Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 22nd, 2016

Inequalities and Limit Theorems

Limit Theorems

- What happens when we consider a long sequence of random variables ?
- What can we reasonably infer from data?
- Laws of large numbers: averages of random variables converge on expected value?
- Central Limit Theorems: sum of random variables have normal distribution?
- We'll focus on intuition for both, but we'll prove some stuff too.

Review Session

Weak Law of Large Numbers

Proof plan:

- Markov's Inequality
- Chebyshev's Inequality
- Weak Law of Large Numbers

Markov's Inequality

Proposition

Suppose X is a random variable that takes on non-negative values. Then, for all a>0,

$$
P(X \geq a) \leq \frac{E[X]}{a}
$$

Markov's Inequality

Proof.
For $a>0$,

Markov's Inequality

Proof.
For $a>0$,

$$
E[X]=\int_{0}^{\infty} x f(x) d x
$$

Markov's Inequality

Proof.

For $a>0$,

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x f(x) d x \\
& =\int_{0}^{a} x f(x) d x+\int_{a}^{\infty} x f(x) d x
\end{aligned}
$$

Markov's Inequality

Proof.

For $a>0$,

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x f(x) d x \\
& =\int_{0}^{a} x f(x) d x+\int_{a}^{\infty} x f(x) d x
\end{aligned}
$$

Because $X \geq 0$,

Markov's Inequality

Proof.

For $a>0$,

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x f(x) d x \\
& =\int_{0}^{a} x f(x) d x+\int_{a}^{\infty} x f(x) d x
\end{aligned}
$$

Because $X \geq 0$,

$$
E[X] \geq \int_{a}^{\infty} x f(x) d x \geq \int_{a}^{\infty} a f(x) d x=a P(X \geq a)
$$

Markov's Inequality

Proof.

For $a>0$,

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x f(x) d x \\
& =\int_{0}^{a} x f(x) d x+\int_{a}^{\infty} x f(x) d x
\end{aligned}
$$

Because $X \geq 0$,

$$
\begin{array}{r}
E[X] \geq \int_{a}^{\infty} x f(x) d x \geq \int_{a}^{\infty} a f(x) d x=a P(X \geq a) \\
\frac{E[X]}{a} \geq P(X \geq a)
\end{array}
$$

Chebyshev's Inequality

Proposition

If X is a random variable with mean μ and variance σ^{2}, then, for any value $k>0$,

$$
P(|X-\mu| \geq k) \leq \frac{\sigma^{2}}{k^{2}}
$$

Chebyshev's Inequality

Proof.
Define the random variable

$$
Y=(X-\mu)^{2}
$$

Where $\mu=E[X]$.

Chebyshev's Inequality

Proof.

Define the random variable

$$
Y=(X-\mu)^{2}
$$

Where $\mu=E[X]$.
Then we know Y is a non-negative random variable. Set $a=k^{2}$.

Chebyshev's Inequality

Proof.

Define the random variable

$$
Y=(X-\mu)^{2}
$$

Where $\mu=E[X]$.
Then we know Y is a non-negative random variable. Set $a=k^{2}$. Applying the inequality:

Chebyshev's Inequality

Proof.

Define the random variable

$$
Y=(X-\mu)^{2}
$$

Where $\mu=E[X]$.
Then we know Y is a non-negative random variable. Set $a=k^{2}$. Applying the inequality:

$$
P\left(Y \geq k^{2}\right) \leq \frac{E[Y]}{k^{2}}
$$

Chebyshev's Inequality

Proof.

Define the random variable

$$
Y=(X-\mu)^{2}
$$

Where $\mu=E[X]$.
Then we know Y is a non-negative random variable. Set $a=k^{2}$. Applying the inequality:

$$
\begin{array}{r}
P\left(Y \geq k^{2}\right) \leq \frac{E[Y]}{k^{2}} \\
P\left((X-\mu)^{2} \geq k^{2}\right) \leq \frac{E\left[(X-\mu)^{2}\right]}{k^{2}}
\end{array}
$$

Chebyshev's Inequality

Proof.

