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The Systematic Analysis of Politics

Political Science: systematic analysis of politics

(who gets what, when,
and how).
Political Methodology: Develop and disseminate tools to make inferences
about politics

- Mathematical models of political world

- Probability and Statistics used across sciences

This class (introduction):

- Math Camp: Develop Tools for Analysis

- Probability theory: systematic model of randomness
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Course Goals

First stop in political methodology sequence

Big Goal: prepare you to make discoveries about politics
Proximate Goals

1) Mathematical tools to comprehend and use statistical methods

2) Foundation in probability theory/analytic reasoning

3) Practical Computing Tools: R
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Course Staff

Me: Justin Grimmer

- Office: Encina 414 (last door on the left, this hall)

- Email: jgrimmer@stanford.edu

- Cell: 617-710-6803

- Google Chat: Justin.grimmer@gmail.com

- Office Hours: I’m generally here all the time (9am to 5pm), just stop
by [but if you need to see me with 100% probability, schedule a visit]
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TA Info

Will Marble wpmarble@stanford.edu

Hans Lueders, hlueders@stanford.edu

We will hold twice weekly labs, that will occur in this room from
130-300pm (or so)

Piazza Sign-up Link: piazza.com/stanford/fall2016/350a

For efficiently asking/answering questions about course material and
logistics.
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Prerequisites

No Formal Prerequisites

BUT

- Successful students will know differential and integral calculus

1) Limits (intuitive)
2) Derivatives (tangent lines, differentiation rules)
3) Integrals (fundamental theorem of calculus/antidifferentiation rules

- We are here to help

- No mystery to learning math: just hard work
- Political science increasingly requires math
- Empirical: calculus and linear algebra
- Quantitative Methodologist: Real Analysis and Grad level statistics
- Formal Theory: Real Analysis (through measure theory), Topology
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Evaluation

You’re not taking this class for a grade

 that shouldn’t matter:

- Math Camp Exam

Grad School Irony Or: How I Learned to Stop Worrying and Love C’s

- Grades no longer matter

- Learn as much material as possible

- If you truly only care about learning material, you’ll get amazing
grades

No incompletes in this class
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Homework

Math camp: assigned daily  Mechanics of solving problems
Lab Assignment: Twice weekly assignments, help you develop
computational and mathematical skills.
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Computing/Homeworks
Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)
1956: $10,000 megabyte
2015: <<< $ 0.0001 per megabyte
Statistical Computing: R

- R: Scripting language

- Flexible, Cutting Edge Software, great visualization tools and makes
learning other programs easier

- More start up costs than STATA, but more payoff

Paper writeup: LATEX

- Hard to write equations in Word:

- Relatively easy in LATEX

f (x) =
exp(− (x−µ)2

2σ2 )
√
2πσ2

- Tables/Figures/General type/Nice Presentations setting: easier in
LATEX

- If you use start using LATEX, you’ll soon love it
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learning other programs easier

- More start up costs than STATA, but more payoff

Paper writeup: LATEX

- Hard to write equations in Word:

- Relatively easy in LATEX

f (x) =
exp(− (x−µ)2

2σ2 )
√
2πσ2

- Tables/Figures/General type/Nice Presentations setting: easier in
LATEX

- If you use start using LATEX, you’ll soon love it
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Course Books

1) Simon, Carl and Blume, Lawrence (SB). Mathematics for Economists.

2) Bertsekas, Dimitri P. and Tsitsiklis, John (BT) Introduction to
Probability Theory (second edition)
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Life in Graduate School/Academy

Three part mixture:

George Strait

Kanye West

Steve Prefontaine
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1
3 George Strait

- Amarillo By Morning [Terry
Stafford 1973, George Strait
1982]

- Ostensibly: song about rodeo
cowboys

- Really: song about being
academic

- “I ain’t got a dime/but what I
got is mine/I ain’t rich/ but lord
I’m free”

- Academics ain’t rich
(counterfactually)

- But (lord) we’re free

- If you’re good at methods, you’ll
be more rich [in expectation]
and equally free
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1
3 Kayne West

- Deal with explicit criticism (part
of Hip/Hop culture)

- On masterpiece album My
Beautiful Dark Twisted Fantasy

- “Screams from the haters, got a
nice ring to it/I guess every
superhero needs his theme
music”

- Kid Cudi: “These motherf**kers
can’t fathom the wizadry”

- Academics: intense criticism of
ideas

- Very rarely will you be told
you’re doing a great job

- Self confidence: believe in work
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1
3 Steve Prefontaine

“It’s not a sprint, it’s a marathon”.
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3 Steve Prefontaine

“It’s not a sprint, it’s a marathon”.

