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The Systematic Analysis of Politics

Political Science: systematic analysis of politics (who gets what, when,

and how).
Political Methodology: Develop and disseminate tools to make inferences

about politics
- Mathematical models of political world
- Probability and Statistics used across sciences
This class (introduction):
- Math Camp: Develop Tools for Analysis
- Probability theory: systematic model of randomness
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Course Goals

First stop in political methodology sequence

Big Goal: prepare you to make discoveries about politics
Proximate Goals

1) Mathematical tools to comprehend and use statistical methods
2) Foundation in probability theory/analytic reasoning
3) Practical Computing Tools: R
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- Office: Encina 414 (last door on the left, this hall)
- Email: jgrimmer@stanford.edu
- Cell: 617-710-6803
- Google Chat: Justin.grimmer@gmail.com

- Office Hours: I'm generally here all the time (9am to 5pm), just stop
by [but if you need to see me with 100% probability, schedule a visit]
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TA Info

m Will Marble wpmarble@stanford.edu
Hans Lueders, hlueders@stanford.edu

m We will hold twice weekly labs, that will occur in this room from
130-300pm (or so)

m Piazza Sign-up Link: piazza.com/stanford/fall2016/350a

For efficiently asking/answering questions about course material and
logistics.
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Prerequisites

No Formal Prerequisites

BUT

- Successful students will know differential and integral calculus
1) Limits (intuitive)
2) Derivatives (tangent lines, differentiation rules)
3) Integrals (fundamental theorem of calculus/antidifferentiation rules
- We are here to help
- No mystery to learning math: just hard work
- Political science increasingly requires math
Empirical: calculus and linear algebra
Quantitative Methodologist: Real Analysis and Grad level statistics
Formal Theory: Real Analysis (through measure theory), Topology
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Evaluation

You're not taking this class for a grade ~~ that shouldn’t matter:
- Math Camp Exam

Grad School Irony Or: How | Learned to Stop Worrying and Love C's
- Grades no longer matter

- Learn as much material as possible

- If you truly only care about learning material, you'll get amazing
grades
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Homework

Math camp: assigned daily ~» Mechanics of solving problems

Lab Assignment: Twice weekly assignments, help you develop
computational and mathematical skills.
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Greatest scientific discovery of 20th Century:

Powerful personal computer (standardize science)
1956: $10,000 megabyte

2015: <<< $ 0.0001 per megabyte
Statistical Computing: R
- R: Scripting language
- Flexible, Cutting Edge Software, great visualization tools and makes
learning other programs easier
- More start up costs than STATA, but more payoff
Paper writeup: IATEX
- Hard to write equations in Word:
- Relatively easy in IKTEX

2
(x=w)
f(X) _ exp(— 252 )
V2mo?
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Computing/Homeworks

Greatest scientific discovery of 20th Century:
Powerful personal computer (standardize science)
1956: $10,000 megabyte
2015: <<< $ 0.0001 per megabyte
Statistical Computing: R

- R: Scripting language

- Flexible, Cutting Edge Software, great visualization tools and makes

learning other programs easier

- More start up costs than STATA, but more payoff
Paper writeup: IATEX

- Hard to write equations in Word:

- Relatively easy in IKTEX

f i eXP(_(X;o%)2)
(X) B V2ro?
- Tables/Figures/General type/Nice Presentations setting: easier in

IATEX

Justin Grimmer (Stanford University) Methodology | September 5th, 2016 10 / 46



Computing/Homeworks

Greatest scientific discovery of 20th Century:
Powerful personal computer (standardize science)
1956: $10,000 megabyte
2015: <<< $ 0.0001 per megabyte
Statistical Computing: R

- R: Scripting language

- Flexible, Cutting Edge Software, great visualization tools and makes

learning other programs easier

- More start up costs than STATA, but more payoff
Paper writeup: IATEX

- Hard to write equations in Word:

- Relatively easy in IKTEX

f i eXP(_(X;o%)2)
(X) B V2ro?
- Tables/Figures/General type/Nice Presentations setting: easier in

ATEX
- If you use start using IATEX, you'll soon love it
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Course Books

1) Simon, Carl and Blume, Lawrence (SB). Mathematics for Economists

2) Bertsekas, Dimitri P. and Tsitsiklis, John (BT) Introduction to
Probability Theory (second edition)
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% George Strait

- Amarillo By Morning [Terry
Stafford 1973, George Strait
1982]

