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Interpreting Causal Effects

Rubin Causal Model:

- Y;(1): response under treatment

- Y;(0): response under control

Individual Treatment Effect: Y;(1) — Y;(0)
Fundamental problem of causal inference:
Yi(1) - Yi(0)

ATE = E[Y(1) — Y(0)]
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ATE = E[Y(1)|T = 1] — E[Y(0)| T = 0]
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Experimental studies:

- Treatment under control of analyst

- Random assignment, estimate

ATE = E[Y(1)|T = 1] — E[Y(0)| T = 0]

Because E[Y(1)] = E[Y(1)|T =1] = E[Y(1)|T = 0] and
E[Y(0)] = E[Y(0)IT = 0] = E[Y(0)[ T = 1]
Observational
- Units (people, countries) control their treatment status
- Selection: treatment and control groups differ systematically
- EfY(IT =1 # E[Y(1)[T = 0], [EY(0)[T = 0] # E[Y(0)| T = 1]
- Observables: things we can see, measure, and use in our study
- Unobservables: not observables (big problem)

Naive difference in means will be biased

Many, many, potential strategies for limiting bias

Regression is just one method
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The Problem of Selection

ATE = E[Y(1)- Y(0)]
E[Y(1)] - E[Y(0)]
= {E[Y(1)|T =1|Pr(T =1)+ E[Y(1)|T =0]Pr(T =0)}
—{E[Y(0)|T =0]Pr(T =0)+ E[Y(0)|T =1]Pr(T =1)}
There is no assumption free method for estimating quantities in blue

Experiments:

- Control assignment, learn about counterfactual values
Observational studies:

- Assignment not controlled

- Problem: how do we learn about counterfactuals in the face of
selection?
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Manski Bound

What can we learn in the face of selection?
Suppose that we have a dichotomous dependent variable
Smallest ATE: —1
Largest ATE: 1
Length: 2
- -1<ATE<1
Manksi Bounds:

- Interval that contains true ATE with probability 1
- Reduces interval length to 1

- Requires no additional assumptions
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And that:

0< E[Y(0)|T=1]<1

And recall that,

ATE = {E[Y()|T =1Pr(T = 1)+ E[Y(1)|T = 0]Pr(T = 0)}
—{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)| T = 1]Pr(T = 1)}
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Note that:

0<E[Y()T=0<1

And that:

0< E[Y(0)|T=1]<1

And recall that,

ATE = {E[Y()|T =1Pr(T = 1)+ E[Y(1)|T = 0]Pr(T = 0)}
—{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)| T = 1]Pr(T = 1)}
= E[Y()|T =1+ E[Y(Q)|T =0](1 — )

—E[Y(0)|T = 0](1 — 7) — E[Y(0)| T = 1]«

So, we can form bounds
ElY)IT=1r—-(1-mE[Y(0)|T=0]—-=

< ATE <
E[Y(L)|T =]r — (1 - 7)E[Y(Q)|T=0] + 1=
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Manski Bound
The Manski bound

[Average(Treat)m — (1 — m)Average(Control) — m,

Average(Treat)m — (1 — m)Average(Control) + 1 — 7]
and has length 1.
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Manski Bound
The Manski bound
[Average(Treat)m — (1 — m)Average(Control) — m,

Average(Treat)m — (1 — 7)Average(Control) + 1 — 7]
and has length 1.

From Keele 2009: Presidential Visits + Congressional Wins
- m=0.06
- E[Y(1)|]T =1]=18/21 = 0.857
- E[Y(0)|T =0] =163/(327) = 0.498

Bound is then:

[0.86 x 0.06 — 0.94 x 0.498 — 0.06,0.86 x 0.06 — 0.94 x 0.498 + 0.94]
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Manski Bound
The Manski bound
[Average(Treat)m — (1 — m)Average(Control) — m,

Average(Treat)m — (1 — 7)Average(Control) + 1 — 7]
and has length 1.

