Math Camp

Justin Grimmer

Associate Professor Department of Political Science Stanford University

September 6th, 2016

3

990

< ∃ >

э

< A

Lab this afternoon! 130-300pm

(4 伊下) 4 ヨト 4 ヨト

Э

Sac

Big idea today is convergence

-

< 同

E

990

Big idea today is convergence

- Sequence \rightarrow converge on some number

-

Э

200

Big idea today is convergence

- Sequence \rightarrow converge on some number
- Function \rightarrow limit (use to calculate derivatives)

3

Sac

Big idea today is convergence

- Sequence \rightarrow converge on some number
- Function \rightarrow limit (use to calculate derivatives)
- Continuity \rightarrow a function doesn't jump (converge on itself)

Big idea today is convergence

- Sequence \rightarrow converge on some number
- Function \rightarrow limit (use to calculate derivatives)
- Continuity \rightarrow a function doesn't jump (converge on itself)
- $\ensuremath{\mathsf{Derivatives}}\xspace \rightarrow$ limits that measure a function's properties

Definition

A sequence is a function whose domain is the set of positive integers

We'll write a sequence as,

$$\{a_n\}_{n=1}^{\infty} = (a_1, a_2, \dots, a_N, \dots)$$

$$\left\{\frac{1}{n}\right\} = (1, 1/2, 1/3, 1/4, \dots, 1/N, \dots,)$$

f(n) = 1/n

Э

990

$$\left\{\frac{1}{n^2}\right\} = (1, 1/4, 1/9, 1/16, \dots, 1/N^2, \dots,)$$

 $f(n) = 1/(n^2)$

э

$$\left\{\frac{1+(-1)^n}{2}\right\} = (0,1,0,1,\ldots,0,1,0,1\ldots,)$$

 $f(n) = (1 + (-1)^n)/2$

$$\{\theta\}_{n=1}^{\infty} = (\theta_1, \theta_2, \dots, \theta_n, \dots) \theta_n = f(n \text{ responses (vote choice)})$$

September 6th, 2016 5 / 64

A

990

э

Consider the sequence

$$\left\{\frac{(-1)^n}{n}\right\} = (-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \ldots)$$

 $f(n) = [(-1)^n]/n$

1.0 0.5 Sequence 0.0 -0.5 -1.0 0 50 100 150 200 Integers

Justin Grimmer (Stanford University)

990

Consider the sequence

$$\left\{\frac{(-1)^n}{n}\right\} = (-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \ldots)$$

 $f(n) = [(-1)^n]/n$

1.0 0.5 Sequence 0.0 -0.5 -1.0 0 50 100 150 200 Integers

Justin Grimmer (Stanford University)

Э

990

Consider the sequence

$$\left\{\frac{(-1)^n}{n}\right\} = (-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \ldots)$$

 $f(n) = [(-1)^n]/n$

1.0 0.5 Sequence 0.0 -0.5 -1.0 0 50 100 150 200

Integers

Consider the sequence

$$\left\{\frac{(-1)^n}{n}\right\} = (-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \dots)$$

 $f(n) = [(-1)^n]/n$

1.0 0.5 Sequence 0.0 -0.5 -1.0 0 50 100 150 200 Integers

Justin Grimmer (Stanford University)

Consider the sequence

$$\left\{\frac{(-1)^n}{n}\right\} = (-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \ldots)$$

 $f(n) = [(-1)^n]/n$

1.0 0.5 Sequence 0.0 -0.5 -1.0 0 50 100 150 200 Integers

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a real number A if for each $\epsilon > 0$ there is a positive integer N such that for all $n \ge N$ we have $|a_n - A| < \epsilon$

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a real number A if for each $\epsilon > 0$ there is a positive integer N such that for all $n \ge N$ we have $|a_n - A| < \epsilon$

1) If a sequence converges, it converges to one number. We call that A

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a real number A if for each $\epsilon > 0$ there is a positive integer N such that for all $n \ge N$ we have $|a_n - A| < \epsilon$

1) If a sequence converges, it converges to one number. We call that A 2) $\epsilon > 0$ is some arbitrary real-valued number.

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a real number A if for each $\epsilon > 0$ there is a positive integer N such that for all $n \ge N$ we have $|a_n - A| < \epsilon$

If a sequence converges, it converges to one number. We call that A
ε > 0 is some arbitrary real-valued number. Think about this as our error tolerance. Notice ε > 0.

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a real number A if for each $\epsilon > 0$ there is a positive integer N such that for all $n \ge N$ we have $|a_n - A| < \epsilon$

- 1) If a sequence converges, it converges to one number. We call that A
- 2) $\epsilon > 0$ is some arbitrary real-valued number. Think about this as our error tolerance. Notice $\epsilon > 0$.
- 3) As we will see the N will depend upon ϵ

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a real number A if for each $\epsilon > 0$ there is a positive integer N such that for all $n \ge N$ we have $|a_n - A| < \epsilon$

- 1) If a sequence converges, it converges to one number. We call that A
- 2) $\epsilon > 0$ is some arbitrary real-valued number. Think about this as our error tolerance. Notice $\epsilon > 0$.
- 3) As we will see the N will depend upon ϵ
- 4) Implies the sequence never gets further than ϵ away from A

 $f(n)=[(-1)^n]/n$

990

 $f(n) = [(-1)^n]/n$

1 8 / 64 September 6th, 2016

Э

990

 $f(n)=[(-1)^n]/n$

990

 $f(n)=[(-1)^n]/n$

990

 $f(n)=[(-1)^n]/n$

990

Sequence: Proof of Convergence

Theorem

 $\left\{\frac{1}{n}\right\}$ converges to 0

Proof.

