Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 6th, 2016

Lab this afternoon!

130-300pm

Convergence

Big idea today is convergence

Convergence

Big idea today is convergence

- Sequence \rightarrow converge on some number

Convergence

Big idea today is convergence

- Sequence \rightarrow converge on some number
- Function \rightarrow limit (use to calculate derivatives)

Convergence

Big idea today is convergence

- Sequence \rightarrow converge on some number
- Function \rightarrow limit (use to calculate derivatives)
- Continuity \rightarrow a function doesn't jump (converge on itself)

Convergence

Big idea today is convergence

- Sequence \rightarrow converge on some number
- Function \rightarrow limit (use to calculate derivatives)
- Continuity \rightarrow a function doesn't jump (converge on itself)
- Derivatives \rightarrow limits that measure a function's properties

Sequence: Definition + Examples

Definition

A sequence is a function whose domain is the set of positive integers
We'll write a sequence as,

$$
\left\{a_{n}\right\}_{n=1}^{\infty}=\left(a_{1}, a_{2}, \ldots, a_{N}, \ldots\right)
$$

Sequence: Definition + Examples

$$
\left\{\frac{1}{n}\right\}=(1,1 / 2,1 / 3,1 / 4, \ldots, 1 / N, \ldots,)
$$

$$
f(n)=1 / n
$$

Sequence: Definition + Examples

$$
\left\{\frac{1}{n^{2}}\right\}=\left(1,1 / 4,1 / 9,1 / 16, \ldots, 1 / N^{2}, \ldots,\right)
$$

$$
f(n)=1 /\left(n^{\wedge} 2\right)
$$

Sequence: Definition + Examples

$$
\left\{\frac{1+(-1)^{n}}{2}\right\}=(0,1,0,1, \ldots, 0,1,0,1 \ldots,)
$$

$$
f(n)=\left(1+(-1)^{\wedge} n\right) / 2
$$

Sequence: Definition + Examples

$$
\begin{aligned}
\{\theta\}_{n=1}^{\infty} & =\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}, \ldots\right) \\
\theta_{n} & =f(\mathrm{n} \text { responses }(\text { vote choice }))
\end{aligned}
$$

Function(data)

Sequence: Convergence

Consider the sequence

$$
\left\{\frac{(-1)^{n}}{n}\right\}=\left(-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \ldots\right)
$$

$$
f(n)=\left[(-1)^{\wedge} n\right] / n
$$

Sequence: Convergence

Consider the sequence

$$
\left\{\frac{(-1)^{n}}{n}\right\}=\left(-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \ldots\right)
$$

$$
f(n)=\left[(-1)^{\wedge} n\right] / n
$$

Sequence: Convergence

Consider the sequence

$$
\left\{\frac{(-1)^{n}}{n}\right\}=\left(-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \ldots\right)
$$

$$
f(n)=\left[(-1)^{\wedge} n\right] / n
$$

Sequence: Convergence

Consider the sequence

$$
\left\{\frac{(-1)^{n}}{n}\right\}=\left(-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \ldots\right)
$$

$$
f(n)=\left[(-1)^{\wedge} n\right] / n
$$

Sequence: Convergence

Consider the sequence

$$
\left\{\frac{(-1)^{n}}{n}\right\}=\left(-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \frac{-1}{7}, \frac{1}{8}, \ldots\right)
$$

$$
f(n)=\left[(-1)^{\wedge} n\right] / n
$$

Sequence: Convergence definition

Definition

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to a real number A if for each $\epsilon>0$ there is a positive integer N such that for all $n \geq N$ we have $\left|a_{n}-A\right|<\epsilon$

Sequence: Convergence definition

```
Definition
A sequence \(\left\{a_{n}\right\}_{n=1}^{\infty}\) converges to a real number \(A\) if for each \(\epsilon>0\) there is a positive integer \(N\) such that for all \(n \geq N\) we have \(\left|a_{n}-A\right|<\epsilon\)
```

1) If a sequence converges, it converges to one number. We call that A

Sequence: Convergence definition

```
Definition
A sequence {\mp@subsup{a}{n}{}\mp@subsup{}}{n=1}{\infty}\mathrm{ converges to a real number A if for each }\epsilon>0\mathrm{ there}
is a positive integer N such that for all n\geqN we have |an}-A|<
```

1) If a sequence converges, it converges to one number. We call that A
2) $\epsilon>0$ is some arbitrary real-valued number.

Sequence: Convergence definition

```
Definition
A sequence {\mp@subsup{a}{n}{}\mp@subsup{}}{n=1}{\infty}\mathrm{ converges to a real number A if for each }\epsilon>0\mathrm{ there}
is a positive integer N such that for all n\geqN we have }|\mp@subsup{a}{n}{}-A|<
```

1) If a sequence converges, it converges to one number. We call that A
2) $\epsilon>0$ is some arbitrary real-valued number. Think about this as our error tolerance. Notice $\epsilon>0$.

Sequence: Convergence definition

```
Definition
A sequence {\mp@subsup{a}{n}{}\mp@subsup{}}{n=1}{\infty}\mathrm{ converges to a real number A if for each }\epsilon>0\mathrm{ there}
is a positive integer N such that for all n\geqN we have }|\mp@subsup{a}{n}{}-A|<
```

1) If a sequence converges, it converges to one number. We call that A
2) $\epsilon>0$ is some arbitrary real-valued number. Think about this as our error tolerance. Notice $\epsilon>0$.
3) As we will see the N will depend upon ϵ

Sequence: Convergence definition

Definition

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to a real number A if for each $\epsilon>0$ there is a positive integer N such that for all $n \geq N$ we have $\left|a_{n}-A\right|<\epsilon$

1) If a sequence converges, it converges to one number. We call that A
2) $\epsilon>0$ is some arbitrary real-valued number. Think about this as our error tolerance. Notice $\epsilon>0$.
3) As we will see the N will depend upon ϵ
4) Implies the sequence never gets further than ϵ away from A

Sequence: Convergence definition

Sequence: Proof of Convergence

Theorem
$\left\{\frac{1}{n}\right\}$ converges to 0

Proof.