From Keele 2009: Presidential Visits + Congressional Wins
- m=0.06
- E[Y(1)|]T =1]=18/21 = 0.857
- E[Y(0)|T =0] =163/(327) = 0.498

Bound is then:

[0.86 x 0.06 — 0.94 x 0.498 — 0.06,0.86 x 0.06 — 0.94 x 0.498 + 0.94]
[-0.476,0.523]

- Further assumptions can narrow bounds

- Law of Decreasing Credibility: the credibility of inference decreases
with the strength of the assumptions maintained
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Causal Inference Via Stratification

Selection on observables:

- Suppose that treatment is systematically related to outcomes (not
ignorable)
- E[Y(1)|D =1] # E[Y(1)|D = (]
- E[Y(0)[D =1] # E[Y(0)|D = 0]
- Implies that Naive difference is not an unbiased estimate of ATE.
- Suppose there exists dichotomous variable S such that,
1) E[Y(1)|D=1,5] = E[Y(1)|D =0, 5]
2) E[Y(0)[D=1,5] = E[Y(0)|D =0,5]
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Causal Inference Via Stratification
Selection on observables:
- Suppose that treatment is systematically related to outcomes (not

ignorable)
- E[Y(1)[D =1] # E[Y(1)|D = (]
- E[Y(0)|D =1] # E[Y(0)|D = 0]
- Implies that Naive difference is not an unbiased estimate of ATE.

- Suppose there exists dichotomous variable S such that,
1) E[Y(1)|D=1,S]=E[Y(1)|D=0,5]
2) E[Y(0)|D=1,5]=E[Y(0)|D=0,5]

Proposition
Suppose there exists S such that 1) and 2) hold. Then, we can obtain
unbiased estimates for

1) E[ATE|S =1] = ATE, Given S =1

2) E[ATE|S =0] = ATE, Given S =0

3) ATE )
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Idea:

1) Average Treatment effect with strata, S =1

- Average(Treatment) - Average(Control) , for all units with S =1
2) Average Treatment effect with strata, S =0

- Average(Treatment) - Average(Control) , for all units with S =0
3) Average Treatment Effect

- Calculate Average(Treatment) - Average(Control) within each strata,
E[ATE|S]

- ATE = YL_, E[ATE|S] x Pr(S)
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Proof

E[Y(1)|S =1,D = 1] — E[Y(0)|S = 0,D = 0]
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Proof

E[Y(1)|S =1,D = 1] — E[Y(0)|S = 0,D = 0]

= {PH(D=1|S=1)E[Y(1)|S=1,D =1]
+Pr(D =0|S = 1)E[Y(1)|S =1,D = 1]}
—{Pr(D =1|S = 1)E[Y(0)|S = 1, D = 0]
+Pr(D = 0|S = 1)E[Y(0)|S = 1,D = 0]}
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Proof

E[Y(1)|]S=1,D =1] — E[Y(0)|S =0,D =0

= {Pr(D=1|S=1)E[Y(1)|S=1,D =1]
+Pr(D =0|S = 1)E[Y(1)|S =1,D = 1]}
—{Pr(D =1|S = 1)E[Y(0)|S = 1, D = 0]
+Pr(D = 0[S = 1)E[Y(0)|S =1, D = 0]}
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Proof

E[Y(1)|]S=1,D =1] — E[Y(0)|S =0,D =0

= {Pr(D=1|S=1)E[Y(1)|S=1,D =1]
+Pr(D =0|S = 1)E[Y(1)|S =1,D = 1]}
—{Pr(D =1|S = 1)E[Y(0)|S = 1, D = 0]
+Pr(D = 0|S = 1)E[Y(0)|S = 1,D = 0]}

= {Pr(D=1|S=1)E[Y(1)|S=1,D =1]
+Pr(D =0|S = 1)E[Y(1)|S =1,D = 0]}
—{Pr(D =1|S = 1)E[Y(0)|S = 1,D = 1]
+Pr(D = 0|S = 1)E[Y(0)|S = 1,D = 0]}

= E[ATE|S = 1]
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Causal Inference via Stratification: Example

We are interested in the causal effect of incumbency on reelection.

- T =1, Incumbent
- T =0, Challenger
Yi(T) result of election.

