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Lab this afternoon!

130-300pm
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Convergence

Big idea today is convergence

- Sequence → converge on some number

- Function → limit (use to calculate derivatives)

- Continuity → a function doesn’t jump (converge on itself)

- Derivatives → limits that measure a function’s properties
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Sequence: Definition + Examples

Definition

A sequence is a function whose domain is the set of positive integers

We’ll write a sequence as,

{an}∞n=1 = (a1, a2, . . . , aN , . . .)
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Sequence: Definition + Examples

{
1

n

}
= (1, 1/2, 1/3, 1/4, . . . , 1/N, . . . , )
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Sequence: Definition + Examples

{
1

n2

}
= (1, 1/4, 1/9, 1/16, . . . , 1/N2, . . . , )

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Integers

S
eq

ue
nc

e

f(n) = 1/(n^2)

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 5 / 64



Sequence: Definition + Examples

{
1 + (−1)n

2

}
= (0, 1, 0, 1, . . . , 0, 1, 0, 1 . . . , )
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Sequence: Definition + Examples

{θ}∞n=1 = (θ1, θ2, . . . , θn, . . .)

θn = f (n responses (vote choice) )
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Sequence: Convergence
Consider the sequence{
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Sequence: Convergence definition

Definition

A sequence {an}∞n=1 converges to a real number A if for each ε > 0 there
is a positive integer N such that for all n ≥ N we have |an − A| < ε

1) If a sequence converges, it converges to one number. We call that A

2) ε > 0 is some arbitrary real-valued number. Think about this as our
error tolerance. Notice ε > 0.

3) As we will see the N will depend upon ε

4) Implies the sequence never gets further than ε away from A
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Sequence: Convergence definition
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Sequence: Convergence definition
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Sequence: Proof of Convergence

Theorem{
1
n

}
converges to 0

Proof.

We need to show that for ε there is some Nε such that, for all n ≥ Nε

| 1n − 0| < ε. Without loss of generality (WLOG) select an ε. Then,

| 1

Nε
− 0| < ε

1

Nε
< ε

1

ε
< Nε

For each epsilon, then, any Nε >
1
ε will suffice.
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Sequence: Divergence + Bounded

Definition

If a sequence, {an} converges we’ll call it convergent. If it doesn’t we’ll
call it divergent. If there is some number M such that, for all n |an| < M,
then we’ll call it bounded

- An unbounded sequence

{n} = (1, 2, 3, 4, . . . ,N, . . .)

- A bounded sequence that doesn’t converge{
1 + (−1)n

2

}
= (0, 1, 0, 1, . . . , 0, 1, 0, 1 . . . , )

- All convergent sequences are bounded

- If a sequence is constant, {C} it converges to C . proof?
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Algebra of Sequences

How do we add, multiply, and divide sequences?

Theorem

Suppose {an} converges to A and {bn} converges to B. Then,

- {an + bn} converges to A + B

- {anbn} converges to A× B.

- Suppose bn 6= 0 ∀ n and B 6= 0. Then
{

an
bn

}
converges to A

B .

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 11 / 64



Working Together

- Consider the sequence
{
1
n

}
—what does it converge to?

- Consider the sequence
{

1
2n

}
what does it converge to?

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 12 / 64



Challenge Questions

- What does
{

3 + 1
n

}
converge to?

- What about
{

(3 + 1
n )(100 + 1

n4
)
}

?

- Finally,

{
300+ 1

n

100+ 1
n4

}
?

Work smarter, not harder
Divide into teams, let’s reconvene in about 10 minutes.
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Sequences Limits of Functions

Calculus/Real Analysis: study of functions on the real line.
Limit of a function: how does a function behave as it gets close to a
particular point?

- Derivatives

- Asymptotics

- Game Theory

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 14 / 64



Limits of Functions
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Precise Definition of Limits of Functions

Definition

Suppose f : < → <. We say that f has a limit L at x0 if, for each ε > 0,
there is a δ > 0 such that |x − x0| < δ implies that |f (x)− L| < ε.

- Limits are about the behavior of functions at points. Here x0.