We need to show that for ϵ there is some N_{ϵ} such that, for all $n \geq N_{\epsilon}$ $\left|\frac{1}{n}-0\right|<\epsilon$. Without loss of generality (WLOG) select an ϵ. Then,

$$
\begin{aligned}
\left|\frac{1}{N_{\epsilon}}-0\right| & <\epsilon \\
\frac{1}{N_{\epsilon}} & <\epsilon \\
\frac{1}{\epsilon} & <N_{\epsilon}
\end{aligned}
$$

For each epsilon, then, any $N_{\epsilon}>\frac{1}{\epsilon}$ will suffice.

Sequence: Divergence + Bounded

Definition
If a sequence, $\left\{a_{n}\right\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n\left|a_{n}\right|<M$, then we'll call it bounded

Sequence: Divergence + Bounded

Definition
If a sequence, $\left\{a_{n}\right\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n\left|a_{n}\right|<M$, then we'll call it bounded

- An unbounded sequence

Sequence: Divergence + Bounded

Definition
If a sequence, $\left\{a_{n}\right\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n\left|a_{n}\right|<M$, then we'll call it bounded

- An unbounded sequence

$$
\{n\}=(1,2,3,4, \ldots, N, \ldots)
$$

Sequence: Divergence + Bounded

Definition
If a sequence, $\left\{a_{n}\right\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n\left|a_{n}\right|<M$, then we'll call it bounded

- An unbounded sequence

$$
\{n\}=(1,2,3,4, \ldots, N, \ldots)
$$

- A bounded sequence that doesn't converge

Sequence: Divergence + Bounded

Definition

If a sequence, $\left\{a_{n}\right\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n\left|a_{n}\right|<M$, then we'll call it bounded

- An unbounded sequence

$$
\{n\}=(1,2,3,4, \ldots, N, \ldots)
$$

- A bounded sequence that doesn't converge

$$
\left\{\frac{1+(-1)^{n}}{2}\right\}=(0,1,0,1, \ldots, 0,1,0,1 \ldots,)
$$

Sequence: Divergence + Bounded

Definition

If a sequence, $\left\{a_{n}\right\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n\left|a_{n}\right|<M$, then we'll call it bounded

- An unbounded sequence

$$
\{n\}=(1,2,3,4, \ldots, N, \ldots)
$$

- A bounded sequence that doesn't converge

$$
\left\{\frac{1+(-1)^{n}}{2}\right\}=(0,1,0,1, \ldots, 0,1,0,1 \ldots,)
$$

- All convergent sequences are bounded

Sequence: Divergence + Bounded

Definition

If a sequence, $\left\{a_{n}\right\}$ converges we'll call it convergent. If it doesn't we'll call it divergent. If there is some number M such that, for all $n\left|a_{n}\right|<M$, then we'll call it bounded

- An unbounded sequence

$$
\{n\}=(1,2,3,4, \ldots, N, \ldots)
$$

- A bounded sequence that doesn't converge

$$
\left\{\frac{1+(-1)^{n}}{2}\right\}=(0,1,0,1, \ldots, 0,1,0,1 \ldots,)
$$

- All convergent sequences are bounded
- If a sequence is constant, $\{C\}$ it converges to C. proof?

Algebra of Sequences

How do we add, multiply, and divide sequences?
Theorem
Suppose $\left\{a_{n}\right\}$ converges to A and $\left\{b_{n}\right\}$ converges to B. Then,

- $\left\{a_{n}+b_{n}\right\}$ converges to $A+B$
- $\left\{a_{n} b_{n}\right\}$ converges to $A \times B$.
- Suppose $b_{n} \neq 0 \forall n$ and $B \neq 0$. Then $\left\{\frac{a_{n}}{b_{n}}\right\}$ converges to $\frac{A}{B}$.

Working Together

- Consider the sequence $\left\{\frac{1}{n}\right\}$-what does it converge to?
- Consider the sequence $\left\{\frac{1}{2 n}\right\}$ what does it converge to?

Challenge Questions

- What does $\left\{3+\frac{1}{n}\right\}$ converge to?
- What about $\left\{\left(3+\frac{1}{n}\right)\left(100+\frac{1}{n^{4}}\right)\right\}$?
- Finally, $\left\{\frac{300+\frac{1}{n}}{100+\frac{1}{n^{4}}}\right\}$?

Work smarter, not harder
Divide into teams, let's reconvene in about 10 minutes.

Sequences \rightsquigarrow Limits of Functions

Calculus/Real Analysis: study of functions on the real line. Limit of a function: how does a function behave as it gets close to a particular point?

- Derivatives
- Asymptotics
- Game Theory

Limits of Functions

$$
f(x)=\sin (x)
$$

Limits of Functions

$$
f(x)=\sin (x)
$$

Limits of Functions

$\mathrm{f}(\mathrm{x})=\boldsymbol{\operatorname { s i n }}(\mathrm{x})$

Limits of Functions

$$
f(x)=\sin (x)
$$

Limits of Functions

$f(x)=\sin (x)$

Limits of Functions

$$
f(x)=\sin (x)
$$

Limits of Functions

$$
f(x)=\sin (x)
$$

Precise Definition of Limits of Functions

Definition

Suppose $f: \Re \rightarrow \Re$. We say that f has a limit L at x_{0} if, for each $\epsilon>0$, there is a $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies that $|f(x)-L|<\epsilon$.

- Limits are about the behavior of functions at points. Here x_{0}.
- As with sequences, we let ϵ define an error rate
- δ defines an area around x_{0} where $f(x)$ is going to be within our error rate

Precise Definition of Limit: Example

Theorem

The function $f(x)=x+1$ has a limit of 1 at $x_{0}=0$.

Proof.