Define the random variable

$$
Y=(X-\mu)^{2}
$$

Where $\mu=E[X]$.
Then we know Y is a non-negative random variable. Set $a=k^{2}$.
Applying the inequality:

$$
\begin{array}{r}
P\left(Y \geq k^{2}\right) \leq \frac{E[Y]}{k^{2}} \\
P\left((X-\mu)^{2} \geq k^{2}\right) \leq \frac{E\left[(X-\mu)^{2}\right]}{k^{2}} \\
P\left((X-\mu)^{2} \geq k^{2}\right) \leq \frac{\sigma^{2}}{k^{2}}
\end{array}
$$

Chebyshev's Inequality

Further we know that,

$$
(X-\mu)^{2} \geq k^{2}
$$

Chebyshev's Inequality

Further we know that,

$$
(X-\mu)^{2} \geq k^{2}
$$

Implies that

Chebyshev's Inequality

Further we know that,

$$
(X-\mu)^{2} \geq k^{2}
$$

Implies that

$$
|X-\mu| \geq k
$$

Chebyshev's Inequality

Further we know that,

$$
(X-\mu)^{2} \geq k^{2}
$$

Implies that

$$
|X-\mu| \geq k
$$

Thus, we have shown

Chebyshev's Inequality

Further we know that,

$$
(X-\mu)^{2} \geq k^{2}
$$

Implies that

$$
|X-\mu| \geq k
$$

Thus, we have shown

$$
P(|X-\mu| \geq k) \leq \frac{\sigma^{2}}{k^{2}}
$$

Sequence of Random Variables

Sequence of Independent and Identically, Distributed Random variables.

- Sequence: $X_{1}, X_{2}, \ldots, X_{n}, \ldots$
- Think of a sequence as sampled data:
- Suppose we are drawing a sample of N observations
- Each observation will be a random variable, say X_{i}
- With realization x_{i}

Mean/Variance of Sample Mean

Proposition

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Let \bar{X}_{n} be the sample mean. Then $E\left[\bar{X}_{n}\right]=\mu$ and $\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}$

Mean/Variance of Sample Mean

Proposition
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Let \bar{X}_{n} be the sample mean. Then $E\left[\bar{X}_{n}\right]=\mu$ and $\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}$

Proof.

$$
E\left[\bar{X}_{n}\right]=\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]
$$

Mean/Variance of Sample Mean

Proposition

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Let \bar{X}_{n} be the sample mean. Then $E\left[\bar{X}_{n}\right]=\mu$ and $\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}$

Proof.

$$
\begin{aligned}
E\left[\bar{X}_{n}\right] & =\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right] \\
& =\frac{1}{n} n \mu=\mu
\end{aligned}
$$

Mean/Variance of Sample Mean

Mean/Variance of Sample Mean

$$
\operatorname{var}\left(\bar{X}_{n}\right)=\frac{1}{n^{2}} \operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right)
$$

Mean/Variance of Sample Mean

$$
\begin{aligned}
\operatorname{var}\left(\bar{X}_{n}\right) & =\frac{1}{n^{2}} \operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)
\end{aligned}
$$

Mean/Variance of Sample Mean

$$
\begin{aligned}
\operatorname{var}\left(\bar{X}_{n}\right) & =\frac{1}{n^{2}} \operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right) \\
& =\frac{1}{n^{2}} n \sigma^{2}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Weak Law of Large Numbers

Proposition

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. Then, for all $\epsilon>0$,

$$
P\left\{\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}-\mu\right| \geq \epsilon\right\} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Weak Law of Large Numbers

Proof.

From our previous proposition

Weak Law of Large Numbers

Proof.

From our previous proposition

$$
\frac{\mathrm{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]}{n}=\frac{\sum_{i=1}^{n} E\left[X_{i}\right]}{n}=\mu
$$

Weak Law of Large Numbers

Proof.

From our previous proposition

$$
\frac{\mathrm{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]}{n}=\frac{\sum_{i=1}^{n} E\left[X_{i}\right]}{n}=\mu
$$

Further,

Weak Law of Large Numbers

Proof.

From our previous proposition

$$
\frac{\mathrm{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]}{n}=\frac{\sum_{i=1}^{n} E\left[X_{i}\right]}{n}=\mu
$$

Further,

$$
\mathrm{E}\left[\left(\frac{\sum_{i=1}^{n} X_{i}-\mu}{n}\right)^{2}\right]=\frac{\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)}{n^{2}}=\frac{\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)}{n^{2}}=\frac{\sigma^{2}}{n}
$$

Weak Law of Large Numbers

Proof.

