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Inequalities and Limit Theorems

Limit Theorems

- What happens when we consider a long sequence of random variables
?

- What can we reasonably infer from data?

- Laws of large numbers: averages of random variables converge on
expected value?

- Central Limit Theorems: sum of random variables have normal
distribution?

- We'll focus on intuition for both, but we'll prove some stuff too.
Review Session
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Weak Law of Large Numbers

Proof plan:

- Markov's Inequality
- Chebyshev's Inequality

- Weak Law of Large Numbers
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Markov's Inequality

Proposition

for all a > 0,

Suppose X is a random variable that takes on non-negative values. Then,

P(X > a) EX]

a
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Proof.

For a > 0,
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Markov's Inequality
Proof.

For a > 0,

E[X] = /Oooxf(x)dx
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Markov's Inequality

Proof.
For a > 0,

/0 " (x)dx

/O " fF(x)dx + / " (x)dx
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Markov's Inequality

Proof.
For a > 0,

E[X] = /Oooxf(x)dx

_ /O X (x)dx + / " XF(x)dx

Because X > 0,

o F
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Markov's Inequality

Proof.
For a > 0,

Because X > 0,

/O " (x)dx

/0 " fF(x)dx + / " (x)dx

E[X] > / T (x)dx > / " af(x)dx = aP(X > 2)

a
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Markov's Inequality

Proof.
For a > 0,

E[X] = /O ” f(x)dx
- /0 " fF(x)dx + / " (x)dx

Because X > 0,

E[X] > / T (x)dx > / " af(x)dx = aP(X > 2)

o F
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Chebyshev's Inequality

Proposition

k>0,

If X is a random variable with mean 1. and variance o, then, for any value

P(X — | > k)
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Chebyshev's Inequality
Proof.

Define the random variable

Where p = E[X].

o =1 = = £ Dae
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Chebyshev's Inequality
Proof.

Define the random variable
Y = (X—p)

Where p = E[X].
Then we know Y is a non-negative random variable. Set a = k2.

=] (=) = = £ DA
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Chebyshev's Inequality
Proof.

Define the random variable
Y = (X—p)

Where p = E[X].
Then we know Y is a non-negative random variable. Set a = k2.
Applying the inequality:

o =1 = = £ Dae
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Chebyshev's Inequality
Proof.

Define the random variable
Y = (X—p)

Where p = E[X].
Then we know Y is a non-negative random variable. Set a = k2.
Applying the inequality:

P(Y > k?) < E[Y]

o =1 = = £ Dae
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Chebyshev's Inequality
Proof.

Define the random variable
Y = (X—p)

Where p = E[X].
Then we know Y is a non-negative random variable. Set a = k2.
Applying the inequality:

P(Y > k?) < E[Y]

PIX — ) = k) < M

o =1 = = £ Dae
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Chebyshev's Inequality
Proof.

Define the random variable
Y = (X—p)

Where p = E[X].
Then we know Y is a non-negative random variable. Set a = k2.
Applying the inequality:

P(Y > k?) < E[Y]

Elox
P(X — ) = K%)= S5

0.2

P(X=pu) 2 K) <5
DJ
=} (=) = £ = A
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Chebyshev's Inequality

Further we know that,
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Chebyshev's Inequality
Further we know that,

(X —p)? > K
Implies that
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Chebyshev's Inequality
Further we know that,

(X —p)? > K
Implies that
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Chebyshev's Inequality
Further we know that,

(X —p)? > K
Implies that

| X =l = k
Thus, we have shown
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Chebyshev's Inequality
Further we know that,

(X —p)? > K
Implies that
| X =l = k
Thus, we have shown
o2
PIX =l 2 k) < 15
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Sequence of Random Variables

Sequence of Independent and Identically, Distributed Random variables
- Sequence: X1, Xo,..., Xp, ...
- Think of a sequence as sampled data:

- Suppose we are drawing a sample of N observations
- Each observation will be a random variable, say X;
- With realization x;
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Mean /Variance of Sample Mean

Proposition
Let Xy, Xa,..., X, be a random sample from a distribution with mean p

and variance 2. Let X, be the sample mean. Then E[)_(n] = u and
= 2
var(X,) = "7

] = =
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Mean /Variance of Sample Mean

Proposition

Let Xy, Xa,..., X, be a random sample from a distribution with mean p

and variance 2. Let X, be the sample mean. Then E[)_(n] = u and
= 2
var(X,) = "7

Proof.