- Ostensibly: song about rodeo
cowboys

- Really: song about being
academic

- "l ain't got a dime/but what |
got is mine/l ain't rich/ but lord
I'm free”

- Academics ain't rich
(counterfactually)

- But (lord) we're free

- If you're good at methods, you'll
be more rich [in expectation]
and equallyfree =+ =+ = 2ac
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% Kayne West

Justin Grimmer (Stanford University)
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Deal with explicit criticism (part
of Hip/Hop culture)

On masterpiece album My
Beautiful Dark Twisted Fantasy

“Screams from the haters, got a
nice ring to it/ guess every
superhero needs his theme
music”

Kid Cudi: “These motherf**kers
can't fathom the wizadry”

Academics: intense criticism of
ideas

Very rarely will you be told
you're doing a great job

Self confidence: belie\ie in work
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Not crazy to work 40 hours on methods
alone

- Methods ~~ skills use for rest of career
- Methods ~» often takes deep thinking, practice
TAKE BREAKS!
- Regular physical activity ~~ improve focus

- Time away from lab ~~ more productive when back
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% Steve Prefontaine

Why work so hard?

- You are all smart Really Smart Mother-in-law brags about you smart

Everyone entering graduate school at Top 10 programs this fall

Success: work

Treat grad school like a job

Who gets ahead? who gets the most work done on the smartest ideas
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What can you learn in a math camp?

Justin Grimmer (Stanford University)

Methodology |



Preliminaries

What can you learn in a math camp?

1) Introduction to more sophisticated mathematics (notation)

Justin Grimmer (Stanford University)

Methodology |



Preliminaries

What can you learn in a math camp?

1) Introduction to more sophisticated mathematics (notation)
2) Getting acquainted with proof techniques and proofs

Justin Grimmer (Stanford University)

Methodology |



Preliminaries

What can you learn in a math camp?
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2) Getting acquainted with proof techniques and proofs

3) I'm going to introduce ideas/example problems common in research
that will help with your seminar
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Do not let yourself get lost.
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What can you learn in a math camp?
1) Introduction to more sophisticated mathematics (notation)
2) Getting acquainted with proof techniques and proofs

3) I'm going to introduce ideas/example problems common in research
that will help with your seminar

4) This will not substitute for a richer math background and we won't
expect it to

Do not let yourself get lost.
If at. any. point. you have a question please ask !

Justin Grimmer (Stanford University) Methodology |



Preliminaries

What can you learn in a math camp?
1) Introduction to more sophisticated mathematics (notation)
2) Getting acquainted with proof techniques and proofs

3) I'm going to introduce ideas/example problems common in research
that will help with your seminar

4) This will not substitute for a richer math background and we won't
expect it to

Do not let yourself get lost.
If at. any. point. you have a question please ask !
Smartest people ask the most questions!
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Sets

A set is a collection of objects.

Justin Grimmer (Stanford University)

A
B
C
D

{1,2,3}
{4,5,6}
{First year cohort}
{Stanford Faculty}

Methodology |



Definition

an element of A then, we write x ¢ A.

If A is a set, we say that x is an element of A by writing, x € A. If x is not
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Definition

an element of A then, we write x ¢ A.

If A is a set, we say that x is an element of A by writing, x € A. If x is not
-1e€{1,2,3}
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Definition

If A is a set, we say that x is an element of A by writing, x € A. If x is not
an element of A then, we write x ¢ A.
-1e€{1,2,3}

- 4€{4,5,6}
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Definition

If A is a set, we say that x is an element of A by writing, x € A. If x is not
an element of A then, we write x ¢ A.
-1e€{1,2,3}

- 4€{4,5,6}

- Will ¢ {First year cohort}

Justin Grimmer (Stanford University)

Methodology |



Definition
If A is a set, we say that x is an element of A by writing, x € A. If x is not
an element of A then, we write x ¢ A.

1e{1,2,3}

4 € {4,5,6}

Will ¢ {First year cohort}
Justin € {Stanford Faculty}
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Definition

If A is a set, we say that x is an element of A by writing, x € A. If x is not
an element of A then, we write x ¢ A.

1e{1,2,3}

4 € {4,5,6}

Will ¢ {First year cohort}

- Justin € {Stanford Faculty}

Why Care?
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Definition
If A is a set, we say that x is an element of A by writing, x € A. If x is not
an element of A then, we write x ¢ A.

1e€{1,2,3}
4 € {4,5,6}
Will ¢ {First year cohort}
- Justin € {Stanford Faculty}
Why Care?
- Sets are necessary for probability theory
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Definition
If A is a set, we say that x is an element of A by writing, x € A. If x is not
an element of A then, we write x ¢ A.