From our previous proposition

$$
\frac{\mathrm{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]}{n}=\frac{\sum_{i=1}^{n} E\left[X_{i}\right]}{n}=\mu
$$

Further,
$\mathrm{E}\left[\left(\frac{\sum_{i=1}^{n} X_{i}-\mu}{n}\right)^{2}\right]=\frac{\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)}{n^{2}}=\frac{\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)}{n^{2}}=\frac{\sigma^{2}}{n}$
Apply Chebyshev's Inequality:

Weak Law of Large Numbers

Proof.

From our previous proposition

$$
\frac{\mathrm{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]}{n}=\frac{\sum_{i=1}^{n} E\left[X_{i}\right]}{n}=\mu
$$

Further,

$$
\mathrm{E}\left[\left(\frac{\sum_{i=1}^{n} X_{i}-\mu}{n}\right)^{2}\right]=\frac{\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)}{n^{2}}=\frac{\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)}{n^{2}}=\frac{\sigma^{2}}{n}
$$

Apply Chebyshev's Inequality:

$$
P\left\{\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}-\mu\right| \geq \epsilon\right\} \leq \frac{\sigma^{2}}{n \epsilon^{2}}
$$

Suppose X_{1}, X_{2}, \ldots are iid normal distributions,

$$
X_{i} \sim \operatorname{Normal}(0,10)
$$

$$
P\left\{\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}-\mu\right| \geq 0.1\right\} \text { as } n \rightarrow \infty
$$

Suppose X_{1}, X_{2}, \ldots are iid normal distributions,

$$
X_{i} \sim \operatorname{Normal}(0,10)
$$

$$
P\left\{\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}-\mu\right| \geq 0.1\right\} \text { as } n \rightarrow \infty
$$

Suppose X_{1}, X_{2}, \ldots are iid normal distributions,

$$
\begin{gathered}
X_{i} \sim \operatorname{Normal}(0,10) \\
P\left\{\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}-\mu\right| \geq 0.1\right\} \text { as } n \rightarrow \infty
\end{gathered}
$$

Suppose we want to guarantee that we have at most a 0.01 probability of being more than 0.1 away from the true μ. How big do we need n ?

Suppose X_{1}, X_{2}, \ldots are iid normal distributions,

$$
X_{i} \sim \operatorname{Normal}(0,10)
$$

$$
P\left\{\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}-\mu\right| \geq 0.1\right\} \text { as } n \rightarrow \infty
$$

Suppose we want to guarantee that we have at most a 0.01 probability of being more than 0.1 away from the true μ. How big do we need n ?

$$
0.01=\frac{10}{n\left(0.1^{2}\right)}
$$

Suppose X_{1}, X_{2}, \ldots are iid normal distributions,

$$
X_{i} \sim \operatorname{Normal}(0,10)
$$

$$
P\left\{\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}-\mu\right| \geq 0.1\right\} \text { as } n \rightarrow \infty
$$

Suppose we want to guarantee that we have at most a 0.01 probability of being more than 0.1 away from the true μ. How big do we need n ?

$$
\begin{aligned}
0.01 & =\frac{10}{n\left(0.1^{2}\right)} \\
n & =\frac{1000}{0.01}
\end{aligned}
$$

Suppose X_{1}, X_{2}, \ldots are iid normal distributions,

$$
X_{i} \sim \operatorname{Normal}(0,10)
$$

$$
P\left\{\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}-\mu\right| \geq 0.1\right\} \text { as } n \rightarrow \infty
$$

Suppose we want to guarantee that we have at most a 0.01 probability of being more than 0.1 away from the true μ. How big do we need n ?

$$
\begin{aligned}
0.01 & =\frac{10}{n\left(0.1^{2}\right)} \\
n & =\frac{1000}{0.01} \\
n & =100,000
\end{aligned}
$$

Sequences and Convergence

Sequence (refresher):

$$
\left\{a_{i}\right\}_{i=1}^{\infty}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots,\right\}
$$

Definition
We say that the sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ converges to real number A if for each $\epsilon>0$ there is a positive integer N such that for $n \geq N,\left|a_{n}-A\right|<\epsilon$

Sequences and Convergence

Sequence of functions:

$$
\left\{f_{i}\right\}_{i=1}^{\infty}=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n}, \ldots,\right\}
$$

Definition

Suppose $f_{i}: X \rightarrow \Re$ for all i. Then $\left\{f_{i}\right\}_{i=1}^{\infty}$ converges pointwise to f if, for all $x \in X$ and $\epsilon>0$, there is an N such that for all $n \geq N$,

$$
\left|f_{n}(x)-f(x)\right|<\epsilon
$$

This is as strong of a statement as we're likely to make in statistics

Convergence Definitions

Define $\widehat{\theta}_{n}$ to be estimator for θ based on n observations.