We need to show that for ϵ there is some N_{ϵ} such that, for all $n \ge N_{\epsilon}$ $|\frac{1}{n} - 0| < \epsilon$. Without loss of generality (WLOG) select an ϵ . Then,

$$egin{array}{c|c} rac{1}{V_{\epsilon}} - 0 | & < & \epsilon \ & \ rac{1}{N_{\epsilon}} & < & \epsilon \ & \ rac{1}{\epsilon} & < & N_{\epsilon} \end{array}$$

For each epsilon, then, any $N_{\epsilon} > \frac{1}{\epsilon}$ will suffice.

					_		
lustin Grimmer (Stanford University)	Methodology I	Se	otembei	6th, 20	16	9 /	64

1

200

Definition

If a sequence, $\{a_n\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n |a_n| < M$, then we'll call it bounded

Definition

If a sequence, $\{a_n\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n |a_n| < M$, then we'll call it bounded

- An unbounded sequence

Definition

If a sequence, $\{a_n\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n |a_n| < M$, then we'll call it bounded

- An unbounded sequence

$$\{n\} = (1, 2, 3, 4, \dots, N, \dots)$$

Definition

If a sequence, $\{a_n\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n |a_n| < M$, then we'll call it bounded

- An unbounded sequence

$$\{n\} = (1, 2, 3, 4, \dots, N, \dots)$$

- A bounded sequence that doesn't converge

Definition

If a sequence, $\{a_n\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n |a_n| < M$, then we'll call it bounded

- An unbounded sequence

$$\{n\} = (1, 2, 3, 4, \dots, N, \dots)$$

- A bounded sequence that doesn't converge

$$\left\{\frac{1+(-1)^n}{2}\right\} = (0,1,0,1,\ldots,0,1,0,1\ldots,)$$

Definition

If a sequence, $\{a_n\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n |a_n| < M$, then we'll call it bounded

- An unbounded sequence

$$\{n\} = (1, 2, 3, 4, \dots, N, \dots)$$

- A bounded sequence that doesn't converge

$$\left\{\frac{1+(-1)^n}{2}\right\} = (0,1,0,1,\ldots,0,1,0,1\ldots,)$$

- All convergent sequences are bounded

Definition

If a sequence, $\{a_n\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n |a_n| < M$, then we'll call it bounded

- An unbounded sequence

$$\{n\} = (1, 2, 3, 4, \dots, N, \dots)$$

- A bounded sequence that doesn't converge

$$\left\{\frac{1+(-1)^n}{2}\right\} = (0,1,0,1,\ldots,0,1,0,1\ldots,)$$

- All convergent sequences are bounded
- If a sequence is constant, $\{C\}$ it converges to C. proof?
How do we add, multiply, and divide sequences?

Theorem

Suppose $\{a_n\}$ converges to A and $\{b_n\}$ converges to B. Then,

- $\{a_n + b_n\}$ converges to A + B
- $\{a_nb_n\}$ converges to $A \times B$.
- Suppose $b_n \neq 0 \forall n$ and $B \neq 0$. Then $\left\{\frac{a_n}{b_n}\right\}$ converges to $\frac{A}{B}$.

Working Together

- Consider the sequence $\left\{\frac{1}{n}\right\}$ —what does it converge to?
- Consider the sequence $\left\{\frac{1}{2n}\right\}$ what does it converge to?

3

Challenge Questions

- What does
$$\left\{3+\frac{1}{n}\right\}$$
 converge to?

- What about $\{(3+\frac{1}{n})(100+\frac{1}{n^4})\}?$

- Finally,
$$\left\{\frac{300+\frac{1}{n}}{100+\frac{1}{n^4}}\right\}$$
?

Work smarter, not harder

Divide into teams, let's reconvene in about 10 minutes.

Calculus/Real Analysis: study of functions on the real line. Limit of a function: how does a function behave as it gets close to a particular point?

- Derivatives
- Asymptotics
- Game Theory

f(x) = sin(x)

Precise Definition of Limits of Functions

Definition

Suppose $f : \Re \to \Re$. We say that f has a limit L at x_0 if, for each $\epsilon > 0$, there is a $\delta > 0$ such that $|x - x_0| < \delta$ implies that $|f(x) - L| < \epsilon$.

- Limits are about the behavior of functions at points. Here x_0 .
- As with sequences, we let ϵ define an error rate
- δ defines an area around x_0 where f(x) is going to be within our error rate

Precise Definition of Limit: Example

Theorem

The function f(x) = x + 1 has a limit of 1 at $x_0 = 0$.

Proof.

WLOG choose $\epsilon > 0$. We want to show that there is δ_{ϵ} such that, $|x - x_0| < \delta_{\epsilon}$ implies $|f(x) - 1| < \epsilon$. In other words,

 $ert x ert < \delta_\epsilon \quad ext{implies} \quad ert (x+1) - 1 ert < \epsilon \ ert x ert < \delta_\epsilon \quad ext{implies} \quad ert x ert < \epsilon$

But if $\delta_{\epsilon} = \epsilon$ then this holds, we are done.

Precise Definition of Limit: Example A function can have a limit of L at x_0 even if $f(x_0) \neq L(!)$

Theorem

The function $f(x) = \frac{x^2-1}{x-1}$ has a limit of 2 at $x_0 = 1$.