1€{1,2,3}
4 € {4,5,6}
Will ¢ {First year cohort}
- Justin € {Stanford Faculty}
Why Care?
- Sets are necessary for probability theory

- Defining set is equivalent ot choosing population of interest (usually)
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Definition

If A and B are sets, then we say that A= B if, for all x € A then x € B
and for all y € B then y € A.
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- Test to determine equality:
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- Test to determine equality:

- Take all elements of A, see if in B
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Definition

If A and B are sets, then we say that A= B if, for all x € A then x € B
and for all y € B then y € A.

- Test to determine equality:

- Take all elements of A, see if in B

- Take all elements of B, see if in A
Definition

If A and B are sets, then we say that A C B is, for all x € A, then x € B.

J
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Definition

If A and B are sets, then we say that A= B if, for all x € A then x € B
and for all y € B then y € A.

- Test to determine equality:

- Take all elements of A, see if in B

- Take all elements of B, see if in A
Definition

If A and B are sets, then we say that A C B is, for all x € A, then x € B.
Difference between definitions?

J

Justin Grimmer (Stanford University)
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Theorem

Let A and B be sets. If A =B then AC B and BC A
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Theorem
Let A and B be sets. If A =B then AC B and BC A

Proof.

Suppose A = B. By definition, if x € A then x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A. O
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Theorem
Let A and B be sets. If A =B then AC B and BC A

Proof.

Suppose A = B. By definition, if x € A then x € B. So A C B. Again, by

definition, if y € B then y € A. So B C A.

O

Theorem
Let A and B be sets. If AC B and B C A then A= B

v

Justin Grimmer (Stanford University) Methodology |



Theorem
Let A and B be sets. If A =B then AC B and BC A

Proof.

Suppose A = B. By definition, if x € A then x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A. O
Theorem

Let A and B be sets. If AC B and B C A then A= B

Proof.

Suppose A C B and that B C A. For all x € A, then x € B. And for all
y € B,y € A. Or, every element in Ais in B and each element of B is in
A A=B. O
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Theorem

Let A and B be sets. Then A = B if and only if AC B and B C A.
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Theorem

Let A and B be sets. Then A = B if and only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by

definition, if y € B then y € A. So B C A.
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Theorem
Let A and B be sets. Then A = B if and only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by

definition, if y € B then y € A. So B C A.

< Suppose A C B and that B C A. For all x € A, then x € B. And for
all y € B, y € A. Or, every element in A is in B and each element of B is

in A, A=B.
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Theorem
Let A and B be sets. Then A = B if and only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A.

< Suppose A C B and that B C A. For all x € A, then x € B. And for
all y € B, y € A. Or, every element in A is in B and each element of B is
in A. A=B. O

v

When a proof says if and only if it is showing two things.
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Theorem
Let A and B be sets. Then A = B if and only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A.

< Suppose A C B and that B C A. For all x € A, then x € B. And for
all y € B, y € A. Or, every element in A is in B and each element of B is
in A. A=B. O
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Let A and B be sets. Then A = B if and only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A.

< Suppose A C B and that B C A. For all x € A, then x € B. And for
all y € B, y € A. Or, every element in A is in B and each element of B is
in A. A=B. O

v

When a proof says if and only if it is showing two things.
- If or that a condition is sufficient
- Only If or that a condition is necessary

Justin Grimmer (Stanford University) Methodology |



Theorem
Let A and B be sets. Then A = B if and only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A.

< Suppose A C B and that B C A. For all x € A, then x € B. And for
all y € B, y € A. Or, every element in A is in B and each element of B is
in A. A=B. O
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When a proof says if and only if it is showing two things.
- If or that a condition is sufficient
- Only If or that a condition is necessary

Example of sufficient, but not necessary
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Theorem
Let A and B be sets. Then A = B if and only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A.
< Suppose A C B and that B C A. For all x € A, then x € B. And for

all y € B, y € A. Or, every element in A is in B and each element of B is
in A, A= B. O

v

When a proof says if and only if it is showing two things.
- If or that a condition is sufficient
- Only If or that a condition is necessary
Example of sufficient, but not necessary
- If candidate wins the electoral college, then president (can be
president through vote of House too)
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Theorem
Let A and B be sets. Then A = B if and only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A.