WLOG choose $\epsilon>0$. We want to show that there is δ_{ϵ} such that, $\left|x-x_{0}\right|<\delta_{\epsilon}$ implies $|f(x)-1|<\epsilon$. In other words,

$$
\begin{array}{lll}
|x|<\delta_{\epsilon} & \text { implies } & |(x+1)-1|<\epsilon \\
|x|<\delta_{\epsilon} & \text { implies } & |x|<\epsilon
\end{array}
$$

But if $\delta_{\epsilon}=\epsilon$ then this holds, we are done. \square

Precise Definition of Limit: Example

A function can have a limit of L at x_{0} even if $f\left(x_{0}\right) \neq L(!)$
Theorem
The function $f(x)=\frac{x^{2}-1}{x-1}$ has a limit of 2 at $x_{0}=1$.

$$
f(x)=\left(x^{\wedge} 2-1\right) /(x-1)
$$

Precise Definition of Limit: Example

A function can have a limit of L at x_{0} even if $f\left(x_{0}\right) \neq L(!)$
Theorem
The function $f(x)=\frac{x^{2}-1}{x-1}$ has a limit of 2 at $x_{0}=1$.

Precise Definition of Limit: Example

Proof.

For all $x \neq 1$,

$$
\begin{aligned}
\frac{x^{2}-1}{x-1} & =\frac{(x+1)(x-1)}{x-1} \\
& =x+1
\end{aligned}
$$

Choose $\epsilon>0$ and set $x_{0}=1$. Then, we're looking for δ_{ϵ} such that

$$
|x-1|<\delta_{\epsilon} \quad \text { implies } \quad|(x+1)-2|<\epsilon
$$

Again, if $\delta_{\epsilon}=\epsilon$, then this is satisfied.

Not all Functions have Limits!

Theorem
Consider $f:(0,1) \rightarrow \Re, f(x)=1 / x . f(x)$ does not have a limit at $x_{0}=0$

$$
f(x)=1 / x
$$

Proof.
Choose $\epsilon>0$. We need to show that there does not exist δ such that

$$
|x|<\delta \quad \text { implies } \quad\left|\frac{1}{x}-L\right|<\epsilon
$$

But, there is a problem. Because

$$
\begin{aligned}
\frac{1}{x}-L & <\epsilon \\
\frac{1}{x} & <\epsilon+L \\
x & >\frac{1}{L+\epsilon}
\end{aligned}
$$

This implies that there can't be a δ, because x has to be bigger than $\frac{1}{L+\epsilon}$.

Intuitive Definition of Limit

Definition

If a function f tends to L at point x_{0} we say is has a limit L at x_{0} we commonly write,

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

Definition

If a function f tends to L at point x_{0} as we approach from the right, then we write

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)=L
$$

and call this a right hand limit
If a function f tends to L at point x_{0} as we approach from the left, then we write

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=L
$$

and call this a left-hand limit
Regression discontinuity designs

Left-hand, Right-hand, and Limits

Theorem
The $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$

Left-hand, Right-hand, and Limits

Theorem
The $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$

- Intuition that $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x) \Rightarrow \lim _{x \rightarrow x_{0}} f(x)$. If they are equal we can take the smallest δ and we can guarantee proof.

Left-hand, Right-hand, and Limits

Theorem
The $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$

- Intuition that $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x) \Rightarrow \lim _{x \rightarrow x_{0}} f(x)$. If they are equal we can take the smallest δ and we can guarantee proof.
- Intuition that $\lim _{x \rightarrow x_{0}} f(x) \Rightarrow \lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$. Absolute value is symmetric-so we must be converging from each side. (contradiction could work too!)

Left-hand, Right-hand, and Limits

Theorem
The $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$

- Intuition that $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x) \Rightarrow \lim _{x \rightarrow x_{0}} f(x)$. If they are equal we can take the smallest δ and we can guarantee proof.
- Intuition that $\lim _{x \rightarrow x_{0}} f(x) \Rightarrow \lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$. Absolute value is symmetric-so we must be converging from each side. (contradiction could work too!)
- We can also appeal to sequences to prove this stuff

Left-hand, Right-hand, and Limits

Theorem
The $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$

- Intuition that $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x) \Rightarrow \lim _{x \rightarrow x_{0}} f(x)$. If they are equal we can take the smallest δ and we can guarantee proof.
- Intuition that $\lim _{x \rightarrow x_{0}} f(x) \Rightarrow \lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$. Absolute value is symmetric-so we must be converging from each side. (contradiction could work too!)
- We can also appeal to sequences to prove this stuff

Trick: we'll show limits don't exist by showing $\lim _{x \rightarrow x_{0}^{-}} f(x) \neq \lim _{x \rightarrow x_{0}^{+}} f(x)$

Finding Limits

Finding Limits

Student: Justin. what the hell with the δ 's and ϵ 's? What the hell am I going to use this for?

Finding Limits

Student: Justin. what the hell with the δ 's and ϵ 's? What the hell am I going to use this for?
Justin: Limits are used constantly in political science. And getting comfortable with this notation (by seeing it many times) is important

Finding Limits

Student: Justin. what the hell with the δ 's and ϵ 's? What the hell am I going to use this for?
Justin: Limits are used constantly in political science. And getting comfortable with this notation (by seeing it many times) is important Student: fine. How am I going to find the limit? I can't do a $\delta-\epsilon$ proof yet.

Finding Limits

Student: Justin. what the hell with the δ 's and ϵ 's? What the hell am I going to use this for?
Justin: Limits are used constantly in political science. And getting comfortable with this notation (by seeing it many times) is important Student: fine. How am I going to find the limit? I can't do a $\delta-\epsilon$ proof yet.
Justin: yes, those take time. For this class, graphing will be critical.