 $f(x) = (x^2 - 1)/(x - 1)$

Precise Definition of Limit: Example A function can have a limit of L at x_0 even if $f(x_0) \neq L(!)$

Theorem

The function $f(x) = \frac{x^2-1}{x-1}$ has a limit of 2 at $x_0 = 1$.

 $f(x) = (x^2 - 1)/(x - 1)$

Precise Definition of Limit: Example

Proof. For all $x \neq 1$,

$$\frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1} = x + 1$$

Choose $\epsilon > 0$ and set $x_0 = 1$. Then, we're looking for δ_{ϵ} such that

 $|x-1| < \delta_{\epsilon}$ implies $|(x+1)-2| < \epsilon$

Again, if $\delta_{\epsilon} = \epsilon$, then this is satisfied.

Not all Functions have Limits!

Theorem

Consider $f:(0,1) \rightarrow \Re$, f(x) = 1/x. f(x) does not have a limit at $x_0 = 0$

f(x) = 1/x

Proof.

Choose $\epsilon > 0$. We need to show that there does not exist δ such that

$$|x| < \delta$$
 implies $\left|\frac{1}{x} - L\right| < \epsilon$

But, there is a problem. Because

$$\frac{1}{c} - L < \epsilon$$

$$\frac{1}{x} < \epsilon + L$$

$$x > \frac{1}{L + \epsilon}$$

This implies that there can't be a δ , because x has to be bigger than $\frac{1}{L+\epsilon}$.

	< [500
Justin Grimmer (Stanford University)	Methodology I	September 6th, 2016	21 / 64

Intuitive Definition of Limit

Definition

If a function f tends to L at point x_0 we say is has a limit L at x_0 we commonly write,

$$\lim_{x\to x_0} f(x) = L$$

3

Definition

If a function f tends to L at point x_0 as we approach from the right, then we write

$$\lim_{x\to x_0^+} f(x) = L$$

and call this a right hand limit

If a function f tends to L at point x_0 as we approach from the left, then we write

$$\lim_{x \to x_0^-} f(x) = L$$

and call this a left-hand limit

Regression discontinuity designs

Theorem

The $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$

Theorem

The $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$

- Intuition that $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) \Rightarrow \lim_{x\to x_0} f(x)$. If they are equal we can take the smallest δ and we can guarantee proof.

Theorem

The $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$

- Intuition that $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) \Rightarrow \lim_{x\to x_0} f(x)$. If they are equal we can take the smallest δ and we can guarantee proof.
- Intuition that $\lim_{x\to x_0} f(x) \Rightarrow \lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$. Absolute value is symmetric—so we must be converging from each side. (contradiction could work too!)

Theorem

The $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$

- Intuition that $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) \Rightarrow \lim_{x\to x_0} f(x)$. If they are equal we can take the smallest δ and we can guarantee proof.
- Intuition that $\lim_{x\to x_0} f(x) \Rightarrow \lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$. Absolute value is symmetric—so we must be converging from each side. (contradiction could work too!)
- We can also appeal to sequences to prove this stuff

Theorem

The $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$

- Intuition that $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) \Rightarrow \lim_{x\to x_0} f(x)$. If they are equal we can take the smallest δ and we can guarantee proof.
- Intuition that $\lim_{x\to x_0} f(x) \Rightarrow \lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$. Absolute value is symmetric—so we must be converging from each side. (contradiction could work too!)
- We can also appeal to sequences to prove this stuff

Trick: we'll show limits don't exist by showing $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$

Finding Limits

Justin Grimmer (Stanford University)

Ξ

990

◆ロト ◆聞ト ◆ヨト ◆ヨト

Finding Limits

Student: Justin. what the hell with the δ 's and ϵ 's? What the hell am I going to use this for?

< A

3

Student: Justin. what the hell with the δ 's and ϵ 's? What the hell am I going to use this for?

Justin: Limits are used constantly in political science. And getting comfortable with this notation (by seeing it many times) is important

Student: Justin. what the hell with the δ 's and ϵ 's? What the hell am I going to use this for?

Justin: Limits are used constantly in political science. And getting comfortable with this notation (by seeing it many times) is important Student: fine. How am I going to find the limit? I can't do a $\delta - \epsilon$ proof yet.

Student: Justin. what the hell with the δ 's and ϵ 's? What the hell am I going to use this for?

Justin: Limits are used constantly in political science. And getting comfortable with this notation (by seeing it many times) is important Student: fine. How am I going to find the limit? I can't do a $\delta - \epsilon$ proof yet.

Justin: yes, those take time. For this class, graphing will be critical.

Algebra of Limits

Theorem

Suppose $f : \Re \to \Re$ and $g : \Re \to \Re$ with limits A and B at x_0 . Then,

i.)
$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = A + B$$

ii.) $\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} f(x) \lim_{x \to x_0} g(x) = AB$

Suppose $g(x) \neq 0$ for all $x \in \Re$ and $B \neq 0$ then $\frac{f(x)}{g(x)}$ has a limit at x_0 and

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{A}{B}$$

Challenge Problems

Suppose
$$\lim_{x\to x_0} f(x) = a$$
. Find $\lim_{x\to x_0} \frac{f(x)^3 + f(x)^2}{f(x)}$

-

< □ > < 同 >

Ξ

990

Continuity

 $f(x) = (x^2 - 1)/(x - 1)$

990

3

Continuity

 $f(x) = (x^2 - 1)/(x - 1)$

990

Э

Continuity

 $f(x) = (x^2 - 1)/(x - 1)$

Sac

Э

Continuity, Rigorous Definition

Definition

Suppose $f : \Re \to \Re$ and consider $x_0 \in \Re$. We will say f is continuous at x_0 if for each $\epsilon > 0$ there is a $\delta > 0$ such that if,

$$|x - x_0| < \delta$$
 for all $x \in \Re$ then
 $|f(x) - f(x_0)| < \epsilon$

- Previously $f(x_0)$ was replaced with L.
- Now: f(x) has to converge on itself at x_0 .
- Continuity is more restrictive than limit
f(x) = |x|

э

E

900

< - 17 →

f(x) = cos(x)

-

990

Ξ

f(x) = x^2

Ξ

900

- (E

Þ.

