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Inequalities and Limit Theorems

Limit Theorems

- What happens when we consider a long sequence of random variables
?

- What can we reasonably infer from data?

- Laws of large numbers: averages of random variables converge on
expected value?

- Central Limit Theorems: sum of random variables have normal
distribution?

- We’ll focus on intuition for both, but we’ll prove some stuff too.

Review Session
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Weak Law of Large Numbers

Proof plan:

- Markov’s Inequality

- Chebyshev’s Inequality

- Weak Law of Large Numbers
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Markov’s Inequality

Proposition

Suppose X is a random variable that takes on non-negative values. Then,
for all a > 0,

P(X ≥ a) ≤ E [X ]

a
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Markov’s Inequality

Proof.

For a > 0,

E [X ] =

∫ ∞
0

xf (x)dx

=

∫ a

0
xf (x)dx +

∫ ∞
a

xf (x)dx

Because X ≥ 0,

E [X ] ≥
∫ ∞
a

xf (x)dx ≥
∫ ∞
a

af (x)dx = aP(X ≥ a)

E [X ]

a
≥ P(X ≥ a)
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Chebyshev’s Inequality

Proposition

If X is a random variable with mean µ and variance σ2, then, for any value
k > 0,

P(|X − µ| ≥ k) ≤ σ2

k2
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Chebyshev’s Inequality

Proof.

Define the random variable

Y = (X − µ)2

Where µ = E [X ].

Then we know Y is a non-negative random variable. Set a = k2.
Applying the inequality:

P(Y ≥ k2) ≤ E [Y ]

k2

P((X − µ)2 ≥ k2) ≤ E [(X − µ)2]

k2

P((X − µ)2 ≥ k2) ≤ σ2

k2
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Chebyshev’s Inequality

Further we know that,

(X − µ)2 ≥ k2

Implies that

|X − µ| ≥ k

Thus, we have shown

P(|X − µ| ≥ k) ≤ σ2

k2
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Sequence of Random Variables

Sequence of Independent and Identically, Distributed Random variables.

- Sequence: X1,X2, . . . ,Xn, . . .

- Think of a sequence as sampled data:

- Suppose we are drawing a sample of N observations
- Each observation will be a random variable, say Xi

- With realization xi
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Mean/Variance of Sample Mean

Proposition

Let X1,X2, . . . ,Xn be a random sample from a distribution with mean µ
and variance σ2. Let X̄n be the sample mean. Then E [X̄n] = µ and

var(X̄n) = σ2

n

Proof.

E [X̄n] =
1

n

n∑
i=1

E [Xi ]

=
1

n
nµ = µ
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Mean/Variance of Sample Mean

var(X̄n) =
1

n2
var(

n∑
i=1

Xi )

=
1

n2

n∑
i=1

var(Xi )

=
1

n2
nσ2 =

σ2

n
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Weak Law of Large Numbers

Proposition

Suppose X1,X2, . . . ,Xn is a random sample from a distribution with mean
µ and Var(Xi ) = σ2. Then, for all ε > 0,

P

{∣∣∣∣X1 + X2 + . . .+ Xn

n
− µ

∣∣∣∣ ≥ ε}→ 0 as n→∞
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Weak Law of Large Numbers

Proof.

From our previous proposition

E[X1 + X2 + · · ·+ Xn]

n
=

∑n
i=1 E [Xi ]

n
= µ

Further,

E[(

∑n
i=1 Xi − µ

n
)2] =

Var(X1 + X2 + · · ·+ Xn)

n2
=

∑n
i=1 Var(Xi )

n2
=
σ2

n

Apply Chebyshev’s Inequality:

P

{∣∣∣∣X1 + X2 + . . .+ Xn

n
− µ

∣∣∣∣ ≥ ε} ≤ σ2

nε2
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Suppose X1,X2, . . . are iid normal distributions,

Xi ∼ Normal(0, 10)

P

{∣∣∣∣X1 + X2 + . . .+ Xn

n
− µ

∣∣∣∣ ≥ 0.1

}
as n→∞
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Suppose X1,X2, . . . are iid normal distributions,

Xi ∼ Normal(0, 10)

P

{∣∣∣∣X1 + X2 + . . .+ Xn

n
− µ

∣∣∣∣ ≥ 0.1

}
as n→∞

Suppose we want to guarantee that we have at most a 0.01 probability of
being more than 0.1 away from the true µ. How big do we need n?

