Math Camp

Justin Grimmer

Associate Professor Department of Political Science Stanford University

September 22nd, 2016

< A

3

Rubin Causal Model:

Э

Rubin Causal Model:

- $Y_i(1)$: response under treatment

3

Sac

Rubin Causal Model:

- $Y_i(1)$: response under treatment
- $Y_i(0)$: response under control

Rubin Causal Model:

- $Y_i(1)$: response under treatment
- $Y_i(0)$: response under control

Individual Treatment Effect: $Y_i(1) - Y_i(0)$

Rubin Causal Model:

- $Y_i(1)$: response under treatment
- $Y_i(0)$: response under control

Individual Treatment Effect: $Y_i(1) - Y_i(0)$ Fundamental problem of causal inference:

Rubin Causal Model:

- $Y_i(1)$: response under treatment
- $Y_i(0)$: response under control

Individual Treatment Effect: $Y_i(1) - Y_i(0)$ Fundamental problem of causal inference: $Y_i(1) - Y_i(0)$

Rubin Causal Model:

- $Y_i(1)$: response under treatment
- $Y_i(0)$: response under control

Individual Treatment Effect: $Y_i(1) - Y_i(0)$ Fundamental problem of causal inference: $Y_i(1)$ -

Rubin Causal Model:

- $Y_i(1)$: response under treatment
- $Y_i(0)$: response under control

Individual Treatment Effect: $Y_i(1) - Y_i(0)$ Fundamental problem of causal inference:

$$-Y_{i}(0)$$

Rubin Causal Model:

- $Y_i(1)$: response under treatment
- $Y_i(0)$: response under control

Individual Treatment Effect: $Y_i(1) - Y_i(0)$ Fundamental problem of causal inference: $Y_i(1) - Y_i(0)$

Rubin Causal Model:

- $Y_i(1)$: response under treatment
- $Y_i(0)$: response under control

Individual Treatment Effect: $Y_i(1) - Y_i(0)$ Fundamental problem of causal inference: $Y_i(1) - Y_i(0)$ ATE = E[Y(1) - Y(0)]

E Sac

Observational Studies and Causal Inference Experimental studies:

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0] and E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0] and E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]

Observational

3

Sac

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0] and E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]

Observational

- Units (people, countries) control their treatment status

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0] and E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]

- Units (people, countries) control their treatment status
- Selection: treatment and control groups differ systematically

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because
$$E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0]$$
 and
 $E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]$

- Units (people, countries) control their treatment status
- Selection: treatment and control groups differ systematically
 - $E[Y(1)|T = 1] \neq E[Y(1)|T = 0]$, $[EY(0)|T = 0] \neq E[Y(0)|T = 1]$

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0] and E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]

- Units (people, countries) control their treatment status
- Selection: treatment and control groups differ systematically
 - $E[Y(1)|T = 1] \neq E[Y(1)|T = 0]$, $[EY(0)|T = 0] \neq E[Y(0)|T = 1]$
 - Observables: things we can see, measure, and use in our study

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0] and E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]

- Units (people, countries) control their treatment status
- Selection: treatment and control groups differ systematically
 - $E[Y(1)|T = 1] \neq E[Y(1)|T = 0]$, $[EY(0)|T = 0] \neq E[Y(0)|T = 1]$
 - Observables: things we can see, measure, and use in our study
 - Unobservables: not observables (big problem)

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0] and E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]

- Units (people, countries) control their treatment status
- Selection: treatment and control groups differ systematically
 - $E[Y(1)|T = 1] \neq E[Y(1)|T = 0]$, $[EY(0)|T = 0] \neq E[Y(0)|T = 1]$
 - Observables: things we can see, measure, and use in our study
 - Unobservables: not observables (big problem)
- Naive difference in means will be biased

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0] and E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]

Observational

- Units (people, countries) control their treatment status
- Selection: treatment and control groups differ systematically
 - $E[Y(1)|T = 1] \neq E[Y(1)|T = 0]$, $[EY(0)|T = 0] \neq E[Y(0)|T = 1]$
 - Observables: things we can see, measure, and use in our study
 - Unobservables: not observables (big problem)
- Naive difference in means will be biased
- Many, many, potential strategies for limiting bias

ヨト 《ヨト ヨー のへで

Experimental studies:

- Treatment under control of analyst
- Random assignment, estimate

$$\widehat{ATE} = E[Y(1)|T = 1] - E[Y(0)|T = 0]$$

Because E[Y(1)] = E[Y(1)|T = 1] = E[Y(1)|T = 0] and E[Y(0)] = E[Y(0)|T = 0] = E[Y(0)|T = 1]

Observational

- Units (people, countries) control their treatment status
- Selection: treatment and control groups differ systematically
 - $E[Y(1)|T = 1] \neq E[Y(1)|T = 0]$, $[EY(0)|T = 0] \neq E[Y(0)|T = 1]$
 - Observables: things we can see, measure, and use in our study
 - Unobservables: not observables (big problem)
- Naive difference in means will be biased
- Many, many, potential strategies for limiting bias
- Regression is just one method

ヨト イヨト ヨー のへで

ATE = E[Y(1) - Y(0)]

∃ ► < ∃ ►</p>

< □ > < 同 >

Ξ

ATE =
$$E[Y(1) - Y(0)]$$

= $E[Y(1)] - E[Y(0)]$

- < A

Э

ATE = E[Y(1) - Y(0)]

$$= E[Y(1)] - E[Y(0)]$$

$$= \{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\} \\ -\{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\}\$$

- (A

$$\begin{aligned} \mathsf{ATE} &= E[Y(1) - Y(0)] \\ &= E[Y(1)] - E[Y(0)] \\ &= \{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\} \\ &- \{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\} \end{aligned}$$

There is no assumption free method for estimating quantities in blue

3

イロト イポト イヨト イヨト

$$\begin{aligned} \mathsf{ATE} &= E[Y(1) - Y(0)] \\ &= E[Y(1)] - E[Y(0)] \\ &= \{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\} \\ &- \{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\} \end{aligned}$$

There is no assumption free method for estimating quantities in blue Experiments:

3

イロト イポト イヨト イヨト

Sac

$$ATE = E[Y(1) - Y(0)]$$

= $E[Y(1)] - E[Y(0)]$
= $\{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\}$
 $-\{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\}$