Algebra of Limits

Theorem
Suppose $f: \Re \rightarrow \Re$ and $g: \Re \rightarrow \Re$ with limits A and B at x_{0}. Then,
i.) $\lim _{x \rightarrow x_{0}}(f(x)+g(x))=\lim _{x \rightarrow x_{0}} f(x)+\lim _{x \rightarrow x_{0}} g(x)=A+B$ ii.) $\lim _{x \rightarrow x_{0}} f(x) g(x)=\lim _{x \rightarrow x_{0}} f(x) \lim _{x \rightarrow x_{0}} g(x)=A B$

Suppose $g(x) \neq 0$ for all $x \in \Re$ and $B \neq 0$ then $\frac{f(x)}{g(x)}$ has a limit at x_{0} and

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow x_{0}} f(x)}{\lim _{x \rightarrow x_{0}} g(x)}=\frac{A}{B}
$$

Challenge Problems

Suppose $\lim _{x \rightarrow x_{0}} f(x)=a$. Find $\lim _{x \rightarrow x_{0}} \frac{f(x)^{3}+f(x)^{2}}{f(x)}$

Continuity

$$
f(x)=\left(x^{\wedge} 2-1\right) /(x-1)
$$

Continuity

$$
f(x)=\left(x^{\wedge} 2-1\right) /(x-1)
$$

Continuity

$$
f(x)=\left(x^{\wedge} 2-1\right) /(x-1)
$$

Continuity, Rigorous Definition

Definition

Suppose $f: \Re \rightarrow \Re$ and consider $x_{0} \in \Re$. We will say f is continuous at x_{0} if for each $\epsilon>0$ there is a $\delta>0$ such that if,

$$
\begin{aligned}
\left|x-x_{0}\right| & <\delta \text { for all } x \in \Re \text { then } \\
\left|f(x)-f\left(x_{0}\right)\right| & <\epsilon
\end{aligned}
$$

- Previously $f\left(x_{0}\right)$ was replaced with L.
- Now: $f(x)$ has to converge on itself at x_{0}.
- Continuity is more restrictive than limit

Examples

$$
f(x)=|x|
$$

Examples

Examples

$$
f(x)=x^{\wedge} 2
$$

Examples

Conservative Candidates

Continuity and Limits

Theorem
Let $f: \Re \rightarrow \Re$ with $x_{0} \in \Re$. Then f is continuous at x_{0} if and only if f has a limit at x_{0} and that $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Proof.

(\Rightarrow). Suppose f is continuous at x_{0}. This implies that for each $\epsilon>0$ there is $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. This is the definition of a limit, with $L=f\left(x_{0}\right)$.
(\Leftarrow). Suppose f has a limit at x_{0} and that limit is $f\left(x_{0}\right)$. This implies that for each $\epsilon>0$ there is $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. But this is the definition of continuity.

Algebra of Continuous Functions

Theorem
Suppose $f: \Re \rightarrow \Re$ and $g: \Re \rightarrow \Re$ are continuous at x_{0}. Then,
i.) $f(x)+g(x)$ is continuous at x_{0}
ii.) $f(x) g(x)$ is continuous at x_{0}
iii. if $g\left(x_{0}\right) \neq 0$, then $\frac{f(x)}{g(x)}$ is continuous at x_{0}

Use theorem about limits to prove continuous theorems.

How Functions Change

- Derivatives-Rates of change in functions
- Foundational across a lot of work in Poli Sci.
- A special limit
- Cover three broad ideas
- Geometric interpretation/intuition
- Formulas/Algebra derivatives
- Famous theorems

Rates of Change in a Function

Rates of Change in a Function

- Rate of Change

\rightsquigarrow Return on Vote Share/\$ Invested

Instantaneous rate of change \rightsquigarrow Increase in vote share in response to infinitesimally small increase in spending

Rates of Change in a Function

- Rate of Change

Derivative Definition

Suppose $f: \Re \rightarrow \Re$.

Derivative Definition

Suppose $f: \Re \rightarrow \Re$. Measure rate of change at a point x_{0} with a function $R(x)$,

Definition

Derivative Definition

Suppose $f: \Re \rightarrow \Re$. Measure rate of change at a point x_{0} with a function $R(x)$,

$$
R(x)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Derivative Definition

Suppose $f: \Re \rightarrow \Re$. Measure rate of change at a point x_{0} with a function $R(x)$,

$$
R(x)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- $R(x)$ defines the rate of change.

Derivative Definition

Suppose $f: \Re \rightarrow \Re$. Measure rate of change at a point x_{0} with a function $R(x)$,

$$
R(x)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- $R(x)$ defines the rate of change.
- A derivative will examine what happens with a small perturbation at x_{0}

Definition

Derivative Definition

Suppose $f: \Re \rightarrow \Re$. Measure rate of change at a point x_{0} with a function $R(x)$,

$$
R(x)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- $R(x)$ defines the rate of change.
- A derivative will examine what happens with a small perturbation at x_{0}

Definition

Let $f: \Re \rightarrow \Re$. If the limit

Derivative Definition

Suppose $f: \Re \rightarrow \Re$. Measure rate of change at a point x_{0} with a function $R(x)$,

$$
R(x)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- $R(x)$ defines the rate of change.
- A derivative will examine what happens with a small perturbation at x_{0}

Definition

Let $f: \Re \rightarrow \Re$. If the limit

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}} R(x) & =\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\
& =f^{\prime}\left(x_{0}\right)
\end{aligned}
$$

Derivative Definition

Suppose $f: \Re \rightarrow \Re$. Measure rate of change at a point x_{0} with a function $R(x)$,

$$
R(x)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- $R(x)$ defines the rate of change.
- A derivative will examine what happens with a small perturbation at x_{0}

Definition

Let $f: \Re \rightarrow \Re$. If the limit

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}} R(x) & =\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\
& =f^{\prime}\left(x_{0}\right)
\end{aligned}
$$

exists then we say that f is differentiable at x_{0}. If $f^{\prime}\left(x_{0}\right)$ exists for all $x \in$ Domain, then we say that f is differentiable.

