Math Camp

Justin Grimmer

Associate Professor Department of Political Science Stanford University

September 5th, 2016

3

990

< ∃ >

э

< A

< Course >

Justin Grimmer (Stanford University)

September 5th, 2016 2 / 46

Ξ

990

《曰》《圖》《臣》《臣》

Political Science: systematic analysis of politics

Political Science: systematic analysis of politics (who gets what, when, and how).

Political Science: systematic analysis of politics (who gets what, when, and how). Political Methodology: Develop and disseminate tools to make inferences about politics

Political Science: systematic analysis of politics (who gets what, when, and how).

Political Methodology: Develop and disseminate tools to make inferences about politics

- Mathematical models of political world

Political Science: systematic analysis of politics (who gets what, when, and how).

Political Methodology: Develop and disseminate tools to make inferences about politics

- Mathematical models of political world
- Probability and Statistics used across sciences

Political Science: systematic analysis of politics (who gets what, when, and how).

Political Methodology: Develop and disseminate tools to make inferences about politics

- Mathematical models of political world
- Probability and Statistics used across sciences

This class (introduction):

Political Science: systematic analysis of politics (who gets what, when, and how).

Political Methodology: Develop and disseminate tools to make inferences about politics

- Mathematical models of political world
- Probability and Statistics used across sciences

This class (introduction):

- Math Camp: Develop Tools for Analysis

Political Science: systematic analysis of politics (who gets what, when, and how).

Political Methodology: Develop and disseminate tools to make inferences about politics

- Mathematical models of political world
- Probability and Statistics used across sciences

This class (introduction):

- Math Camp: Develop Tools for Analysis
- Probability theory: systematic model of randomness

Course Goals

First stop in political methodology sequence

1

< A

Э

Course Goals

First stop in political methodology sequence Big Goal: prepare you to make discoveries about politics

Course Goals

First stop in political methodology sequence Big Goal: prepare you to make discoveries about politics Proximate Goals

3

-

< A

First stop in political methodology sequence Big Goal: prepare you to make discoveries about politics Proximate Goals

- 1) Mathematical tools to comprehend and use statistical methods
- 2) Foundation in probability theory/analytic reasoning

First stop in political methodology sequence Big Goal: prepare you to make discoveries about politics Proximate Goals

- 1) Mathematical tools to comprehend and use statistical methods
- 2) Foundation in probability theory/analytic reasoning
- 3) Practical Computing Tools: R

Me: Justin Grimmer

∃ → < ∃ →</p>

E

Me: Justin Grimmer

- Office: Encina 414 (last door on the left, this hall)

Me: Justin Grimmer

- Office: Encina 414 (last door on the left, this hall)
- Email: jgrimmer@stanford.edu

Me: Justin Grimmer

- Office: Encina 414 (last door on the left, this hall)
- Email: jgrimmer@stanford.edu
- Cell: 617-710-6803

Me: Justin Grimmer

- Office: Encina 414 (last door on the left, this hall)
- Email: jgrimmer@stanford.edu
- Cell: 617-710-6803
- Google Chat: Justin.grimmer@gmail.com

Me: Justin Grimmer

- Office: Encina 414 (last door on the left, this hall)
- Email: jgrimmer@stanford.edu
- Cell: 617-710-6803
- Google Chat: Justin.grimmer@gmail.com
- Office Hours: I'm generally here all the time (9am to 5pm), just stop by [but if you need to see me with 100% probability, schedule a visit]

Me: Justin Grimmer

- Office: Encina 414 (last door on the left, this hall)
- Email: jgrimmer@stanford.edu
- Cell: 617-710-6803
- Google Chat: Justin.grimmer@gmail.com
- Office Hours: I'm generally here all the time (9am to 5pm), just stop by [but if you need to see me with 100% probability, schedule a visit]

TA Info

- Will Marble wpmarble@stanford.edu
 Hans Lueders, hlueders@stanford.edu
- We will hold twice weekly labs, that will occur in this room from 130-300pm (or so)
- Piazza Sign-up Link: piazza.com/stanford/fall2016/350a
 For efficiently asking/answering questions about course material and logistics.

No Formal Prerequisites

< 🗇 🕨

∃ ► < Ξ.</p>

E

No Formal Prerequisites BUT

∃ → < ∃ →</p>

E

No Formal Prerequisites BUT

- Successful students will know differential and integral calculus

3

-

< A

Sac

No Formal Prerequisites BUT

- Successful students will know differential and integral calculus
 - 1) Limits (intuitive)

3

< ∃ >

< A

No Formal Prerequisites BUT

- Successful students will know differential and integral calculus
 - 1) Limits (intuitive)
 - 2) Derivatives (tangent lines, differentiation rules)

-

- Successful students will know differential and integral calculus
 - 1) Limits (intuitive)
 - 2) Derivatives (tangent lines, differentiation rules)
 - 3) Integrals (fundamental theorem of calculus/antidifferentiation rules

- Successful students will know differential and integral calculus
 - 1) Limits (intuitive)
 - 2) Derivatives (tangent lines, differentiation rules)
 - 3) Integrals (fundamental theorem of calculus/antidifferentiation rules
- We are here to help

- Successful students will know differential and integral calculus
 - 1) Limits (intuitive)
 - 2) Derivatives (tangent lines, differentiation rules)
 - 3) Integrals (fundamental theorem of calculus/antidifferentiation rules
- We are here to help
 - No mystery to learning math: just hard work

- Successful students will know differential and integral calculus
 - 1) Limits (intuitive)
 - 2) Derivatives (tangent lines, differentiation rules)
 - 3) Integrals (fundamental theorem of calculus/antidifferentiation rules
- We are here to help
 - No mystery to learning math: just hard work
 - Political science increasingly requires math

- Successful students will know differential and integral calculus
 - 1) Limits (intuitive)
 - 2) Derivatives (tangent lines, differentiation rules)
 - 3) Integrals (fundamental theorem of calculus/antidifferentiation rules
- We are here to help
 - No mystery to learning math: just hard work
 - Political science increasingly requires math
 - Empirical: calculus and linear algebra