There is no assumption free method for estimating quantities in blue Experiments:

- Control assignment, learn about counterfactual values

$$ATE = E[Y(1) - Y(0)]$$

= $E[Y(1)] - E[Y(0)]$
= $\{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\}$
 $-\{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\}$

There is no assumption free method for estimating quantities in blue Experiments:

- Control assignment, learn about counterfactual values

Observational studies:

$$ATE = E[Y(1) - Y(0)]$$

= $E[Y(1)] - E[Y(0)]$
= $\{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\}$
 $-\{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\}$

There is no assumption free method for estimating quantities in blue Experiments:

- Control assignment, learn about counterfactual values

Observational studies:

- Assignment not controlled

$$ATE = E[Y(1) - Y(0)]$$

= $E[Y(1)] - E[Y(0)]$
= $\{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\}$
 $-\{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\}$

There is no assumption free method for estimating quantities in blue Experiments:

- Control assignment, learn about counterfactual values

Observational studies:

- Assignment not controlled
- Problem: how do we learn about counterfactuals in the face of selection?

What can we learn in the face of selection?

3

э

< 口 > < 同

What can we learn in the face of selection? Suppose that we have a dichotomous dependent variable

What can we learn in the face of selection? Suppose that we have a dichotomous dependent variable

- Smallest ATE: -1

What can we learn in the face of selection? Suppose that we have a dichotomous dependent variable

- Smallest ATE: -1
- Largest ATE: 1

What can we learn in the face of selection? Suppose that we have a dichotomous dependent variable

- Smallest ATE: -1
- Largest ATE: 1
- Length: 2

What can we learn in the face of selection? Suppose that we have a dichotomous dependent variable

- Smallest ATE: -1
- Largest ATE: 1
- Length: 2
- -1 < ATE < 1

What can we learn in the face of selection? Suppose that we have a dichotomous dependent variable

- Smallest ATE: -1
- Largest ATE: 1
- Length: 2
- -1 < ATE < 1

Manksi Bounds:

What can we learn in the face of selection? Suppose that we have a dichotomous dependent variable

- Smallest ATE: -1
- Largest ATE: 1
- Length: 2
- -1 < ATE < 1

Manksi Bounds:

- Interval that contains true ATE with probability $\boldsymbol{1}$

What can we learn in the face of selection? Suppose that we have a dichotomous dependent variable

- Smallest ATE: -1
- Largest ATE: 1
- Length: 2
- -1 < ATE < 1

Manksi Bounds:

- Interval that contains true ATE with probability $\boldsymbol{1}$
- Reduces interval length to 1

What can we learn in the face of selection? Suppose that we have a dichotomous dependent variable

- Smallest ATE: -1
- Largest ATE: 1
- Length: 2
- -1 < ATE < 1

Manksi Bounds:

- Interval that contains true ATE with probability $\boldsymbol{1}$
- Reduces interval length to 1
- Requires no additional assumptions

Note that: $0 \le E[Y(1)|T = 0] \le 1$

Ξ

990

Note that: $0 \le E[Y(1)|T = 0] \le 1$ And that: $0 \le E[Y(0)|T = 1] \le 1$

イロト イポト イヨト イヨト

=

Note that: $0 \le E[Y(1)|T = 0] \le 1$ And that: $0 \le E[Y(0)|T = 1] \le 1$ And recall that,

3

イロト イポト イヨト イヨト

Note that: $0 \le E[Y(1)|T = 0] \le 1$ And that: $0 \le E[Y(0)|T = 1] \le 1$ And recall that, $ATE = \{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\}$ $-\{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\}$

$$= E[Y(1)|T = 1]\pi + E[Y(1)|T = 0](1 - \pi) -E[Y(0)|T = 0](1 - \pi) - E[Y(0)|T = 1]\pi$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

Note that: $0 \le E[Y(1)|T = 0] \le 1$ And that: $0 \le E[Y(0)|T = 1] \le 1$ And recall that, $ATE = \{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\}$ $-\{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\}$ $= E[Y(1)|T = 1]\pi + E[Y(1)|T = 0](1 - \pi)$

$$-E[Y(0)|T = 0](1 - \pi) - E[Y(0)|T = 1]\pi$$

So, we can form bounds

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Note that: $0 \le E[Y(1)|T = 0] \le 1$ And that: $0 \le E[Y(0)|T = 1] \le 1$ And recall that, $ATE = \{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\}$ $-\{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\}$

$$= E[Y(1)|T = 1]\pi + E[Y(1)|T = 0](1 - \pi) -E[Y(0)|T = 0](1 - \pi) - E[Y(0)|T = 1]\pi$$

So, we can form bounds

$$E[Y(1)|T = 1]\pi - (1 - \pi)E[Y(0)|T = 0] - \pi$$

< ATE

Justin Grimmer (Stanford University)

イロト 不得 トイヨト イヨト ヨー のくや

Note that: $0 \le E[Y(1)|T = 0] \le 1$ And that: $0 \le E[Y(0)|T = 1] \le 1$ And recall that, $ATE = \{E[Y(1)|T = 1]Pr(T = 1) + E[Y(1)|T = 0]Pr(T = 0)\}$ $-\{E[Y(0)|T = 0]Pr(T = 0) + E[Y(0)|T = 1]Pr(T = 1)\}$

$$= E[Y(1)|T = 1]\pi + E[Y(1)|T = 0](1 - \pi)$$

= $E[Y(0)|T = 0](1 - \pi) - E[Y(0)|T = 1]\pi$

So, we can form bounds

$$E[Y(1)|T = 1]\pi - (1 - \pi)E[Y(0)|T = 0] - \pi$$

< $ATE < E[Y(1)|T =]\pi - (1 - \pi)E[Y(0)|T = 0] + 1 - \pi$

イロト イポト イヨト イヨト 二日

Manski Bound The Manski bound

E

990

The Manski bound [Average(Treat) $\pi - (1 - \pi)$ Average(Control) $- \pi$, Average(Treat) $\pi - (1 - \pi)$ Average(Control) $+ 1 - \pi$] and has length 1.

< A

The Manski bound [Average(Treat) $\pi - (1 - \pi)$ Average(Control) $- \pi$, Average(Treat) $\pi - (1 - \pi)$ Average(Control) $+ 1 - \pi$] and has length 1.