Convergence Definitions

Define $\widehat{\theta}_{n}$ to be estimator for θ based on n observations. Sequence of estimators: increasing sample size

Convergence Definitions

Define $\hat{\theta}_{n}$ to be estimator for θ based on n observations. Sequence of estimators: increasing sample size

$$
\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}=\left\{\widehat{\theta}_{1}, \widehat{\theta}_{2}, \widehat{\theta}_{3}, \ldots, \widehat{\theta}_{n}\right\}
$$

Convergence Definitions

Define $\widehat{\theta}_{n}$ to be estimator for θ based on n observations. Sequence of estimators: increasing sample size

$$
\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}=\left\{\hat{\theta}_{1}, \widehat{\theta}_{2}, \widehat{\theta}_{3}, \ldots, \widehat{\theta}_{n}\right\}
$$

Question: What can we say about $\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}$ as $n \rightarrow \infty$?

Convergence Definitions

Define $\widehat{\theta}_{n}$ to be estimator for θ based on n observations. Sequence of estimators: increasing sample size

$$
\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}=\left\{\widehat{\theta}_{1}, \widehat{\theta}_{2}, \widehat{\theta}_{3}, \ldots, \widehat{\theta}_{n}\right\}
$$

Question: What can we say about $\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}$ as $n \rightarrow \infty$?

- What is the probability $\widehat{\theta}_{n}$ differs from θ ?

Convergence Definitions

Define $\widehat{\theta}_{n}$ to be estimator for θ based on n observations. Sequence of estimators: increasing sample size

$$
\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}=\left\{\widehat{\theta}_{1}, \widehat{\theta}_{2}, \widehat{\theta}_{3}, \ldots, \widehat{\theta}_{n}\right\}
$$

Question: What can we say about $\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}$ as $n \rightarrow \infty$?

- What is the probability $\widehat{\theta}_{n}$ differs from θ ?
- What is the probability $\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}$ converges to θ ?

Convergence Definitions

Define $\widehat{\theta}_{n}$ to be estimator for θ based on n observations. Sequence of estimators: increasing sample size

$$
\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}=\left\{\widehat{\theta}_{1}, \widehat{\theta}_{2}, \widehat{\theta}_{3}, \ldots, \widehat{\theta}_{n}\right\}
$$

Question: What can we say about $\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}$ as $n \rightarrow \infty$?

- What is the probability $\widehat{\theta}_{n}$ differs from θ ?
- What is the probability $\left\{\widehat{\theta}_{i}\right\}_{i=1}^{n}$ converges to θ ?
- What is sampling distribution of $\hat{\theta}_{n}$ as $n \rightarrow \infty$?

Convergence in Probability

Convergence in Probability

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges in probability to θ (perhaps a non-degenerate $R V$) if,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

For any $\epsilon>0$

Convergence in Probability

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges in probability to θ (perhaps a non-degenerate $R V$) if,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

For any $\epsilon>0$

- ϵ is a tolerance parameter: how much error around θ ?

Convergence in Probability

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges in probability to θ (perhaps a non-degenerate $R V$) if,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

For any $\epsilon>0$

- ϵ is a tolerance parameter: how much error around θ ?
- In the limit, convergence in probability implies sampling distribution collapses on a spike at θ

Convergence in Probability

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges in probability to θ (perhaps a non-degenerate $R V$) if,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

For any $\epsilon>0$

- ϵ is a tolerance parameter: how much error around θ ?
- In the limit, convergence in probability implies sampling distribution collapses on a spike at θ
- $\left\{\widehat{\theta}_{i}\right\}$ need not actually converge to θ, only $\mathrm{P}\left(\left|\theta_{n}-\theta\right|>\epsilon\right)=0$

Example (Cassella and Burger)

Example (Cassella and Burger)

Suppose $S \sim \operatorname{Uniform}(0,1)$. Define $X(s)=s$.

