Math Camp

Justin Grimmer

Associate Professor Department of Political Science Stanford University

September 21st, 2016

< A

3

Questions? (Dose response curve and conditional density functions)

- (A 🖓

Э

Define following terms:

- Suppose $f : \Re \to \Re$. Provide the definition of a continuous function f
- Suppose $f : \Re \to \Re$. Define the derivative of function f at x_0 .
- Convergence of a sequence $\{a_n\}_{n=1}^{\infty}$
- Suppose $f: \Re^2 \to \Re$, $f(x_1, x_2)$. Define $\nabla f(\boldsymbol{x}_0)$ where $\boldsymbol{x}_0 = (x_{01}, x_{02})$.

Where We've Been, Where We're Going

Finishing Up Yesterday:

5) The Multivariate Normal Distribution and You

Today:

- 1) Properties of Expectations
- 2) Changing Coordinates
- 3) Moment Generating Functions

Definition

Suppose $\mathbf{X} = (X_1, X_2, \dots, X_N)$ is a vector of random variables. If \mathbf{X} has pdf

$$f(\mathbf{x}) = (2\pi)^{-N/2} det(\mathbf{\Sigma})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

Then we will say **X** is a Multivariate Normal Distribution,

 $oldsymbol{X} \sim Multivariate Normal(oldsymbol{\mu},oldsymbol{\Sigma})$

- Regularly used for likelihood, Bayesian, and other parametric inferences

Properties of the Multivariate Normal Distribution

Suppose $\boldsymbol{X} = (X_1, X_2, \dots, X_N)$ $X \sim Multivariate Normal(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$E[\mathbf{X}] = \mu$$

$$cov(\mathbf{X}) = \mathbf{\Sigma}$$

Properties of the Multivariate Normal Distribution

 $\begin{array}{l} \mathsf{Suppose} \,\, \boldsymbol{X} = (X_1, X_2, \ldots, X_N) \\ X \sim \mathsf{Multivariate} \,\, \mathsf{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \end{array}$

$$E[\mathbf{X}] = \mu$$

 $\operatorname{cov}(\mathbf{X}) = \mathbf{\Sigma}$

So that,

$$\boldsymbol{\Sigma} = \begin{pmatrix} \operatorname{var}(X_1) & \operatorname{cov}(X_1, X_2) & \dots & \operatorname{cov}(X_1, X_N) \\ \operatorname{cov}(X_2, X_1) & \operatorname{var}(X_2) & \dots & \operatorname{cov}(X_2, X_N) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(X_N, X_1) & \operatorname{cov}(X_N, X_2) & \dots & \operatorname{var}(X_N) \end{pmatrix}$$

Consider the (bivariate) special case where $\mu = (0,0)$ and

$$\mathbf{\Sigma} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- < A

Consider the (bivariate) special case where $\mu = (0,0)$ and

$$\mathbf{\Sigma} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Then

$$f(x_1, x_2) = (2\pi)^{-2/2} 1^{-1/2} \exp\left(-\frac{1}{2} \left((\boldsymbol{x} - \boldsymbol{0})' \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (\boldsymbol{x} - \boldsymbol{0}) \right) \right)$$

Image: A match a ma

Э

Sar

Consider the (bivariate) special case where $\mu = (0,0)$ and

$$\mathbf{\Sigma} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Then

$$f(x_1, x_2) = (2\pi)^{-2/2} 1^{-1/2} \exp\left(-\frac{1}{2} \left((\mathbf{x} - \mathbf{0})' \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (\mathbf{x} - \mathbf{0}) \right) \right)$$
$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2} (x_1^2 + x_2^2)\right)$$

Image: A match a ma

Э

Sar

Consider the (bivariate) special case where $\mu = (0,0)$ and

$$\mathbf{\Sigma} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Then

$$f(x_1, x_2) = (2\pi)^{-2/2} 1^{-1/2} \exp\left(-\frac{1}{2} \left((\mathbf{x} - \mathbf{0})' \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (\mathbf{x} - \mathbf{0}) \right) \right)$$

$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2} (x_1^2 + x_2^2)\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_1^2}{2}\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_2^2}{2}\right)$$

Justin Grimmer (Stanford University)

 $\exists \rightarrow$ September 21st, 2016 7 / 29

Image: A match a ma

Э

Sar

Consider the (bivariate) special case where $\mu=(0,0)$ and

$$\boldsymbol{\Sigma} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Then

$$f(x_1, x_2) = (2\pi)^{-2/2} 1^{-1/2} \exp\left(-\frac{1}{2} \left((\mathbf{x} - \mathbf{0})' \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (\mathbf{x} - \mathbf{0}) \right) \right)$$

$$= \frac{1}{2\pi} \exp\left(-\frac{1}{2} (x_1^2 + x_2^2)\right)$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_1^2}{2}\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_2^2}{2}\right)$$

 \rightsquigarrow product of univariate standard normally distributed random variables

Standard Multivariate Normal

Definition Suppose $Z = (Z_1, Z_2, ..., Z_N)$ is $Z \sim Multivariate Normal(0, I_N).$ Then we will call Z the standard multivariate normal.