- World class distance running: it is hard

- But not for the obvious reasons

- Marathon: 4:40 minute mile, for 26.2 miles.

- How to train?

- Old way: get in shape (run far) rely on adrenaline in race
- Now: races more tactical and agonizing
- Need to prepare for agony

- Mantra: sustained agony

- Graduate School/Academics: Sustained Agony
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1
3 Steve Prefontaine

Not crazy to work 40 hours on methods
alone

- Methods  skills use for rest of career

- Methods  often takes deep thinking, practice

TAKE BREAKS!
- Regular physical activity  improve focus

- Time away from lab  more productive when back
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1
3 Steve Prefontaine

Why work so hard?

- You are all smart Really Smart Mother-in-law brags about you smart

- Everyone entering graduate school at Top 10 programs this fall

- Success: work

- Treat grad school like a job

- Who gets ahead? who gets the most work done on the smartest ideas
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Preliminaries

What can you learn in a math camp?

1) Introduction to more sophisticated mathematics (notation)

2) Getting acquainted with proof techniques and proofs

3) I’m going to introduce ideas/example problems common in research
that will help with your seminar

4) This will not substitute for a richer math background and we won’t
expect it to

Do not let yourself get lost.

If at. any. point. you have a question please ask !
Smartest people ask the most questions!
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Let’s get to work
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Sets

A set is a collection of objects.

A = {1, 2, 3}
B = {4, 5, 6}
C = {First year cohort}
D = {Stanford Faculty}
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Definition

If A is a set, we say that x is an element of A by writing, x ∈ A. If x is not
an element of A then, we write x /∈ A.

- 1 ∈ {1, 2, 3}
- 4 ∈ {4, 5, 6}
- Will /∈ {First year cohort}
- Justin ∈ {Stanford Faculty}

Why Care?

- Sets are necessary for probability theory

- Defining set is equivalent ot choosing population of interest (usually)
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Definition

If A and B are sets, then we say that A = B if, for all x ∈ A then x ∈ B
and for all y ∈ B then y ∈ A.

- Test to determine equality:

- Take all elements of A, see if in B
- Take all elements of B, see if in A

Definition

If A and B are sets, then we say that A ⊂ B is, for all x ∈ A, then x ∈ B.

Difference between definitions?
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Theorem

Let A and B be sets. If A = B then A ⊂ B and B ⊂ A

Proof.

Suppose A = B. By definition, if x ∈ A then x ∈ B. So A ⊂ B. Again, by
definition, if y ∈ B then y ∈ A. So B ⊂ A.

Theorem

Let A and B be sets. If A ⊂ B and B ⊂ A then A = B

Proof.

Suppose A ⊂ B and that B ⊂ A. For all x ∈ A, then x ∈ B. And for all
y ∈ B, y ∈ A. Or, every element in A is in B and each element of B is in
A. A = B.
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Theorem

Let A and B be sets. Then A = B if and only if A ⊂ B and B ⊂ A.

Proof.

⇒ Suppose A = B. By definition, if x ∈ A, x ∈ B. So A ⊂ B. Again, by
definition, if y ∈ B then y ∈ A. So B ⊂ A.
⇐ Suppose A ⊂ B and that B ⊂ A. For all x ∈ A, then x ∈ B. And for
all y ∈ B, y ∈ A. Or, every element in A is in B and each element of B is
in A. A = B.

When a proof says if and only if it is showing two things.

- If or that a condition is sufficient
- Only If or that a condition is necessary

Example of sufficient, but not necessary

- If candidate wins the electoral college, then president (can be
president through vote of House too)

Example of necessary, but not sufficient

- Only if a candidate is older than 35 can s/he be president (but clearly
not sufficient)

Proofs : we’re going to work hard on proofs. The only way to get better is
to practice.
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Contradiction

- Many ways to prove the same theorem.