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$. Define $X(s)=s$.
Suppose X_{n} is define as follows:

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$. Define $X(s)=s$.
Suppose X_{n} is define as follows:

$$
X_{1}(s)=s+I(s \in[0,1]) \quad, \quad X_{2}(s)=s+I(s \in[0,1 / 2])
$$

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$. Define $X(s)=s$.
Suppose X_{n} is define as follows:

$$
\begin{aligned}
& X_{1}(s)=s+I(s \in[0,1]), \\
& X_{2}(s)=s+I(s \in[0,1 / 2]) \\
& X_{3}(s)=s+I(s \in[1 / 2,1]),
\end{aligned} X_{4}(s)=s+I(s \in[0,1 / 3])
$$

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$. Define $X(s)=s$.
Suppose X_{n} is define as follows:

$$
\begin{array}{rll}
X_{1}(s)=s+I(s \in[0,1]) & , & X_{2}(s)=s+I(s \in[0,1 / 2]) \\
X_{3}(s)=s+I(s \in[1 / 2,1]) & , & X_{4}(s)=s+I(s \in[0,1 / 3]) \\
X_{5}(s)=s+I(s \in[1 / 3,2 / 3]) & , & X_{6}(s)=s+I(s \in[2 / 3,1])
\end{array}
$$

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$. Define $X(s)=s$.
Suppose X_{n} is define as follows:

$$
\begin{array}{rll}
X_{1}(s)=s+I(s \in[0,1]) & , & X_{2}(s)=s+I(s \in[0,1 / 2]) \\
X_{3}(s)=s+I(s \in[1 / 2,1]) & , & X_{4}(s)=s+I(s \in[0,1 / 3]) \\
X_{5}(s)=s+I(s \in[1 / 3,2 / 3]) & , & X_{6}(s)=s+I(s \in[2 / 3,1])
\end{array}
$$

Does $X_{n}(s)$ pointwise converge to $X(s)$?

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$. Define $X(s)=s$.
Suppose X_{n} is define as follows:

$$
\begin{array}{rll}
X_{1}(s)=s+I(s \in[0,1]) & , & X_{2}(s)=s+I(s \in[0,1 / 2]) \\
X_{3}(s)=s+I(s \in[1 / 2,1]) & , & X_{4}(s)=s+I(s \in[0,1 / 3]) \\
X_{5}(s)=s+I(s \in[1 / 3,2 / 3]) & , & X_{6}(s)=s+I(s \in[2 / 3,1])
\end{array}
$$

Does $X_{n}(s)$ pointwise converge to $X(s)$?
Does $X_{n}(s)$ converge in probability to $X(s)$?

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$. Define $X(s)=s$.
Suppose X_{n} is define as follows:

$$
\begin{array}{rll}
X_{1}(s)=s+I(s \in[0,1]) & , & X_{2}(s)=s+I(s \in[0,1 / 2]) \\
X_{3}(s)=s+I(s \in[1 / 2,1]) & , & X_{4}(s)=s+I(s \in[0,1 / 3]) \\
X_{5}(s)=s+I(s \in[1 / 3,2 / 3]) & , & X_{6}(s)=s+I(s \in[2 / 3,1])
\end{array}
$$

Does $X_{n}(s)$ pointwise converge to $X(s)$?
Does $X_{n}(s)$ converge in probability to $X(s)$?

$$
P\left(\left|X_{n}-X\right|>\epsilon\right)=P\left(s \in\left[I_{n}, u_{n}\right]\right)
$$

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$. Define $X(s)=s$.
Suppose X_{n} is define as follows:

$$
\begin{array}{rll}
X_{1}(s)=s+I(s \in[0,1]) & , & X_{2}(s)=s+I(s \in[0,1 / 2]) \\
X_{3}(s)=s+I(s \in[1 / 2,1]) & , & X_{4}(s)=s+I(s \in[0,1 / 3]) \\
X_{5}(s)=s+I(s \in[1 / 3,2 / 3]) & , & X_{6}(s)=s+I(s \in[2 / 3,1])
\end{array}
$$

Does $X_{n}(s)$ pointwise converge to $X(s)$?
Does $X_{n}(s)$ converge in probability to $X(s)$?

$$
P\left(\left|X_{n}-X\right|>\epsilon\right)=P\left(s \in\left[I_{n}, u_{n}\right]\right)
$$

Length of $\left[I_{n}, u_{n}\right] \rightarrow 0 \Rightarrow P\left(s \in\left[L_{n}, U_{n}\right]\right)=0$

Almost Sure Convergence

Definition

Almost Sure Convergence

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges almost surely to θ if,

$$
\operatorname{Prob}\left(\lim _{n \rightarrow \infty}\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

Almost Sure Convergence

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges almost surely to θ if,

$$
\operatorname{Prob}\left(\lim _{n \rightarrow \infty}\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

- Stronger: says that sequence converges to θ (almost everywhere))

Almost Sure Convergence

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges almost surely to θ if,

$$
\operatorname{Prob}\left(\lim _{n \rightarrow \infty}\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

- Stronger: says that sequence converges to θ (almost everywhere))
- Think about definition of random variable: $\widehat{\theta}_{n}$ is a function from sample space to real line.