Conservative Candidates

Justin Grimmer (Stanford University)

Methodology I

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Continuity and Limits

Theorem

Let $f : \Re \to \Re$ with $x_0 \in \Re$. Then f is continuous at x_0 if and only if f has a limit at x_0 and that $\lim_{x\to x_0} f(x) = f(x_0)$.

Proof.

(\Rightarrow). Suppose f is continuous at x_0 . This implies that for each $\epsilon > 0$ there is $\delta > 0$ such that $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \epsilon$. This is the definition of a limit, with $L = f(x_0)$. (\Leftarrow). Suppose f has a limit at x_0 and that limit is $f(x_0)$. This implies that for each $\epsilon > 0$ there is $\delta > 0$ such that $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \epsilon$. But this is the definition of continuity.

() <) <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <)
() <

Algebra of Continuous Functions

Theorem

Suppose $f : \Re \to \Re$ and $g : \Re \to \Re$ are continuous at x_0 . Then,

- i.) f(x) + g(x) is continuous at x_0
- ii.) f(x)g(x) is continuous at x_0
- iii. if $g(x_0) \neq 0$, then $\frac{f(x)}{g(x)}$ is continuous at x_0

Use theorem about limits to prove continuous theorems.

€ 900

How Functions Change

- Derivatives—Rates of change in functions
- Foundational across a lot of work in Poli Sci.
- A special limit
- Cover three broad ideas
 - Geometric interpretation/intuition
 - Formulas/Algebra derivatives
 - Famous theorems

990

Э

< A

990

Э

< A

990

э

< A

990

э

< 市

990

3

990

Э

990

Э

- Rate of Change \rightsquigarrow Return on Vote Share/\$ Invested Instantaneous rate of change \rightsquigarrow Increase in vote share in response to infinitesimally small increase in spending

- Rate of Change \rightsquigarrow Return on Vote Share/\$ Invested Instantaneous rate of change \rightsquigarrow Increase in vote share in response to infinitesimally small increase in spending

- Limit

Derivative Definition Suppose $f : \Re \rightarrow \Re$.

Suppose $f : \Re \to \Re$. Measure rate of change at a point x_0 with a function R(x),

Suppose $f : \Re \to \Re$. Measure rate of change at a point x_0 with a function R(x),

$$R(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

Suppose $f : \Re \to \Re$. Measure rate of change at a point x_0 with a function R(x),

$$R(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

- R(x) defines the rate of change.

Suppose $f : \Re \to \Re$. Measure rate of change at a point x_0 with a function R(x),

$$R(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at x_0

Suppose $f : \Re \to \Re$. Measure rate of change at a point x_0 with a function R(x),

$$R(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at x_0

Definition

Let $f : \Re \to \Re$. If the limit

Suppose $f : \Re \to \Re$. Measure rate of change at a point x_0 with a function R(x),

$$R(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at x_0

Definition

Let $f : \Re \to \Re$. If the limit

$$\lim_{x \to x_0} R(x) = \frac{f(x) - f(x_0)}{x - x_0} \\ = f'(x_0)$$

Suppose $f : \Re \to \Re$. Measure rate of change at a point x_0 with a function R(x),

$$R(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

- R(x) defines the rate of change.
- A derivative will examine what happens with a small perturbation at x_0

Definition

Let $f : \Re \to \Re$. If the limit

$$\lim_{x \to x_0} R(x) = \frac{f(x) - f(x_0)}{x - x_0} \\ = f'(x_0)$$

exists then we say that f is differentiable at x_0 . If $f'(x_0)$ exists for all $x \in Domain$, then we say that f is differentiable.

- Suppose
$$f(x) = x^2$$
 and consider $x_0 = 1$. Then,

э -

< □ > < 同 >

E

990

- Suppose
$$f(x) = x^2$$
 and consider $x_0 = 1$. Then,

$$\lim_{x \to 1} R(x) = \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$

э -

< □ > < 同 >

E

990

- Suppose $f(x) = x^2$ and consider $x_0 = 1$. Then,

$$\lim_{x \to 1} R(x) = \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$
$$= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

< A

Э

- Suppose $f(x) = x^2$ and consider $x_0 = 1$. Then,

$$\lim_{x \to 1} R(x) = \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$
$$= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} x + 1$$

TH 1.