- As with sequences, we let ε define an error rate

- δ defines an area around x0 where f (x) is going to be within our error
rate

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 16 / 64



Precise Definition of Limit: Example

Theorem

The function f (x) = x + 1 has a limit of 1 at x0 = 0.

Proof.

WLOG choose ε > 0. We want to show that there is δε such that,
|x − x0| < δε implies |f (x)− 1| < ε. In other words,

|x | < δε implies |(x + 1)− 1| < ε

|x | < δε implies |x | < ε

But if δε = ε then this holds, we are done.
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Precise Definition of Limit: Example
A function can have a limit of L at x0 even if f (x0) 6= L(!)

Theorem

The function f (x) = x2−1
x−1 has a limit of 2 at x0 = 1.

−3 −2 −1 0 1 2 3
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4

f(x) = (x^2 − 1)/(x − 1)

x

f(
x)
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Precise Definition of Limit: Example

Proof.

For all x 6= 1,

x2 − 1

x − 1
=

(x + 1)(x − 1)

x − 1
= x + 1

Choose ε > 0 and set x0 = 1. Then, we’re looking for δε such that

|x − 1| < δε implies |(x + 1)− 2| < ε

Again, if δε = ε, then this is satisfied.
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Not all Functions have Limits!

Theorem

Consider f : (0, 1)→ <, f (x) = 1/x. f (x) does not have a limit at x0 = 0
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0
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00

f(x) = 1/x

x
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Proof.

Choose ε > 0. We need to show that there does not exist δ such that

|x | < δ implies

∣∣∣∣1x − L

∣∣∣∣ < ε

But, there is a problem. Because

1

x
− L < ε

1

x
< ε+ L

x >
1

L + ε

This implies that there can’t be a δ, because x has to be bigger than 1
L+ε .
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Intuitive Definition of Limit

Definition

If a function f tends to L at point x0 we say is has a limit L at x0 we
commonly write,

lim
x→x0

f (x) = L

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 22 / 64



Definition

If a function f tends to L at point x0 as we approach from the right, then
we write

lim
x→x+0

f (x) = L

and call this a right hand limit
If a function f tends to L at point x0 as we approach from the left, then
we write

lim
x→x−0

f (x) = L

and call this a left-hand limit

Regression discontinuity designs
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Left-hand, Right-hand, and Limits

Theorem

The limx→x0 f (x) exists if and only if limx→x−0
f (x) = limx→x+0

f (x)

- Intuition that limx→x−0
f (x) = limx→x+0

f (x)⇒ limx→x0 f (x). If they

are equal we can take the smallest δ and we can guarantee proof.

- Intuition that limx→x0 f (x)⇒ limx→x−0
f (x) = limx→x+0

f (x).

Absolute value is symmetric—so we must be converging from each
side. (contradiction could work too!)

- We can also appeal to sequences to prove this stuff

Trick: we’ll show limits don’t exist by showing
limx→x−0

f (x) 6= limx→x+0
f (x)
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Finding Limits

Student: Justin. what the hell with the δ’s and ε’s? What the hell am
I going to use this for?

Justin: Limits are used constantly in political science. And getting
comfortable with this notation (by seeing it many times) is important

Student: fine. How am I going to find the limit? I can’t do a δ − ε
proof yet.

Justin: yes, those take time. For this class, graphing will be critical.
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Algebra of Limits

Theorem

Suppose f : < → < and g : < → < with limits A and B at x0. Then,

i.) lim
x→x0

(f (x) + g(x)) = lim
x→x0

f (x) + lim
x→x0

g(x) = A + B

ii.) lim
x→x0

f (x)g(x) = lim
x→x0

f (x) lim
x→x0

g(x) = AB

Suppose g(x) 6= 0 for all x ∈ < and B 6= 0 then f (x)
g(x) has a limit at x0 and

lim
x→x0

f (x)

g(x)
=

limx→x0 f (x)

limx→x0 g(x)
=

A

B
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Challenge Problems

Suppose limx→x0 f (x) = a. Find limx→x0
f (x)3+f (x)2

f (x)
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Continuity
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f(x) = (x^2 − 1)/(x − 1)
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- Limit exists at 1

- But hole in function

- Fails the pencil test,
discontinuous at 1
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Continuity, Rigorous Definition

Definition

Suppose f : < → < and consider x0 ∈ <. We will say f is continuous at x0
if for each ε > 0 there is a δ > 0 such that if,

|x − x0| < δ for all x ∈ < then

|f (x)− f (x0)| < ε

- Previously f (x0) was replaced with L.