Almost Sure Convergence

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges almost surely to θ if,

$$
\operatorname{Prob}\left(\lim _{n \rightarrow \infty}\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

- Stronger: says that sequence converges to θ (almost everywhere))
- Think about definition of random variable: $\widehat{\theta}_{n}$ is a function from sample space to real line.
- Almost sure says that, for all outcomes (s) in sample space (S) $s \in S$,

Almost Sure Convergence

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges almost surely to θ if,

$$
\operatorname{Prob}\left(\lim _{n \rightarrow \infty}\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

- Stronger: says that sequence converges to θ (almost everywhere))
- Think about definition of random variable: $\widehat{\theta}_{n}$ is a function from sample space to real line.
- Almost sure says that, for all outcomes (s) in sample space (S) $s \in S$,

$$
\widehat{\theta}_{n}(s) \rightarrow \theta(s)
$$

Almost Sure Convergence

Definition

We will say the sequence $\widehat{\theta}_{n}$ converges almost surely to θ if,

$$
\operatorname{Prob}\left(\lim _{n \rightarrow \infty}\left|\widehat{\theta}_{n}-\theta\right|>\epsilon\right)=0
$$

- Stronger: says that sequence converges to θ (almost everywhere))
- Think about definition of random variable: $\widehat{\theta}_{n}$ is a function from sample space to real line.
- Almost sure says that, for all outcomes (s) in sample space (S) $s \in S$,

$$
\widehat{\theta}_{n}(s) \rightarrow \theta(s)
$$

Except for a subset $\mathcal{N} \subset S$ such that $P(\mathcal{N})=0$.

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$.
Suppose X_{n} is define as follows:

$$
\begin{array}{rll}
X_{1}(s)=s+I(s \in[0,1]) & , & X_{2}(s)=s+I(s \in[0,1 / 2]) \\
X_{3}(s)=s+I(s \in[1 / 2,1]) & , & X_{4}(s)=s+I(s \in[0,1 / 3]) \\
X_{5}(s)=s+I(s \in[1 / 3,2 / 3]) & , & X_{6}(s)=s+I(s \in[2 / 3,1])
\end{array}
$$

Does $X_{n}(s)$ converge almost surely to $X(s)=s$?

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$.
Suppose X_{n} is define as follows:

$$
\begin{array}{rll}
X_{1}(s)=s+I(s \in[0,1]) & , & X_{2}(s)=s+I(s \in[0,1 / 2]) \\
X_{3}(s)=s+I(s \in[1 / 2,1]) & , & X_{4}(s)=s+I(s \in[0,1 / 3]) \\
X_{5}(s)=s+I(s \in[1 / 3,2 / 3]) & , & X_{6}(s)=s+I(s \in[2 / 3,1])
\end{array}
$$

Does $X_{n}(s)$ converge almost surely to $X(s)=s$?
No!: the sequence doesn't converge for each s

Example (Cassella and Burger)

Suppose $S \sim$ Uniform $(0,1)$.
Suppose X_{n} is define as follows:

$$
\begin{array}{rll}
X_{1}(s)=s+I(s \in[0,1]) & , & X_{2}(s)=s+I(s \in[0,1 / 2]) \\
X_{3}(s)=s+I(s \in[1 / 2,1]) & , & X_{4}(s)=s+I(s \in[0,1 / 3]) \\
X_{5}(s)=s+I(s \in[1 / 3,2 / 3]) & , & X_{6}(s)=s+I(s \in[2 / 3,1])
\end{array}
$$

Does $X_{n}(s)$ converge almost surely to $X(s)=s$?
No!: the sequence doesn't converge for each s
For each value of s the sequence varies between s and $s+1$ infinitely often

Convergence in Distribution

We've talked about $\widehat{\theta}_{n}$'s sampling distribution converging to a normal distribution.