- Successful students will know differential and integral calculus
 - 1) Limits (intuitive)
 - 2) Derivatives (tangent lines, differentiation rules)
 - 3) Integrals (fundamental theorem of calculus/antidifferentiation rules
- We are here to help
 - No mystery to learning math: just hard work
 - Political science increasingly requires math
 - Empirical: calculus and linear algebra
 - Quantitative Methodologist: Real Analysis and Grad level statistics

No Formal Prerequisites BUT

- Successful students will know differential and integral calculus
 - 1) Limits (intuitive)
 - 2) Derivatives (tangent lines, differentiation rules)
 - 3) Integrals (fundamental theorem of calculus/antidifferentiation rules
- We are here to help
 - No mystery to learning math: just hard work
 - Political science increasingly requires math
 - Empirical: calculus and linear algebra
 - Quantitative Methodologist: Real Analysis and Grad level statistics
 - Formal Theory: Real Analysis (through measure theory), Topology

化间面 化苯基苯乙基基苯

Evaluation

You're not taking this class for a grade

< A

Э

You're not taking this class for a grade \rightsquigarrow that shouldn't matter:

< A

3

You're not taking this class for a grade \rightsquigarrow that shouldn't matter:

- Math Camp Exam

< A

You're not taking this class for a grade \rightsquigarrow that shouldn't matter:

- Math Camp Exam

Grad School Irony

You're not taking this class for a grade \rightsquigarrow that shouldn't matter:

- Math Camp Exam

Grad School Irony Or: How I Learned to Stop Worrying and Love C's

You're not taking this class for a grade \rightsquigarrow that shouldn't matter:

- Math Camp Exam

Grad School Irony Or: How I Learned to Stop Worrying and Love C's

- Grades no longer matter

You're not taking this class for a grade \rightsquigarrow that shouldn't matter:

- Math Camp Exam

Grad School Irony Or: How I Learned to Stop Worrying and Love C's

- Grades no longer matter
- Learn as much material as possible

You're not taking this class for a grade \rightsquigarrow that shouldn't matter:

- Math Camp Exam

Grad School Irony Or: How I Learned to Stop Worrying and Love C's

- Grades no longer matter
- Learn as much material as possible
- If you truly only care about learning material, you'll get amazing grades

Homework

Math camp: assigned daily \rightsquigarrow Mechanics of solving problems Lab Assignment: Twice weekly assignments, help you develop computational and mathematical skills.

- - E - b

Greatest scientific discovery of 20th Century:

- (A 🖓

Greatest scientific discovery of 20th Century: Powerful personal computer (standardize science)

Greatest scientific discovery of 20th Century: Powerful personal computer (standardize science) 1956: \$10,000 megabyte

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

- 1956: \$10,000 megabyte
- 2015: <<< 0.0001 per megabyte

Greatest scientific discovery of 20th Century: Powerful personal computer (standardize science) 1956: \$10,000 megabyte 2015: <<< \$ 0.0001 per megabyte Statistical Computing: R

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language

Greatest scientific discovery of 20th Century: Powerful personal computer (standardize science) 1956: \$10,000 megabyte 2015: <<< \$ 0.0001 per megabyte Statistical Computing: R

- R: Scripting language
- Flexible

Greatest scientific discovery of 20th Century: Powerful personal computer (standardize science) 1956: \$10,000 megabyte 2015: <<< \$ 0.0001 per megabyte Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< \$ 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools and makes learning other programs easier

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools and makes learning other programs easier
- More start up costs than STATA, but more payoff

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< \$ 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools and makes learning other programs easier
- More start up costs than STATA, but more payoff

Paper writeup: LATEX

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< \$ 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools and makes learning other programs easier
- More start up costs than STATA, but more payoff

Paper writeup: P_{EX}

- Hard to write equations in Word:

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< \$ 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools and makes learning other programs easier
- More start up costs than STATA, but more payoff

Paper writeup: LATEX

- Hard to write equations in Word:
- Relatively easy in ${\ensuremath{\mathsf{P}}\xspace{\mathsf{RE}}} X$

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< \$ 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools and makes learning other programs easier
- More start up costs than STATA, but more payoff

Paper writeup: PATEX

- Hard to write equations in Word:
- Relatively easy in $\[AT_{EX}\]$

$$f(x) = \frac{\exp(-\frac{(x-\mu)^2}{2\sigma^2})}{\sqrt{2\pi\sigma^2}}$$

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< \$ 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools and makes learning other programs easier
- More start up costs than STATA, but more payoff

Paper writeup: PATEX

- Hard to write equations in Word:
- Relatively easy in <code>LATEX</code>

$$f(x) = \frac{\exp(-\frac{(x-\mu)^2}{2\sigma^2})}{\sqrt{2\pi\sigma^2}}$$

- Tables/Figures/General type/Nice Presentations setting: easier in ${\ensuremath{\texttt{LTEX}}}$

 ${\sf Computing}/{\sf Homeworks}$

Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)

1956: \$10,000 megabyte

2015: <<< 0.0001 per megabyte

Statistical Computing: R

- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools and makes learning other programs easier
- More start up costs than STATA, but more payoff

Paper writeup: LATEX

- Hard to write equations in Word:
- Relatively easy in $\ensuremath{\text{PTEX}}$

$$f(x) = \frac{\exp(-\frac{(x-\mu)^2}{2\sigma^2})}{\sqrt{2\pi\sigma^2}}$$

- Tables/Figures/General type/Nice Presentations setting: easier in ${\ensuremath{\texttt{LTEX}}}$
- If you use start using $\ensuremath{\mathbb{E}}\xspace \mathsf{T}_{\ensuremath{\mathbb{E}}\xspace \mathsf{X}}$, you'll soon love it

Sac

Course Books

- 1) Simon, Carl and Blume, Lawrence (SB). Mathematics for Economists.
- 2) Bertsekas, Dimitri P. and Tsitsiklis, John (BT) Introduction to Probability Theory (second edition)

Three part mixture:

< A

3

Three part mixture:

George Strait

Justin Grimmer (Stanford University)

Sac

Three part mixture:

George Strait

Kanye West

Three part mixture:

George Strait

Kanye West Steve Prefontaine

Sac

990

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Amarillo By Morning [Terry Stafford 1973, George Strait 1982]

Justin Grimmer (Stanford University)

September 5th, 2016 13 / 46

Sar

- Amarillo By Morning [Terry Stafford 1973, George Strait 1982]
- Ostensibly: song about rodeo cowboys