< Suppose A C B and that B C A. For all x € A, then x € B. And for

all y € B, y € A. Or, every element in A is in B and each element of B is
in A, A= B. O

v

When a proof says if and only if it is showing two things.
- If or that a condition is sufficient
- Only If or that a condition is necessary
Example of sufficient, but not necessary
- If candidate wins the electoral college, then president (can be
president through vote of House too)
Example of necessary, but not sufficient
- Only if a candidate is older than 35 can s/he be president (but clearly
not sufficient)
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- Many ways to prove the same theorem.
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Contradiction

- Many ways to prove the same theorem.

- Contradiction: assume theorem is false, show that this leads to logical
contradiction

- Indirect proof: setting up proof hardest part
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Contradiction

- Many ways to prove the same theorem.

- Contradiction: assume theorem is false, show that this leads to logical

contradiction

- Indirect proof: setting up proof hardest part

Theorem

Let A and B be sets. Then A = B ifand only if AC B and B C A.
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Contradiction

- Many ways to prove the same theorem.

- Contradiction: assume theorem is false, show that this leads to logical
contradiction

- Indirect proof: setting up proof hardest part

Theorem
Let A and B be sets. Then A = B ifand only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A.

o =1 = = £ Dae
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Contradiction

- Many ways to prove the same theorem.

- Contradiction: assume theorem is false, show that this leads to logical
contradiction

- Indirect proof: setting up proof hardest part

Theorem
Let A and B be sets. Then A = B ifand only if AC B and B C A.

Proof.

= Suppose A = B. By definition, if x € A, x € B. So A C B. Again, by
definition, if y € B then y € A. So B C A.

< Suppose A C B and that B C A. Now, by way of contradiction,
suppose that A # B. A# B only if thereisx € Aand x ¢ Borify € B
and y ¢ A. But then, either A Z B or B ¢ A, contradicting our initial
assumption.
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Set Builder Notation

- Some famous sets
- J={1,2, 3 .}
_Z={. ~1,0,1,2,...,}
-R= real numbers (more to come about this)
- Use set builder notation to identify subsets
- la,bl={x:xeRand a< x< b}
- (g, b ={x:xeRand a< x < b}
- la,b)={x:xeRand a<x < b}
- (a,b)={x:xeRNand a< x < b}
0

Justin Grimmer (Stanford University) Methodology |



Set Operations

We can build new sets with set operations.
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Set Operations

We can build new sets with set operations.
Definition
Suppose A and B are sets. Define the Union of sets A and B as the new

set that contains all elements in set A or in set B. In notation,

¢ = AUB

{x:x€Aorxe B}

o F
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Set Operations

We can build new sets with set operations.
Definition
Suppose A and B are sets. Define the Union of sets A and B as the new
set that contains all elements in set A or in set B. In notation,
C = AUB
= {x:x€AorxeB}

- A=1{1,2,3},B={3,4,5}, then C = AUB = {1,2,3,4,5}
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Set Operations

We can build new sets with set operations.
Definition
Suppose A and B are sets. Define the Union of sets A and B as the new
set that contains all elements in set A or in set B. In notation,
C = AUB
= {x:x€AorxeB}

- A=1{1,2,3},B=1{3,4,5}, then C=AUB ={1,2,3,4,5}
- D = {First Year Cohort}, E = {Me}, then
F = D U E = {First Year Cohort, ME}
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Set Operations

Definition

C = ANnB

Suppose A and B are sets. Define the Intersection of sets A and B as the
new that contains all elements in set A and set B. In notation,

{x:x€eAandx e B}

Justin Grimmer (Stanford University)

Methodology |



Set Operations

Definition

C

Suppose A and B are sets. Define the Intersection of sets A and B as the
new that contains all elements in set A and set B. In notation,

ANB

{x:x€eAandx e B}
- A={1,2,3},B={3,4,5}, then, C = AN B = {3}
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Set Operations

Definition

Suppose A and B are sets. Define the Intersection of sets A and B as the

new that contains all elements in set A and set B. In notation,

C = ANnB
= {x:x€Aandxe B}

- A={1,2,3},B={3,4,5}, then, C = AN B = {3}
- D = {First Year Cohort}, E = {Me}, then F=DNE =0
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Some Facts about Sets (No Venn Diagrams!!!)

1) AnB=BnNA
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Some Facts about Sets (No Venn Diagrams!!!)

1) ANB=BNA

Proof.