EX] = 1Y ElXi]
i=1
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Mean /Variance of Sample Mean

Proposition

Let Xy, Xa,..., X, be a random sample from a distribution with mean p

and variance 2. Let X, be the sample mean. Then E[)_(n] = u and
= 2
var(X,) = "7

Proof.

EX] = 1Y ElXi]
i=1

1
= —nu:u
n

u]
8
I
i
it
S
»
i)
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Mean /Variance of Sample Mean
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Mean /Variance of Sample Mean
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Mean /Variance of Sample Mean
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Mean /Variance of Sample Mean

i=1
n
= —25 var(X;)
i=1
1 2_02
n
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Weak Law of Large Numbers

Proposition

Suppose X1, Xz,

w and Var(X;) = o2. Then, for all ¢ > 0,

., X, is a random sample from a distribution with mean
P{‘X1+X2+...+Xn B

,u‘Ze}—)Oasn—)oo
n
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Weak Law of Large Numbers
Proof.

From our previous proposition
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Proof.

Weak Law of Large Numbers

From our previous proposition
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Proof.

Weak Law of Large Numbers

From our previous proposition

Further,
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Weak Law of Large Numbers
Proof.

From our previous proposition

E[Xp + X2+ + Xi]
n
Further,

S E
E[( 27:1 ,i(i - ,U)g] _ Var(X1 +Xo+ -+ Xn)

n2

21 Var(Xi)
2

n

o2

n
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Weak Law of Large Numbers
Proof.

From our previous proposition

E[Xp + X2+ + Xi]
n
Further,

_ 2 EXi]
E[( Z;’:l Xi K

ykymm+&+m+&) >0 Var(X;) o2
n - n? n> o
Apply Chebyshev’'s Inequality:
] = =
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Weak Law of Large Numbers
Proof.

From our previous proposition

EXi+Xo+--+Xo] 2L EX]
n n
Further,
E[( 27:1 Xi B /1)2] _ Var(Xl + X2 + o+ Xn) —_ er',:l VE]I’(X,') — 0_2
n n? n> n
Apply Chebyshev’'s Inequality:
2
P{‘X1+X2+...+X,, _M‘ Ze} < 0_2
n ne
DJ
] = =
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Suppose X1, X3,

Justin Grimmer (Stanford University)
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X1+Xo+...+ X,

n
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Suppose X1, Xo, ... are iid normal distributions,

Xi ~ Normal(0, 10)

PHM+&+W+M

—u‘zo.l} as n — 0o
n

Bound

Estimat

Fron(mean - muj>e)
0.0 0.2 04 06 08 1.0

0 2000 6000 10000
o <& = = z 9ace
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Suppose X1, Xo, ... are iid normal distributions,

Xi

~

Normal(0, 10)

PHM+&+M+M

- —u‘zo.l} as n — oo

Suppose we want to guarantee that we have at most a 0.01 probability of
being more than 0.1 away from the true u. How big do we need n?
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Suppose X1, Xo, ... are iid normal distributions,

Xi

~

Normal(0, 10)

PHM+&+M+M

- —u‘zo.l} as n — oo

Suppose we want to guarantee that we have at most a 0.01 probability of
being more than 0.1 away from the true u. How big do we need n?

10
0.01 =
n(0.12)
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Suppose X1, Xo, ... are iid normal distributions,

Xi ~ Normal(0, 10)

PHM+&+M+M

n

—u‘zo.l} as n — oo

Suppose we want to guarantee that we have at most a 0.01 probability of
being more than 0.1 away from the true u. How big do we need n?
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Suppose X1, Xo, ... are iid normal distributions,

Xi ~ Normal(0, 10)

X1+ Xo+ ...+ X,
P{‘ Lt 2—: + —,u‘ZO.l} as n — oo

Suppose we want to guarantee that we have at most a 0.01 probability of
being more than 0.1 away from the true u. How big do we need n?