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

$$
\lim _{x \rightarrow 1} R(x)=\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1}
$$

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

$$
\begin{aligned}
\lim _{x \rightarrow 1} R(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}
\end{aligned}
$$

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

$$
\begin{aligned}
\lim _{x \rightarrow 1} R(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} \\
& =\lim _{x \rightarrow 1} x+1
\end{aligned}
$$

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

$$
\begin{aligned}
\lim _{x \rightarrow 1} R(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} \\
& =\lim _{x \rightarrow 1} x+1 \\
& =2
\end{aligned}
$$

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

$$
\begin{aligned}
\lim _{x \rightarrow 1} R(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} \\
& =\lim _{x \rightarrow 1} x+1 \\
& =2
\end{aligned}
$$

- Suppose $f(x)=|x|$ and consider $x_{0}=0$. Then,

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

$$
\begin{aligned}
\lim _{x \rightarrow 1} R(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} \\
& =\lim _{x \rightarrow 1} x+1 \\
& =2
\end{aligned}
$$

- Suppose $f(x)=|x|$ and consider $x_{0}=0$. Then,

$$
\lim _{x \rightarrow 0} R(x)=\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

$$
\begin{aligned}
\lim _{x \rightarrow 1} R(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} \\
& =\lim _{x \rightarrow 1} x+1 \\
& =2
\end{aligned}
$$

- Suppose $f(x)=|x|$ and consider $x_{0}=0$. Then,

$$
\lim _{x \rightarrow 0} R(x)=\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

$\lim _{x \rightarrow 0^{-}} R(x)=-1$

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

$$
\begin{aligned}
\lim _{x \rightarrow 1} R(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} \\
& =\lim _{x \rightarrow 1} x+1 \\
& =2
\end{aligned}
$$

- Suppose $f(x)=|x|$ and consider $x_{0}=0$. Then,

$$
\lim _{x \rightarrow 0} R(x)=\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

$\lim _{x \rightarrow 0^{-}} R(x)=-1$, but $\lim _{x \rightarrow 0^{+}} R(x)=1$.

Derivative Examples

- Suppose $f(x)=x^{2}$ and consider $x_{0}=1$. Then,

$$
\begin{aligned}
\lim _{x \rightarrow 1} R(x) & =\lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} \\
& =\lim _{x \rightarrow 1} x+1 \\
& =2
\end{aligned}
$$

- Suppose $f(x)=|x|$ and consider $x_{0}=0$. Then,

$$
\lim _{x \rightarrow 0} R(x)=\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

$\lim _{x \rightarrow 0^{-}} R(x)=-1$, but $\lim _{x \rightarrow 0^{+}} R(x)=1$. So, not differentiable at 0 .

Continuity and Derivatives

- $f(x)=|x|$ is continuous but not differentiable. This is because the change is too abrupt.
- Suggests differentiability is a stronger condition

Theorem
Let $f: \Re \rightarrow \Re$ be differentiable at x_{0}. Then f is continuous at x_{0}.

Continuity and Derivatives

Theorem
Let $f: \Re \rightarrow \Re$ be differentiable at x_{0}. Then f is continuous at x_{0}.

Continuity and Derivatives

Theorem
Let $f: \Re \rightarrow \Re$ be differentiable at x_{0}. Then f is continuous at x_{0}.

Proof.

This proof is all in the setup. Realize that,

Continuity and Derivatives

Theorem
Let $f: \Re \rightarrow \Re$ be differentiable at x_{0}. Then f is continuous at x_{0}.

Proof.

This proof is all in the setup. Realize that,

$$
f(x)=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

Continuity and Derivatives

Theorem
Let $f: \Re \rightarrow \Re$ be differentiable at x_{0}. Then f is continuous at x_{0}.

Proof.

This proof is all in the setup. Realize that,

$$
\begin{aligned}
f(x) & =\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\left(x-x_{0}\right)+f\left(x_{0}\right) \\
& =R(x)\left(x-x_{0}\right)+f\left(x_{0}\right)
\end{aligned}
$$

Continuity and Derivatives

Theorem
Let $f: \Re \rightarrow \Re$ be differentiable at x_{0}. Then f is continuous at x_{0}.

Proof.

This proof is all in the setup. Realize that,

$$
\begin{aligned}
f(x) & =\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\left(x-x_{0}\right)+f\left(x_{0}\right) \\
& =R(x)\left(x-x_{0}\right)+f\left(x_{0}\right)
\end{aligned}
$$

If $f(x)$ is continuous at x_{0} then, $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Continuity and Derivatives

Theorem
Let $f: \Re \rightarrow \Re$ be differentiable at x_{0}. Then f is continuous at x_{0}.

Proof.

This proof is all in the setup. Realize that,

$$
\begin{aligned}
f(x) & =\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\left(x-x_{0}\right)+f\left(x_{0}\right) \\
& =R(x)\left(x-x_{0}\right)+f\left(x_{0}\right)
\end{aligned}
$$

If $f(x)$ is continuous at x_{0} then, $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}}\left[R(x)\left(x-x_{0}\right)+f\left(x_{0}\right)\right]
$$

Continuity and Derivatives

Theorem
Let $f: \Re \rightarrow \Re$ be differentiable at x_{0}. Then f is continuous at x_{0}.

Proof.

This proof is all in the setup. Realize that,

$$
\begin{aligned}
f(x) & =\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\left(x-x_{0}\right)+f\left(x_{0}\right) \\
& =R(x)\left(x-x_{0}\right)+f\left(x_{0}\right)
\end{aligned}
$$

If $f(x)$ is continuous at x_{0} then, $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}} f(x) & =\lim _{x \rightarrow x_{0}}\left[R(x)\left(x-x_{0}\right)+f\left(x_{0}\right)\right] \\
& =\left(\lim _{x \rightarrow x_{0}} R(x)\right)\left(\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)\right)+\lim _{x \rightarrow x_{0}} f\left(x_{0}\right)
\end{aligned}
$$

Continuity and Derivatives

Theorem
Let $f: \Re \rightarrow \Re$ be differentiable at x_{0}. Then f is continuous at x_{0}.

Proof.

This proof is all in the setup. Realize that,

$$
\begin{aligned}
f(x) & =\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\left(x-x_{0}\right)+f\left(x_{0}\right) \\
& =R(x)\left(x-x_{0}\right)+f\left(x_{0}\right)
\end{aligned}
$$

If $f(x)$ is continuous at x_{0} then, $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}} f(x) & =\lim _{x \rightarrow x_{0}}\left[R(x)\left(x-x_{0}\right)+f\left(x_{0}\right)\right] \\
& =\left(\lim _{x \rightarrow x_{0}} R(x)\right)\left(\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)\right)+\lim _{x \rightarrow x_{0}} f\left(x_{0}\right) \\
& =f^{\prime}\left(x_{0}\right) 0+f\left(x_{0}\right)=f\left(x_{0}\right)
\end{aligned}
$$

What goes wrong?