- Now: f (x) has to converge on itself at x0.

- Continuity is more restrictive than limit
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Examples
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Examples
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Continuity and Limits

Theorem

Let f : < → < with x0 ∈ <. Then f is continuous at x0 if and only if f has
a limit at x0 and that limx→x0 f (x) = f (x0).

Proof.

(⇒). Suppose f is continuous at x0. This implies that for each ε > 0 there
is δ > 0 such that |x − x0| < δ implies |f (x)− f (x0)| < ε. This is the
definition of a limit, with L = f (x0).
(⇐). Suppose f has a limit at x0 and that limit is f (x0). This implies that
for each ε > 0 there is δ > 0 such that |x − x0| < δ implies
|f (x)− f (x0)| < ε. But this is the definition of continuity.
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Algebra of Continuous Functions

Theorem

Suppose f : < → < and g : < → < are continuous at x0. Then,

i.) f (x) + g(x) is continuous at x0

ii.) f (x)g(x) is continuous at x0

iii. if g(x0) 6= 0, then f (x)
g(x) is continuous at x0

Use theorem about limits to prove continuous theorems.

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 32 / 64



x

f(
x)

 =
 |x

 +
 1

|

−5 −4 −3 −2 −1 0 1 2 3

0
1

2
3

4

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 33 / 64



How Functions Change

- Derivatives—Rates of change in functions

- Foundational across a lot of work in Poli Sci.

- A special limit

- Cover three broad ideas

- Geometric interpretation/intuition
- Formulas/Algebra derivatives
- Famous theorems

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 34 / 64



Rates of Change in a Function
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Derivative Definition
Suppose f : < → <.

Measure rate of change at a point x0 with a function
R(x),

R(x) =
f (x)− f (x0)

x − x0

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at
x0

Definition

Let f : < → <. If the limit

lim
x→x0

R(x) =
f (x)− f (x0)

x − x0

= f
′
(x0)

exists then we say that f is differentiable at x0. If f
′
(x0) exists for all

x ∈ Domain, then we say that f is differentiable.

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 36 / 64



Derivative Definition
Suppose f : < → <. Measure rate of change at a point x0 with a function
R(x),

R(x) =
f (x)− f (x0)

x − x0

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at
x0

Definition

Let f : < → <. If the limit

lim
x→x0

R(x) =
f (x)− f (x0)

x − x0

= f
′
(x0)

exists then we say that f is differentiable at x0. If f
′
(x0) exists for all

x ∈ Domain, then we say that f is differentiable.

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 36 / 64



Derivative Definition
Suppose f : < → <. Measure rate of change at a point x0 with a function
R(x),

R(x) =
f (x)− f (x0)

x − x0

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at
x0

Definition

Let f : < → <. If the limit

lim
x→x0

R(x) =
f (x)− f (x0)

x − x0

= f
′
(x0)

exists then we say that f is differentiable at x0. If f
′
(x0) exists for all

x ∈ Domain, then we say that f is differentiable.

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 36 / 64



Derivative Definition
Suppose f : < → <. Measure rate of change at a point x0 with a function
R(x),

R(x) =
f (x)− f (x0)

x − x0

- R(x) defines the rate of change.

- A derivative will examine what happens with a small perturbation at
x0

Definition

Let f : < → <. If the limit

lim
x→x0

R(x) =
f (x)− f (x0)

x − x0

= f
′
(x0)

exists then we say that f is differentiable at x0. If f
′
(x0) exists for all

x ∈ Domain, then we say that f is differentiable.

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 36 / 64



Derivative Definition
Suppose f : < → <. Measure rate of change at a point x0 with a function
R(x),

R(x) =
f (x)− f (x0)

x − x0

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at
x0

Definition

Let f : < → <. If the limit

lim
x→x0

R(x) =
f (x)− f (x0)

x − x0

= f
′
(x0)

exists then we say that f is differentiable at x0. If f
′
(x0) exists for all

x ∈ Domain, then we say that f is differentiable.