Definition

Convergence in Distribution

We've talked about $\widehat{\theta}_{n}$'s sampling distribution converging to a normal distribution.
This is convergence in distribution
Definition

Convergence in Distribution

We've talked about $\hat{\theta}_{n}$'s sampling distribution converging to a normal distribution.
This is convergence in distribution
Definition
$\widehat{\theta}_{n}$, with cdf $F_{n}(x)$, converges in distribution to random variable Y with $\operatorname{cdf} F(x)$ if

$$
\lim _{n \rightarrow \infty}\left|F_{n}(x)-F(x)\right|=0
$$

For all $x \in \Re$ where $F(x)$ is continuous.

Convergence in Distribution

We've talked about $\hat{\theta}_{n}$'s sampling distribution converging to a normal distribution.
This is convergence in distribution
Definition
$\widehat{\theta}_{n}$, with cdf $F_{n}(x)$, converges in distribution to random variable Y with $c d f F(x)$ if

$$
\lim _{n \rightarrow \infty}\left|F_{n}(x)-F(x)\right|=0
$$

For all $x \in \Re$ where $F(x)$ is continuous.

- Weakest form of convergence almost sure \rightarrow probability \rightarrow distribution

Convergence in Distribution

We've talked about $\hat{\theta}_{n}$'s sampling distribution converging to a normal distribution.
This is convergence in distribution
Definition
$\widehat{\theta}_{n}$, with cdf $F_{n}(x)$, converges in distribution to random variable Y with $c d f F(x)$ if

$$
\lim _{n \rightarrow \infty}\left|F_{n}(x)-F(x)\right|=0
$$

For all $x \in \Re$ where $F(x)$ is continuous.

- Weakest form of convergence almost sure \rightarrow probability \rightarrow distribution
- Says that cdfs are equal, says nothing about convergence of underlying RV

Convergence in Distribution

We've talked about $\hat{\theta}_{n}$'s sampling distribution converging to a normal distribution.
This is convergence in distribution
Definition
$\widehat{\theta}_{n}$, with cdf $F_{n}(x)$, converges in distribution to random variable Y with $c d f F(x)$ if

$$
\lim _{n \rightarrow \infty}\left|F_{n}(x)-F(x)\right|=0
$$

For all $x \in \Re$ where $F(x)$ is continuous.

- Weakest form of convergence almost sure \rightarrow probability \rightarrow distribution
- Says that cdfs are equal, says nothing about convergence of underlying RV
- Useful for justifying use of some sampling distributions

Convergence in Distribution \nRightarrow Convergence in Probability

Define $X \sim N(0,1)$ and each $X_{n}=-X$. Then:
$X_{n} \sim N(0,1)$ for all n so X_{n} trivially converges to X. But,

$$
\begin{aligned}
P\left(\left|X_{n}-X\right|>\epsilon\right) & =P(|X+X|>\epsilon) \\
& =P(|2 X|>\epsilon) \\
& =P(|X|>\epsilon / 2) \nLeftarrow 0
\end{aligned}
$$

Central Limit Theorem

Proposition

Let X_{1}, X_{2}, \ldots be a sequence of independent random variables with mean μ and variance σ^{2}. Let X_{i} have a cdf $P\left(X_{i} \leq x\right)=F(x)$ and moment generating function $M(t)=E\left[e^{t X_{i}}\right]$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then

$$
\lim _{n \rightarrow \infty} P\left(\frac{S_{n}-\mu n}{\sigma \sqrt{n}} \leq x\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{z^{2}}{2}\right) d z
$$

Central Limit Theorem

Proposition

Let X_{1}, X_{2}, \ldots be a sequence of independent random variables with mean μ and variance σ^{2}. Let X_{i} have a cdf $P\left(X_{i} \leq x\right)=F(x)$ and moment generating function $M(t)=E\left[e^{t X_{i}}\right]$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then

$$
\lim _{n \rightarrow \infty} P\left(\frac{S_{n}-\mu n}{\sigma \sqrt{n}} \leq x\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{z^{2}}{2}\right) d z
$$

Proof plan:

1) Rely on Fact that convergence of MGFs \rightsquigarrow convergence in CDFs
2) Show that MGFs, in limit, converge on normal MGF

Proposition

Let F_{n} be a sequence of cumulative distribution functions with the corresponding moment generating functions M_{n}. F be a cdf with the moment generating functions M. If $\lim _{n \rightarrow \infty} M_{n}(t) \rightarrow M(t)$ for all t in some interval, then $F_{n}(x) \rightsquigarrow F(x)$ for all x (when F is continuous).