Consider the following piecewise function:

$$
\begin{aligned}
& f(x)=x^{2} \text { for all } x \in \Re \backslash 0 \\
& f(x)=1000 \text { for } x=0
\end{aligned}
$$

Consider derivative at 0 . Then,

$$
\begin{aligned}
\lim _{x \rightarrow 0} R(x) & =\lim _{x \rightarrow 0} \frac{f(x)-1000}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}}{x}-\lim _{x \rightarrow 0} \frac{1000}{x}
\end{aligned}
$$

$\lim _{x \rightarrow 0} \frac{1000}{x}$ diverges, so the limit doesn't exist.

Calculating Derivatives

- Rarely will we take limit to calculate derivative.
- Rather, rely on rules and properties of derivatives
- Important: do not forget core intuition

Strategy:

- Algebra theorems
- Some specific derivatives
- Work on problems

Some Derivative Rules

Suppose a is some constant, $f(x)$ and $g(x)$ are functions

Some Derivative Rules

Suppose a is some constant, $f(x)$ and $g(x)$ are functions

$$
f(x)=x \quad ; \quad f^{\prime}(x)=1
$$

Some Derivative Rules

Suppose a is some constant, $f(x)$ and $g(x)$ are functions

$$
\begin{array}{rll}
f(x)=x & ; & f^{\prime}(x)=1 \\
f(x)=a x^{k} & ; \quad f^{\prime}(x)=(a)(k) x^{k-1}
\end{array}
$$

Some Derivative Rules

Suppose a is some constant, $f(x)$ and $g(x)$ are functions

$$
\begin{array}{rll}
f(x)=x & ; & f^{\prime}(x)=1 \\
f(x)=a x^{k} & ; & f^{\prime}(x)=(a)(k) x^{k-1} \\
f(x)=e^{x} & ; & f^{\prime}(x)=e^{x}
\end{array}
$$

Some Derivative Rules

Suppose a is some constant, $f(x)$ and $g(x)$ are functions

$$
\begin{array}{rll}
f(x)=x & ; & f^{\prime}(x)=1 \\
f(x)=a x^{k} & ; & f^{\prime}(x)=(a)(k) x^{k-1} \\
f(x)=e^{x} & ; & f^{\prime}(x)=e^{x} \\
f(x)=\sin (x) & ; & f^{\prime}(x)=\cos (x)
\end{array}
$$

Some Derivative Rules

Suppose a is some constant, $f(x)$ and $g(x)$ are functions

$$
\begin{array}{rll}
f(x)=x & ; & f^{\prime}(x)=1 \\
f(x)=a x^{k} & ; f^{\prime}(x)=(a)(k) x^{k-1} \\
f(x)=e^{x} & ; f^{\prime}(x)=e^{x} \\
f(x)=\sin (x) & ; f^{\prime}(x)=\cos (x) \\
f(x)=\cos (x) & ; f^{\prime}(x)=-\sin (x)
\end{array}
$$

Algebra of Derivatives

Theorem
Suppose $f: \Re \rightarrow \Re$ and $g: \Re \rightarrow \Re$ and both are differentiable at $x_{0} \in \Re$. Then,

Algebra of Derivatives

Theorem
Suppose $f: \Re \rightarrow \Re$ and $g: \Re \rightarrow \Re$ and both are differentiable at $x_{0} \in \Re$. Then,
i) $h(x)=f(x)+g(x)$ is differentiable at x_{0} and

Algebra of Derivatives

Theorem

Suppose $f: \Re \rightarrow \Re$ and $g: \Re \rightarrow \Re$ and both are differentiable at $x_{0} \in \Re$.
Then,
i) $h(x)=f(x)+g(x)$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)
$$

Algebra of Derivatives

Theorem

Suppose $f: \Re \rightarrow \Re$ and $g: \Re \rightarrow \Re$ and both are differentiable at $x_{0} \in \Re$. Then,
i) $h(x)=f(x)+g(x)$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)
$$

ii) $h(x)=f(x) g(x)$ is differentiable at x_{0} and

Algebra of Derivatives

Theorem

Suppose $f: \Re \rightarrow \Re$ and $g: \Re \rightarrow \Re$ and both are differentiable at $x_{0} \in \Re$. Then,
i) $h(x)=f(x)+g(x)$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)
$$

ii) $h(x)=f(x) g(x)$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right) f\left(x_{0}\right)
$$

Algebra of Derivatives

Theorem

Suppose $f: \Re \rightarrow \Re$ and $g: \Re \rightarrow \Re$ and both are differentiable at $x_{0} \in \Re$. Then,
i) $h(x)=f(x)+g(x)$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)
$$

ii) $h(x)=f(x) g(x)$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right) f\left(x_{0}\right)
$$

iii) $h(x)=\frac{f(x)}{g(x)}$ with $g(x) \neq 0$ then,

Algebra of Derivatives

Theorem

Suppose $f: \Re \rightarrow \Re$ and $g: \Re \rightarrow \Re$ and both are differentiable at $x_{0} \in \Re$. Then,
i) $h(x)=f(x)+g(x)$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)
$$

ii) $h(x)=f(x) g(x)$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right) f\left(x_{0}\right)
$$

iii) $h(x)=\frac{f(x)}{g(x)}$ with $g(x) \neq 0$ then,

$$
h^{\prime}\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)-g^{\prime}\left(x_{0}\right) f\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}
$$

Challenge Problems

Differentiate the following functions and evaluate at the specified value

1) $f(x)=x^{3}+5 x^{2}+4 x$, at $x_{0}=2$
2) $f(x)=\sin (x) x^{3}$ at $x_{0}=y$
3) $f(x)=\frac{e^{x}}{x^{3}}$ at $x=2$
4) $g(x)=\log (x) x^{3}$ at $x=x_{0}$
5) Suppose $f(x)=x^{2}$ and $g(x)=x^{3}$. Find all x such that $f^{\prime}(x)>g^{\prime}(x)$.