- Contradiction: assume theorem is false, show that this leads to logical
contradiction

- Indirect proof: setting up proof hardest part

Theorem

Let A and B be sets. Then A = B if and only if A ⊂ B and B ⊂ A.

Proof.

⇒ Suppose A = B. By definition, if x ∈ A, x ∈ B. So A ⊂ B. Again, by
definition, if y ∈ B then y ∈ A. So B ⊂ A.
⇐ Suppose A ⊂ B and that B ⊂ A. Now, by way of contradiction,
suppose that A 6= B. A 6= B only if there is x ∈ A and x /∈ B or if y ∈ B
and y /∈ A. But then, either A 6⊂ B or B 6⊂ A, contradicting our initial
assumption.
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and y /∈ A. But then, either A 6⊂ B or B 6⊂ A, contradicting our initial
assumption.

Justin Grimmer (Stanford University) Methodology I September 5th, 2016 25 / 46



Contradiction
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- Contradiction: assume theorem is false, show that this leads to logical
contradiction
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Set Builder Notation

- Some famous sets

- J = {1, 2, 3, . . .}
- Z = {. . . ,−2,−1, 0, 1, 2, . . . , }
- < = real numbers (more to come about this)

- Use set builder notation to identify subsets

- [a, b] = {x : x ∈ < and a ≤ x ≤ b}
- (a, b] = {x : x ∈ < and a < x ≤ b}
- [a, b) = {x : x ∈ < and a ≤ x < b}
- (a, b) = {x : x ∈ < and a < x < b}
- ∅
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Set Operations

We can build new sets with set operations.

Definition

Suppose A and B are sets. Define the Union of sets A and B as the new
set that contains all elements in set A or in set B. In notation,

C = A ∪ B

= {x : x ∈ A or x ∈ B}

- A = {1, 2, 3},B = {3, 4, 5}, then C = A ∪ B = {1, 2, 3, 4, 5}
- D = {First Year Cohort},E = {Me}, then
F = D ∪ E = {First Year Cohort, ME}
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Set Operations

Definition

Suppose A and B are sets. Define the Intersection of sets A and B as the
new that contains all elements in set A and set B. In notation,

C = A ∩ B

= {x : x ∈ A and x ∈ B}

- A = {1, 2, 3},B = {3, 4, 5}, then, C = A ∩ B = {3}
- D = {First Year Cohort},E = {Me}, then F = D ∩ E = ∅
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Some Facts about Sets (No Venn Diagrams!!!)

1) A ∩ B = B ∩ A

2) A ∪ B = B ∪ A

3) (A ∩ B) ∩ C = A ∩ (B ∩ C )

4) (A ∪ B) ∪ C = A ∪ (B ∪ C )

5) A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

6) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )
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5) A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

6) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

Proof.

This fact (theorem) says that the set A ∩ B is equal to the set B ∩ A. We
can use the definition of equal sets to test this. Suppose x ∈ A ∩ B. Then
x ∈ A and x ∈ B. By definition, then, x ∈ B ∩ A. Now, suppose
y ∈ B ∩ A. Then y ∈ B and y ∈ A. So, by definition of intersection
y ∈ A ∩ B. This implies A ∩ B = B ∩ A
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5) A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

6) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

Proof.

Suppose x ∈ A ∩ (B ∪ C ). Then x ∈ B or x ∈ C and x ∈ A. This implies
that x ∈ (A ∩ B) or x ∈ (A ∩ C ). Or, x ∈ (A ∩ B) ∪ (A ∩ C ). Now,
suppose y ∈ (A ∩ B) ∪ (A ∩ C ). Then, y ∈ A and y ∈ B or y ∈ C . Well,
this implies y ∈ A ∩ (B ∪ C ). And we have established equality
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Some Facts about Sets (No Venn Diagrams!!!)

