) = 3x%+4x
' (x) 6x + 4

Suppose we have guess x; then the next step is:

3X$ + 4Xt
Xt+1 = a1

6X1_-+4-

Xt —
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f(x)

Justin
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X*

f(x)

Justin

= —1.3333
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x3+2x2-1
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What is Happening with the Roots

3x"2 + 4x

40

20 30

f(x)

10
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To the R Code!
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Today/Tomorrow

- A Framework for optimization

- Analytic: pencil and paper math

- Computational: iterative algorithm that aids in solution
- Integration: antidifferentation/area finding
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