Proving Property of Derivatives

Theorem

Suppose $f(x)=x^{k}$ and k is a positive integer. If $k=0$ then $f^{\prime}(x)=0$. If $k>0$, then, $f^{\prime}(x)=k x^{k-1}$.

Proving Property of Derivatives

Theorem

Suppose $f(x)=x^{k}$ and k is a positive integer. If $k=0$ then $f^{\prime}(x)=0$. If $k>0$, then, $f^{\prime}(x)=k x^{k-1}$.

Proof.

If $k=0$ then, $x^{k}=1$. The $\lim _{x \rightarrow \tilde{x}} \frac{1-1}{x-\tilde{x}}=0$.

Proving Property of Derivatives

Theorem

Suppose $f(x)=x^{k}$ and k is a positive integer. If $k=0$ then $f^{\prime}(x)=0$. If $k>0$, then, $f^{\prime}(x)=k x^{k-1}$.

Proof.

If $k=0$ then, $x^{k}=1$. The $\lim _{x \rightarrow \tilde{x}} \frac{1-1}{x-\tilde{x}}=0$.
Suppose $k>0$. We will proceed by induction. Suppose $k=1, f(x)=x$

Proving Property of Derivatives

Theorem

Suppose $f(x)=x^{k}$ and k is a positive integer. If $k=0$ then $f^{\prime}(x)=0$. If $k>0$, then, $f^{\prime}(x)=k x^{k-1}$.

Proof.

If $k=0$ then, $x^{k}=1$. The $\lim _{x \rightarrow \tilde{x}} \frac{1-1}{x-\tilde{x}}=0$.
Suppose $k>0$. We will proceed by induction. Suppose $k=1, f(x)=x$

$$
f^{\prime}(\tilde{x})=\lim _{x \rightarrow \tilde{x}} \frac{x-\tilde{x}}{x-\tilde{x}}
$$

Proving Property of Derivatives

Theorem

Suppose $f(x)=x^{k}$ and k is a positive integer. If $k=0$ then $f^{\prime}(x)=0$. If $k>0$, then, $f^{\prime}(x)=k x^{k-1}$.

Proof.

If $k=0$ then, $x^{k}=1$. The $\lim _{x \rightarrow \tilde{x}} \frac{1-1}{x-\tilde{x}}=0$.
Suppose $k>0$. We will proceed by induction. Suppose $k=1, f(x)=x$

$$
\begin{aligned}
f^{\prime}(\tilde{x}) & =\lim _{x \rightarrow \tilde{x}} \frac{x-\tilde{x}}{x-\tilde{x}} \\
& =1=1 x^{0}
\end{aligned}
$$

Proving Property of Derivatives

Theorem
Suppose $f(x)=x^{k}$ and k is a positive integer. If $k=0$ then $f^{\prime}(x)=0$. If $k>0$, then, $f^{\prime}(x)=k x^{k-1}$.

Proof.

If $k=0$ then, $x^{k}=1$. The $\lim _{x \rightarrow \tilde{x}} \frac{1-1}{x-\tilde{x}}=0$.
Suppose $k>0$. We will proceed by induction. Suppose $k=1, f(x)=x$

$$
\begin{aligned}
f^{\prime}(\tilde{x}) & =\lim _{x \rightarrow \tilde{x}} \frac{x-\tilde{x}}{x-\tilde{x}} \\
& =1=1 x^{0}
\end{aligned}
$$

Suppose theorem holds for $k=r, f(x)=x^{r}$. Consider $g(x)=x^{r+1}$. We know that $g(x)=f(x) x$. By product rule,

Proving Property of Derivatives

Theorem
Suppose $f(x)=x^{k}$ and k is a positive integer. If $k=0$ then $f^{\prime}(x)=0$. If $k>0$, then, $f^{\prime}(x)=k x^{k-1}$.

Proof.

If $k=0$ then, $x^{k}=1$. The $\lim _{x \rightarrow \tilde{x}} \frac{1-1}{x-\tilde{x}}=0$.
Suppose $k>0$. We will proceed by induction. Suppose $k=1, f(x)=x$

$$
\begin{aligned}
f^{\prime}(\tilde{x}) & =\lim _{x \rightarrow \tilde{x}} \frac{x-\tilde{x}}{x-\tilde{x}} \\
& =1=1 x^{0}
\end{aligned}
$$

Suppose theorem holds for $k=r, f(x)=x^{r}$. Consider $g(x)=x^{r+1}$. We know that $g(x)=f(x) x$. By product rule,

$$
g^{\prime}(x)=f(x) x^{\prime}+f^{\prime}(x) x=x^{r} 1+r x^{r-1} x
$$

Proving Property of Derivatives

Theorem
Suppose $f(x)=x^{k}$ and k is a positive integer. If $k=0$ then $f^{\prime}(x)=0$. If $k>0$, then, $f^{\prime}(x)=k x^{k-1}$.

Proof.

If $k=0$ then, $x^{k}=1$. The $\lim _{x \rightarrow \tilde{x}} \frac{1-1}{x-\tilde{x}}=0$.
Suppose $k>0$. We will proceed by induction. Suppose $k=1, f(x)=x$

$$
\begin{aligned}
f^{\prime}(\tilde{x}) & =\lim _{x \rightarrow \tilde{x}} \frac{x-\tilde{x}}{x-\tilde{x}} \\
& =1=1 x^{0}
\end{aligned}
$$

Suppose theorem holds for $k=r, f(x)=x^{r}$. Consider $g(x)=x^{r+1}$. We know that $g(x)=f(x) x$. By product rule,

$$
\begin{aligned}
g^{\prime}(x)=f(x) x^{\prime}+f^{\prime}(x) x & =x^{r} 1+r x^{r-1} x \\
& =x^{r}+r x^{r}=(r+1) x^{r}
\end{aligned}
$$