1) A ∩ B = B ∩ A
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5) A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )
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Break into groups, derive for the remaining facts
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Ordered Pair

You’ve seen an ordered pair before,

(a, b)

Definition

Suppose we have two sets, A and B. Define the Cartesian product of A
and B, A× B as the set of all ordered pairs (a, b), where a ∈ A and
b ∈ B. In other words,

A× B = {(a, b) : a ∈ A and b ∈ B}

Example:
A = {1, 2} and B = {3, 4}, then,
A× B = {(1, 3); (1, 4); (2, 3); (2, 4)}
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Function
Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

(x , y) ∈ F ; (x , z) ∈ F ⇒ y = z

We will commonly write a function as F (x), where x ∈ Domain F and
F (x) ∈ Codomain F . It is common to see people write,

F : A→ B

where A is domain and B is codomain

Examples

- F (x) = x
- F (x) = x2

- F (x) =
√
x

Justin Grimmer (Stanford University) Methodology I September 5th, 2016 31 / 46



Function
Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

(x , y) ∈ F ; (x , z) ∈ F ⇒ y = z

We will commonly write a function as F (x), where x ∈ Domain F and
F (x) ∈ Codomain F . It is common to see people write,

F : A→ B

where A is domain and B is codomain

Examples

- F (x) = x
- F (x) = x2

- F (x) =
√
x

Justin Grimmer (Stanford University) Methodology I September 5th, 2016 31 / 46



Function
Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

(x , y) ∈ F ; (x , z) ∈ F ⇒ y = z

We will commonly write a function as F (x), where x ∈ Domain F and
F (x) ∈ Codomain F . It is common to see people write,

F : A→ B

where A is domain and B is codomain

Examples

- F (x) = x
- F (x) = x2

- F (x) =
√
x

Justin Grimmer (Stanford University) Methodology I September 5th, 2016 31 / 46



Function
Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

(x , y) ∈ F ; (x , z) ∈ F ⇒ y = z

We will commonly write a function as F (x), where x ∈ Domain F and
F (x) ∈ Codomain F . It is common to see people write,

F : A→ B

where A is domain and B is codomain

Examples

- F (x) = x

- F (x) = x2

- F (x) =
√
x

Justin Grimmer (Stanford University) Methodology I September 5th, 2016 31 / 46



Function
Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

(x , y) ∈ F ; (x , z) ∈ F ⇒ y = z

We will commonly write a function as F (x), where x ∈ Domain F and
F (x) ∈ Codomain F . It is common to see people write,

F : A→ B

where A is domain and B is codomain

Examples

- F (x) = x
- F (x) = x2

- F (x) =
√
x

Justin Grimmer (Stanford University) Methodology I September 5th, 2016 31 / 46



Function
Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition

A relation is a set of ordered pairs. A function F is a relation such that,

(x , y) ∈ F ; (x , z) ∈ F ⇒ y = z

We will commonly write a function as F (x), where x ∈ Domain F and
F (x) ∈ Codomain F . It is common to see people write,

F : A→ B

where A is domain and B is codomain

Examples

- F (x) = x
- F (x) = x2

- F (x) =
√
x

Justin Grimmer (Stanford University) Methodology I September 5th, 2016 31 / 46



R Computing Language

- We’re going to use R throughout the course

- R as calculator :

> 1 + 1

[1] 2

> ‘Hello World’

[1] ‘‘Hello World"

- object<- 2 ## assign numbers to objects

- R has functions defined, we can define them to objects as well

first.func<- function(x) {
out<- 2*x

return(out) }
first.func(2)

[1] 4
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Plotting Functions

f(x) = x

x

f(
x)

−2

−2

−1.5

−1.5

−1

−1

−0.5

−0.5

0.5

0.5

1

1

1.5

1.5

2

2

x<- seq(-2, 2,

len=1000)

plot(x∼x) ##

Results may vary
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Plotting Functions

f(x) = x^2

x

f(
x)

−2

−2

−1.5

−1.5

−1

−1

−0.5

−0.5

0.5

0.5

1

1

1.5

1.5

2

2

x<- seq(-2, 2,

len=1000)

x.2<- x∗x
plot(x.2∼x)
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Plotting Functions

f(x) = sin(2*x)

x

f(
x)

−2

−2

−1.5

−1.5

−1

−1

−0.5

−0.5

0.5

0.5

1

1

1.5

1.5

2

2

x<- seq(-2, 2,

len=1000)

sin.2x<- sin(2∗x)
plot(sin.2x∼x)
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Plotting Functions

f(x) = tanh(x)

x

f(
x)

−2

−2

−1.5

−1.5

−1

−1

−0.5

−0.5

0.5

0.5

1

1

1.5

1.5

2

2

x<- seq(-2, 2,

len=1000)

tanhx<- tanh(x)

plot(tanhx∼x)
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Exponents, Logarithms, and All That

f (x) = 2x

g(x) = ex

Some rules of exponents remember a could equal e

ax × ay = ax+y

(ax)y = ax×y

ax

ay
= ax−y

1

ax
= a−x

ax × bx = (a× b)x

a0 = 1

a1 = a

1x = 1
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.