This fact (theorem) says that the set AN B is equal to the set BN A. We
can use the definition of equal sets to test this. Suppose x € AN B. Then
x € A and x € B. By definition, then, x € BN A. Now, suppose

y € BNA. Theny € B and y € A. So, by definition of intersection

y € AN B. This implies ANB=BNA O
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Some Facts about Sets (No Venn Diagrams!!!)

1) AnNB=BNA

5) AN(BUC)=(ANnB)U(ANC)
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Some Facts about Sets (No Venn Diagrams!!!)

1) ANB=BNA

5) AN(BUC)=(ANB)U(ANC)

Proof.

Suppose x € AN(BUC). Then x € Bor x € C and x € A. This implies
that x € (ANB)orx € (ANC). Or,xe (ANB)U(AN C). Now,
suppose y € (ANB)U(ANC). Then,y e Aand y € Bor y € C. Well,
this implies y € AN (B U C). And we have established equality O
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Some Facts about Sets (No Venn Diagrams!!!)

1) ANB=BnNA

2) AUB=BUA

3) (ANB)NC=ANn(BNC)

4) (AUB)UC=AU(BUC)
5) AN(BUC)=(ANnB)U(ANC)
6) AU(BNC)=(AUB)N(AUC)

Break into groups, derive for the remaining facts
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Ordered Pair

You've seen an ordered pair before,
(a,b)

Definition
Suppose we have two sets, A and B. Define the Cartesian product of A

and B, A x B as the set of all ordered pairs (a, b), where a € A and
b € B. In other words,

AxB = {(a,b):ac Aandbec B}

Example:
A= {Fi)l,Z} and B = {3,4}, then,
Ax B={(1,3);(1,4);(2,3);(2,4)}
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Function

acquainted)

Start with general and move to specific— (abstract just takes time to get
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Function

Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition
A relation is a set of ordered pairs. A function F is a relation such that,
(x,y)eF ; (x,z2)eF=y=1z

We will commonly write a function as F(x), where x € Domain F and
F(x) € Codomain F. It is common to see people write,

F:A—=B

where A is domain and B is codomain
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Function

Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition
A relation is a set of ordered pairs. A function F is a relation such that,
(x,y)eF ; (x,z2)eF=y=1z

We will commonly write a function as F(x), where x € Domain F and
F(x) € Codomain F. It is common to see people write,

F:A—=B

where A is domain and B is codomain

Examples
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Function

Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition
A relation is a set of ordered pairs. A function F is a relation such that,
(x,y)eF ; (x,z2)eF=y=1z

We will commonly write a function as F(x), where x € Domain F and
F(x) € Codomain F. It is common to see people write,

F:A—=B

where A is domain and B is codomain

Examples
- F(x)=x

Justin Grimmer (Stanford University) Methodology |




Function

Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition
A relation is a set of ordered pairs. A function F is a relation such that,
(x,y)eF ; (x,z2)eF=y=1z

We will commonly write a function as F(x), where x € Domain F and
F(x) € Codomain F. It is common to see people write,

F:A—=B

where A is domain and B is codomain

Examples
- F(x)=x
- F(x) = x?
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Function

Start with general and move to specific— (abstract just takes time to get
acquainted)

Definition
A relation is a set of ordered pairs. A function F is a relation such that,
(x,y)eF ; (x,z2)eF=y=1z

We will commonly write a function as F(x), where x € Domain F and
F(x) € Codomain F. It is common to see people write,

F:A—=B

where A is domain and B is codomain

Examples
- F(x) =
< Fl) =
( ) \/_ =} (=) =
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R Computing Language

- We're going to use R throughout the course
- R as calculator :

>1+1

[1]1 2

> ‘Hello World’

[1] ¢‘Hello World"

- object<- 2 ## assign numbers to objects

- R has functions defined, we can define them to objects as well

first.func<- function(x) {
out<—- 2%*x

return(out) }
first.func(2)
(1] 4

o F
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Plotting Functions

f(x)

f(x) = x

Justin Grimmer (Stanford University)

0.5 1
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1.5

x<- seq(-2, 2,
1en=1000)
plot(x~x) ##
Results may vary
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Plotting Functions

f(x)

1 1.5

Justin Grimmer (Stanford University) Methodology |

x<- seq(-2, 2,
len=1000)
X.2<— X*X
plot(x.2~%)



Plotting Functions

f(x)

f(x) = sin(2*x)
2 —

1.5+

-2 -N\> -1 -0.5 0.5 1

Justin Grimmer (Stanford University)
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N ——

x<- seq(-2, 2,
len=1000)
sin.2x<- sin(2*x)
plot(sin.2x~x)
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Plotting Functions

f(x) = tanh(x)