Incumbency obviously not assigned at random.
But suppose we have a dichotomous measure of candidate quality

- § =1, High quality
- 5§ =0, Low quality

And that incumbency is as good as random, given S.
We're interested in obtaining

ATE = E[Y(1) - Y(0)]

What if we don't condition on candidate quality?
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Joint Distribution of Treat and Strata
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Joint Distributio

n of Treat and Strata
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Joint Distributio

n of Treat and Strata
T=1|T=0/|P(S)
S=1 0.4 0.2 0.6
S=0 0.1 0.3 0.4
P(T) 0.5 0.5
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S=1] E[Y(0)|S=1]=05 | E[Y(1)|]S=1] =07 0.2
S=0| E[Y(0)]S=0]=0.38| E[Y(1)]S=0]=04 0.02
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Joint Distribution of Treat and Strata
T=1]T=0]P(S)
S=1 0.4 0.2 0.6
S=0 0.1 0.3 0.4
P(T) | 05 05

Potential Outcomes
Control Treat ATE|S

S=1] E[Y(0)S=1=05 | E[Y(L)[S=1=07] 02
S=0 E[Y(0)|5 = 0] = 0.38 E[Y(1)|5 = 0]: 04 0.02
True ATE = 0.2 x 0.6 +0.02 x 0.4 = 0.128
Naive difference in means:

E[Y()|T=1 = 07xP(S=1D=1)
+0.4 x P(S=0|D = 1)
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Joint Distribution of Treat and Strata

T=1|T=0

P(S)

S=1 0.4 0.2

0.6

S=0 0.1 0.3

0.4

P(T) | 05 05

Potential Outcomes
Control

Treat ATE|S

S=1] EY(0)S=1=05 | E[YQ)S=1=07] 02

S=0| E[Y(0))S=0] =038 | E[Y(1)[S=0]=04 | 0.02
True ATE = 0.2 x 0.6 +0.02 x 0.4 = 0.128

Naive difference in means:

E[Y()|T=1 = 07xP(S=1D=1)
+0.4 x P(S=0|D = 1)

= 0.7><i+0.4><l:0.64

5 5
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Joint Distribution of Treat and Strata
T=1]T=0]P(S)
S=1 0.4 0.2 0.6
S=0 0.1 0.3 0.4
P(T) | 05 05

Potential Outcomes

Control

Treat ATE|S

S=1] EY(0)S=1=05 | E[YQ)S=1=07] 02

S=0| E[Y(0))S=0] =038 | E[Y(1)[S=0]=04 | 0.02
True ATE = 0.2 x 0.6 +0.02 x 0.4 = 0.128

Naive difference in

E[Y(DIT = 1] - E[Y(0)[T = 0]

means:

ElY()IT=1 = 07xP(S=1D=1)
+0.4 x P(S=0|D = 1)
= 0.7><g+0.4><%:0.64
E[VO)IT=0] = 05x:+03x ;=038
— 0.64-038
— 026

Why?: those with bigger treatment effects more likely to select into treatment
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Joint Distribution of Treat and Strata
T=1]T=0]P(S)
S=1 0.4 0.2 0.6
S=0 0.1 0.3 0.4
P(T) | 05 05

Potential Outcomes
Control Treat ATE|S

S=1] E[Y(0)S=1=05 | E[Y(L)[S=1=07] 02
S=0 E[Y(0)|5 = 0] = 0.38 E[Y(1)|5 = 0]: 04 0.02

True ATE = 0.2 x 0.6 +0.02 x 0.4 = 0.128

Naive difference in means:

ElY()IT=1 = 07xP(S=1D=1)
+0.4 x P(S=0|D = 1)
4 1
= N 4 x - =0.64
0 ><5+O x5
E[VO)IT=0] = 05x:+03x ;=038
E[Y(1)|T = 1] — E[Y(0)[T =0] — 0.64—0.38

= 0.26

Why?: those with bigger treatment effects more likely to select into treatment
Confound effect of T with differences across S
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With Stratification

E[Y(1)|T =1,5 =1]
E[Y(0)|T =0,5 =1]

E[Y

(
(
(
(

1

)
)
)
)

IT=1,5=0]

E[Y(0)|T =0,5 =0]
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With Stratification