- loge z = what number x solves ex = z .

- We’ll call loge natural logarithm. And we’ll assume loge = log

- log e = 1 (because e1 = e)

- log10 1000 = 3 (because 103 = 1000)

Some rules of logarithms

- log(a× b) = log(a) + log(b) (!!!!!!)

- log( a
b ) = log(a)− log(b)

- log(ab) = b log(a)

- log(1) = 0

- log(e) = 1
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Properties of Functions
Two important properties of functions

Definition

A function f : A→ B is 1-1 (one-to-one, or injective) if for all y ∈ A and
z ∈ A in Domain, f (y) = f (z) implies y = z . In other words, preserves
distinctiveness.

- f (x) = x

- f (x) = x2

Definition

A function f : A→ B is onto (surjective) if for all b ∈ B there exists (∃)
a ∈ A such that f (a) = b.

- f : {. . . ,−2,−1, 0, 1, 2, . . .} → {0, 1, 2, . . .} and f (x) = |x |. onto, but
not 1-1.

- f : R → R f (x) = x . Onto and 1-1, bijective
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Composite Functions

Definition

Suppose f : A→ B and g : B → C . Then, define,

g ◦ f = g(f (x))

- f (x) = x , g(x) = x2. Then g ◦ f = x2.

- f (x) =
√
x , g(x) = ex . Then g ◦ f = e

√
x .

- f (x) = sin(x), g(x) = |x |. Then g ◦ f = |sin(x)|.
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Inverse Function

Definition

Suppose a function f is 1-1. Then we’ll define f −1 as its inverse if,

f −1(f (x)) = x

Why do we need 1-1?
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Induction

Well Ordering Principle Every non-empty set J has a smallest number

Theorem

If P(n) is a statement containing the variable n such that

i. P(1) is a true statement, and

ii. for each k ∈ 1, 2, 3, 4, . . . , n, . . . if P(k) is true then P(k + 1) is true

then P(n) is true for all n ∈ 1, 2, 3, 4, . . . , n, . . .
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Induction and Contradiction

We’ll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that

i. P(1) is true

ii. If P(k) is true then P(k + 1) is true.

Now suppose, by way of contradiction that there exists N such that P(N)
is false. This implies that

S = {x : P(x) is not true }

By well ordering principle, there is smallest member of S , call it n0. By i .
we know that n0 > 1. Further, because n0 is smallest member of S , then
P(n0) is false, but P(n0 − 1) is true. But now we have a problem, because
if P(n0 − 1) is true, then P(n0) is also true. This implies that there is no
smallest element of S . CONTRADICTION
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Summing N numbers

Induction is a useful proof technique.

Theorem∑N
i=1 i = 1 + 2 + 3 + 4 + . . . + N = N(N+1)

2

Two conditions to show:

i.
∑1

i=1 i = 1 and 1(1+1)
2 = 1
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Summing N numbers

ii. Suppose true N. Then, for N + 1 we have,

N+1∑
i=1

i =
N∑
i=1

i + (N + 1)

=
N(N + 1)

2
+

2(N + 1)

2

=
(N + 1)(N + 2)

2

=
(N + 1)((N + 1) + 1)

2

Conditions of induction met. Therefore, proof complete
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Very Simple R Code
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Finite, Countable, and Uncountable

Three sizes of sets

1) A set, X is finite if there is a bijective function from {1, 2, 3, . . . , n}
to X .

2) A set X is countably infinite if there is a bijective function from
{1, 2, 3, 4, . . . , } to X .

3) A set X is uncountably infinite if it is not countable

The Real numbers are uncountably infinite
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Recap

We’ve covered a lot.

PLEASE don’t worry—we’re here to help!

1) Sets + Operations

2) Functions

3) Contradiction, Induction, and direct proofs
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Tomorrow:

- Convergence of sequences

- Limits

- Continuity

- Derivatives
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