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 36 / 64



Derivative Definition
Suppose f : < → <. Measure rate of change at a point x0 with a function
R(x),

R(x) =
f (x)− f (x0)

x − x0

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at
x0

Definition

Let f : < → <. If the limit

lim
x→x0

R(x) =
f (x)− f (x0)

x − x0

= f
′
(x0)

exists then we say that f is differentiable at x0. If f
′
(x0) exists for all

x ∈ Domain, then we say that f is differentiable.

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 36 / 64



Derivative Definition
Suppose f : < → <. Measure rate of change at a point x0 with a function
R(x),

R(x) =
f (x)− f (x0)

x − x0

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at
x0

Definition

Let f : < → <. If the limit

lim
x→x0

R(x) =
f (x)− f (x0)

x − x0

= f
′
(x0)

exists then we say that f is differentiable at x0. If f
′
(x0) exists for all

x ∈ Domain, then we say that f is differentiable.

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 36 / 64



Derivative Definition
Suppose f : < → <. Measure rate of change at a point x0 with a function
R(x),

R(x) =
f (x)− f (x0)

x − x0

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at
x0

Definition

Let f : < → <. If the limit

lim
x→x0

R(x) =
f (x)− f (x0)

x − x0

= f
′
(x0)

exists then we say that f is differentiable at x0. If f
′
(x0) exists for all

x ∈ Domain, then we say that f is differentiable.
Justin Grimmer (Stanford University) Methodology I September 6th, 2016 36 / 64



Derivative Examples

- Suppose f (x) = x2 and consider x0 = 1. Then,

lim
x→1

R(x) = lim
x→1

x2 − 12

x − 1

= lim
x→1

(x − 1)(x + 1)

x − 1
= lim

x→1
x + 1

= 2

- Suppose f (x) = |x | and consider x0 = 0. Then,

lim
x→0

R(x) = lim
x→0

|x |
x

limx→0− R(x) = −1 , but limx→0+ R(x) = 1. So, not differentiable
at 0.
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Continuity and Derivatives

- f (x) = |x | is continuous but not differentiable. This is because the
change is too abrupt.

- Suggests differentiability is a stronger condition

Theorem

Let f : < → < be differentiable at x0. Then f is continuous at x0.
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Continuity and Derivatives

Theorem

Let f : < → < be differentiable at x0. Then f is continuous at x0.

Proof.

This proof is all in the setup. Realize that,

f (x) =
f (x)− f (x0)

x − x0
(x − x0) + f (x0)

= R(x)(x − x0) + f (x0)

If f (x) is continuous at x0 then, limx→x0 f (x) = f (x0).

lim
x→x0

f (x) = lim
x→x0

[R(x)(x − x0) + f (x0)]

=

(
lim
x→x0

R(x)

)(
lim
x→x0

(x − x0)

)
+ lim

x→x0
f (x0)

= f
′
(x0)0 + f (x0) = f (x0)
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What goes wrong?

Consider the following piecewise function:

f (x) = x2 for all x ∈ < \ 0

f (x) = 1000 for x = 0

Consider derivative at 0. Then,

lim
x→0

R(x) = lim
x→0

f (x)− 1000

x − 0

= lim
x→0

x2

x
− lim

x→0

1000

x

limx→0
1000
x diverges, so the limit doesn’t exist.
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Calculating Derivatives

- Rarely will we take limit to calculate derivative.

- Rather, rely on rules and properties of derivatives

- Important: do not forget core intuition

Strategy:

- Algebra theorems

- Some specific derivatives

- Work on problems
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Some Derivative Rules

Suppose a is some constant, f (x) and g(x) are functions

f (x) = x ; f
′
(x) = 1

f (x) = axk ; f
′
(x) = (a)(k)xk−1

f (x) = ex ; f
′
(x) = ex

f (x) = sin(x) ; f
′
(x) = cos(x)

f (x) = cos(x) ; f
′
(x) = − sin(x)
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Algebra of Derivatives