< □ > < 同 >

Э

- Suppose $f(x) = x^2$ and consider $x_0 = 1$. Then,

$$\lim_{x \to 1} R(x) = \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$

=
$$\lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

=
$$\lim_{x \to 1} x + 1$$

= 2

< A

Э

- Suppose $f(x) = x^2$ and consider $x_0 = 1$. Then,

$$\lim_{x \to 1} R(x) = \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$

=
$$\lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

=
$$\lim_{x \to 1} x + 1$$

= 2

- Suppose f(x) = |x| and consider $x_0 = 0$. Then,

イロト イポト イヨト イヨト 二日

- Suppose $f(x) = x^2$ and consider $x_0 = 1$. Then,

$$\lim_{x \to 1} R(x) = \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$
$$= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} x + 1$$
$$= 2$$

- Suppose f(x) = |x| and consider $x_0 = 0$. Then,

$$\lim_{x \to 0} R(x) = \lim_{x \to 0} \frac{|x|}{x}$$

イロト 不得 トイヨト イヨト 二日

- Suppose $f(x) = x^2$ and consider $x_0 = 1$. Then,

$$\lim_{x \to 1} R(x) = \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$

=
$$\lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

=
$$\lim_{x \to 1} x + 1$$

= 2

- Suppose f(x) = |x| and consider $x_0 = 0$. Then,

$$\lim_{x\to 0} R(x) = \lim_{x\to 0} \frac{|x|}{x}$$

$$\lim_{x\to 0^-} R(x) = -1$$

イロト イポト イヨト イヨト 二日

- Suppose $f(x) = x^2$ and consider $x_0 = 1$. Then,

$$\lim_{x \to 1} R(x) = \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$

=
$$\lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

=
$$\lim_{x \to 1} x + 1$$

= 2

- Suppose f(x) = |x| and consider $x_0 = 0$. Then,

$$\lim_{x\to 0} R(x) = \lim_{x\to 0} \frac{|x|}{x}$$

 $\lim_{x \to 0^-} R(x) = -1$, but $\lim_{x \to 0^+} R(x) = 1$.

200

イロト 不得 トイヨト イヨト 二日

- Suppose $f(x) = x^2$ and consider $x_0 = 1$. Then,

$$\lim_{x \to 1} R(x) = \lim_{x \to 1} \frac{x^2 - 1^2}{x - 1}$$

=
$$\lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

=
$$\lim_{x \to 1} x + 1$$

= 2

- Suppose f(x) = |x| and consider $x_0 = 0$. Then,

$$\lim_{x \to 0} R(x) = \lim_{x \to 0} \frac{|x|}{x}$$

i i

 $\lim_{x\to 0^-} R(x) = -1$, but $\lim_{x\to 0^+} R(x) = 1.$ So, not differentiable at 0.
- f(x) = |x| is continuous but not differentiable. This is because the change is too abrupt.
- Suggests differentiability is a stronger condition

Theorem

Let $f : \Re \to \Re$ be differentiable at x_0 . Then f is continuous at x_0 .

Theorem

Let $f : \Re \to \Re$ be differentiable at x_0 . Then f is continuous at x_0 .

Proof.

Theorem

Let $f : \Re \to \Re$ be differentiable at x_0 . Then f is continuous at x_0 .

Proof.

This proof is all in the setup. Realize that,

Theorem

Let $f : \Re \to \Re$ be differentiable at x_0 . Then f is continuous at x_0 .

Proof.

This proof is all in the setup. Realize that,

$$f(x) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0) + f(x_0)$$

Theorem

Let $f : \Re \to \Re$ be differentiable at x_0 . Then f is continuous at x_0 .

Proof.

This proof is all in the setup. Realize that,

$$f(x) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0) + f(x_0)$$

= $R(x)(x - x_0) + f(x_0)$

Theorem

Let $f : \Re \to \Re$ be differentiable at x_0 . Then f is continuous at x_0 .

Proof.

This proof is all in the setup. Realize that,

$$f(x) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0) + f(x_0)$$

= $R(x)(x - x_0) + f(x_0)$

Theorem

Let $f : \Re \to \Re$ be differentiable at x_0 . Then f is continuous at x_0 .

Proof.

This proof is all in the setup. Realize that,

$$f(x) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0) + f(x_0)$$

= $R(x)(x - x_0) + f(x_0)$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} [R(x)(x - x_0) + f(x_0)]$$

Theorem

Let $f : \Re \to \Re$ be differentiable at x_0 . Then f is continuous at x_0 .

Proof.

This proof is all in the setup. Realize that,

$$f(x) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0) + f(x_0)$$

= $R(x)(x - x_0) + f(x_0)$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} [R(x)(x - x_0) + f(x_0)]$$

= $\left(\lim_{x \to x_0} R(x)\right) \left(\lim_{x \to x_0} (x - x_0)\right) + \lim_{x \to x_0} f(x_0)$

Theorem

Let $f : \Re \to \Re$ be differentiable at x_0 . Then f is continuous at x_0 .

Proof.

This proof is all in the setup. Realize that,

$$f(x) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0) + f(x_0)$$

= $R(x)(x - x_0) + f(x_0)$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} [R(x)(x - x_0) + f(x_0)]$$

= $\left(\lim_{x \to x_0} R(x)\right) \left(\lim_{x \to x_0} (x - x_0)\right) + \lim_{x \to x_0} f(x_0)$
= $f'(x_0)0 + f(x_0) = f(x_0)$

What goes wrong?

Consider the following piecewise function:

$$\begin{array}{rcl} f(x) &=& x^2 \text{ for all } x \in \Re \setminus 0 \\ f(x) &=& 1000 \text{ for } x = 0 \end{array}$$

Consider derivative at 0. Then,

$$\lim_{x \to 0} R(x) = \lim_{x \to 0} \frac{f(x) - 1000}{x - 0}$$
$$= \lim_{x \to 0} \frac{x^2}{x} - \lim_{x \to 0} \frac{1000}{x}$$

 $\lim_{x\to 0} \frac{1000}{x}$ diverges, so the limit doesn't exist.