From Keele 2009: Presidential Visits + Congressional Wins

The Manski bound [Average(Treat) $\pi - (1 - \pi)$ Average(Control) $- \pi$, Average(Treat) $\pi - (1 - \pi)$ Average(Control) $+ 1 - \pi$] and has length 1. From Keele 2009: Presidential Visits + Congressional Wins

- $\pi = 0.06$

The Manski bound [Average(Treat) $\pi - (1 - \pi)$ Average(Control) $- \pi$, Average(Treat) $\pi - (1 - \pi)$ Average(Control) $+ 1 - \pi$] and has length 1.

From Keele 2009: Presidential Visits + Congressional Wins

-
$$\pi = 0.06$$

-
$$E[Y(1)|T = 1] = 18/21 = 0.857$$

The Manski bound [Average(Treat) $\pi - (1 - \pi)$ Average(Control) $- \pi$, Average(Treat) $\pi - (1 - \pi)$ Average(Control) $+ 1 - \pi$] and has length 1.

From Keele 2009: Presidential Visits + Congressional Wins

-
$$\pi = 0.06$$

-
$$E[Y(1)|T = 1] = 18/21 = 0.857$$

-
$$E[Y(0)|T=0] = 163/(327) = 0.498$$

The Manski bound [Average(Treat) $\pi - (1 - \pi)$ Average(Control) $- \pi$, Average(Treat) $\pi - (1 - \pi)$ Average(Control) $+ 1 - \pi$] and has length 1.

From Keele 2009: Presidential Visits + Congressional Wins

- $\pi = 0.06$
- E[Y(1)|T = 1] = 18/21 = 0.857
- E[Y(0)|T = 0] = 163/(327) = 0.498

Bound is then:

The Manski bound [Average(Treat) $\pi - (1 - \pi)$ Average(Control) $- \pi$, Average(Treat) $\pi - (1 - \pi)$ Average(Control) $+ 1 - \pi$] and has length 1.

From Keele 2009: Presidential Visits + Congressional Wins

- $\pi = 0.06$
- E[Y(1)|T = 1] = 18/21 = 0.857
- E[Y(0)|T = 0] = 163/(327) = 0.498

Bound is then:

$$\label{eq:constraint} \begin{split} & [0.86\times0.06-0.94\times0.498-0.06\text{,}0.86\times0.06-0.94\times0.498+0.94] \\ & [-0.476,0.523] \end{split}$$

The Manski bound [Average(Treat) $\pi - (1 - \pi)$ Average(Control) $- \pi$, Average(Treat) $\pi - (1 - \pi)$ Average(Control) $+ 1 - \pi$] and has length 1.

From Keele 2009: Presidential Visits + Congressional Wins

- $\pi = 0.06$
- E[Y(1)|T = 1] = 18/21 = 0.857
- E[Y(0)|T = 0] = 163/(327) = 0.498

Bound is then:

$$\label{eq:constraint} \begin{split} & [0.86\times0.06-0.94\times0.498-0.06\text{,}0.86\times0.06-0.94\times0.498+0.94] \\ & [-0.476,0.523] \end{split}$$

- Further assumptions can narrow bounds

The Manski bound [Average(Treat) $\pi - (1 - \pi)$ Average(Control) $- \pi$, Average(Treat) $\pi - (1 - \pi)$ Average(Control) $+ 1 - \pi$] and has length 1.

From Keele 2009: Presidential Visits + Congressional Wins

- $\pi = 0.06$
- E[Y(1)|T = 1] = 18/21 = 0.857
- E[Y(0)|T = 0] = 163/(327) = 0.498

Bound is then:

$$\label{eq:constraint} \begin{split} & [0.86\times0.06-0.94\times0.498-0.06\text{,}0.86\times0.06-0.94\times0.498+0.94] \\ & [-0.476,0.523] \end{split}$$

- Further assumptions can narrow bounds
- Law of Decreasing Credibility: the credibility of inference decreases with the strength of the assumptions maintained

Selection on observables:

3

Sac

Selection on observables:

- Suppose that treatment is systematically related to outcomes (not ignorable)

Selection on observables:

- Suppose that treatment is systematically related to outcomes (not ignorable)

-
$$E[Y(1)|D = 1] \neq E[Y(1)|D = 0]$$

Selection on observables:

- Suppose that treatment is systematically related to outcomes (not ignorable)

-
$$E[Y(1)|D = 1] \neq E[Y(1)|D = 0]$$

-
$$E[Y(0)|D=1] \neq E[Y(0)|D=0]$$

- Suppose that treatment is systematically related to outcomes (not ignorable)
 - $E[Y(1)|D = 1] \neq E[Y(1)|D = 0]$
 - $E[Y(0)|D = 1] \neq E[Y(0)|D = 0]$
 - Implies that Naive difference is not an unbiased estimate of ATE.

- Suppose that treatment is systematically related to outcomes (not ignorable)
 - $E[Y(1)|D = 1] \neq E[Y(1)|D = 0]$
 - $E[Y(0)|D = 1] \neq E[Y(0)|D = 0]$
 - Implies that Naive difference is not an unbiased estimate of ATE.
- Suppose there exists dichotomous variable S such that,

- Suppose that treatment is systematically related to outcomes (not ignorable)
 - $E[Y(1)|D = 1] \neq E[Y(1)|D = 0]$
 - $E[Y(0)|D = 1] \neq E[Y(0)|D = 0]$
 - Implies that Naive difference is not an unbiased estimate of ATE.
- Suppose there exists dichotomous variable S such that,
 - 1) E[Y(1)|D = 1, S] = E[Y(1)|D = 0, S]

- Suppose that treatment is systematically related to outcomes (not ignorable)
 - $E[Y(1)|D = 1] \neq E[Y(1)|D = 0]$
 - $E[Y(0)|D = 1] \neq E[Y(0)|D = 0]$
 - Implies that Naive difference is not an unbiased estimate of ATE.
- Suppose there exists dichotomous variable S such that,

1)
$$E[Y(1)|D = 1, S] = E[Y(1)|D = 0, S]$$

2) $E[Y(0)|D = 1, S] = E[Y(0)|D = 0, S]$

2)
$$E[Y(0)|D = 1, S] = E[Y(0)|D = 0, S]$$

Selection on observables:

- Suppose that treatment is systematically related to outcomes (not ignorable)
 - $E[Y(1)|D = 1] \neq E[Y(1)|D = 0]$
 - $E[Y(0)|D = 1] \neq E[Y(0)|D = 0]$
 - Implies that Naive difference is not an unbiased estimate of ATE.
- Suppose there exists dichotomous variable S such that,

1)
$$E[Y(1)|D = 1, S] = E[Y(1)|D = 0, S]$$

2) $E[Y(0)|D = 1, S] = E[Y(0)|D = 0, S]$

Proposition

Suppose there exists S such that 1) and 2) hold. Then, we can obtain unbiased estimates for

1)
$$E[ATE|S = 1] \equiv ATE$$
, Given $S = 1$

2)
$$E[ATE|S=0] \equiv ATE$$
, Given $S=0$

3) ATE

Ξ

900

イロト イロト イヨト イヨト

1) Average Treatment effect with strata, S = 1

< A

-

E

- 1) Average Treatment effect with strata, S = 1
 - Average(Treatment) Average(Control) , for all units with S=1

3

Sac

- 1) Average Treatment effect with strata, S=1
 - Average(Treatment) Average(Control) , for all units with S=1
- 2) Average Treatment effect with strata, S = 0

1) Average Treatment effect with strata, S=1

- Average(Treatment) - Average(Control) , for all units with S=1

2) Average Treatment effect with strata, S = 0

- Average(Treatment) - Average(Control) , for all units with S=0

Idea:

1) Average Treatment effect with strata, S=1

- Average(Treatment) - Average(Control) , for all units with S=1

2) Average Treatment effect with strata, S = 0

- Average(Treatment) - Average(Control) , for all units with S = 0

3) Average Treatment Effect

Idea:

1) Average Treatment effect with strata, S=1

- Average(Treatment) Average(Control) , for all units with ${\it S}=1$
- 2) Average Treatment effect with strata, S = 0
 - Average(Treatment) Average(Control) , for all units with S=0
- 3) Average Treatment Effect
 - Calculate Average(Treatment) Average(Control) within each strata, *E*[*ATE*|*S*]

Idea:

1) Average Treatment effect with strata, ${\it S}=1$

- Average(Treatment) Average(Control) , for all units with S=1
- 2) Average Treatment effect with strata, S = 0
 - Average(Treatment) Average(Control) , for all units with S=0
- 3) Average Treatment Effect
 - Calculate Average(Treatment) Average(Control) within each strata, *E*[*ATE*|*S*]

-
$$ATE = \sum_{s=0}^{1} E[ATE|S] \times Pr(S)$$

E[Y(1)|S = 1, D = 1] - E[Y(0)|S = 0, D = 0]

E[Y(1)|S = 1, D = 1] - E[Y(0)|S = 0, D = 0]

$$= \{ \Pr(D = 1 | S = 1) E[Y(1) | S = 1, D = 1] \\ + \Pr(D = 0 | S = 1) E[Y(1) | S = 1, D = 1] \} \\ - \{ \Pr(D = 1 | S = 1) E[Y(0) | S = 1, D = 0] \\ + \Pr(D = 0 | S = 1) E[Y(0) | S = 1, D = 0] \}$$

E[Y(1)|S = 1, D = 1] - E[Y(0)|S = 0, D = 0]

$$= \{ \Pr(D = 1 | S = 1) E[Y(1) | S = 1, D = 1] \\ + \Pr(D = 0 | S = 1) E[Y(1) | S = 1, D = 1] \} \\ - \{ \Pr(D = 1 | S = 1) E[Y(0) | S = 1, D = 0] \} \\ + \Pr(D = 0 | S = 1) E[Y(0) | S = 1, D = 0] \} \\ = \{ \Pr(D = 1 | S = 1) E[Y(1) | S = 1, D = 1] \\ + \Pr(D = 0 | S = 1) E[Y(1) | S = 1, D = 0] \} \\ - \{ \Pr(D = 1 | S = 1) E[Y(0) | S = 1, D = 1] \\ + \Pr(D = 0 | S = 1) E[Y(0) | S = 1, D = 1] \\ + \Pr(D = 0 | S = 1) E[Y(0) | S = 1, D = 0] \}$$

E[Y(1)|S = 1, D = 1] - E[Y(0)|S = 0, D = 0]

$$= \{ \Pr(D = 1 | S = 1) E[Y(1) | S = 1, D = 1] \\ + \Pr(D = 0 | S = 1) E[Y(1) | S = 1, D = 1] \} \\ - \{ \Pr(D = 1 | S = 1) E[Y(0) | S = 1, D = 0] \} \\ + \Pr(D = 0 | S = 1) E[Y(0) | S = 1, D = 0] \} \\ = \{ \Pr(D = 1 | S = 1) E[Y(1) | S = 1, D = 1] \\ + \Pr(D = 0 | S = 1) E[Y(1) | S = 1, D = 0] \} \\ - \{ \Pr(D = 1 | S = 1) E[Y(0) | S = 1, D = 1] \\ + \Pr(D = 0 | S = 1) E[Y(0) | S = 1, D = 0] \} \\ = E[ATE|S = 1]$$

Causal Inference via Stratification: Example

We are interested in the causal effect of incumbency on reelection.

- T=1, Incumbent
- T = 0, Challenger

 $Y_i(T)$ result of election.

Incumbency obviously not assigned at random.

But suppose we have a dichotomous measure of candidate quality

- S = 1, High quality
- S = 0, Low quality

And that incumbency is as good as random, given S. We're interested in obtaining

$$ATE = E[Y(1) - Y(0)]$$

What if we don't condition on candidate quality?