10
001 = ——
n(0.12)

oo 1000

- 0.01
n = 100,000

u]
8
I
i
it
5
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Sequences and Convergence

Sequence (refresher):

{ai}?i]_ = {317327‘937‘

cey@nyeey )
Definition

We say that the sequence {a;j};=, converges to real number A if for each
€ > 0 there is a positive integer N such that for n > N,

ap— Al <e

Justin Grimmer (Stanford University)
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Sequences and Convergence

Sequence of functions:

{f;}loil = {flafévféw"afna-“a}
Definition

Suppose f; : X — R for all i. Then {f;}72; converges pointwise to f if, for
all x € X and € > 0, there is an N such that for all n > N,

|fa(x) — f(x)| <€

This is as strong of a statement as we're likely to make in statistics

Justin Grimmer (Stanford University)

o F
Methodology |



Convergence Definitions

Define «5,, to be estimator for § based on n observations.
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Convergence Definitions

Define 5,, to be estimator for § based on n observations.

Sequence of estimators: increasing sample size
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Convergence Definitions

Define 5,, to be estimator for § based on n observations.
Sequence of estimators: increasing sample size

(Y, - fiii

9}
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Convergence Definitions

Define 5,, to be estimator for § based on n observations.
Sequence of estimators: increasing sample size

(Y = {00ds.. 0}
Question: What can we say about {QA,}H

as n — oo?
i=1
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Convergence Definitions

Define §,, to be estimator for § based on n observations.
Sequence of estimators: increasing sample size

{8} = {002,050,
Question: What can we say about {QA,}H

_, s 0o?
- What is the probability 8,, differs from 67
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Convergence Definitions

Define 6, to be estimator for 8 based on n observations.
Sequence of estimators: increasing sample size

{8} = {002,050,
Question: What can we say about {QA,}H

_asn— 007
- What is the probability 5,, differs from 67

~ n
- What is the probability {9,-}. . converges to 07
=

Justin Grimmer (Stanford University)

o F
Methodology |



Convergence Definitions

Define 6, to be estimator for 8 based on n observations.
Sequence of estimators: increasing sample size

{8} = {002,050,
Question: What can we say about {QA,}H

_asn— 007
- What is the probability 5,, differs from 67

o~ n
- What is the probability {9,-}

_, converges to 07
=
- What is sampling distribution of 0, as n— 0o ?
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Convergence in Probability
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Convergence in Probability

Definition

We will say the sequence 5,, converges in probability to 0 (perhaps a
non-degenerate RV) if,

lim Prob(|6, — 6] > ¢) =0
n—oo
For any e > 0
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Convergence in Probability

Definition
We will say the sequence 5,, converges in probability to 0 (perhaps a
non-degenerate RV) if,

lim Prob(|6, — 6] > ¢) =0
n—oo
For any e > 0

- ¢ is a tolerance parameter: how much error around 67
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Convergence in Probability

Definition
We will say the sequence 5,, converges in probability to 0 (perhaps a
non-degenerate RV) if,

lim Prob(|6, — 6] > ¢) =0
n—oo
For any e > 0

- ¢ is a tolerance parameter: how much error around 67

- In the limit, convergence in probability implies sampling distribution
collapses on a spike at 6
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Convergence in Probability

Definition

We will say the sequence 5,, converges in probability to 0 (perhaps a
non-degenerate RV) if,

Ii_}m Prob(|0, — 6] > ¢) =0
For any e > 0

- ¢ is a tolerance parameter: how much error around 67

- In the limit, convergence in probability implies sampling distribution
collapses on a spike at 6

{5

} need not actually converge to 6, only P(|0, - 0| >¢) =0
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Example (Cassella and Burger)
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Example (Cassella and Burger)

Suppose S ~ Uniform(0,1). Define X(s) = s.
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Example (Cassella and Burger)

Suppose S ~ Uniform(0,1). Define X(s) = s.
Suppose X, is define as follows:
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Example (Cassella and Burger)
Suppose S ~ Uniform(0,1). Define X(s) = s.
Suppose X, is define as follows:

Xi(s) = s +1(s €[0,1])

, Xo(s)=s+1(s€[0,1/2])
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Example (Cassella and Burger)
Suppose S ~ Uniform(0,1). Define X(s) = s.
Suppose X, is define as follows:

Xi(s)=s+1(s€[0,1]) , Xas)
X3(s)=s+1(s€[1/2,1])

I(s €0,1/2])
, Xa(s)=s+1(s€10,1/3])
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Example (Cassella and Burger)
Suppose S ~ Uniform(0,1). Define X(s) = s.
Suppose X, is define as follows:

Xi(s)=s+1(s€[0,1]) , Xas)
X3(s)=s+1(s€[1/2,1])

s+ 1(s€10,1/2])
, Xa(s)=s+1(s€10,1/3])
Xs(s)=s+1(s€[1/3,2/3]) , Xs(s)=s+1(s€[2/3,1])
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Example (Cassella and Burger)
Suppose S ~ Uniform(0,1). Define X(s) = s.
Suppose X, is define as follows:

Xi(s)=s+1(s€[0,1]) , Xas)
X3(s)=s+1I(se[1/2,1])

=s+1(s€[0,1/2])
, Xa(s)=s+1(s€0,1/3])
Xs(s)=s+1(s€[1/3,2/3]) , Xe(s)=s+1(s€[2/3,1])
Does X,(s) pointwise converge to X(s)?
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Example (Cassella and Burger)
Suppose S ~ Uniform(0,1). Define X(s) = s.
Suppose X, is define as follows:

Xi(s)=s+1(s€[0,1]) , Xas)
X3(s)=s+1I(se[1/2,1])

s+ 1(s<[0,1/2])
, Xa(s)=s+1(s€]0,1/3])
Xs(s)=s+1(s€[1/3,2/3]) , Xe(s)=s+1(s€[2/3,1])
Does X,(s) pointwise converge to X(s)?
Does X,(s) converge in probability to X(s)?
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Example (Cassella and Burger)

Suppose S ~ Uniform(0,1). Define X(s) = s.
Suppose X, is define as follows:

Xi(s)=s+1(s€[0,1]) , Xas)
X3(s)=s+1I(se[1/2,1])

=s+1(s€[0,1/2])
, Xa(s)=s+1(s€]0,1/3])
Xs(s) =s+1(s€[1/3,2/3]) , Xe(s)=s+1(s€[2/3,1])
Does X,(s) pointwise converge to X(s)?
Does X,(s) converge in probability to X(s)?

P(|Xn — X| > ¢€) P(s € [In, un])
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Example (Cassella and Burger)

Suppose S ~ Uniform(0,1). Define X(s) = s.
Suppose X, is define as follows:

Xi(s)=s+1(s€[0,1]) , Xo(s)=s+1I(s€]0,1/2])
X3(s)=s+1(se[1/2,1]) , Xu(s)=s+1(s€[0,1/3])
Xs(s)=s+1(s€[1/3,2/3]) , Xs(s)=s+1(s€[2/3,1])

Does X,(s) pointwise converge to X(s)?
Does X,(s) converge in probability to X(s)?

P(|Xn — X| >¢€) = P(s € [ln,un])

Length of [y, u)] = 0= P(s € [Ls, Us]) =0

Justin Grimmer (Stanford University) Methodology | September 22nd, 2016 19 / 28



Almost Sure Convergence
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Almost Sure Convergence
Definition

We will say the sequence a,, converges almost surely to 0 if,

Prob( lim |6, — 6] > ¢) =0
n—oo
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Almost Sure Convergence
Definition

We will say the sequence :9\,, converges almost surely to 0 if,

Prob( lim |6, — 6] > ¢) =0
n—oo

- Stronger: says that sequence converges to 6 (almost everywhere) )
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Almost Sure Convergence

Definition
We will say the sequence :9\,, converges almost surely to 0 if,

Prob( lim |6, — 0] > ¢€) =0
n—o0

- Stronger: says that sequence converges to 6 (almost everywhere) )

- Think about definition of random variable: 5,, is a function from
sample space to real line.
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Almost Sure Convergence
Definition
We will say the sequence (9\,, converges almost surely to 0 if,

Prob( lim |6, — 0] > ¢€) =0
n—o0

- Stronger: says that sequence converges to 6 (almost everywhere) )

- Think about definition of random variable: 5,, is a function from
sample space to real line.