Calculating Derivatives

- Rarely will we take limit to calculate derivative.
- Rather, rely on rules and properties of derivatives
- Important: do not forget core intuition

Strategy:

- Algebra theorems
- Some specific derivatives
- Work on problems

Suppose a is some constant, f(x) and g(x) are functions

Suppose a is some constant, f(x) and g(x) are functions

$$f(x) = x \quad ; \quad f'(x) = 1$$

Suppose a is some constant, f(x) and g(x) are functions

$$f(x) = x$$
 ; $f'(x) = 1$
 $f(x) = ax^{k}$; $f'(x) = (a)(k)x^{k-1}$

3

< 口 > < 同

Suppose a is some constant, f(x) and g(x) are functions

$$f(x) = x ; f'(x) = 1$$

$$f(x) = ax^{k} ; f'(x) = (a)(k)x^{k-1}$$

$$f(x) = e^{x} ; f'(x) = e^{x}$$

1

Suppose a is some constant, f(x) and g(x) are functions

$$f(x) = x \quad ; \quad f'(x) = 1$$

$$f(x) = ax^{k} \quad ; \quad f'(x) = (a)(k)x^{k-1}$$

$$f(x) = e^{x} \quad ; \quad f'(x) = e^{x}$$

$$f(x) = \sin(x) \quad ; \quad f'(x) = \cos(x)$$

t

Suppose a is some constant, f(x) and g(x) are functions

$$f(x) = x ; f'(x) = 1$$

$$f(x) = ax^{k} ; f'(x) = (a)(k)x^{k-1}$$

$$f(x) = e^{x} ; f'(x) = e^{x}$$

$$f(x) = \sin(x) ; f'(x) = \cos(x)$$

$$f(x) = \cos(x) ; f'(x) = -\sin(x)$$

Theorem

Suppose $f : \Re \to \Re$ and $g : \Re \to \Re$ and both are differentiable at $x_0 \in \Re$. Then,

Theorem

Suppose $f : \Re \to \Re$ and $g : \Re \to \Re$ and both are differentiable at $x_0 \in \Re$. Then,

i) h(x) = f(x) + g(x) is differentiable at x_0 and

Theorem

Suppose $f : \Re \to \Re$ and $g : \Re \to \Re$ and both are differentiable at $x_0 \in \Re$. Then,

i) h(x) = f(x) + g(x) is differentiable at x_0 and

$$h'(x_0) = f'(x_0) + g'(x_0)$$

Theorem

Suppose $f : \Re \to \Re$ and $g : \Re \to \Re$ and both are differentiable at $x_0 \in \Re$. Then,

i) h(x) = f(x) + g(x) is differentiable at x_0 and

$$h'(x_0) = f'(x_0) + g'(x_0)$$

ii)
$$h(x) = f(x)g(x)$$
 is differentiable at x_0 and

Theorem

Suppose $f : \Re \to \Re$ and $g : \Re \to \Re$ and both are differentiable at $x_0 \in \Re$. Then,

i)
$$h(x) = f(x) + g(x)$$
 is differentiable at x_0 and

$$h'(x_0) = f'(x_0) + g'(x_0)$$

ii) h(x) = f(x)g(x) is differentiable at x_0 and

$$h^{'}(x_{0}) = f^{'}(x_{0})g(x_{0}) + g^{'}(x_{0})f(x_{0})$$

Theorem

Suppose $f : \Re \to \Re$ and $g : \Re \to \Re$ and both are differentiable at $x_0 \in \Re$. Then,

i)
$$h(x) = f(x) + g(x)$$
 is differentiable at x_0 and

$$h'(x_0) = f'(x_0) + g'(x_0)$$

ii)
$$h(x) = f(x)g(x)$$
 is differentiable at x_0 and
 $h^{'}(x_0) = f^{'}(x_0)g(x_0) + g^{'}(x_0)f(x_0)$

iii)
$$h(x) = rac{f(x)}{g(x)}$$
 with $g(x)
eq 0$ then,

Theorem

Suppose $f : \Re \to \Re$ and $g : \Re \to \Re$ and both are differentiable at $x_0 \in \Re$. Then,

i)
$$h(x) = f(x) + g(x)$$
 is differentiable at x_0 and

$$h'(x_0) = f'(x_0) + g'(x_0)$$

ii) h(x) = f(x)g(x) is differentiable at x_0 and $h'(x_0) = f'(x_0)g(x_0) + g'(x_0)f(x_0)$

iii)
$$h(x) = \frac{f(x)}{g(x)}$$
 with $g(x) \neq 0$ then,

$$h'(x_0) = \frac{f'(x_0)g(x_0) - g'(x_0)f(x_0)}{g(x_0)^2}$$

Challenge Problems

Differentiate the following functions and evaluate at the specified value

1)
$$f(x) = x^3 + 5x^2 + 4x$$
, at $x_0 = 2$
2) $f(x) = sin(x)x^3$ at $x_0 = y$
3) $f(x) = \frac{e^x}{x^3}$ at $x = 2$
4) $g(x) = \log(x)x^3$ at $x = x_0$
5) Suppose $f(x) = x^2$ and $g(x) = x^3$. Find all x such that $f'(x) > g'(x)$.

Theorem

Suppose $f(x) = x^k$ and k is a positive integer. If k = 0 then f'(x) = 0. If k > 0, then, $f'(x) = kx^{k-1}$.