2%%

1.5+

f(x)

Justin Grimmer (Stanford University)
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x<- seq(-2, 2,
len=1000)
tanhx<- tanh(x)
plot (tanhx~x)



Exponents, Logarithms, and All That

Justin Grimmer (Stanford University)

Methodology |



Exponents, Logarithms, and All That

flx) =

— X
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Exponents, Logarithms, and All That

f(x)
gx) = €
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Exponents, Logarithms, and All That

fix) =
g(x)

2X
= eX
Some rules of exponents remember a

could equal e
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Exponents, Logarithms, and All That

flx) =

2X
glx) = &
Some rules of exponents remember a could equal e
A xa = &t
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Exponents, Logarithms, and All That

f(x)
g(x)

Some rules of exponents remember a

¥ x a

(&%)

Justin Grimmer (Stanford University)
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= eX

could equal e
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Exponents, Logarithms, and All That

fx) = 2
gx) = €

Some rules of exponents remember a could equal e

Justin Grimmer (Stanford University)

Fxa = FV
(ax)y R 4

X
a_ — aX_y

ay
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Exponents, Logarithms, and All That

fx) = 2
gx) = €

Some rules of exponents remember a could equal e

Justin Grimmer (Stanford University)

Fxa = FV
(ax)y R 4
X
d _
. xy
ay
1
i — a_X
aX
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Exponents, Logarithms, and All That

fx) = 2
gx) = €

Some rules of exponents remember a could equal e

Justin Grimmer (Stanford University)

A xa = &t
(ax)y — ax><y
X
a _
- = aX Y
ay
1
- — a_X
aX
> x b = (axb)
o
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Exponents, Logarithms, and All That

fx) = 2
gx) = €

Some rules of exponents remember a could equal e

Justin Grimmer (Stanford University)

A xa = &
(ax)y — v
X
a _
= = XY
a
1 _
a
> x b = (axb)
@ =1
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Exponents, Logarithms, and All That

fx) = 2
gx) = €

Some rules of exponents remember a could equal e

Justin Grimmer (Stanford University)

Fxa = FV
(ax)y =
X
d _
4 Xy
ay
1
- — a_X
aX
> x b = (axb)
L =1
al = a
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Exponents, Logarithms, and All That

fx) = 2
gx) = €

Some rules of exponents remember a could equal e

Justin Grimmer (Stanford University)

A xa = &
(ax)y — ax><y
X
a _
- = XY
ay
1
i — a_X
ax
> x b = (axb)
L =1
31 = a
X =1
a
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.

- log, z = what number x solves ¥ = z.
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.

- log, z = what number x solves ¥ = z.

- We'll call log, natural logarithm. And we'll assume log, = log

Justin Grimmer (Stanford University)
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.

- log, z = what number x solves ¥ = z.

- We'll call log, natural logarithm. And we'll assume log, = log
- loge = 1 (because e! = e)

Justin Grimmer (Stanford University)
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.
- log, z = what number x solves ¥ = z.
- We'll call log, natural logarithm. And we'll assume log, = log
- loge = 1 (because e! = e)
- logy 1000 = 3 (because 103 = 1000)
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.
- log, z = what number x solves ¥ = z.

- We'll call log, natural logarithm. And we'll assume log, = log
1

loge =1 (because e* =€)
- logy 1000 = 3 (because 103 = 1000)

Some rules of logarithms
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.

- log, z = what number x solves ¥ = z.

- We'll call log, natural logarithm. And we'll assume log, = log
loge = 1 (because e! = e)
- logy 1000 = 3 (because 103 = 1000)

Some rules of logarithms

Justin Grimmer (Stanford University) Methodology |



Exponents, Logarithms, and All That

Logaritm log is a class of functions.

- log, z = what number x solves ¥ = z.

- We'll call log, natural logarithm. And we'll assume log, = log
- loge = 1 (because e! = e)

- logy 1000 = 3 (because 103 = 1000)
Some rules of logarithms

- log(§) = log(a) — log(b)

Justin Grimmer (Stanford University)
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.

- log, z = what number x solves ¥ = z.