- Amarillo By Morning [Terry Stafford 1973, George Strait 1982]
- Ostensibly: song about rodeo cowboys
- Really: song about being academic

- Amarillo By Morning [Terry Stafford 1973, George Strait 1982]
- Ostensibly: song about rodeo cowboys
- Really: song about being academic
- "I ain't got a dime/but what I got is mine/I ain't rich/ but lord I'm free"

- Amarillo By Morning [Terry Stafford 1973, George Strait 1982]
- Ostensibly: song about rodeo cowboys
- Really: song about being academic
- "I ain't got a dime/but what I got is mine/I ain't rich/ but lord I'm free"
- Academics ain't rich (counterfactually)

$\frac{1}{3}$ George Strait

- Amarillo By Morning [Terry Stafford 1973, George Strait 1982]
- Ostensibly: song about rodeo cowboys
- Really: song about being academic
- "I ain't got a dime/but what I got is mine/I ain't rich/ but lord I'm free"
- Academics ain't rich (counterfactually)
- But (lord) we're free

$\frac{1}{3}$ George Strait

- Amarillo By Morning [Terry Stafford 1973, George Strait 1982]
- Ostensibly: song about rodeo cowboys
- Really: song about being academic
- "I ain't got a dime/but what I got is mine/I ain't rich/ but lord I'm free"
- Academics ain't rich (counterfactually)
- But (lord) we're free
- If you're good at methods, you'll be more rich [in expectation] and equally free ≥ → (≥ → ≥ → <<

Justin Grimmer (Stanford University)

Ξ

990

イロト イロト イヨト イヨト

 Deal with explicit criticism (part of Hip/Hop culture)

Justin Grimmer (Stanford University)

- Deal with explicit criticism (part of Hip/Hop culture)
- On masterpiece album My Beautiful Dark Twisted Fantasy

- Deal with explicit criticism (part of Hip/Hop culture)
- On masterpiece album My Beautiful Dark Twisted Fantasy
- "Screams from the haters, got a nice ring to it/l guess every superhero needs his theme music"

- Deal with explicit criticism (part of Hip/Hop culture)
- On masterpiece album My Beautiful Dark Twisted Fantasy
- "Screams from the haters, got a nice ring to it/l guess every superhero needs his theme music"
- Kid Cudi: "These motherf**kers can't fathom the wizadry"

- Deal with explicit criticism (part of Hip/Hop culture)
- On masterpiece album My Beautiful Dark Twisted Fantasy
- "Screams from the haters, got a nice ring to it/l guess every superhero needs his theme music"
- Kid Cudi: "These motherf**kers can't fathom the wizadry"
- Academics: intense criticism of ideas

- Deal with explicit criticism (part of Hip/Hop culture)
- On masterpiece album My Beautiful Dark Twisted Fantasy
- "Screams from the haters, got a nice ring to it/l guess every superhero needs his theme music"
- Kid Cudi: "These motherf**kers can't fathom the wizadry"
- Academics: intense criticism of ideas
- Very rarely will you be told you're doing a great job

- Deal with explicit criticism (part of Hip/Hop culture)
- On masterpiece album My Beautiful Dark Twisted Fantasy
- "Screams from the haters, got a nice ring to it/l guess every superhero needs his theme music"
- Kid Cudi: "These motherf**kers can't fathom the wizadry"
- Academics: intense criticism of ideas
- Very rarely will you be told you're doing a great job
- Self confidence: believe in work

"It's not a sprint, it's a marathon".

Э

< 🗇 🕨 🔺 -

"It's not a sprint, it's a marathon".

- World class distance running: it is hard

- World class distance running: it is hard
- But not for the obvious reasons

- World class distance running: it is hard
- But not for the obvious reasons
- Marathon: 4:40 minute mile, for 26.2 miles.

- World class distance running: it is hard
- But not for the obvious reasons
- Marathon: 4:40 minute mile, for 26.2 miles.
- How to train?

- World class distance running: it is hard
- But not for the obvious reasons
- Marathon: 4:40 minute mile, for 26.2 miles.
- How to train?
 - Old way: get in shape (run far) rely on adrenaline in race

- World class distance running: it is hard
- But not for the obvious reasons
- Marathon: 4:40 minute mile, for 26.2 miles.
- How to train?
 - Old way: get in shape (run far) rely on adrenaline in race
 - Now: races more tactical and agonizing

- World class distance running: it is hard
- But not for the obvious reasons
- Marathon: 4:40 minute mile, for 26.2 miles.
- How to train?
 - Old way: get in shape (run far) rely on adrenaline in race
 - Now: races more tactical and agonizing
 - Need to prepare for agony

- World class distance running: it is hard
- But not for the obvious reasons
- Marathon: 4:40 minute mile, for 26.2 miles.
- How to train?
 - Old way: get in shape (run far) rely on adrenaline in race
 - Now: races more tactical and agonizing
 - Need to prepare for agony
- Mantra: sustained agony

- World class distance running: it is hard
- But not for the obvious reasons
- Marathon: 4:40 minute mile, for 26.2 miles.
- How to train?
 - Old way: get in shape (run far) rely on adrenaline in race
 - Now: races more tactical and agonizing
 - Need to prepare for agony
- Mantra: sustained agony
- Graduate School/Academics: Sustained Agony

- World class distance running: it is hard
- But not for the obvious reasons
- Marathon: 4:40 minute mile, for 26.2 miles.
- How to train?
 - Old way: get in shape (run far) rely on adrenaline in race
 - Now: races more tactical and agonizing
 - Need to prepare for agony
- Mantra: sustained agony
- Graduate School/Academics: Sustained Agony

Justin Grimmer (Stanford University)

E

590

<ロト <回ト < 回ト < 回ト

Not crazy to work 40 hours on methods alone

Not crazy to work 40 hours on methods alone

- Methods \rightsquigarrow skills use for rest of career

Not crazy to work 40 hours on methods alone

- Methods \rightsquigarrow skills use for rest of career
- Methods \rightsquigarrow often takes deep thinking, practice

Not crazy to work 40 hours on methods alone

- Methods \rightsquigarrow skills use for rest of career
- Methods \rightsquigarrow often takes deep thinking, practice

TAKE BREAKS!