0.01 =
10

n(0.12)

n =
1000

0.01
n = 100, 000
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Sequences and Convergence

Sequence (refresher):

{ai}∞i=1 = {a1, a2, a3, . . . , an, . . . , }

Definition

We say that the sequence {ai}∞i=1 converges to real number A if for each
ε > 0 there is a positive integer N such that for n ≥ N, |an − A| < ε
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Sequences and Convergence

Sequence of functions:

{fi}∞i=1 = {f1, f2, f3, . . . , fn, . . . , }

Definition

Suppose fi : X → < for all i . Then {fi}∞i=1 converges pointwise to f if, for
all x ∈ X and ε > 0, there is an N such that for all n ≥ N,

|fn(x)− f (x)| < ε

This is as strong of a statement as we’re likely to make in statistics
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Convergence Definitions

Define θ̂n to be estimator for θ based on n observations.

Sequence of estimators: increasing sample size

{
θ̂i

}n

i=1
=

{
θ̂1, θ̂2, θ̂3, . . . , θ̂n

}
Question: What can we say about

{
θ̂i

}n

i=1
as n→∞?

- What is the probability θ̂n differs from θ?

- What is the probability
{
θ̂i

}n

i=1
converges to θ?

- What is sampling distribution of θ̂n as n→∞ ?
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Convergence in Probability

Definition

We will say the sequence θ̂n converges in probability to θ (perhaps a
non-degenerate RV) if,

lim
n→∞

Prob(|θ̂n − θ| > ε) = 0

For any ε > 0

- ε is a tolerance parameter: how much error around θ?

- In the limit, convergence in probability implies sampling distribution
collapses on a spike at θ

-
{
θ̂i

}
need not actually converge to θ, only P(|θn - θ| > ε) = 0

Justin Grimmer (Stanford University) Methodology I September 22nd, 2016 18 / 28



Convergence in Probability

Definition

We will say the sequence θ̂n converges in probability to θ (perhaps a
non-degenerate RV) if,

lim
n→∞

Prob(|θ̂n − θ| > ε) = 0

For any ε > 0

- ε is a tolerance parameter: how much error around θ?

- In the limit, convergence in probability implies sampling distribution
collapses on a spike at θ

-
{
θ̂i

}
need not actually converge to θ, only P(|θn - θ| > ε) = 0

Justin Grimmer (Stanford University) Methodology I September 22nd, 2016 18 / 28



Convergence in Probability

Definition

We will say the sequence θ̂n converges in probability to θ (perhaps a
non-degenerate RV) if,

lim
n→∞

Prob(|θ̂n − θ| > ε) = 0

For any ε > 0

- ε is a tolerance parameter: how much error around θ?

- In the limit, convergence in probability implies sampling distribution
collapses on a spike at θ

-
{
θ̂i

}
need not actually converge to θ, only P(|θn - θ| > ε) = 0

Justin Grimmer (Stanford University) Methodology I September 22nd, 2016 18 / 28



Convergence in Probability

Definition

We will say the sequence θ̂n converges in probability to θ (perhaps a
non-degenerate RV) if,

lim
n→∞

Prob(|θ̂n − θ| > ε) = 0

For any ε > 0

- ε is a tolerance parameter: how much error around θ?

- In the limit, convergence in probability implies sampling distribution
collapses on a spike at θ

-
{
θ̂i

}
need not actually converge to θ, only P(|θn - θ| > ε) = 0

Justin Grimmer (Stanford University) Methodology I September 22nd, 2016 18 / 28



Convergence in Probability

Definition

We will say the sequence θ̂n converges in probability to θ (perhaps a
non-degenerate RV) if,

lim
n→∞

Prob(|θ̂n − θ| > ε) = 0

For any ε > 0

- ε is a tolerance parameter: how much error around θ?

- In the limit, convergence in probability implies sampling distribution
collapses on a spike at θ

-
{
θ̂i

}
need not actually converge to θ, only P(|θn - θ| > ε) = 0

Justin Grimmer (Stanford University) Methodology I September 22nd, 2016 18 / 28



Example (Cassella and Burger)

Suppose S ∼ Uniform(0,1). Define X (s) = s.
Suppose Xn is define as follows:

X1(s) = s + I (s ∈ [0, 1]) , X2(s) = s + I (s ∈ [0, 1/2])

X3(s) = s + I (s ∈ [1/2, 1]) , X4(s) = s + I (s ∈ [0, 1/3])

X5(s) = s + I (s ∈ [1/3, 2/3]) , X6(s) = s + I (s ∈ [2/3, 1])

Does Xn(s) pointwise converge to X (s)?
Does Xn(s) converge in probability to X (s)?