ElY(L)|T =1,5=1]

E[Y

1

IT=1,5=0]

(1)

E[Y(0)|T =0,5 =1]
(1)
(0)

E[Y(0)|T =0,5 =0]

0.7
0.5
0.4
0.38

S22 (E[Y()|S=i,T=1—E[Y(0)|S=i,T =0])Pr(S = i) =
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With Stratification

ElY(L)|T =1,5=1]

E[Y

1

IT=1,5=0]

(1)

E[Y(0)|T =0,5 =1]
(1)
(0)

E[Y(0)|T =0,5 =0]

0.7
0.5
0.4
0.38

S22 (E[Y()|S=i,T=1—E[Y(0)|S=i,T =0])Pr(S = i) =
(0.7 — 0.5) x 0.6 + (0.4 — 0.38) x 0.4 = 0.128
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Exact Matching, Basic idea:
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Stratification and Matching

Exact stratification is Exact Matching
Exact Matching, Basic idea:

- Identify all characteristics (covariates) that affect both outcome and
treatment assignment (hint, more than 1!)

- For all treated units, identify control unit with same characteristics
- Exact match: units in the same strata
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What do we do?

Most strata are empty, or only a few observations
- Bias-Variance tradeoff

- Bias: assume same casual effect across strata
- Modeling E[Y|X1,X2,X3,

- Variance: assume different causal effect across strata

o XK]

- Nonparametric (loess): different curse of dimensionality problem

- High dimensional space is sparse, hard to borrow across
Solution: specify a model of how covariates relate to treatment
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Linear Regression
Y.

Consider one continuous covariate S; and a continuous dependent variable
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Y:.

Consider one continuous covariate S; and a continuous dependent variable
Assume the following, relationship,

E[Y;|Si]

Bo + 515
What does this say?

- Stratifying (conditioning): examining means of Y given values of S
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Linear Regression

Y:.

Consider one continuous covariate S; and a continuous dependent variable
Assume the following, relationship,

E[Y;|Si]

Bo + 515
What does this say?

- Stratifying (conditioning): examining means of Y given values of S
- Borrowing information across bins:
- Assuming that means have a global and linear movement with S, f3;
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Linear Regression
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For every random variable Y and S we can always write the random
variable as,

Yi = Yi— E[YIS]+E[Y]S]
—_——

€

Y, = E[V|S]+e
Yi = Bo+BiSi+e
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For every random variable Y and S we can always write the random
variable as,

Vi = Yo ELYIS|+ETYIS)
A

Y, = E[Y|S]+e

Yi = Bo+B1Si+e€

Where we have used our assumption about E[Y'|S] = o + (1Si
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—
Y: = E[Y|S]+e¢

Yi = Bo+BiSi+e

Where we have used our assumption about E[Y'|S] = o + (1Si
We'll define our residuals to be,

Justin Grimmer (Stanford University) Methodology |



variable as,

For every random variable Y and S we can always write the random

Y — E[Y|S] +E[Y|S]
—_——

€

E[Y|S] + €
Bo + B1Si + €;

Where we have used our assumption about E[Y'|S] = o + (1Si
We'll define our residuals to be,

€ =

Yi — (E[YIX])

Justin Grimmer (Stanford University)

Methodology |



variable as,

For every random variable Y and S we can always write the random

Y — E[Y|S] +E[Y|S]
—_——

€

E[Y|S] + €
Bo + B1Si + €;

Where we have used our assumption about E[Y'|S] = o + (1Si
We'll define our residuals to be,

€ =

Yi — (E[Y]X])
Yi — (Bo + 51Si)

Justin Grimmer (Stanford University)

Methodology |



variable as,

For every random variable Y and S we can always write the random

Y — E[Y|S] +E[Y|S]
~—_—

€

E[Y|S] + €
Bo + B1Si + €

Where we have used our assumption about E[Y|S] = 5o + 51S;
We'll define our residuals to be,

e = Yi—(E[Y[X])

= Yi—(Bo+ 51Si)

We are going to find the 33, 37 that minimize the sum of squared
residuals,
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For every random variable Y and S we can always write the random
variable as,