Not crazy to work 40 hours on methods alone

- Methods \rightsquigarrow skills use for rest of career
- Methods \rightsquigarrow often takes deep thinking, practice

TAKE BREAKS!

- Regular physical activity \rightsquigarrow improve focus

Not crazy to work 40 hours on methods alone

- Methods \rightsquigarrow skills use for rest of career
- Methods \rightsquigarrow often takes deep thinking, practice

TAKE BREAKS!

- Regular physical activity \rightsquigarrow improve focus
- Time away from lab \rightsquigarrow more productive when back

Why work so hard?

< A

E

Why work so hard?

- You are all smart

3

- You are all smart Really Smart

- You are all smart Really Smart Mother-in-law brags about you smart

- You are all smart Really Smart Mother-in-law brags about you smart
- Everyone entering graduate school at Top 10 programs this fall

- You are all smart Really Smart Mother-in-law brags about you smart
- Everyone entering graduate school at Top 10 programs this fall
- Success: work

- You are all smart Really Smart Mother-in-law brags about you smart
- Everyone entering graduate school at Top 10 programs this fall
- Success: work
- Treat grad school like a job

- You are all smart Really Smart Mother-in-law brags about you smart
- Everyone entering graduate school at Top 10 programs this fall
- Success: work
- Treat grad school like a job
- Who gets ahead? who gets the most work done on the smartest ideas

What can you learn in a math camp?

< A

3

990

What can you learn in a math camp?

1) Introduction to more sophisticated mathematics (notation)

3

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs
- 3) I'm going to introduce ideas/example problems common in research that will help with your seminar

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs
- 3) I'm going to introduce ideas/example problems common in research that will help with your seminar
- 4) This will not substitute for a richer math background and we won't expect it to

What can you learn in a math camp?

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs
- 3) I'm going to introduce ideas/example problems common in research that will help with your seminar
- 4) This will not substitute for a richer math background and we won't expect it to

Do not let yourself get lost.

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs
- 3) I'm going to introduce ideas/example problems common in research that will help with your seminar
- 4) This will not substitute for a richer math background and we won't expect it to
- Do not let yourself get lost.
- lf at.

What can you learn in a math camp?

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs
- 3) I'm going to introduce ideas/example problems common in research that will help with your seminar
- 4) This will not substitute for a richer math background and we won't expect it to
- Do not let yourself get lost.

If at. any.

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs
- 3) I'm going to introduce ideas/example problems common in research that will help with your seminar
- 4) This will not substitute for a richer math background and we won't expect it to
- Do not let yourself get lost.
- If at. any. point.

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs
- 3) I'm going to introduce ideas/example problems common in research that will help with your seminar
- 4) This will not substitute for a richer math background and we won't expect it to
- Do not let yourself get lost.
- If at. any. point. you have a question

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs
- 3) I'm going to introduce ideas/example problems common in research that will help with your seminar
- 4) This will not substitute for a richer math background and we won't expect it to
- Do not let yourself get lost.
- If at. any. point. you have a question please ask !

- 1) Introduction to more sophisticated mathematics (notation)
- 2) Getting acquainted with proof techniques and proofs
- 3) I'm going to introduce ideas/example problems common in research that will help with your seminar
- 4) This will not substitute for a richer math background and we won't expect it to
- Do not let yourself get lost.
- If at. any. point. you have a question please ask ! Smartest people ask the most questions!

Let's get to work

< A

э

Э

990

Sets

A set is a collection of objects.

$$A = \{1, 2, 3\}$$

$$B = \{4, 5, 6\}$$

$$C = \{First year cohort\}$$

$$D = \{Stanford Faculty\}$$

э -

< 口 > < 同

E

990

If A is a set, we say that x is an element of A by writing, $x \in A$. If x is not an element of A then, we write $x \notin A$.

- $1 \in \{1, 2, 3\}$

- $1 \in \{1, 2, 3\}$
- $4 \in \{4, 5, 6\}$

- $1 \in \{1, 2, 3\}$
- $4 \in \{4, 5, 6\}$
- Will \notin {First year cohort}

- $1 \in \{1, 2, 3\}$
- $4 \in \{4, 5, 6\}$
- Will \notin {First year cohort}
- Justin \in {Stanford Faculty}

If A is a set, we say that x is an element of A by writing, $x \in A$. If x is not an element of A then, we write $x \notin A$.

- $1 \in \{1, 2, 3\}$
- $4 \in \{4, 5, 6\}$
- Will \notin {First year cohort}
- Justin \in {Stanford Faculty}

Why Care?

If A is a set, we say that x is an element of A by writing, $x \in A$. If x is not an element of A then, we write $x \notin A$.

- $1 \in \{1, 2, 3\}$
- $4 \in \{4, 5, 6\}$
- Will \notin {First year cohort}
- Justin \in {Stanford Faculty}

Why Care?

- Sets are necessary for probability theory

If A is a set, we say that x is an element of A by writing, $x \in A$. If x is not an element of A then, we write $x \notin A$.

- $1 \in \{1, 2, 3\}$
- $4 \in \{4, 5, 6\}$
- Will \notin {First year cohort}
- Justin \in {Stanford Faculty}

Why Care?

- Sets are necessary for probability theory
- Defining set is equivalent ot choosing population of interest (usually)

If A and B are sets, then we say that A = B if, for all $x \in A$ then $x \in B$ and for all $y \in B$ then $y \in A$.

If A and B are sets, then we say that A = B if, for all $x \in A$ then $x \in B$ and for all $y \in B$ then $y \in A$.

- Test to determine equality:

If A and B are sets, then we say that A = B if, for all $x \in A$ then $x \in B$ and for all $y \in B$ then $y \in A$.

- Test to determine equality:
 - Take all elements of A, see if in B

If A and B are sets, then we say that A = B if, for all $x \in A$ then $x \in B$ and for all $y \in B$ then $y \in A$.

- Test to determine equality:
 - Take all elements of A, see if in B
 - Take all elements of B, see if in A

If A and B are sets, then we say that A = B if, for all $x \in A$ then $x \in B$ and for all $y \in B$ then $y \in A$.

- Test to determine equality:
 - Take all elements of A, see if in B
 - Take all elements of B, see if in A

Definition

If A and B are sets, then we say that $A \subset B$ is, for all $x \in A$, then $x \in B$.