Proposition

Let F_{n} be a sequence of cumulative distribution functions with the corresponding moment generating functions M_{n}. F be a cdf with the moment generating functions M. If $\lim _{n \rightarrow \infty} M_{n}(t) \rightarrow M(t)$ for all t in some interval, then $F_{n}(x) \rightsquigarrow F(x)$ for all x (when F is continuous).

Proposition

Suppose $\lim _{n \rightarrow \infty} a_{n} \rightarrow a$, then

$$
\lim _{n \rightarrow \infty}\left(1+\frac{a_{n}}{n}\right)^{n}=e^{a}
$$

Proposition

Let F_{n} be a sequence of cumulative distribution functions with the corresponding moment generating functions M_{n}. F be a cdf with the moment generating functions M. If $\lim _{n \rightarrow \infty} M_{n}(t) \rightarrow M(t)$ for all t in some interval, then $F_{n}(x) \rightsquigarrow F(x)$ for all x (when F is continuous).

Proposition

Suppose $\lim _{n \rightarrow \infty} a_{n} \rightarrow a$, then

$$
\lim _{n \rightarrow \infty}\left(1+\frac{a_{n}}{n}\right)^{n}=e^{a}
$$

Proposition

Suppose $M(t)$ is a moment generating function some random variable X. Then $M(0)=1$.

Proof of Central Limit Theorem (Courtsey of Swarthmore Notes)

Proof. Suppose X_{1}, \ldots, X_{n} are iid variables with $E[X]=0$, variance σ_{x}^{2}, Moment Generating Function (MGF) $M_{x}(t)$.

Proof of Central Limit Theorem (Courtsey of Swarthmore Notes)

Proof. Suppose X_{1}, \ldots, X_{n} are iid variables with $E[X]=0$, variance σ_{x}^{2}, Moment Generating Function (MGF) $M_{x}(t)$.
Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $Z_{n}=\frac{S_{n}}{\sigma_{x} \sqrt{n}}$.

Proof of Central Limit Theorem (Courtsey of Swarthmore Notes)

Proof. Suppose X_{1}, \ldots, X_{n} are iid variables with $E[X]=0$, variance σ_{x}^{2}, Moment Generating Function (MGF) $M_{x}(t)$.
Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $Z_{n}=\frac{S_{n}}{\sigma_{x} \sqrt{n}}$.
$M_{S_{n}}=\left(M_{x}(t)\right)^{n}$ and $M_{Z_{n}}(t)=\left(M_{x}\left(\frac{t}{\sigma_{x} \sqrt{n}}\right)\right)^{n}$

Proof of Central Limit Theorem (Courtsey of Swarthmore Notes)

Proof. Suppose X_{1}, \ldots, X_{n} are iid variables with $E[X]=0$, variance σ_{x}^{2}, Moment Generating Function (MGF) $M_{x}(t)$.
Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $Z_{n}=\frac{S_{n}}{\sigma_{\times} \sqrt{n}}$.
$M_{S_{n}}=\left(M_{x}(t)\right)^{n}$ and $M_{Z_{n}}(t)=\left(M_{x}\left(\frac{t}{\sigma_{x} \sqrt{n}}\right)\right)^{n}$
Using Taylor's Theorem we can write

$$
M_{\star}(s)=M_{x}(0)+s M_{x}^{\prime}(0)+\frac{1}{2} s^{2} M_{x}^{\prime \prime}(0)+e_{s}
$$

$e_{s} / s^{2} \rightarrow 0$ as $s \rightarrow 0$.

$$
M_{x}(s)=M_{x}(0)+s M_{x}^{\prime}(0)+\frac{1}{2} s^{2} M_{x}^{\prime \prime}(0)+e_{s}
$$

Filling in the values we have

$$
M_{x}(s)=1+0+\frac{\sigma_{x}^{2}}{2} s^{2}+\underbrace{e_{s}}_{\text {Goes to zero }}
$$

Set $s=\frac{t}{\sigma_{x} \sqrt{n}} \lim _{n \rightarrow \infty} s \rightarrow 0$. Then

$$
\begin{aligned}
M_{Z_{n}}(t) & =\left(1+\frac{\sigma_{x}^{2}}{2}\left(\frac{t}{\sigma_{x} \sqrt{n}}\right)^{2}\right)^{n} \\
& =\left(1+\frac{t^{2} / 2}{n}\right)^{n} \\
\lim _{n \rightarrow \infty} M_{Z_{n}}(t) & =e^{\frac{t^{2}}{2}}
\end{aligned}
$$

Review Time