Justin Grimmer (Stanford University)

Independence and Multivariate Normal

Proposition Suppose X and Y are independent. Then

cov(X, Y) = 0

Suppose X and Y are independent.

Э

990

イロト イポト イヨト イヨト

Suppose X and Y are independent.

$$cov(X, Y) = E[XY] - E[X]E[Y]$$

Э

990

イロト イポト イヨト イヨト

Suppose X and Y are independent.

$$\operatorname{cov}(X,Y) = E[XY] - E[X]E[Y]$$

Calculating E[XY]

< 17 ≥

-

Э

Suppose X and Y are independent.

$$\operatorname{cov}(X,Y) = E[XY] - E[X]E[Y]$$

Calculating E[XY]

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y) dx dy$$

∃ ⊳

< 17 ≥

Э

Suppose X and Y are independent.

cov(X, Y) = E[XY] - E[X]E[Y]

Calculating E[XY]

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y) dx dy$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf_X(x)f_Y(y) dx dy$$

Justin Grimmer (Stanford University)	Methodology I
--------------------------------------	---------------

< A

Э

Suppose X and Y are independent.

 $\operatorname{cov}(X, Y) = E[XY] - E[X]E[Y]$

Calculating E[XY]

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y)dxdy$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf_X(x)f_Y(y)dxdy$$

=
$$\int_{-\infty}^{\infty} xf_X(x)dx \int_{-\infty}^{\infty} yf_Y(y)dy$$

			$\mathcal{O} \land \mathcal{O}$
Justin Grimmer (Stanford University)	Methodology I	September 21st, 2016	10 / 29

Suppose X and Y are independent.

$$\operatorname{cov}(X,Y) = E[XY] - E[X]E[Y]$$

Calculating E[XY]

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y) dxdy$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf_X(x)f_Y(y) dxdy$$

=
$$\int_{-\infty}^{\infty} xf_X(x) dx \int_{-\infty}^{\infty} yf_Y(y) dy$$

=
$$E[X]E[Y]$$

Justin Grimmer (Stanford	University)	
--------------------------	-------------	--

< A

Э

Suppose X and Y are independent.

$$\operatorname{cov}(X,Y) = E[XY] - E[X]E[Y]$$

Calculating E[XY]

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y) dxdy$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf_X(x)f_Y(y) dxdy$$

=
$$\int_{-\infty}^{\infty} xf_X(x) dx \int_{-\infty}^{\infty} yf_Y(y) dy$$

=
$$E[X]E[Y]$$

Then cov(X, Y) = 0.

-

< 17 ≥

Э

Suppose X and Y are independent.

$$\operatorname{cov}(X,Y) = E[XY] - E[X]E[Y]$$

Calculating E[XY]

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x, y)dxdy$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf_X(x)f_Y(y)dxdy$$

=
$$\int_{-\infty}^{\infty} xf_X(x)dx \int_{-\infty}^{\infty} yf_Y(y)dy$$

=
$$E[X]E[Y]$$

Then cov(X, Y) = 0.

- More generally if X and Y are independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)] for functions $g: \Re \to \Re$ and $h: \Re \to \Re$. Zero covariance does not generally imply Independent

Suppose
$$X \in \{-1, 1\}$$
 with $P(X = 1) = P(X = -1) = 1/2$.
Suppose $Y \in \{-1, 0, 1\}$ with $Y = 0$ if $X = -1$ and $P(Y = 1) = P(Y = -1)$ if $X = 1$.

$$E[XY] = \sum_{i \in \{-1,1\}} \sum_{j \in \{-1,0,1\}} ijP(X = i, Y = j)$$

= $-1 \times 0 \times P(X = -1, Y = 0) + 1 \times 1 \times P(X = 1, Y = 1)$
 $-1 \times 1 \times P(X = 1, Y = -1)$
= $0 + P(X = 1, Y = 1) - P(X = 1, Y = -1)$
= $0.25 - 0.25 = 0$
 $E[X] = 0$
 $E[Y] = 0$

Proposition

Suppose $\mathbf{X} \sim Multivariate Normal(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. where $\mathbf{X} = (X_1, X_2, \dots, X_N)$. If $cov(X_i, X_j) = 0$, then X_i and X_j are independent

Proposition

Suppose X and Y are random variables. Then

E[X] = E[E[X|Y]]

- Inner Expectation is $E[X|Y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$.
- Outer expectation is over y.