If A and B are sets, then we say that A = B if, for all $x \in A$ then $x \in B$ and for all $y \in B$ then $y \in A$.

- Test to determine equality:
 - Take all elements of A, see if in B
 - Take all elements of B, see if in A

Definition

If A and B are sets, then we say that $A \subset B$ is, for all $x \in A$, then $x \in B$.

Difference between definitions?

Let A and B be sets. If A = B then $A \subset B$ and $B \subset A$

.∃ ⊳

Э

Sac

Let A and B be sets. If A = B then $A \subset B$ and $B \subset A$

Proof.

Suppose A = B. By definition, if $x \in A$ then $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$.

Let A and B be sets. If A = B then $A \subset B$ and $B \subset A$

Proof.

Suppose A = B. By definition, if $x \in A$ then $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$.

Theorem

Let A and B be sets. If $A \subset B$ and $B \subset A$ then A = B

Let A and B be sets. If A = B then $A \subset B$ and $B \subset A$

Proof.

Suppose A = B. By definition, if $x \in A$ then $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$.

Theorem

Let A and B be sets. If $A \subset B$ and $B \subset A$ then A = B

Proof.

Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

4 1 1 4 1 4 1 4

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

3

DQC

イロト イポト イヨト イヨト

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$.

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

When a proof says if and only if it is showing two things.

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

When a proof says if and only if it is showing two things.

- If or that a condition is sufficient

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

When a proof says if and only if it is showing two things.

- If or that a condition is sufficient
- Only If or that a condition is necessary

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

When a proof says if and only if it is showing two things.

- If or that a condition is sufficient
- Only If or that a condition is necessary

Example of sufficient, but not necessary

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

When a proof says if and only if it is showing two things.

- If or that a condition is sufficient
- Only If or that a condition is necessary

Example of sufficient, but not necessary

- If candidate wins the electoral college, then president (can be president through vote of House too)

TH 1.

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

When a proof says if and only if it is showing two things.

- If or that a condition is sufficient
- Only If or that a condition is necessary

Example of sufficient, but not necessary

- If candidate wins the electoral college, then president (can be president through vote of House too)

Example of necessary, but not sufficient

E 6 4 E 6

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

When a proof says if and only if it is showing two things.

- If or that a condition is sufficient
- Only If or that a condition is necessary

Example of sufficient, but not necessary

- If candidate wins the electoral college, then president (can be president through vote of House too)

Example of necessary, but not sufficient

- Only if a candidate is older than 35 can s/he be president (but clearly not sufficient)

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. For all $x \in A$, then $x \in B$. And for all $y \in B$, $y \in A$. Or, every element in A is in B and each element of B is in A. A = B.

When a proof says if and only if it is showing two things.

- If or that a condition is sufficient
- Only If or that a condition is necessary

Example of sufficient, but not necessary

- If candidate wins the electoral college, then president (can be president through vote of House too)

Example of necessary, but not sufficient

- Only if a candidate is older than 35 can s/he be president (but clearly not sufficient)

Justin Grimmer (Stanford University)

< D > < D > <</pre>

3 - E

990

- Many ways to prove the same theorem.

< A

3

- Many ways to prove the same theorem.
- Contradiction: assume theorem is false, show that this leads to logical contradiction

- Many ways to prove the same theorem.
- Contradiction: assume theorem is false, show that this leads to logical contradiction
- Indirect proof: setting up proof hardest part

- Many ways to prove the same theorem.
- Contradiction: assume theorem is false, show that this leads to logical contradiction
- Indirect proof: setting up proof hardest part

Theorem

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

- Many ways to prove the same theorem.
- Contradiction: assume theorem is false, show that this leads to logical contradiction
- Indirect proof: setting up proof hardest part

Theorem

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$.

- Many ways to prove the same theorem.
- Contradiction: assume theorem is false, show that this leads to logical contradiction
- Indirect proof: setting up proof hardest part

Theorem

Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Proof.

⇒ Suppose A = B. By definition, if $x \in A$, $x \in B$. So $A \subset B$. Again, by definition, if $y \in B$ then $y \in A$. So $B \subset A$. ⇐ Suppose $A \subset B$ and that $B \subset A$. Now, by way of contradiction, suppose that $A \neq B$. $A \neq B$ only if there is $x \in A$ and $x \notin B$ or if $y \in B$ and $y \notin A$. But then, either $A \not\subset B$ or $B \not\subset A$, contradicting our initial assumption.

< A

Set Builder Notation

- Some famous sets

-
$$J = \{1, 2, 3, \ldots\}$$

-
$$Z = \{\ldots, -2, -1, 0, 1, 2, \ldots, \}$$

- \Re = real numbers (more to come about this)
- Use set builder notation to identify subsets

-
$$[a, b] = \{x : x \in \Re \text{ and } a \le x \le b\}$$

- $(a, b] = \{x : x \in \Re \text{ and } a < x \le b\}$
- $[a, b) = \{x : x \in \Re \text{ and } a \le x < b\}$
- $(a, b) = \{x : x \in \Re \text{ and } a < x < b\}$
- \emptyset

We can build new sets with set operations.

< A

3

990

We can build new sets with set operations.

Definition

Suppose A and B are sets. Define the Union of sets A and B as the new set that contains all elements in set A or in set B. In notation,

$$C = A \cup B$$

= {x : x \in A or x \in B}

We can build new sets with set operations.

Definition

Suppose A and B are sets. Define the Union of sets A and B as the new set that contains all elements in set A or in set B. In notation,

$$C = A \cup B$$

= {x : x \in A or x \in B}

- $A = \{1, 2, 3\}, B = \{3, 4, 5\}$, then $C = A \cup B = \{1, 2, 3, 4, 5\}$

We can build new sets with set operations.