Joint Distribution of Treat and Strata					
	T=1	T = 0	P(S)		
S = 1	0.4	0.2	0.6		
S = 0	0.1	0.3	0.4		
P(T)	0.5	0.5			

Joint Distribution of Treat and Strata

	T = 1	T = 0	P(S)
S=1	0.4	0.2	0.6
S = 0	0.1	0.3	0.4
P(T)	0.5	0.5	

Potential Outcomes

∃ ⊳

< A

Э

Joint Distribution of Treat and Strata						
	T=1	T = 0	P(S)	_		
S=1	0.4	0.2	0.6	-		
S=0	0.1	0.3	0.4	-		
P(T)	0.5	0.5		-		
Potential	Outcome	es		-		
		Control		Treat	ATE <i>S</i>	
S=1	E[Y(0) S=1] = 0.5		= 0.5	E[Y(1) S=1] = 0.7	0.2	
S=0	E[Y(0)]	S = 0] =	0.38	E[Y(1) S=0]=0.4	0.02	

<ロト < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Joint Distribution of Treat and Strata					
	T=1	T = 0	P(S)	-	
S = 1	0.4	0.2	0.6	-	
S = 0	0.1	0.3	0.4	_	
P(T)	0.5	0.5		_	
Potential	Outcome	es		_	
		Control		Treat	ATE S
S=1	E[Y(0)]	S = 1] =	= 0.5	E[Y(1) S=1] = 0.7	0.2
S = 0	E[Y(0) S=0] = 0.38			E[Y(1) S=0]=0.4	0.02
True $ATF = 0.2 \times 0.6 + 0.02 \times 0.4 = 0.128$					

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ◆□ ● ● ● ●

Joint Distribution of Treat and Strata					
	T=1	T=0	P(S)		
S=1	0.4	0.2	0.6	-	
S = 0	0.1	0.3	0.4	-	
P(T)	0.5	0.5		-	
Potential	Outcome	es		_	
		Control		Treat	ATE S
S=1	E[Y(0)]	S = 1] =	= 0.5	E[Y(1) S=1] = 0.7	0.2
S = 0 E[Y(0) S = 0] = 0.38 E[Y(1) S = 0] = 0.4 0.02					0.02
True $ATE = 0.2 \times 0.6 + 0.02 \times 0.4 = 0.128$					

Naive difference in means:

Ξ

900

イロト イポト イヨト イヨト

Joint Distribution of Treat and Strata					
	T=1	T=0	P(S)	_	
S=1	0.4	0.2	0.6	-	
S=0	0.1	0.3	0.4	-	
P(T)	0.5	0.5		-	
Potential	Outcome	es		_	
	Control Treat ATE S				
S=1	E[Y(0) S=1] = 0.5 $E[Y(1) S=1] = 0.7$ 0.2				0.2
	E[Y(0) S=0] = 0.38 $E[Y(1) S=0] = 0.4$ 0.02				0.02
True $ATE = 0.2 \times 0.6 + 0.02 \times 0.4 = 0.128$					
Naive diff	Naive difference in means:				

Justin Grimmer (Stanford University)

 $E[Y(1)|T = 1] = 0.7 \times P(S = 1|D = 1)$

 $+0.4 \times P(S = 0 | D = 1)$

990

イロト 不得 トイヨト イヨト 二日

Joint Distribution of Treat and Strata						
	T=1	T=0	P(S)	_		
S=1	0.4	0.2	0.6	_		
S = 0	0.1	0.3	0.4	_		
P(T)	0.5	0.5		_		
Potential	Outcome	es		_		
	Control Treat ATE S					
S = 1 E[Y(0) S = 1] = 0.5 E[Y(1) S = 1] = 0.7				0.2		
S = 0	S = 0 $E[Y(0) S = 0] = 0.38$ $E[Y(1) S = 0] = 0.4$ 0.02					
True ATE	True $ATE = 0.2 \times 0.6 + 0.02 \times 0.4 = 0.128$					

Naive difference in means:

$$E[Y(1)|T = 1] = 0.7 \times P(S = 1|D = 1) + 0.4 \times P(S = 0|D = 1) = 0.7 \times \frac{4}{5} + 0.4 \times \frac{1}{5} = 0.64$$

Ξ

990

イロト イポト イヨト イヨト

Joint Distribution of Treat and Strata P(S)T = 1T = 0S = 10.4 0.2 0.6 S = 00.1 0.3 0.4 P(T)0.5 0.5 Potential Outcomes ATE|S Control Treat E[Y(0)|S = 1] = 0.5 E[Y(1)|S = 1] = 0.70.2 S = 1E[Y(0)|S=0] = 0.38 E[Y(1)|S=0] = 0.4S = 00.02 True $ATE = 0.2 \times 0.6 + 0.02 \times 0.4 = 0.128$

Naive difference in means:

$$E[Y(1)|T = 1] = 0.7 \times P(S = 1|D = 1) +0.4 \times P(S = 0|D = 1) = 0.7 \times \frac{4}{5} + 0.4 \times \frac{1}{5} = 0.64$$
$$E[Y(0)|T = 0] = 0.5 \times \frac{2}{5} + 0.3 \times \frac{3}{5} = 0.38$$

Justin Grimmer (Stanford University)

September 22nd, 2016 12 / 22

Joint Distribution of Treat and Strata P(S)T = 1T = 0S = 10.4 0.2 0.6 S = 00.1 0.3 0.4 P(T)0.5 0.5 Potential Outcomes ATE|S Control Treat E[Y(0)|S = 1] = 0.5 E[Y(1)|S = 1] = 0.70.2 S = 1E[Y(0)|S=0] = 0.38 E[Y(1)|S=0] = 0.4S = 00.02 True $ATE = 0.2 \times 0.6 + 0.02 \times 0.4 = 0.128$

Naive difference in means:

$$E[Y(1)|T = 1] = 0.7 \times P(S = 1|D = 1) + 0.4 \times P(S = 0|D = 1) = 0.7 \times \frac{4}{5} + 0.4 \times \frac{1}{5} = 0.64$$
$$E[Y(0)|T = 0] = 0.5 \times \frac{2}{5} + 0.3 \times \frac{3}{5} = 0.38$$
$$E[Y(1)|T = 1] - E[Y(0)|T = 0] = 0.64 - 0.38$$

Joint Distribution of Treat and Strata P(S)T = 1T = 0S = 10.4 0.2 0.6 S = 00.1 0.3 0.4 P(T)0.5 0.5 Potential Outcomes ATE|S Control Treat E[Y(0)|S = 1] = 0.5 E[Y(1)|S = 1] = 0.70.2 S = 1E[Y(0)|S=0] = 0.38 E[Y(1)|S=0] = 0.4S = 00.02 True $ATE = 0.2 \times 0.6 + 0.02 \times 0.4 = 0.128$