Proof.

Theorem

Suppose $f(x) = x^k$ and k is a positive integer. If k = 0 then f'(x) = 0. If k > 0, then, $f'(x) = kx^{k-1}$.

Proof.

If k = 0 then, $x^k = 1$. The $\lim_{x \to \tilde{x}} \frac{1-1}{x-\tilde{x}} = 0$.

Theorem

Suppose $f(x) = x^k$ and k is a positive integer. If k = 0 then f'(x) = 0. If k > 0, then, $f'(x) = kx^{k-1}$.

Proof.

If k = 0 then, $x^k = 1$. The $\lim_{x \to \tilde{x}} \frac{1-1}{x-\tilde{x}} = 0$. Suppose k > 0. We will proceed by induction. Suppose k = 1, f(x) = x

Theorem

Suppose $f(x) = x^k$ and k is a positive integer. If k = 0 then f'(x) = 0. If k > 0, then, $f'(x) = kx^{k-1}$.

Proof.

If k = 0 then, $x^k = 1$. The $\lim_{x \to \tilde{x}} \frac{1-1}{x-\tilde{x}} = 0$. Suppose k > 0. We will proceed by induction. Suppose k = 1, f(x) = x

$$f^{'}(ilde{x}) \;\; = \;\; \lim_{x o ilde{x}} rac{x - ilde{x}}{x - ilde{x}}$$

Theorem

Suppose $f(x) = x^k$ and k is a positive integer. If k = 0 then f'(x) = 0. If k > 0, then, $f'(x) = kx^{k-1}$.

Proof.

If k = 0 then, $x^k = 1$. The $\lim_{x \to \tilde{x}} \frac{1-1}{x-\tilde{x}} = 0$. Suppose k > 0. We will proceed by induction. Suppose k = 1, f(x) = x

$$f'(\tilde{x}) = \lim_{x \to \tilde{x}} \frac{x - \tilde{x}}{x - \tilde{x}}$$
$$= 1 = 1x^{0}$$

Theorem

Suppose $f(x) = x^k$ and k is a positive integer. If k = 0 then f'(x) = 0. If k > 0, then, $f'(x) = kx^{k-1}$.

Proof.

If k = 0 then, $x^k = 1$. The $\lim_{x \to \tilde{x}} \frac{1-1}{x-\tilde{x}} = 0$. Suppose k > 0. We will proceed by induction. Suppose k = 1, f(x) = x

$$f'(\tilde{x}) = \lim_{x \to \tilde{x}} \frac{x - \tilde{x}}{x - \tilde{x}}$$
$$= 1 = 1x^{0}$$

Suppose theorem holds for k = r, $f(x) = x^r$. Consider $g(x) = x^{r+1}$. We know that g(x) = f(x)x. By product rule,

Theorem

Suppose $f(x) = x^k$ and k is a positive integer. If k = 0 then f'(x) = 0. If k > 0, then, $f'(x) = kx^{k-1}$.

Proof.

If k = 0 then, $x^k = 1$. The $\lim_{x \to \tilde{x}} \frac{1-1}{x-\tilde{x}} = 0$. Suppose k > 0. We will proceed by induction. Suppose k = 1, f(x) = x

$$f'(\tilde{x}) = \lim_{x \to \tilde{x}} \frac{x - \tilde{x}}{x - \tilde{x}}$$
$$= 1 = 1x^{0}$$

Suppose theorem holds for k = r, $f(x) = x^r$. Consider $g(x) = x^{r+1}$. We know that g(x) = f(x)x. By product rule,

$$g'(x) = f(x)x' + f'(x)x = x^{r}1 + rx^{r-1}x$$

Theorem

Suppose $f(x) = x^k$ and k is a positive integer. If k = 0 then f'(x) = 0. If k > 0, then, $f'(x) = kx^{k-1}$.

Proof.

If k = 0 then, $x^k = 1$. The $\lim_{x \to \tilde{x}} \frac{1-1}{x-\tilde{x}} = 0$. Suppose k > 0. We will proceed by induction. Suppose k = 1, f(x) = x

$$f'(\tilde{x}) = \lim_{x \to \tilde{x}} \frac{x - \tilde{x}}{x - \tilde{x}}$$
$$= 1 = 1x^{0}$$

Suppose theorem holds for k = r, $f(x) = x^r$. Consider $g(x) = x^{r+1}$. We know that g(x) = f(x)x. By product rule,

$$g'(x) = f(x)x' + f'(x)x = x^r 1 + rx^{r-1}x$$

= $x^r + rx^r = (r+1)x^r$

Chain Rule

Common to have functions in functions

t

$$f(x) = \frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}}$$
$$= \frac{f(g(x))}{\sqrt{2\pi}}$$

To deal with this, we use the chain rule

Theorem

Suppose $g : \Re \to \Re$ and $f : \Re \to \Re$. Suppose both f(x) and g(x) are differentiable at x_0 . Define h(x) = g(f(x)). Then,

$$h'(x_0) = g'(f(x_0))f'(x_0)$$

Examples of Chain Rule in Action

-
$$h(x) = e^{2x}$$
. $g(x) = e^{x}$. $f(x) = 2x$. So
 $h(x) = g(f(x)) = g(2x) = e^{2x}$. Taking derivatives, we have
 $h'(x) = g'(f(x))f'(x) = e^{2x}2$
- $h(x) = \log(\cos(x))$. $g(x) = \log(x)$. $f(x) = \cos(x)$.
 $h(x) = g(f(x)) = g(\cos(x)) = \log(\cos(x))$
 $h'(x) = g'(f(x))f'(x) = \frac{-1}{\cos(x)}\sin(x) = -\tan(x)$

< A

990

Derivatives and Properties of Functions

Derivatives reveal an immense amount about functions

- Often use to optimize a function (tomorrow)
- But also reveal average rates of change
- Or crucial properties of functions

Goal: introduce ideas. Hopefully make them less shocking when you see them in work
Relative Maxima, Minima and Derivatives

Theorem

Suppose $f : [a, b] \to \Re$. Suppose f has a relative maxima or minima on (a, b) and call that $c \in (a, b)$. Then f'(c) = 0.