Chain Rule

Common to have functions in functions

$$
\begin{aligned}
f(x) & =\frac{e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi}} \\
& =\frac{f(g(x))}{\sqrt{2 \pi}}
\end{aligned}
$$

To deal with this, we use the chain rule

Theorem

Suppose $g: \Re \rightarrow \Re$ and $f: \Re \rightarrow \Re$. Suppose both $f(x)$ and $g(x)$ are differentiable at x_{0}. Define $h(x)=g(f(x))$. Then,

$$
h^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right)
$$

Examples of Chain Rule in Action

$$
\begin{aligned}
& -h(x)=e^{2 x} \cdot g(x)=e^{x} . f(x)=2 x \text {. So } \\
& h(x)=g(f(x))=g(2 x)=e^{2 x} \text {. Taking derivatives, we have } \\
& \qquad h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)=e^{2 x} 2 \\
& -h(x)=\log (\cos (x)) \cdot g(x)=\log (x) \cdot f(x)=\cos (x) \\
& h(x)=g(f(x))=g(\cos (x))=\log (\cos (x)) \\
& \quad h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)=\frac{-1}{\cos (x)} \sin (x)=-\tan (x)
\end{aligned}
$$

Derivatives and Properties of Functions

Derivatives reveal an immense amount about functions

- Often use to optimize a function (tomorrow)
- But also reveal average rates of change
- Or crucial properties of functions

Goal: introduce ideas. Hopefully make them less shocking when you see them in work

Relative Maxima, Minima and Derivatives

Theorem
Suppose $f:[a, b] \rightarrow \Re$. Suppose f has a relative maxima or minima on (a, b) and call that $c \in(a, b)$. Then $f^{\prime}(c)=0$.

Intuition:

> Rolle's Theorem

Relative Maxima, Minima and Derivatives

Theorem

Rolle's Theorem Suppose $f:[a, b] \rightarrow \Re$ and f is continuous on $[a, b]$ and differentiable on (a, b). Then if $f(a)=f(b)=0$, there is $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof Intuition Consider (WLOG) a relative maximum c. Consider the left-hand and right-hand limits

$$
\begin{aligned}
\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c} & \geq 0 \\
\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c} & \leq 0
\end{aligned}
$$

Theorem

Rolle's Theorem Suppose $f:[a, b] \rightarrow \Re$ and f is continuous on $[a, b]$ and differentiable on (a, b). Then if $f(a)=f(b)=0$, there is $c \in(a, b)$ such that $f^{\prime}(c)=0$.

But we also know that

$$
\begin{aligned}
\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c} & =f^{\prime}(c) \\
\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c} & =f^{\prime}(c)
\end{aligned}
$$

The only way, then, that $\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}$ is if $f^{\prime}(c)=0$.

What Goes Up Must Come Down

Theorem
Rolle's Theorem Suppose $f:[a, b] \rightarrow \Re$ and f is continuous on $[a, b]$ and differentiable on (a, b). Then if $f(a)=f(b)=0$, there is $c \in(a, b)$ such that $f^{\prime}(c)=0$.

What Goes Up Must Come Down

Theorem
Rolle's Theorem Suppose $f:[a, b] \rightarrow \Re$ and f is continuous on $[a, b]$ and differentiable on (a, b). Then if $f(a)=f(b)=0$, there is $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Rolle's Theorem

Mean Value Theorem

Theorem
If $f:[a, b] \rightarrow \Re$ is continuous on $[a, b]$ and differentiable on (a, b), then there is a $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Rolle's Theorem, Rotated

Rolle's Theorem

Rolle's Theorem, Rotated

Mean Value Theorem

Why You Should Care

1) This will come up in a formal theory article. You'll at least know where to look
2) It allows us to say lots of powerful stuff about functions

Powerful Applications of Mean Value Theorem

Theorem
Suppose that $f:[a, b] \rightarrow \Re$ is continuous on $[a, b]$ and differentiable on (a, b). Then,
i) If $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then f is 1-1
ii) If $f^{\prime}(x)=0$ then $f(x)$ is constant
iii) If $f^{\prime}(x)>0$ for all $x \in(a, b)$ then then f is strictly increasing
iv) If $f^{\prime}(x)<0$ for all $x \in(a, b)$ then f is strictly decreasing

Let's prove these in turn

- Why—because they are just about applying ideas

If $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then f is $1-1$

By way of contradiction, suppose that f is not $1-1$. Then there is $x, y \in(a, b)$ such that $f(x)=f(y)$. Then,

$$
f^{\prime}(c)=\frac{f(x)-f(y)}{x-y}=\frac{0}{x-y}=0
$$

If $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then f is $1-1$

If $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then f is $1-1$

$f^{\prime} \neq 0$ for all x !

If $f^{\prime}(x)=0$ then $f(x)$ is constant

By way of contradiction, suppose that there is $x, y \in(a, b)$ such that $f(x) \neq f(y)$. But then,

$$
f^{\prime}(c)=\frac{f(x)-f(y)}{x-y} \neq 0
$$

contradiction

If $f^{\prime}(x)>0$ for all $x \in(a, b)$ then then f is strictly increasing

By way of contradiction, suppose that there is $x, y \in(a, b)$ with $y<x$ but $f(y)>f(x)$. But then,

$$
f^{\prime}(c)=\frac{f(x)-f(y)}{x-y}<0
$$

contradiction
Bonus: proof for strictly decreasing

Approximating functions and second order conditions

Theorem
Taylor's Theorem Suppose $f: \Re \rightarrow \Re, f(x)$ is infinitely differentiable function. Then, the taylor expansion of $f(x)$ around a is given by

$$
\begin{aligned}
& f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots \\
& f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Example Function

Suppose $a=0$ and $f(x)=e^{x}$. Then,

$$
\begin{aligned}
f^{\prime}(x) & =e^{x} \\
f^{\prime \prime}(x) & =e^{x} \\
\vdots & \vdots \\
f^{n}(x) & =e^{x}
\end{aligned}
$$

This implies

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \ldots+\frac{x^{n}}{n!}+\ldots
$$

Wrap up

Lots of territory. What are your questions?

This Week

Lab Tonight!