Naive difference in means:

$$E[Y(1)|T = 1] = 0.7 \times P(S = 1|D = 1) + 0.4 \times P(S = 0|D = 1) = 0.7 \times \frac{4}{5} + 0.4 \times \frac{1}{5} = 0.64$$
$$E[Y(0)|T = 0] = 0.5 \times \frac{2}{5} + 0.3 \times \frac{3}{5} = 0.38$$
$$E[Y(1)|T = 1] - E[Y(0)|T = 0] = 0.64 - 0.38 = 0.26$$

Joint Distribution of Treat and Strata										
	T = 1	T=0	P(S)							
S=1	0.4	0.2	0.6	-						
S=0	0.1	0.3	0.4	-						
P(T)	0.5	0.5		-						
Potential	Outcome	es		_						
	Control Treat ATE S									
S=1	E[Y(0)]	S = 1] =	= 0.5	E[Y(1) S=1] = 0.7	0.2					
S=0	E[Y(0)]	<i>S</i> = 0] =	0.38	E[Y(1) S=0]=0.4	0.02					
True ATE	$E = 0.2 \times$	0.6 + 0.02	× 0.4 =	= 0.128	True $ATE = 0.2 \times 0.6 + 0.02 \times 0.4 = 0.128$					

Naive difference in means:

$$E[Y(1)|T = 1] = 0.7 \times P(S = 1|D = 1) + 0.4 \times P(S = 0|D = 1) = 0.7 \times \frac{4}{5} + 0.4 \times \frac{1}{5} = 0.64$$
$$E[Y(0)|T = 0] = 0.5 \times \frac{2}{5} + 0.3 \times \frac{3}{5} = 0.38$$
$$E[Y(1)|T = 1] - E[Y(0)|T = 0] = 0.64 - 0.38 = 0.26$$

Why?: those with bigger treatment effects more likely to select into treatment

E 990

イロト イポト イヨト イヨト

Joint	Distributio	n of Trea	at and Strata	
	T = 1	T = 0	P(S)	

	1 - 1	I = 0	I (J)	
S=1	0.4	0.2	0.6	
S = 0	0.1	0.3	0.4	
P(T)	0.5	0.5		

Potential Outcomes

	Control	Treat	ATE S			
S=1	E[Y(0) S=1] = 0.5	E[Y(1) S=1] = 0.7	0.2			
S = 0	E[Y(0) S=0] = 0.38	E[Y(1) S=0]=0.4	0.02			
True $ATE = 0.2 \times 0.6 + 0.02 \times 0.4 = 0.128$						
NI · · · · · · · · · · · · · · · · · · ·						

Naive difference in means:

$$E[Y(1)|T = 1] = 0.7 \times P(S = 1|D = 1) + 0.4 \times P(S = 0|D = 1) = 0.7 \times \frac{4}{5} + 0.4 \times \frac{1}{5} = 0.64$$
$$E[Y(0)|T = 0] = 0.5 \times \frac{2}{5} + 0.3 \times \frac{3}{5} = 0.38$$
$$E[Y(1)|T = 1] - E[Y(0)|T = 0] = 0.64 - 0.38 = 0.26$$

Why?: those with bigger treatment effects more likely to select into treatment Confound effect of T with differences across S

Justin Grimmer (Stanford University)

Methodology I

September 22nd, 2016 12 / 22

Э

Sac

Justin Grimmer (Stanford University)

- < A

Ξ

$$E[Y(1)|T = 1, S = 1] = 0.7$$

$$E[Y(0)|T = 0, S = 1] = 0.5$$

$$E[Y(1)|T = 1, S = 0] = 0.4$$

$$E[Y(0)|T = 0, S = 0] = 0.38$$

990

Ξ

$$E[Y(1)|T = 1, S = 1] = 0.7$$

$$E[Y(0)|T = 0, S = 1] = 0.5$$

$$E[Y(1)|T = 1, S = 0] = 0.4$$

$$E[Y(0)|T = 0, S = 0] = 0.38$$

 $\sum_{i=1}^{2} (E[Y(1)|S=i, T=1] - E[Y(0)|S=i, T=0]) \Pr(S=i) =$

Sac

$$E[Y(1)|T = 1, S = 1] = 0.7$$

$$E[Y(0)|T = 0, S = 1] = 0.5$$

$$E[Y(1)|T = 1, S = 0] = 0.4$$

$$E[Y(0)|T = 0, S = 0] = 0.38$$

 $\sum_{i=1}^{2} \left(E[Y(1)|S=i, T=1] - E[Y(0)|S=i, T=0] \right) \Pr(S=i) = (0.7 - 0.5) \times 0.6 + (0.4 - 0.38) \times 0.4 = 0.128$

Exact stratification is Exact Matching

Exact stratification is Exact Matching Exact Matching, Basic idea:

Exact stratification is Exact Matching Exact Matching, Basic idea:

- Identify all characteristics (covariates) that affect both outcome and treatment assignment (hint, more than 1!)

Exact stratification is Exact Matching Exact Matching, Basic idea:

- Identify all characteristics (covariates) that affect both outcome and treatment assignment (hint, more than 1!)
- For all treated units, identify control unit with same characteristics

Exact stratification is Exact Matching Exact Matching, Basic idea:

- Identify all characteristics (covariates) that affect both outcome and treatment assignment (hint, more than 1!)
- For all treated units, identify control unit with same characteristics
- Exact match: units in the same strata

What do we do?

Most strata are empty, or only a few observations

- Bias-Variance tradeoff
 - Bias: assume same casual effect across strata
 - Variance: assume different causal effect across strata
- Modeling $E[Y|X_1, X_2, X_3, \dots, X_K]$
 - Nonparametric (loess): different curse of dimensionality problem
 - High dimensional space is sparse, hard to borrow across

Solution: specify a model of how covariates relate to treatment

Consider one continuous covariate S_i and a continuous dependent variable Y_i .

Consider one continuous covariate S_i and a continuous dependent variable Y_i .

Assume the following, relationship,

Consider one continuous covariate S_i and a continuous dependent variable Y_i .

Assume the following, relationship,

 $E[Y_i|S_i] = \beta_0 + \beta_1 S_i$

Sac

Consider one continuous covariate S_i and a continuous dependent variable Y_i .

Assume the following, relationship,

$$E[Y_i|S_i] = \beta_0 + \beta_1 S_i$$

What does this say?