Intuition:

Rolle's Theorem

Relative Maxima, Minima and Derivatives

Theorem

Rolle's Theorem Suppose $f : [a, b] \to \Re$ and f is continuous on [a, b] and differentiable on (a, b). Then if f(a) = f(b) = 0, there is $c \in (a, b)$ such that f'(c) = 0.

Proof Intuition Consider (WLOG) a relative maximum c. Consider the left-hand and right-hand limits

$$\lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \geq 0$$
$$\lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} \leq 0$$

Theorem

Rolle's Theorem Suppose $f : [a, b] \to \Re$ and f is continuous on [a, b] and differentiable on (a, b). Then if f(a) = f(b) = 0, there is $c \in (a, b)$ such that f'(c) = 0.

But we also know that

$$\lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} = f'(c)$$
$$\lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} = f'(c)$$

The only way, then, that $\lim_{x\to c^-} \frac{f(x)-f(c)}{x-c} = \lim_{x\to c^+} \frac{f(x)-f(c)}{x-c} \text{ is if } f'(c) = 0.$

What Goes Up Must Come Down

Theorem

Rolle's Theorem Suppose $f : [a, b] \to \Re$ and f is continuous on [a, b] and differentiable on (a, b). Then if f(a) = f(b) = 0, there is $c \in (a, b)$ such that f'(c) = 0.

What Goes Up Must Come Down

Theorem

Rolle's Theorem Suppose $f : [a, b] \to \Re$ and f is continuous on [a, b] and differentiable on (a, b). Then if f(a) = f(b) = 0, there is $c \in (a, b)$ such that f'(c) = 0.

Mean Value Theorem

Theorem

If $f : [a, b] \to \Re$ is continuous on [a, b] and differentiable on (a, b), then there is a $c \in (a, b)$ such that

$$f^{'}(c) = rac{f(b)-f(a)}{b-a}$$

Rolle's Theorem, Rotated

Rolle's Theorem

Justin Grimmer (Stanford University)

1 54 / 64 September 6th, 2016

990

э

Rolle's Theorem, Rotated

Mean Value Theorem

Justin Grimmer (Stanford University)

September 6th, 2016 54 / 64

990

Э

Why You Should Care

- 1) This will come up in a formal theory article. You'll at least know where to look
- 2) It allows us to say lots of powerful stuff about functions

Powerful Applications of Mean Value Theorem

Theorem

Suppose that $f : [a, b] \to \Re$ is continuous on [a, b] and differentiable on (a, b). Then,

i) If
$$f'(x) \neq 0$$
 for all $x \in (a, b)$ then f is 1-1

ii) If
$$f'(x) = 0$$
 then $f(x)$ is constant

iii) If
$$f'(x) > 0$$
 for all $x \in (a, b)$ then then f is strictly increasing

iv) If
$$f'(x) < 0$$
 for all $x \in (a, b)$ then f is strictly decreasing

Let's prove these in turn

- Why-because they are just about applying ideas

If $f'(x) \neq 0$ for all $x \in (a, b)$ then f is 1-1

By way of contradiction, suppose that f is not 1-1. Then there is $x, y \in (a, b)$ such that f(x) = f(y). Then,

$$f'(c) = \frac{f(x) - f(y)}{x - y} = \frac{0}{x - y} = 0$$

If $f'(x) \neq 0$ for all $x \in (a, b)$ then f is 1-1

If $f'(x) \neq 0$ for all $x \in (a, b)$ then f is 1-1

$f' \neq 0$ for all x!

If f'(x) = 0 then f(x) is constant

By way of contradiction, suppose that there is $x, y \in (a, b)$ such that $f(x) \neq f(y)$. But then,

$$f'(c) = \frac{f(x) - f(y)}{x - y} \neq 0$$

contradiction

If f'(x) > 0 for all $x \in (a, b)$ then then f is strictly increasing

By way of contradiction, suppose that there is $x, y \in (a, b)$ with y < x but f(y) > f(x). But then,

$$f'(c) = \frac{f(x) - f(y)}{x - y} < 0$$

contradiction Bonus: proof for strictly decreasing

Approximating functions and second order conditions

Theorem

Taylor's Theorem Suppose $f : \Re \to \Re$, f(x) is infinitely differentiable function. Then, the taylor expansion of f(x) around a is given by

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!}(x-a)^n$$

Example Function

Suppose a = 0 and $f(x) = e^x$. Then,

$$f'(x) = e^{x}$$

$$f''(x) = e^{x}$$

$$\vdots \vdots \vdots$$

$$f^{n}(x) = e^{x}$$

This implies

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} \dots + \frac{x^{n}}{n!} + \dots$$

< A

Э

Wrap up

Lots of territory. What are your questions?

< A

э - Э

This Week

Lab Tonight!

Justin Grimmer (Stanford University)

< A

э - Э