Theorem

Suppose f : < → < and g : < → < and both are differentiable at x0 ∈ <.
Then,

i) h(x) = f (x) + g(x) is differentiable at x0 and

h
′
(x0) = f

′
(x0) + g

′
(x0)

ii) h(x) = f (x)g(x) is differentiable at x0 and

h
′
(x0) = f

′
(x0)g(x0) + g

′
(x0)f (x0)

iii) h(x) = f (x)
g(x) with g(x) 6= 0 then,

h
′
(x0) =

f
′
(x0)g(x0)− g

′
(x0)f (x0)

g(x0)2
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Challenge Problems

Differentiate the following functions and evaluate at the specified value

1) f (x) = x3 + 5x2 + 4x , at x0 = 2

2) f (x) = sin(x)x3 at x0 = y

3) f (x) = ex

x3
at x = 2

4) g(x) = log(x)x3 at x = x0

5) Suppose f (x) = x2 and g(x) = x3. Find all x such that
f
′
(x) > g

′
(x).
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Proving Property of Derivatives

Theorem

Suppose f (x) = xk and k is a positive integer. If k = 0 then f
′
(x) = 0. If

k > 0, then, f
′
(x) = kxk−1.

Proof.

If k = 0 then, xk = 1. The limx→x̃
1−1
x−x̃ = 0.

Suppose k > 0. We will proceed by induction. Suppose k = 1, f (x) = x

f
′
(x̃) = lim

x→x̃

x − x̃

x − x̃

= 1 = 1x0

Suppose theorem holds for k = r , f (x) = x r . Consider g(x) = x r+1. We
know that g(x) = f (x)x . By product rule,

g
′
(x) = f (x)x

′
+ f

′
(x)x = x r1 + rx r−1x

= x r + rx r = (r + 1)x r
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Chain Rule

Common to have functions in functions

f (x) =
e−

(x−µ)2

2σ2

√
2π

=
f (g(x))√

2π

To deal with this, we use the chain rule

Theorem

Suppose g : < → < and f : < → <. Suppose both f (x) and g(x) are
differentiable at x0. Define h(x) = g(f (x)). Then,

h
′
(x0) = g

′
(f (x0))f

′
(x0)
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Examples of Chain Rule in Action

- h(x) = e2x . g(x) = ex . f (x) = 2x . So
h(x) = g(f (x)) = g(2x) = e2x . Taking derivatives, we have

h
′
(x) = g

′
(f (x))f

′
(x) = e2x2

- h(x) = log(cos(x)). g(x) = log(x). f (x) = cos(x).
h(x) = g(f (x)) = g(cos(x)) = log(cos(x))

h
′
(x) = g

′
(f (x))f

′
(x) =

−1

cos(x)
sin(x) = − tan(x)
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Derivatives and Properties of Functions

Derivatives reveal an immense amount about functions

- Often use to optimize a function (tomorrow)

- But also reveal average rates of change

- Or crucial properties of functions

Goal: introduce ideas. Hopefully make them less shocking when you see
them in work
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Relative Maxima, Minima and Derivatives

Theorem

Suppose f : [a, b]→ <. Suppose f has a relative maxima or minima on
(a, b) and call that c ∈ (a, b). Then f

′
(c) = 0.

Intuition:

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

Rolle's Theorem

x

f(
x)

f'(x) = 0 
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Relative Maxima, Minima and Derivatives

Theorem

Rolle’s Theorem Suppose f : [a, b]→ < and f is continuous on [a, b] and
differentiable on (a, b). Then if f (a) = f (b) = 0, there is c ∈ (a, b) such
that f

′
(c) = 0.

Proof Intuition Consider (WLOG) a relative maximum c . Consider the
left-hand and right-hand limits

lim
x→c−

f (x)− f (c)

x − c
≥ 0

lim
x→c+

f (x)− f (c)

x − c
≤ 0
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Theorem

Rolle’s Theorem Suppose f : [a, b]→ < and f is continuous on [a, b] and
differentiable on (a, b). Then if f (a) = f (b) = 0, there is c ∈ (a, b) such
that f

′
(c) = 0.

But we also know that

lim
x→c−

f (x)− f (c)

x − c
= f

′
(c)

lim
x→c+

f (x)− f (c)

x − c
= f

′
(c)

The only way, then, that
limx→c−

f (x)−f (c)
x−c = limx→c+

f (x)−f (c)
x−c is if f

′
(c) = 0.
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What Goes Up Must Come Down

Theorem

Rolle’s Theorem Suppose f : [a, b]→ < and f is continuous on [a, b] and
differentiable on (a, b). Then if f (a) = f (b) = 0, there is c ∈ (a, b) such
that f

′
(c) = 0.