Definition

Suppose A and B are sets. Define the Union of sets A and B as the new set that contains all elements in set A or in set B. In notation,

$$C = A \cup B$$

= {x : x \in A or x \in B}

- $A = \{1, 2, 3\}, B = \{3, 4, 5\}$, then $C = A \cup B = \{1, 2, 3, 4, 5\}$

-
$$D = {First Year Cohort}, E = {Me}, then$$

 $F = D \cup E = {First Year Cohort, ME}$

Definition

Suppose A and B are sets. Define the Intersection of sets A and B as the new that contains all elements in set A and set B. In notation,

$$C = A \cap B$$

= {x : x \in A and x \in B}

Definition

Suppose A and B are sets. Define the Intersection of sets A and B as the new that contains all elements in set A and set B. In notation,

$$C = A \cap B$$

= {x : x \in A and x \in B}

- $A = \{1, 2, 3\}, B = \{3, 4, 5\}$, then, $C = A \cap B = \{3\}$

Definition

Suppose A and B are sets. Define the Intersection of sets A and B as the new that contains all elements in set A and set B. In notation,

$$C = A \cap B$$

= {x : x \in A and x \in B}

- $A = \{1, 2, 3\}, B = \{3, 4, 5\}$, then, $C = A \cap B = \{3\}$
- $D = \{$ First Year Cohort $\}, E = \{$ Me $\},$ then $F = D \cap E = \emptyset$

1) $A \cap B = B \cap A$

- (A)

3

1) $A \cap B = B \cap A$

Proof.

This fact (theorem) says that the set $A \cap B$ is equal to the set $B \cap A$. We can use the definition of equal sets to test this. Suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$. By definition, then, $x \in B \cap A$. Now, suppose $y \in B \cap A$. Then $y \in B$ and $y \in A$. So, by definition of intersection $y \in A \cap B$. This implies $A \cap B = B \cap A$.

1) $A \cap B = B \cap A$

5) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Justin Grimmer (Stanford University)

3

1) $A \cap B = B \cap A$

5)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Proof.

Suppose $x \in A \cap (B \cup C)$. Then $x \in B$ or $x \in C$ and $x \in A$. This implies that $x \in (A \cap B)$ or $x \in (A \cap C)$. Or, $x \in (A \cap B) \cup (A \cap C)$. Now, suppose $y \in (A \cap B) \cup (A \cap C)$. Then, $y \in A$ and $y \in B$ or $y \in C$. Well, this implies $y \in A \cap (B \cup C)$. And we have established equality

1)
$$A \cap B = B \cap A$$

- 2) $A \cup B = B \cup A$
- 3) $(A \cap B) \cap C = A \cap (B \cap C)$
- 4) $(A \cup B) \cup C = A \cup (B \cup C)$
- 5) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 6) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Break into groups, derive for the remaining facts

Ordered Pair

You've seen an ordered pair before,

(a, b)

Definition

Suppose we have two sets, A and B. Define the Cartesian product of A and B, $A \times B$ as the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. In other words,

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

Example:

$$A = \{1, 2\}$$
 and $B = \{3, 4\}$, then,
 $A \times B = \{(1, 3); (1, 4); (2, 3); (2, 4)\}$

Start with general and move to specific— (abstract just takes time to get acquainted)

3

∃ ► < ∃ ►</p>

< □ > < 同 >

Start with general and move to specific— (abstract just takes time to get acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

$$(x,y) \in F$$
 ; $(x,z) \in F \Rightarrow y = z$

We will commonly write a function as F(x), where $x \in Domain F$ and $F(x) \in Codomain F$. It is common to see people write,

$$F: A \rightarrow B$$

where A is domain and B is codomain

Start with general and move to specific— (abstract just takes time to get acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

$$(x,y) \in F$$
 ; $(x,z) \in F \Rightarrow y = z$

We will commonly write a function as F(x), where $x \in Domain F$ and $F(x) \in Codomain F$. It is common to see people write,

$$F: A \rightarrow B$$

where A is domain and B is codomain

Examples

Start with general and move to specific— (abstract just takes time to get acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

$$(x,y) \in F$$
 ; $(x,z) \in F \Rightarrow y = z$

We will commonly write a function as F(x), where $x \in Domain F$ and $F(x) \in Codomain F$. It is common to see people write,

$$F: A \rightarrow B$$

where A is domain and B is codomain

Examples

-
$$F(x) = x$$

Start with general and move to specific— (abstract just takes time to get acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

$$(x,y) \in F$$
 ; $(x,z) \in F \Rightarrow y = z$

We will commonly write a function as F(x), where $x \in Domain F$ and $F(x) \in Codomain F$. It is common to see people write,

$$F: A \rightarrow B$$

where A is domain and B is codomain

Examples

-
$$F(x) = x$$

- $F(x) = x^2$

Start with general and move to specific— (abstract just takes time to get acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

$$(x,y) \in F$$
 ; $(x,z) \in F \Rightarrow y = z$

We will commonly write a function as F(x), where $x \in Domain F$ and $F(x) \in Codomain F$. It is common to see people write,

$$F: A \rightarrow B$$

where A is domain and B is codomain

Examples

$$F(x) = x$$

- F(x) = x²
- F(x) = \sqrt{x}

Justin Grimmer (Stanford University)

R Computing Language

- We're going to use R throughout the course
- R as calculator :
 - > 1 + 1
 [1] 2
 > 'Hello World'
 [1] ''Hello World"
- object <- 2 ## assign numbers to objects
- R has functions defined, we can define them to objects as well

```
first.func<- function(x) {
    out<- 2*x
    return(out) }
first.func(2)
[1] 4</pre>
```

<=> = √QQ

Plotting Functions

September 5th, 2016 33 / 46

Plotting Functions

< A

990

Plotting Functions

Plotting Functions

September 5th, 2016 33 / 46

Justin Grimmer (Stanford University)

< A

Э

$$f(x) = 2^x$$

< A

Э

$$f(x) = 2^x$$
$$g(x) = e^x$$

< A

Э

$$\begin{array}{rcl} f(x) &=& 2^x \\ g(x) &=& e^x \end{array}$$

Some rules of exponents remember a could equal e

- < fi

$$f(x) = 2^{x}$$
$$g(x) = e^{x}$$

Some rules of exponents remember a could equal e

$$a^x \times a^y = a^{x+y}$$

$$f(x) = 2^{x}$$
$$g(x) = e^{x}$$

Some rules of exponents remember a could equal e

$$a^x \times a^y = a^{x+y}$$

 $(a^x)^y = a^{x \times y}$

< 口 > < 同

$$f(x) = 2^{x}$$
$$g(x) = e^{x}$$

Some rules of exponents remember a could equal e

$$a^{x} \times a^{y} = a^{x+y}$$
$$(a^{x})^{y} = a^{x\times y}$$
$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$f(x) = 2^{x}$$
$$g(x) = e^{x}$$