Consider one continuous covariate S_i and a continuous dependent variable Y_i .

Assume the following, relationship,

$$E[Y_i|S_i] = \beta_0 + \beta_1 S_i$$

What does this say?

- Stratifying (conditioning): examining means of Y given values of S

Consider one continuous covariate S_i and a continuous dependent variable Y_i .

Assume the following, relationship,

$$E[Y_i|S_i] = \beta_0 + \beta_1 S_i$$

What does this say?

- Stratifying (conditioning): examining means of Y given values of S
- Borrowing information across bins:

Consider one continuous covariate S_i and a continuous dependent variable Y_i .

Assume the following, relationship,

$$E[Y_i|S_i] = \beta_0 + \beta_1 S_i$$

What does this say?

- Stratifying (conditioning): examining means of Y given values of S
- Borrowing information across bins:
 - Assuming that means have a global and linear movement with S, β_1

Justin Grimmer (Stanford University)

September 22nd, 2016 17 / 22

DQC

Э

September 22nd, 2016 17 / 22

- *E*[*Y*|*S*] with no stratification: every point is in its own "bin"
- *E*[*Y*|*S*] after binning the data-no assumed relationship

- *E*[*Y*|*S*] with no stratification: every point is in its own "bin"
- *E*[*Y*|*S*] after binning the data-no assumed relationship

$$- E[Y|S] = \beta_0 + \beta_1 S_i$$

990

Э

∃ ⊳

$$Y_i = \underbrace{Y_i - E[Y|S]}_{\epsilon_i} + E[Y|S]$$

990

Э

∃ ⊳

$$Y_{i} = \underbrace{Y_{i} - E[Y|S]}_{\epsilon_{i}} + E[Y|S]$$
$$Y_{i} = E[Y|S] + \epsilon_{i}$$

990

Э

∃ ⊳

$$Y_{i} = \underbrace{Y_{i} - E[Y|S]}_{\epsilon_{i}} + E[Y|S]$$
$$Y_{i} = E[Y|S] + \epsilon_{i}$$
$$Y_{i} = \beta_{0} + \beta_{1}S_{i} + \epsilon_{i}$$

990

Э

∃ ⊳

$$Y_{i} = \underbrace{Y_{i} - E[Y|S]}_{\epsilon_{i}} + E[Y|S]$$
$$Y_{i} = E[Y|S] + \epsilon_{i}$$
$$Y_{i} = \beta_{0} + \beta_{1}S_{i} + \epsilon_{i}$$

Where we have used our assumption about $E[Y|S] = \beta_0 + \beta_1 S_i$

$$Y_{i} = \underbrace{Y_{i} - E[Y|S]}_{\epsilon_{i}} + E[Y|S]$$
$$Y_{i} = E[Y|S] + \epsilon_{i}$$
$$Y_{i} = \beta_{0} + \beta_{1}S_{i} + \epsilon_{i}$$

Where we have used our assumption about $E[Y|S] = \beta_0 + \beta_1 S_i$ We'll define our residuals to be,

$$Y_{i} = \underbrace{Y_{i} - E[Y|S]}_{\epsilon_{i}} + E[Y|S]$$
$$Y_{i} = E[Y|S] + \epsilon_{i}$$
$$Y_{i} = \beta_{0} + \beta_{1}S_{i} + \epsilon_{i}$$

Where we have used our assumption about $E[Y|S] = \beta_0 + \beta_1 S_i$ We'll define our residuals to be,

$$\epsilon_i = Y_i - (E[Y|X])$$

Justin Grimmer (Stanford University)

$$Y_{i} = \underbrace{Y_{i} - E[Y|S]}_{\epsilon_{i}} + E[Y|S]$$
$$Y_{i} = E[Y|S] + \epsilon_{i}$$
$$Y_{i} = \beta_{0} + \beta_{1}S_{i} + \epsilon_{i}$$

Where we have used our assumption about $E[Y|S] = \beta_0 + \beta_1 S_i$ We'll define our residuals to be,

$$\epsilon_i = Y_i - (E[Y|X]) = Y_i - (\beta_0 + \beta_1 S_i)$$

Justin Grimmer (Stanford University)

$$Y_{i} = \underbrace{Y_{i} - E[Y|S]}_{\epsilon_{i}} + E[Y|S]$$
$$Y_{i} = E[Y|S] + \epsilon_{i}$$
$$Y_{i} = \beta_{0} + \beta_{1}S_{i} + \epsilon_{i}$$

Where we have used our assumption about $E[Y|S] = \beta_0 + \beta_1 S_i$ We'll define our residuals to be,

$$\epsilon_i = Y_i - (E[Y|X]) = Y_i - (\beta_0 + \beta_1 S_i)$$

We are going to find the β_0^*,β_1^* that minimize the sum of squared residuals,

$$Y_{i} = \underbrace{Y_{i} - E[Y|S]}_{\epsilon_{i}} + E[Y|S]$$
$$Y_{i} = E[Y|S] + \epsilon_{i}$$
$$Y_{i} = \beta_{0} + \beta_{1}S_{i} + \epsilon_{i}$$

Where we have used our assumption about $E[Y|S] = \beta_0 + \beta_1 S_i$ We'll define our residuals to be,

$$\epsilon_i = Y_i - (E[Y|X]) = Y_i - (\beta_0 + \beta_1 S_i)$$

We are going to find the β_0^*,β_1^* that minimize the sum of squared residuals,

$$(eta_0^*,eta_1^*) = \operatorname{argmin}_{eta_0,eta_1}\sum_{i=1}^N \epsilon_i^2$$

$$Y_{i} = \underbrace{Y_{i} - E[Y|S]}_{\epsilon_{i}} + E[Y|S]$$
$$Y_{i} = E[Y|S] + \epsilon_{i}$$
$$Y_{i} = \beta_{0} + \beta_{1}S_{i} + \epsilon_{i}$$

Where we have used our assumption about $E[Y|S] = \beta_0 + \beta_1 S_i$ We'll define our residuals to be,

$$\epsilon_i = Y_i - (E[Y|X]) = Y_i - (\beta_0 + \beta_1 S_i)$$

We are going to find the β_0^*,β_1^* that minimize the sum of squared residuals,

$$(\beta_0^*, \beta_1^*) = \operatorname{argmin}_{\beta_0, \beta_1} \sum_{i=1}^{N} (Y_i - \beta_0 - \beta_1 S_i)^2$$