Y; = Yi—E[Y[S]+E[Y]S]
—

Y, = E[Y|S]+e

Y, =

Bo + B1Si + €;
Where we have used our assumption about E[Y'|S] = o + 1Si
We'll define our residuals to be,
€ Yi — (E[Y|X])
Yi = (Bo + £15i)

We are going to find the 33, 5] that minimize the sum of squared
residuals,

N
(BE;?/BT) = argminﬁo,ﬁl 2612

i=1
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For every random variable Y and S we can always write the random
variable as,

Yi = Yi— E[Y[S]+E[Y]S]
—_————

Yi = E[Y|S]+e

Yi = Bo+/iSi+e
Where we have used our assumption about E[Y|S] = o + £1S;
We'll define our residuals to be,

e = Yi—(E[YIX])
= Yi—(Bo+ 51Si)

We are going to find the 37, 37 that minimize the sum of squared
residuals,
N

(B5,87) = argming 5 > (Yi—fo—B1S)?

i=1

] = =
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Graphically:
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Graphically:

B =Y 35S
ﬁ* _ {V:].(SI_“S;)\/I
1 2%51(53—5)2
ﬁf - var(75)
regress<- 1lm(Y 8)
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How To Interpret a Regression?
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How To Interpret a Regression?
Suppose (again) dichotomous treatment T; and a host of covariates
Xi1; Xi2, ., Xik.
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Xi1; Xi2, ., Xik.

Common to specify,

Yi = Bo+aTi+ iXi+ BoXo+ ...+ Bk Xk +e€i

o & E E DA
Justin Grimmer (Stanford University) Methodology |



How To Interpret a Regression?

Suppose (again) dichotomous treatment T; and a host of covariates
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How To Interpret a Regression?

Suppose (again) dichotomous treatment T; and a host of covariates
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How To Interpret a Regression?

Suppose (again) dichotomous treatment T; and a host of covariates
Xi1, Xio, ..., Xik.-
Common to specify,

Yi = Bo+aTi+ iXi+ BoXo+ ...+ Bk Xk +e€i

- « is an estimate of the ATE
- «a will be a consistent estimate of ATE (converge in probability) if
there are no omitted variables

- a will be a consistent estimate of ATE (converge in probability) if
treatment is as good as randomly assigned, given model

1) X's are pre-treatment (not consequences of treatment)
2) We know the X's that are related to treatment assignment + outcome
3) The linear model is right (not more complex functional forms)
You get one causal effect per regression:
- The whole point of the X's is just to replicate experimental conditions
- Not to estimate separate causal effects
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Two-party Vote for President, 1996-2008

TABLE 4. Panel Regression of County-level Unemployment and the Democratic Percent of the

v

Coefficient
(standard error)

Unemployed (percent in county)

Change in unemployment from previous year
State unemployment

Median household income ($1000s)
Democratic vote in previous election

Percent urban

Percent African American

Percent without high school diploma

Percent with four-year college degree or more
Percent aged 18-30

Percent 65 or older

Constant

N

N counties

N years (fixed)®

R-squared: overall (within years)

Coefficient Coefficient Coefficient
(standard error)®  (standard error)  (standard error)
76 203
(.086) (.061)
113
(.105)
—.087 —.229
(.613) (.687)
2030 .015 {030
(.038) (.037) (.037)
906 814 805"
(.018) (.018) (.084)
017 17" 017
(.009) (.010) (.010)
096 096* 1095+
(.009) (.008) (.008)
085 097" 083"
(.030) (.033) (.035)
130 1290 13zt
(.047) (.045) (.053)
029 013 .029
(.025) (.027) (.030)
-.013 —-.029 -.013
(.021) (.023) (.025)
—8.29" —6.67 —7.30™
(1.27) (3.23) (3.39)
12,444 12,444 12,444
311 3 31
4 4 4
B4 (.92) B4 (.91) B4 (.92)

188

(.058)

, errors are b ed with 250 repli
"State effects were fixed through i

gocc ot 4
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; significance tests based on the normal distribution.
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lusion of state-dummy variables not reported here.
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See you in the spring!!

Justin Grimmer (Stanford University)
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