- Almost sure says that, for all outcomes (s) in sample space (S)
ses,
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Almost Sure Convergence
Definition
We will say the sequence (9\,, converges almost surely to 0 if,

Prob( lim |6, — 0] > ¢€) =0
n—o0

- Stronger: says that sequence converges to 6 (almost everywhere) )

- Think about definition of random variable: 5,, is a function from
sample space to real line.

- Almost sure says that, for all outcomes (s) in sample space (S)
ses,

On(s) — 6(s)
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Almost Sure Convergence
Definition
We will say the sequence (9\,, converges almost surely to 0 if,

Prob( lim |6, — 0] > ¢€) =0
n—o0

- Stronger: says that sequence converges to 6 (almost everywhere) )

- Think about definition of random variable: 5,, is a function from
sample space to real line.

- Almost sure says that, for all outcomes (s) in sample space (S)
ses,

On(s) — 6(s)

Except for a subset ' C S such that P(N) = 0.

] = =
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Example (Cassella and Burger)

Suppose S ~ Uniform(0,1).
Suppose X, is define as follows

Xi(s )—s+l(s€ [0,1]) , Xa(s)
X3(s ) + (s € [1/2,1])
X5(S)

s+ 1(s€0,1/2])
, Xa(s)=s+1(s€[0,1/3])
+1(s€[1/3,2/3]) , Xs(s)=s+I(se[2/3,1])
Does X,(s) converge almost surely to X(s) = s?
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Example (Cassella and Burger)

Suppose S ~ Uniform(0,1).
Suppose X, is define as follows

Xi(s )—s+l(s€ [0,1]) , Xa(s)
X3(s ) + (s € [1/2,1])
X5(S)

s+ 1(s€0,1/2])
, Xa(s)=s+1(s€[0,1/3])
+1(s€[1/3,2/3]) , Xe(s)=s+1(s€[2/3,1])
Does X,(s) converge almost surely to X(s) = s?
No!: the sequence doesn’t converge for each s
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Example (Cassella and Burger)

Suppose S ~ Uniform(0,1).
Suppose X, is define as follows:

Xi(s)=s+1(s€[0,1]) , Xa(s)
X3(s)=s+1(s€[1/2,1]) , Xa(s)
Xs(s)=s+1(s€[1/3,2/3]) , Xo(s)

s+ 1(s€0,1/2])
s+ 1(s€0,1/3])
s+ 1(se€[2/3,1])

Does X,(s) converge almost surely to X(s) = s?
No!: the sequence doesn’t converge for each s
For each value of s the sequence varies between s and s+ 1 infinitely often
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Convergence in Distribution
distribution.

We've talked about é\,,’s sampling distribution converging to a normal
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Convergence in Distribution

We've talked about é\,,’s sampling distribution converging to a normal
distribution.

This is convergence in distribution
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Convergence in Distribution

We've talked about é\,,’s sampling distribution converging to a normal
distribution.

This is convergence in distribution

Definition

5,,, with cdf F,(x), converges in distribution to random variable Y with
cdf F(x) if

lim |Fa(x) — F(x)| = 0

n—oo

For all x € ® where F(x) is continuous.
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Convergence in Distribution

We've talked about 5,,’5 sampling distribution converging to a normal
distribution.

This is convergence in distribution

Definition

5,,, with cdf F,(x), converges in distribution to random variable Y with
cdf F(x) if

lim |Fa(x) — F(x)| = 0

n—o0

For all x € ® where F(x) is continuous.

- Weakest form of convergence almost sure — probability —
distribution
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Convergence in Distribution

We've talked about 8,'s sampling distribution converging to a normal
distribution.

This is convergence in distribution
Definition
0,,, with cdf Fn(x), converges in distribution to random variable Y with

cdf F(x) if

lim |Fa(x) — F(x)| = 0

n—o0

For all x € R where F(x) is continuous.

- Weakest form of convergence almost sure — probability —
distribution

- Says that cdfs are equal, says nothing about convergence of
underlying RV
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Convergence in Distribution

We've talked about 8,'s sampling distribution converging to a normal
distribution.

This is convergence in distribution
Definition
0,,, with cdf Fn(x), converges in distribution to random variable Y with

cdf F(x) if

lim |Fa(x) — F(x)| = 0

n—o0

For all x € R where F(x) is continuous.