Graphically:

nac

Э

Graphically:

Sar

Justin Grimmer (Stanford University)

- < A

Э

Suppose (again) dichotomous treatment T_i and a host of covariates $X_{i1}, X_{i2}, \ldots, X_{iK}$

-

3

- (日)

Suppose (again) dichotomous treatment T_i and a host of covariates $X_{i1}, X_{i2}, \ldots, X_{iK}$ Common to specify,

Suppose (again) dichotomous treatment T_i and a host of covariates $X_{i1}, X_{i2}, \ldots, X_{iK}$ Common to specify,

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

Suppose (again) dichotomous treatment T_i and a host of covariates $X_{i1}, X_{i2}, \ldots, X_{iK}$. Common to specify,

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

- α is an estimate of the ATE

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

- α is an estimate of the ATE
- α will be a consistent estimate of ATE (converge in probability) if there are no omitted variables

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

- α is an estimate of the ATE
- α will be a consistent estimate of ATE (converge in probability) if there are no omitted variables
- α will be a consistent estimate of ATE (converge in probability) if treatment is as good as randomly assigned, given model

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

- α is an estimate of the ATE
- α will be a consistent estimate of ATE (converge in probability) if there are no omitted variables
- α will be a consistent estimate of ATE (converge in probability) if treatment is as good as randomly assigned, given model
 - 1) X's are pre-treatment (not consequences of treatment)

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

- α is an estimate of the ATE
- α will be a consistent estimate of ATE (converge in probability) if there are no omitted variables
- α will be a consistent estimate of ATE (converge in probability) if treatment is as good as randomly assigned, given model
 - 1) X's are pre-treatment (not consequences of treatment)
 - 2) We know the X's that are related to treatment assignment + outcome

Suppose (again) dichotomous treatment T_i and a host of covariates $X_{i1}, X_{i2}, \ldots, X_{iK}$. Common to specify,

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

- α is an estimate of the ATE
- α will be a consistent estimate of ATE (converge in probability) if there are no omitted variables
- α will be a consistent estimate of ATE (converge in probability) if treatment is as good as randomly assigned, given model
 - 1) X's are pre-treatment (not consequences of treatment)
 - 2) We know the X's that are related to treatment assignment + outcome
 - 3) The linear model is right (not more complex functional forms)

- 4 回 ト 4 ヨ ト - 1 ヨ

Suppose (again) dichotomous treatment T_i and a host of covariates $X_{i1}, X_{i2}, \ldots, X_{iK}$. Common to specify,

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

- α is an estimate of the ATE
- α will be a consistent estimate of ATE (converge in probability) if there are no omitted variables
- α will be a consistent estimate of ATE (converge in probability) if treatment is as good as randomly assigned, given model
 - 1) X's are pre-treatment (not consequences of treatment)
 - 2) We know the X's that are related to treatment assignment + outcome
 - 3) The linear model is right (not more complex functional forms)

You get one causal effect per regression:

Suppose (again) dichotomous treatment T_i and a host of covariates $X_{i1}, X_{i2}, \ldots, X_{iK}$. Common to specify,

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

- α is an estimate of the ATE
- α will be a consistent estimate of ATE (converge in probability) if there are no omitted variables
- α will be a consistent estimate of ATE (converge in probability) if treatment is as good as randomly assigned, given model
 - 1) X's are pre-treatment (not consequences of treatment)
 - 2) We know the X's that are related to treatment assignment + outcome
 - 3) The linear model is right (not more complex functional forms)

You get one causal effect per regression:

- The whole point of the X's is just to replicate experimental conditions

200

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Suppose (again) dichotomous treatment T_i and a host of covariates $X_{i1}, X_{i2}, \ldots, X_{iK}$. Common to specify,

$$Y_i = \beta_0 + \alpha T_i + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_K X_k + \epsilon_i$$

- α is an estimate of the ATE
- α will be a consistent estimate of ATE (converge in probability) if there are no omitted variables
- α will be a consistent estimate of ATE (converge in probability) if treatment is as good as randomly assigned, given model
 - 1) X's are pre-treatment (not consequences of treatment)
 - 2) We know the X's that are related to treatment assignment + outcome
 - 3) The linear model is right (not more complex functional forms)

You get one causal effect per regression:

- The whole point of the X's is just to replicate experimental conditions
- Not to estimate separate causal effects

	l Coefficient (standard error) ^a	II Coefficient (standard error)	III Coefficient (standard error)	IV Coefficient (standard error)
Unemployed (percent in county)	.176** (.086)		.203*** (.061)	.198*** (.058)
Change in unemployment from previous year		.113 (.105)		.079
State unemployment		067 (.613)	229 (.687)	243 (.589)
Median household income (\$1000s)	.030 (.036)	.015 (.037)	.030	.028 (.037)
Democratic vote in previous election	.906*** (.018)	.914*** (.018)	.905****	.906***
Percent urban	.017	.017*	.017*	.017* (.010)
Percent African American	.096***	.096***	.095***	.095***
Percent without high school diploma	.085*** (.030)	.097*** (.033)	.083** (.035)	.085** (.034)
Percent with four-year college degree or more	.130***	.129***	.132** (.053)	.132* (.052)
Percent aged 18-30	.029	.013	.029 (.030)	.026
Percent 65 or older	013	029	013 (.025)	016 (.024)
Constant	-8.29*** (1.27)	-6.67** (3.23)	-7.30** (3.39)	-7.14** (3.06)
N Necurica	12,444	12,444	12,444	12,444
N counties N years (fixed) ^b	3,111 4	3,111 4	3,111 4	3,111 4
R-squared: overall (within years)	.84 (.92)	.84 (.91)	.84 (.92)	.84 (.92)

TABLE 4. Panel Regression of County-level Unemployment and the Democratic Percent of the

^aStandard errors are bootstrapped with 250 replications; significance tests based on the normal distribution.
^bState effects were fixed through inclusion of state-dummy variables not reported here.

*etatistical significance at 10 two-tailed test:

Justin Grimmer (Stanford University)

Methodology I

September 22nd, 2016

SOC 21 / 22

See you in the spring!!

Justin Grimmer (Stanford University)

Þ

< A Э