−3 −2 −1 0 1 2 3

−
4

−
2

0
2
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Rolle's Theorem

x

f(
x)

f'(x) = 0 

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 52 / 64



What Goes Up Must Come Down

Theorem

Rolle’s Theorem Suppose f : [a, b]→ < and f is continuous on [a, b] and
differentiable on (a, b). Then if f (a) = f (b) = 0, there is c ∈ (a, b) such
that f

′
(c) = 0.

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

Rolle's Theorem

x

f(
x)

f'(x) = 0 

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 52 / 64



Mean Value Theorem

Theorem

If f : [a, b]→ < is continuous on [a, b] and differentiable on (a, b), then
there is a c ∈ (a, b) such that

f
′
(c) =

f (b)− f (a)

b − a
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Rolle’s Theorem, Rotated

−3 −2 −1 0 1 2 3

−
4

−
2

0
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x

f(
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Rolle’s Theorem, Rotated

−4 −3 −2 −1 0 1 2

−
15

−
10

−
5

0
5

10

Mean Value Theorem

x

f(
x)

a, f(a)

b, f(b)

f'(c) = (f(b) − f(a))/(b− a)
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Why You Should Care

1) This will come up in a formal theory article. You’ll at least know
where to look

2) It allows us to say lots of powerful stuff about functions
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Powerful Applications of Mean Value Theorem

Theorem

Suppose that f : [a, b]→ < is continuous on [a, b] and differentiable on
(a, b). Then,

i) If f
′
(x) 6= 0 for all x ∈ (a, b) then f is 1-1

ii) If f
′
(x) = 0 then f (x) is constant

iii) If f
′
(x) > 0 for all x ∈ (a, b) then then f is strictly increasing

iv) If f
′
(x) < 0 for all x ∈ (a, b) then f is strictly decreasing

Let’s prove these in turn

- Why—because they are just about applying ideas
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If f
′
(x) 6= 0 for all x ∈ (a, b) then f is 1-1

By way of contradiction, suppose that f is not 1-1. Then there is
x , y ∈ (a, b) such that f (x) = f (y). Then,

f
′
(c) =

f (x)− f (y)

x − y
=

0

x − y
= 0
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If f
′
(x) 6= 0 for all x ∈ (a, b) then f is 1-1

f
′ 6= 0 for all x!
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If f
′
(x) 6= 0 for all x ∈ (a, b) then f is 1-1

f
′ 6= 0 for all x!

Justin Grimmer (Stanford University) Methodology I September 6th, 2016 58 / 64



If f
′
(x) = 0 then f (x) is constant

By way of contradiction, suppose that there is x , y ∈ (a, b) such that
f (x) 6= f (y). But then,

f
′
(c) =

f (x)− f (y)

x − y
6= 0

contradiction
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If f
′
(x) > 0 for all x ∈ (a, b) then then f is strictly

increasing

By way of contradiction, suppose that there is x , y ∈ (a, b) with y < x but
f (y) > f (x). But then,

f
′
(c) =

f (x)− f (y)

x − y
< 0

contradiction
Bonus: proof for strictly decreasing
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Approximating functions and second order conditions

Theorem

Taylor’s Theorem Suppose f : < → <, f (x) is infinitely differentiable
function. Then, the taylor expansion of f (x) around a is given by

f (x) = f (a) +
f
′
(a)

1!
(x − a) +

f
′′

(a)

2!
(x − a)2 +

f
′′′

(a)

3!
(x − a)3 + . . .

f (x) =
∞∑
n=0

f n(a)

n!
(x − a)n
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Example Function

Suppose a = 0 and f (x) = ex . Then,

f
′
(x) = ex

f
′′

(x) = ex

...
...

...

f n(x) = ex

This implies

ex = 1 + x +
x2

2!
+

x3

3!
. . .+

xn

n!
+ . . .
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Wrap up

Lots of territory.
What are your questions?
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This Week

Lab Tonight!
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