- We'll call log, natural logarithm. And we'll assume log, = log
- loge = 1 (because e! = e)

- logy 1000 = 3 (because 103 = 1000)
Some rules of logarithms

- log(3) = log(a) — log(b)
- log(a®) = blog(a)

Justin Grimmer (Stanford University)
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.
- log, z = what number x solves ¥ = z.
- We'll call log, natural logarithm. And we'll assume log, = log
- loge = 1 (because e! = e)
- logy 1000 = 3 (because 103 = 1000)
Some rules of logarithms
- log(a x b) = log(a) + log(b) (!!!1)
- log(§) = log(a) — log(b)
- log(a®) = blog( )
- log(1) =
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Exponents, Logarithms, and All That

Logaritm log is a class of functions.
- log, z = what number x solves ¥ = z.
- We'll call log, natural logarithm. And we'll assume log, = log
- loge = 1 (because e! = e)
- logy 1000 = 3 (because 103 = 1000)
Some rules of logarithms
- log(a x b) = log(a) + log(b) (!!!1)
- log(
- log(a®) = blog(a)
(
(
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Properties of Functions

Two important properties of functions
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Properties of Functions

Two important properties of functions

Definition

A function f : A — B is 1-1 (one-to-one, or injective) if for all y € A and

z € A in Domain, f(y) = f(z) implies y = z. In other words, preserves
distinctiveness.
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Properties of Functions

Two important properties of functions

Definition

A function f : A — B is 1-1 (one-to-one, or injective) if for all y € A and

z € A in Domain, f(y) = f(z) implies y = z. In other words, preserves
distinctiveness.

- f(x) =x
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Properties of Functions

Two important properties of functions

Definition

A function f : A — B is 1-1 (one-to-one, or injective) if for all y € A and

z € A in Domain, f(y) = f(z) implies y = z. In other words, preserves
distinctiveness.

- f(x) =x
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Properties of Functions

Two important properties of functions

Definition

A function f : A — B is 1-1 (one-to-one, or injective) if for all y € A and

z € A in Domain, f(y) = f(z) implies y = z. In other words, preserves
distinctiveness.

- f(x) =x

Definition

A function f : A — B is onto (surjective) if for all b € B there exists (3)
a € A such that f(a) = b.
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Properties of Functions

Two important properties of functions

Definition

A function f : A — B is 1-1 (one-to-one, or injective) if for all y € A and

z € A in Domain, f(y) = f(z) implies y = z. In other words, preserves
distinctiveness.

- f(x) =x

Definition

A function f : A — B is onto (surjective) if for all b € B there exists (3)
a € A such that f(a) = b.

- A -1,0,1,2,...} —{0,1,2,...} and f(x) = |x|. onto, but
not 1- 1.
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Properties of Functions

Two important properties of functions

Definition

A function f : A — B is 1-1 (one-to-one, or injective) if for all y € A and

z € A in Domain, f(y) = f(z) implies y = z. In other words, preserves
distinctiveness.

- f(x) =x

Definition

A function f : A — B is onto (surjective) if for all b € B there exists (3)
a € A such that f(a) = b.

- A -1,0,1,2,...} —{0,1,2,...} and f(x) = |x|. onto, but
not 1- 1.

- f: R — R f(x) = x. Onto and 1-1, bijective
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Composite Functions

Definition

Suppose f : A— B and g : B — C. Then, define,

gof

g(f(x))
- f(x) =x, g(x) =x°. Then go f = x2.

- f(x) = v/, g(x) = €. Then gof = eV,

- f(x) = sin(x), g(x) = |x|. Then go f =|sin(x)|.

Justin Grimmer (Stanford University)
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Inverse Function

Definition

Suppose a function f is 1-1. Then we'll define f~1 as its inverse if,

f(f(x))
Why do we need 1-17

X
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Induction

Well Ordering Principle Every non-empty set J has a smallest number
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Induction

Well Ordering Principle Every non-empty set J has a smallest number
Theorem

i. P(1) is a true statement, and

If P(n) is a statement containing the variable n such that
ii. foreachk€1,2,3,4,...,n,

then P(n) is true for all n € 1,2,3,4,...,n,

if P(k) is true then P(k + 1) is true

Justin Grimmer (Stanford University)
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Induction and Contradiction

We'll use contradiction and well ordering to prove that induction works.
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Induction and Contradiction

Proof.

Suppose P(n) is some statement about the variable n and that

We'll use contradiction and well ordering to prove that induction works.
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Induction and Contradiction

Proof.

We'll use contradiction and well ordering to prove that induction works.

Suppose P(n) is some statement about the variable n and that
i. P(1)is true

Justin Grimmer (Stanford University)

Methodology |

i
A,



Induction and Contradiction

Proof.