Some rules of exponents remember a could equal e

$$a^{x} \times a^{y} = a^{x+y}$$
$$(a^{x})^{y} = a^{x\times y}$$
$$\frac{a^{x}}{a^{y}} = a^{x-y}$$
$$\frac{1}{a^{x}} = a^{-x}$$

3

< 口 > < 同

$$f(x) = 2^{x}$$
$$g(x) = e^{x}$$

Some rules of exponents remember a could equal e

$$a^{x} \times a^{y} = a^{x+y}$$

$$(a^{x})^{y} = a^{x \times y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$\frac{1}{a^{x}} = a^{-x}$$

$$a^{x} \times b^{x} = (a \times b)^{x}$$

$$f(x) = 2^{x}$$
$$g(x) = e^{x}$$

Some rules of exponents remember a could equal e

$$a^{x} \times a^{y} = a^{x+y}$$

$$(a^{x})^{y} = a^{x\times y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$\frac{1}{a^{x}} = a^{-x}$$

$$a^{x} \times b^{x} = (a \times b)^{x}$$

$$a^{0} = 1$$

$$f(x) = 2^{x}$$
$$g(x) = e^{x}$$

Some rules of exponents remember a could equal e

$$a^{x} \times a^{y} = a^{x+y}$$

$$(a^{x})^{y} = a^{x \times y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$\frac{1}{a^{x}} = a^{-x}$$

$$a^{x} \times b^{x} = (a \times b)^{x}$$

$$a^{0} = 1$$

$$a^{1} = a$$

< □ > < 同 >

$$f(x) = 2^{x}$$
$$g(x) = e^{x}$$

Some rules of exponents remember a could equal e

$$a^{x} \times a^{y} = a^{x+y}$$

$$(a^{x})^{y} = a^{x\times y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$\frac{1}{a^{x}} = a^{-x}$$

$$a^{x} \times b^{x} = (a \times b)^{x}$$

$$a^{0} = 1$$

$$a^{1} = a$$

$$1^{x} = 1$$

Logaritm log is a class of functions.

< A

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log_e = \log_e$

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log_e = \log_e$
- log e = 1 (because $e^1 = e$)

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log_e = \log_e$
- log e = 1 (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log_e = \log_e$

- log
$$e = 1$$
 (because $e^1 = e$)

- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log_e = \log_e$
- log e = 1 (because $e^1 = e$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

-
$$\log(a \times b) = \log(a) + \log(b)$$
 (!!!!!!)

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log_e = \log_e$

- log
$$e = 1$$
 (because $e^1 = e$)

- $\log_{10} 1000 = 3$ (because $10^3 = 1000)$

-
$$\log(a \times b) = \log(a) + \log(b)$$
 (!!!!!!)

-
$$\log(\frac{a}{b}) = \log(a) - \log(b)$$

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log_e = \log_e$

- log
$$e = 1$$
 (because $e^1 = e$)

- $\log_{10} 1000 = 3$ (because $10^3 = 1000)$

-
$$\log(a \times b) = \log(a) + \log(b)$$
 (!!!!!!)

$$-\log(\frac{a}{b}) = \log(a) - \log(b)$$

$$-\log(a^b) = b\log(a)$$

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log_e = \log_e$

- log
$$e = 1$$
 (because $e^1 = e$)

- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

Some rules of logarithms

- $\log(a \times b) = \log(a) + \log(b)$ (!!!!!!)
- $\log(\frac{a}{b}) = \log(a) \log(b)$
- $\log(a^b) = b \log(a)$

-
$$\log(1) = 0$$

Logaritm log is a class of functions.

- $\log_e z =$ what number x solves $e^x = z$.
- We'll call \log_e natural logarithm. And we'll assume $\log_e = \log_e$

- log
$$e = 1$$
 (because $e^1 = e$)

- $\log_{10} 1000 = 3$ (because $10^3 = 1000)$

-
$$\log(a \times b) = \log(a) + \log(b)$$
 (!!!!!!)

$$-\log(\frac{a}{b}) = \log(a) - \log(b)$$

$$-\log(a^b) = b\log(a)$$

-
$$\log(1) = 0$$

-
$$\log(e) = 1$$

Two important properties of functions

< A

3

Two important properties of functions

Definition

A function $f : A \to B$ is 1-1 (one-to-one, or injective) if for all $y \in A$ and $z \in A$ in Domain, f(y) = f(z) implies y = z. In other words, preserves distinctiveness.

Two important properties of functions

Definition

A function $f : A \to B$ is 1-1 (one-to-one, or injective) if for all $y \in A$ and $z \in A$ in Domain, f(y) = f(z) implies y = z. In other words, preserves distinctiveness.

- f(x) = x

Two important properties of functions

Definition

A function $f : A \to B$ is 1-1 (one-to-one, or injective) if for all $y \in A$ and $z \in A$ in Domain, f(y) = f(z) implies y = z. In other words, preserves distinctiveness.

- f(x) = x- $f(x) = x^2$

Two important properties of functions

Definition

A function $f : A \to B$ is 1-1 (one-to-one, or injective) if for all $y \in A$ and $z \in A$ in Domain, f(y) = f(z) implies y = z. In other words, preserves distinctiveness.

- f(x) = x- $f(x) = x^2$

Definition

A function $f : A \to B$ is onto (surjective) if for all $b \in B$ there exists (\exists) $a \in A$ such that f(a) = b.

Two important properties of functions

Definition

A function $f : A \to B$ is 1-1 (one-to-one, or injective) if for all $y \in A$ and $z \in A$ in Domain, f(y) = f(z) implies y = z. In other words, preserves distinctiveness.

- f(x) = x- $f(x) = x^2$

Definition

A function $f : A \to B$ is onto (surjective) if for all $b \in B$ there exists (\exists) $a \in A$ such that f(a) = b.

-
$$f: \{\ldots, -2, -1, 0, 1, 2, \ldots\} \rightarrow \{0, 1, 2, \ldots\}$$
 and $f(x) = |x|$. onto, but not 1-1.

Two important properties of functions

Definition

A function $f : A \to B$ is 1-1 (one-to-one, or injective) if for all $y \in A$ and $z \in A$ in Domain, f(y) = f(z) implies y = z. In other words, preserves distinctiveness.

