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Interpreting Causal Effects

Rubin Causal Model:

- Yi (1): response under treatment

- Yi (0): response under control

Individual Treatment Effect: Yi (1)− Yi (0)
Fundamental problem of causal inference:
Yi (1)− Yi (0)
ATE = E [Y (1)− Y (0)]
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Observational Studies and Causal Inference
Experimental studies:

- Treatment under control of analyst

- Random assignment, estimate

ÂTE = E [Y (1)|T = 1]− E [Y (0)|T = 0]

Because E [Y (1)] = E [Y (1)|T = 1] = E [Y (1)|T = 0] and
E [Y (0)] = E [Y (0)|T = 0] = E [Y (0)|T = 1]

Observational

- Units (people, countries) control their treatment status

- Selection: treatment and control groups differ systematically
- E [Y (1)|T = 1] 6= E [Y (1)|T = 0], [EY (0)|T = 0] 6= E [Y (0)|T = 1]
- Observables: things we can see, measure, and use in our study
- Unobservables: not observables (big problem)

- Naive difference in means will be biased

- Many, many, potential strategies for limiting bias

- Regression is just one method
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ÂTE = E [Y (1)|T = 1]− E [Y (0)|T = 0]

Because E [Y (1)] = E [Y (1)|T = 1] = E [Y (1)|T = 0] and
E [Y (0)] = E [Y (0)|T = 0] = E [Y (0)|T = 1]

Observational

- Units (people, countries) control their treatment status

- Selection: treatment and control groups differ systematically
- E [Y (1)|T = 1] 6= E [Y (1)|T = 0], [EY (0)|T = 0] 6= E [Y (0)|T = 1]
- Observables: things we can see, measure, and use in our study
- Unobservables: not observables (big problem)

- Naive difference in means will be biased

- Many, many, potential strategies for limiting bias

- Regression is just one method

Justin Grimmer (Stanford University) Methodology I September 22nd, 2016 3 / 22



Observational Studies and Causal Inference
Experimental studies:

- Treatment under control of analyst

- Random assignment, estimate
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The Problem of Selection

ATE = E [Y (1)− Y (0)]

= E [Y (1)]− E [Y (0)]

= {E [Y (1)|T = 1]Pr(T = 1) + E [Y (1)|T = 0]Pr(T = 0)}
−{E [Y (0)|T = 0]Pr(T = 0) + E [Y (0)|T = 1]Pr(T = 1)}

There is no assumption free method for estimating quantities in blue
Experiments:

- Control assignment, learn about counterfactual values

Observational studies:

- Assignment not controlled

- Problem: how do we learn about counterfactuals in the face of
selection?
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Manski Bound

What can we learn in the face of selection?

Suppose that we have a dichotomous dependent variable

- Smallest ATE: −1

- Largest ATE: 1

- Length: 2

- −1 < ATE < 1

Manksi Bounds:

- Interval that contains true ATE with probability 1

- Reduces interval length to 1

- Requires no additional assumptions
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Manski Bound

Note that:
0 ≤ E [Y (1)|T = 0] ≤ 1

And that:
0 ≤ E [Y (0)|T = 1] ≤ 1
And recall that,

ATE = {E [Y (1)|T = 1]Pr(T = 1) + E [Y (1)|T = 0]Pr(T = 0)}
−{E [Y (0)|T = 0]Pr(T = 0) + E [Y (0)|T = 1]Pr(T = 1)}

= E [Y (1)|T = 1]π + E [Y (1)|T = 0](1− π)

−E [Y (0)|T = 0](1− π)− E [Y (0)|T = 1]π

So, we can form bounds

E [Y (1)|T = 1]π − (1− π)E [Y (0)|T = 0]− π
< ATE <

E [Y (1)|T =]π − (1− π)E [Y (0)|T = 0] + 1− π
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Manski Bound
The Manski bound

[Average(Treat)π − (1− π)Average(Control)− π,
Average(Treat)π − (1− π)Average(Control) + 1− π]

and has length 1.
From Keele 2009: Presidential Visits + Congressional Wins

- π = 0.06

- E [Y (1)|T = 1] = 18/21 = 0.857

- E [Y (0)|T = 0] = 163/(327) = 0.498

Bound is then:

[0.86× 0.06− 0.94× 0.498− 0.06,0.86× 0.06− 0.94× 0.498 + 0.94]

[−0.476, 0.523]

- Further assumptions can narrow bounds

- Law of Decreasing Credibility: the credibility of inference decreases
with the strength of the assumptions maintained
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Causal Inference Via Stratification
Selection on observables:

- Suppose that treatment is systematically related to outcomes (not
ignorable)

- E [Y (1)|D = 1] 6= E [Y (1)|D = 0]
- E [Y (0)|D = 1] 6= E [Y (0)|D = 0]
- Implies that Naive difference is not an unbiased estimate of ATE.