We'll use contradiction and well ordering to prove that induction works

Suppose P(n) is some statement about the variable n and that
i. P(1)is true

ii. If P(k) is true then P(k 4 1) is true.

Justin Grimmer (Stanford University)
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Induction and Contradiction

We'll use contradiction and well ordering to prove that induction works
Proof.

Suppose P(n) is some statement about the variable n and that
i. P(1)is true
ii. If P(k) is true then P(k 4 1) is true.

Now suppose, by way of contradiction that there exists N such that P(N)
is false. This implies that

Justin Grimmer (Stanford University)
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Induction and Contradiction

We'll use contradiction and well ordering to prove that induction works.
Proof.

Suppose P(n) is some statement about the variable n and that
i. P(1)is true
ii. If P(k) is true then P(k 4 1) is true.

Now suppose, by way of contradiction that there exists N such that P(N)
is false. This implies that

5 —

{x : P(x) is not true }

Justin Grimmer (Stanford University)

o F
Methodology |



Induction and Contradiction

We'll use contradiction and well ordering to prove that induction works
Proof.

Suppose P(n) is some statement about the variable n and that
i. P(1)is true
ii. If P(k) is true then P(k 4 1) is true.

Now suppose, by way of contradiction that there exists N such that P(N)
is false. This implies that

5 —

{x : P(x) is not true }

By well ordering principle, there is smallest member of S, call it ngp.

Justin Grimmer (Stanford University)
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Induction and Contradiction

We'll use contradiction and well ordering to prove that induction works
Proof.

Suppose P(n) is some statement about the variable n and that
i. P(1)is true
ii. If P(k) is true then P(k 4 1) is true.

Now suppose, by way of contradiction that there exists N such that P(N)
is false. This implies that

S —

{x: P(x) is not true }

By well ordering principle, there is smallest member of S, call it ngp.

By i.
we know that ng > 1. Further, because ng is smallest member of S, then
P(no) is false, but P(ng — 1) is true.
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Induction and Contradiction

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that
i. P(1)is true
ii. If P(k) is true then P(k 4 1) is true.

Now suppose, by way of contradiction that there exists N such that P(N)
is false. This implies that

S = {x:P(x) is not true }

By well ordering principle, there is smallest member of S, call it np. By i.
we know that ng > 1. Further, because ng is smallest member of S, then
P(no) is false, but P(ng — 1) is true. But now we have a problem, because
if P(ng — 1) is true, then P(ng) is also true.

v
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Induction and Contradiction

We'll use contradiction and well ordering to prove that induction works.

Proof.

Suppose P(n) is some statement about the variable n and that
i. P(1)is true
ii. If P(k) is true then P(k 4 1) is true.

Now suppose, by way of contradiction that there exists N such that P(N)
is false. This implies that

S = {x:P(x) is not true }

By well ordering principle, there is smallest member of S, call it np. By i.
we know that ng > 1. Further, because ng is smallest member of S, then

P(no) is false, but P(ng — 1) is true. But now we have a problem, because
if P(no — 1) is true, then P(ng) is also true. This implies that there is no
smallest element of S. CONTRADICTION O

v
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Summing N numbers

Induction is a useful proof technique.

Theorem

SN i=14243444. . 4N =N

Two conditions to show:

i S, i=1land X 1
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Summing N numbers

ii. Suppose true N. Then, for N 4+ 1 we have,

N+1

di= D i+ (N+1)

- B '/QENH) 2(N +1)
B 2 T
_ (N+)(V+2)

2
_ (N4 D((N+1)+1)
2

Conditions of induction met. Therefore, proof complete
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Very Simple R Code

Justin Grimmer (Stanford University)

Methodology |



Finite, Countable, and Uncountable

Three sizes of sets

1) A set, X is finite if there is a bijective function from {1,2,3,...,n}
to X.

2) A set X is countably infinite if there is a bijective function from
{1,2,3,4,...,} to X.

3) A set X is uncountably infinite if it is not countable

The Real numbers are uncountably infinite
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Recap

We've covered a lot.
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Recap

We've covered a lot.

PLEASE don't worry—we're here to help!
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Recap

We've covered a lot.

PLEASE don't worry—we're here to help!
1) Sets + Operations
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Recap

We've covered a lot.

1) Sets + Operations
2) Functions
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Recap

We've covered a lot.

1) Sets + Operations

PLEASE don't worry—we're here to help!
2) Functions

3) Contradiction, Induction, and direct proofs
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Tomorrow:

Convergence of sequences
Limits

Continuity

- Derivatives
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