- Weakest form of convergence almost sure — probability —
distribution

- Says that cdfs are equal, says nothing about convergence of
underlying RV

- Useful for justifying use of some sampling distributions
o F
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Convergence in Distribution # Convergence in Probability

Define X ~ N(0,1) and each X, = —X. Then:
Xn ~ N(0,1) for all nso X, trivially converges to X. But,

P(|Xo —X|>¢€) = P(X+X|>¢)
= P(]2X| > ¢)
= P(IX|>€/2) 40
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Central Limit Theorem

Proposition

Let X1, Xo,... be a sequence of independent random variables with mean
v and variance 0. Let X; have a cdf P(X; < x) = F(x) and moment
generating function M(t) = E[e®] . Let S, =", X;. Then

_ Cy— 1 x 22
lim P — < = — -
nlm ( oh _x> VA exp( 2)dz
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Central Limit Theorem

Proposition

Let X1, Xo,... be a sequence of independent random variables with mean
v and variance 0. Let X; have a cdf P(X; < x) = F(x) and moment
generating function M(t) = E[e®] . Let S, =", X;. Then

: Sn— un z°
— < — _ -
n'L”;oP< oh —X> m/ ex"( z)dz

Proof plan:
1) Rely on Fact that convergence of MGFs~~ convergence in CDFs
2) Show that MGFs, in limit, converge on normal MGF

u]
8
I
i
it
5
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Proposition

Let F, be a sequence of cumulative distribution functions with the
corresponding moment generating functions M,. F be a cdf with the
moment generating functions M. If limp_,ooc M,(t) — M(t) for all t in
some interval, then F,(x) ~> F(x) for all x (when F is continuous).
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Proposition

Let F, be a sequence of cumulative distribution functions with the
corresponding moment generating functions M,. F be a cdf with the
moment generating functions M. If limp_,ooc M,(t) — M(t) for all t in
some interval, then F,(x) ~> F(x) for all x (when F is continuous).

Proposition

Suppose lim,_,o a, — a, then

lim <1+ﬂ)" — ¢
n

n—oo
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Proposition

Let F, be a sequence of cumulative distribution functions with the
corresponding moment generating functions M,. F be a cdf with the
moment generating functions M. If limp_,ooc M,(t) — M(t) for all t in
some interval, then F,(x) ~> F(x) for all x (when F is continuous).

Proposition

Suppose lim,_,o a, — a, then

lim <1+ﬂ)" — ¢
n

n—oo

Proposition

Suppose M(t) is a moment generating function some random variable X.
Then M(0) = 1.
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Proof of Central Limit Theorem (Courtsey of Swarthmore
Notes)

Proof. Suppose Xi,

., X, are iid variables with E[X] = 0, variance
02, Moment Generating Function (MGF) M,(t).
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Proof of Central Limit Theorem (Courtsey of Swarthmore
Notes)

Proof. Suppose Xi,

Sp

02, Moment Generating Function (MGF) M,(t).
Let Sy =7, X and Z, = ;5o

., X, are iid variables with E[X] = 0, variance
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Proof of Central Limit Theorem (Courtsey of Swarthmore
Notes)

Proof. Suppose Xi,..., X, are iid variables with E[X] = 0, variance
02, Moment Generating Function (MGF) M,(t).

Let S, =37, X; and Z, = >

Ms, = (M(2))" and My, (1) = (M, (-27))
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Proof of Central Limit Theorem (Courtsey of Swarthmore
Notes)

Proof. Suppose Xi,..., X, are iid variables with E[X] = 0, variance
02, Moment Generating Function (MGF) M,(t).

Let S, =37, X; and Z, = >

Ms, = (M.(1))" and My, (6) = (M, (;57))"
Using Taylor's Theorem we can write

/ 1 "
M.(s) = M,(0)+ sM (0)+ 552/\/&(0) + e

/s> — 0ass — 0.
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! 1 1
M(s) = M(0)+ sM,(0) + 552 M. (0) + e

Filling in the values we have
M(s) =

Set s = ﬁ lim,_—oo s — 0.

Mz,(t)

lim Mzn(t)

n—o0
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Review Time
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