P(|Xn − X | > ε) = P(s ∈ [ln, un])

Length of [ln, un]→ 0⇒ P(s ∈ [Ln,Un]) = 0
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Almost Sure Convergence

Definition

We will say the sequence θ̂n converges almost surely to θ if,

Prob( lim
n→∞

|θ̂n − θ| > ε) = 0

- Stronger: says that sequence converges to θ (almost everywhere) )

- Think about definition of random variable: θ̂n is a function from
sample space to real line.

- Almost sure says that, for all outcomes (s) in sample space (S)
s ∈ S ,

θ̂n(s) → θ(s)

Except for a subset N ⊂ S such that P(N ) = 0.
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Example (Cassella and Burger)

Suppose S ∼ Uniform(0,1).
Suppose Xn is define as follows:

X1(s) = s + I (s ∈ [0, 1]) , X2(s) = s + I (s ∈ [0, 1/2])

X3(s) = s + I (s ∈ [1/2, 1]) , X4(s) = s + I (s ∈ [0, 1/3])

X5(s) = s + I (s ∈ [1/3, 2/3]) , X6(s) = s + I (s ∈ [2/3, 1])

Does Xn(s) converge almost surely to X (s) = s?

No!: the sequence doesn’t converge for each s
For each value of s the sequence varies between s and s + 1 infinitely often
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Convergence in Distribution
We’ve talked about θ̂n’s sampling distribution converging to a normal
distribution.

This is convergence in distribution

Definition

θ̂n, with cdf Fn(x), converges in distribution to random variable Y with
cdf F (x) if

lim
n→∞

|Fn(x)− F (x)| = 0

For all x ∈ < where F (x) is continuous.

- Weakest form of convergence almost sure → probability →
distribution

- Says that cdfs are equal, says nothing about convergence of
underlying RV

- Useful for justifying use of some sampling distributions
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Convergence in Distribution 6⇒ Convergence in Probability

Define X ∼ N(0, 1) and each Xn = −X . Then:
Xn ∼ N(0, 1) for all n so Xn trivially converges to X . But,

P(|Xn − X | > ε) = P(|X + X | > ε)

= P(|2X | > ε)

= P(|X | > ε/2) 6 0
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Central Limit Theorem

Proposition

Let X1, X2, . . . be a sequence of independent random variables with mean
µ and variance σ2. Let Xi have a cdf P(Xi ≤ x) = F (x) and moment
generating function M(t) = E [etXi ] . Let Sn =

∑n
i=1 Xi . Then

lim
n→∞

P

(
Sn − µn
σ
√
n
≤ x

)
=

1√
2π

∫ x

−∞
exp

(
−z2

2

)
dz

Proof plan:

1) Rely on Fact that convergence of MGFs convergence in CDFs

2) Show that MGFs, in limit, converge on normal MGF
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Proposition

Let Fn be a sequence of cumulative distribution functions with the
corresponding moment generating functions Mn. F be a cdf with the
moment generating functions M. If limn→∞Mn(t)→ M(t) for all t in
some interval, then Fn(x) F (x) for all x (when F is continuous).

Proposition

Suppose limn→∞ an → a, then

lim
n→∞

(
1 +

an
n

)n
= ea

Proposition

Suppose M(t) is a moment generating function some random variable X .
Then M(0) = 1.
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Proof of Central Limit Theorem (Courtsey of Swarthmore
Notes)

Proof. Suppose X1, . . . ,Xn are iid variables with E [X ] = 0, variance
σ2
x , Moment Generating Function (MGF) Mx(t).

Let Sn =
∑n

i=1 Xi and Zn = Sn
σx
√
n

.

MSn = (Mx(t))n and MZn(t) =
(
Mx

(
t

σx
√
n

))n
Using Taylor’s Theorem we can write

Mx(s) = Mx(0) + sM
′

x(0) +
1

2
s2M

′′

x (0) + es

es/s
2 → 0 as s → 0.
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Let Sn =
∑n

i=1 Xi and Zn = Sn
σx
√
n

.

MSn = (Mx(t))n and MZn(t) =
(
Mx

(
t

σx
√
n

))n

Using Taylor’s Theorem we can write

Mx(s) = Mx(0) + sM
′

x(0) +
1

2
s2M

′′

x (0) + es

es/s
2 → 0 as s → 0.
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Mx(s) = Mx(0) + sM
′
x(0) +

1

2
s2M

′′
x (0) + es

Filling in the values we have

Mx(s) = 1 + 0 +
σ2x
2
s2 + es︸︷︷︸

Goes to zero

Set s = t
σx
√
n

limn→∞ s → 0. Then

MZn(t) =

(
1 +

σ2x
2

(
t

σx
√
n

)2
)n

=

(
1 +

t2/2

n

)n

lim
n→∞

MZn(t) = e
t2

2
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