- Suppose there exists dichotomous variable S such that,

1) E [Y (1)|D = 1,S ] = E [Y (1)|D = 0,S ]
2) E [Y (0)|D = 1,S ] = E [Y (0)|D = 0,S ]

Proposition

Suppose there exists S such that 1) and 2) hold. Then, we can obtain
unbiased estimates for

1) E [ATE |S = 1] ≡ ATE, Given S = 1

2) E [ATE |S = 0] ≡ ATE, Given S = 0

3) ATE
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Idea:

1) Average Treatment effect with strata, S = 1

- Average(Treatment) - Average(Control) , for all units with S = 1

2) Average Treatment effect with strata, S = 0

- Average(Treatment) - Average(Control) , for all units with S = 0

3) Average Treatment Effect

- Calculate Average(Treatment) - Average(Control) within each strata,
E [ATE |S ]

- ATE =
∑1

s=0 E [ATE |S ]× Pr(S)
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Proof

E [Y (1)|S = 1,D = 1]− E [Y (0)|S = 0,D = 0]

= {Pr(D = 1|S = 1)E [Y (1)|S = 1,D = 1]

+Pr(D = 0|S = 1)E [Y (1)|S = 1,D = 1]}
−{Pr(D = 1|S = 1)E [Y (0)|S = 1,D = 0]

+Pr(D = 0|S = 1)E [Y (0)|S = 1,D = 0]}
= {Pr(D = 1|S = 1)E [Y (1)|S = 1,D = 1]

+Pr(D = 0|S = 1)E [Y (1)|S = 1,D = 0]}
−{Pr(D = 1|S = 1)E [Y (0)|S = 1,D = 1]

+Pr(D = 0|S = 1)E [Y (0)|S = 1,D = 0]}
= E [ATE |S = 1]
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Causal Inference via Stratification: Example

We are interested in the causal effect of incumbency on reelection.

- T = 1, Incumbent

- T = 0, Challenger

Yi (T ) result of election.
Incumbency obviously not assigned at random.
But suppose we have a dichotomous measure of candidate quality

- S = 1, High quality

- S = 0, Low quality

And that incumbency is as good as random, given S .
We’re interested in obtaining

ATE = E [Y (1)− Y (0)]

What if we don’t condition on candidate quality?
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Joint Distribution of Treat and Strata
T = 1 T = 0 P(S)

S = 1 0.4 0.2 0.6
S = 0 0.1 0.3 0.4
P(T) 0.5 0.5

Potential Outcomes
Control Treat ATE|S

S = 1 E [Y (0)|S = 1] = 0.5 E [Y (1)|S = 1] = 0.7 0.2
S = 0 E [Y (0)|S = 0] = 0.38 E [Y (1)|S = 0]= 0.4 0.02

True ATE = 0.2× 0.6 + 0.02× 0.4 = 0.128
Naive difference in means:

E [Y (1)|T = 1] = 0.7× P(S = 1|D = 1)

+0.4× P(S = 0|D = 1)

= 0.7× 4

5
+ 0.4× 1

5
= 0.64

E [Y (0)|T = 0] = 0.5× 2

5
+ 0.3× 3

5
= 0.38

E [Y (1)|T = 1]− E [Y (0)|T = 0] = 0.64− 0.38

= 0.26

Why?: those with bigger treatment effects more likely to select into treatment
Confound effect of T with differences across S
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With Stratification

E [Y (1)|T = 1,S = 1] = 0.7

E [Y (0)|T = 0,S = 1] = 0.5

E [Y (1)|T = 1,S = 0] = 0.4

E [Y (0)|T = 0,S = 0] = 0.38∑2
i=1 (E [Y (1)|S = i ,T = 1]− E [Y (0)|S = i ,T = 0]) Pr(S = i) =

(0.7− 0.5)× 0.6 + (0.4− 0.38)× 0.4 = 0.128
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Stratification and Matching

Exact stratification is Exact Matching

Exact Matching, Basic idea:

- Identify all characteristics (covariates) that affect both outcome and
treatment assignment (hint, more than 1!)

- For all treated units, identify control unit with same characteristics

- Exact match: units in the same strata
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What do we do?

Most strata are empty, or only a few observations

- Bias-Variance tradeoff

- Bias: assume same casual effect across strata
- Variance: assume different causal effect across strata

- Modeling E [Y |X1,X2,X3, . . . ,XK ]

- Nonparametric (loess): different curse of dimensionality problem
- High dimensional space is sparse, hard to borrow across

Solution: specify a model of how covariates relate to treatment
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Linear Regression

Consider one continuous covariate Si and a continuous dependent variable
Yi .

Assume the following, relationship,

E [Yi |Si ] = β0 + β1Si

What does this say?

- Stratifying (conditioning): examining means of Y given values of S

- Borrowing information across bins:

- Assuming that means have a global and linear movement with S , β1
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Linear Regression
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For every random variable Y and S we can always write the random
variable as,

Yi = Yi − E [Y |S ]︸ ︷︷ ︸
εi

+E [Y |S ]

Yi = E [Y |S ] + εi

Yi = β0 + β1Si + εi

Where we have used our assumption about E [Y |S ] = β0 + β1Si
We’ll define our residuals to be,

εi = Yi − (E [Y |X ])

= Yi − (β0 + β1Si )

We are going to find the β∗0 , β
∗
1 that minimize the sum of squared

residuals,

(0.1)
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= Yi − (β0 + β1Si )

We are going to find the β∗0 , β
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1 that minimize the sum of squared

residuals,

(β∗0 , β
∗
1) = argminβ0,β1

N∑
i=1

(Yi − β0 − β1Si )2
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Graphically:
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How To Interpret a Regression?

Suppose (again) dichotomous treatment Ti and a host of covariates
Xi1,Xi2, . . . ,XiK .
Common to specify,

Yi = β0 + αTi + β1X1 + β2X2 + . . .+ βKXk + εi

- α is an estimate of the ATE

- α will be a consistent estimate of ATE (converge in probability) if
there are no omitted variables

- α will be a consistent estimate of ATE (converge in probability) if
treatment is as good as randomly assigned, given model

1) X ’s are pre-treatment (not consequences of treatment)
2) We know the X ’s that are related to treatment assignment + outcome
3) The linear model is right (not more complex functional forms)

You get one causal effect per regression:

- The whole point of the X ’s is just to replicate experimental conditions

- Not to estimate separate causal effects
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See you in the spring!!
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