- f(x) = x- $f(x) = x^2$

Definition

A function $f : A \to B$ is onto (surjective) if for all $b \in B$ there exists (\exists) $a \in A$ such that f(a) = b.

-
$$f: \{\ldots, -2, -1, 0, 1, 2, \ldots\} \rightarrow \{0, 1, 2, \ldots\}$$
 and $f(x) = |x|$. onto, but not 1-1.

-
$$f: R \to R \ f(x) = x$$
. Onto and 1-1, bijective

Composite Functions

Definition

Suppose $f : A \rightarrow B$ and $g : B \rightarrow C$. Then, define,

 $g \circ f = g(f(x))$

-
$$f(x) = x$$
, $g(x) = x^2$. Then $g \circ f = x^2$.
- $f(x) = \sqrt{x}$, $g(x) = e^x$. Then $g \circ f = e^{\sqrt{x}}$.
- $f(x) = sin(x)$, $g(x) = |x|$. Then $g \circ f = |sin(x)|$.

Inverse Function

Definition

Suppose a function f is 1-1. Then we'll define f^{-1} as its inverse if,

$$f^{-1}(f(x)) = x$$

Why do we need 1-1?

Induction

Well Ordering Principle Every non-empty set J has a smallest number

4 A

Э

Induction

Well Ordering Principle Every non-empty set J has a smallest number

Theorem

If P(n) is a statement containing the variable n such that

i. P(1) is a true statement, and

ii. for each $k \in \{1, 2, 3, 4, \dots, n, \dots\}$ if P(k) is true then P(k+1) is true then P(n) is true for all $n \in \{1, 2, 3, 4, \dots, n, \dots\}$

We'll use contradiction and well ordering to prove that induction works.

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that

Э

< A

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable *n* and that

i. P(1) is true

Justin	Grimmer	(Stanford	University)

Э

< A

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that

- i. P(1) is true
- ii. If P(k) is true then P(k+1) is true.

< 同

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that

- i. P(1) is true
- ii. If P(k) is true then P(k+1) is true.

Now suppose, by way of contradiction that there exists N such that P(N) is false. This implies that

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that

- i. P(1) is true
- ii. If P(k) is true then P(k+1) is true.

Now suppose, by way of contradiction that there exists N such that P(N) is false. This implies that

$$S = \{x : P(x) \text{ is not true } \}$$

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that

- i. P(1) is true
- ii. If P(k) is true then P(k+1) is true.

Now suppose, by way of contradiction that there exists N such that P(N) is false. This implies that

$$S = \{x : P(x) \text{ is not true } \}$$

By well ordering principle, there is smallest member of S, call it n_0 .

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that

- i. P(1) is true
- ii. If P(k) is true then P(k+1) is true.

Now suppose, by way of contradiction that there exists N such that P(N)is false. This implies that

$$S = \{x : P(x) \text{ is not true } \}$$

By well ordering principle, there is smallest member of S, call it n_0 . By i. we know that $n_0 > 1$. Further, because n_0 is smallest member of S, then $P(n_0)$ is false, but $P(n_0 - 1)$ is true.

3

< 🗇 🕨

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that

- i. P(1) is true
- ii. If P(k) is true then P(k+1) is true.

Now suppose, by way of contradiction that there exists N such that P(N)is false. This implies that

$$S = \{x : P(x) \text{ is not true } \}$$

By well ordering principle, there is smallest member of S, call it n_0 . By *i*. we know that $n_0 > 1$. Further, because n_0 is smallest member of S, then $P(n_0)$ is false, but $P(n_0 - 1)$ is true. But now we have a problem, because if $P(n_0 - 1)$ is true, then $P(n_0)$ is also true.

Justin Grimmer (Stanford University)

3

.∃ ⊳

< □ > < 同 >

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that

- i. P(1) is true
- ii. If P(k) is true then P(k+1) is true.

Now suppose, by way of contradiction that there exists N such that P(N) is false. This implies that

$$S = \{x : P(x) \text{ is not true } \}$$

By well ordering principle, there is smallest member of S, call it n_0 . By i. we know that $n_0 > 1$. Further, because n_0 is smallest member of S, then $P(n_0)$ is false, but $P(n_0 - 1)$ is true. But now we have a problem, because if $P(n_0 - 1)$ is true, then $P(n_0)$ is also true. This implies that there is no smallest element of S. CONTRADICTION

3

< 4 P ≥

Summing N numbers

Induction is a useful proof technique.

Theorem

$$\sum_{i=1}^{N} i = 1 + 2 + 3 + 4 + \ldots + N = \frac{N(N+1)}{2}$$

Two conditions to show:

i.
$$\sum_{i=1}^{1} i = 1$$
 and $\frac{1(1+1)}{2} = 1$

Summing N numbers

ii. Suppose true N. Then, for N + 1 we have,

$$\sum_{i=1}^{N+1} i = \sum_{i=1}^{N} i + (N+1)$$
$$= \frac{N(N+1)}{2} + \frac{2(N+1)}{2}$$
$$= \frac{(N+1)(N+2)}{2}$$
$$= \frac{(N+1)((N+1)+1)}{2}$$

Conditions of induction met. Therefore, proof complete

Very Simple R Code

э -

< □ > < 🗗

Ξ

Finite, Countable, and Uncountable

Three sizes of sets

- A set, X is finite if there is a bijective function from {1, 2, 3, ..., n} to X.
- A set X is countably infinite if there is a bijective function from {1,2,3,4,...,} to X.
- 3) A set X is uncountably infinite if it is not countable

The Real numbers are uncountably infinite

We've covered a lot.

 $\exists \rightarrow$

< □ > < 同 >

E

We've covered a lot. PLEASE don't worry—we're here to help!

< A

3

Recap

We've covered a lot. PLEASE don't worry—we're here to help! 1) Sets + Operations

3

Sac

Recap

We've covered a lot.

PLEASE don't worry—we're here to help!

- 1) Sets + Operations
- 2) Functions

3

Sac

Recap

We've covered a lot.

PLEASE don't worry—we're here to help!

- 1) Sets + Operations
- 2) Functions
- 3) Contradiction, Induction, and direct proofs

Tomorrow:

- Convergence of sequences
- Limits
- Continuity
- Derivatives

Э