 $\langle \Box \rangle$

< 4 P ≥

э

E

Proof.

$$E[E[X|Y]] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X|Y}(x|y) f_{Y}(y) dx dy$$

< A

E

$$E[E[X|Y]] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X|Y}(x|y) f_{Y}(y) dx dy$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X|Y}(x|y) f_{Y}(y) dy dx$$

	< ⊏		500
Justin Grimmer (Stanford University)	Methodology I	September 21st, 2016	14 / 29

$$E[E[X|Y]] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X|Y}(x|y) f_{Y}(y) dx dy$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X|Y}(x|y) f_{Y}(y) dy dx$$

=
$$\int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x, y) dy dx$$

	< ⊏	□ 〉 《母 〉 《토 〉 《토 〉 [토	୬୯୯
Justin Grimmer (Stanford University)	Methodology I	September 21st, 2016	14 / 29

$$E[E[X|Y]] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf_{X|Y}(x|y)f_{Y}(y)dxdy$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf_{X|Y}(x|y)f_{Y}(y)dydx$$

=
$$\int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x,y)dydx$$

=
$$\int_{-\infty}^{\infty} xf_{X}(x)dx$$

	< □		500
Justin Grimmer (Stanford University)	Methodology I	September 21st, 2016	14 / 29

$$E[E[X|Y]] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf_{X|Y}(x|y)f_{Y}(y)dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf_{X|Y}(x|y)f_{Y}(y)dydx$$

$$= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x,y)dydx$$

$$= \int_{-\infty}^{\infty} xf_{X}(x)dx$$

$$= E[X]$$

	∢ Ε		500
Justin Grimmer (Stanford University)	Methodology I	September 21st, 2016	14 / 29

Definition

Suppose Y is a continuous random variable with $Y \in [0,1]$ and pdf of Y given by

$$f(y) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} y^{\alpha_1 - 1} (1 - y)^{\alpha_2 - 1}$$

Then we will say Y is a Beta distribution with parameters α_1 and α_2 . Equivalently,

$$Y \sim Beta(\alpha_1, \alpha_2)$$

- Beta is a distribution on proportions
- Beta is a special case of the Dirichlet distribution
- $E[Y] = \frac{\alpha_1}{\alpha_1 + \alpha_2}$

Suppose

$$egin{array}{lll} \pi & \sim & {\sf Beta}(lpha_1, lpha_2) \ Y|\pi, n & \sim & {\sf Binomial}(n, \pi) \end{array}$$

What is E[Y]?

-

< 同

Э

Suppose

$$egin{array}{lll} \pi & \sim & {\sf Beta}(lpha_1, lpha_2) \ Y|\pi, n & \sim & {\sf Binomial}(n, \pi) \end{array}$$

What is E[Y]?

 $E[Y] = E[E[Y|\pi]]$

- (A 🖓

3

Suppose

$$egin{array}{lll} \pi & \sim & {\sf Beta}(lpha_1, lpha_2) \ Y|\pi, n & \sim & {\sf Binomial}(n, \pi) \end{array}$$

What is E[Y]?

$$E[Y] = E[E[Y|\pi]]$$

=
$$\int_{-\infty}^{\infty} \sum_{j=0}^{N} {N \choose j} jp(j|\pi) f(\pi) d\pi$$

Э

990

ヨト・モヨト

-

< □ > < 同 >

Iterated Expectations

Suppose

$$egin{array}{lll} \pi & \sim & {\sf Beta}(lpha_1, lpha_2) \ Y|\pi, n & \sim & {\sf Binomial}(n, \pi) \end{array}$$

What is E[Y]?

$$E[Y] = E[E[Y|\pi]]$$

= $\int_{-\infty}^{\infty} \sum_{j=0}^{N} {N \choose j} jp(j|\pi) f(\pi) d\pi$
= $\int_{-\infty}^{\infty} N\pi f(\pi) d\pi$

< A

Э

Iterated Expectations

Suppose

$$egin{array}{lll} \pi & \sim & {\sf Beta}(lpha_1, lpha_2) \ Y|\pi, n & \sim & {\sf Binomial}(n, \pi) \end{array}$$

What is E[Y]?

$$E[Y] = E[E[Y|\pi]]$$

= $\int_{-\infty}^{\infty} \sum_{j=0}^{N} {N \choose j} jp(j|\pi) f(\pi) d\pi$
= $\int_{-\infty}^{\infty} N\pi f(\pi) d\pi$
= $N \frac{\alpha_1}{\alpha_1 + \alpha_2}$

Justin Grimmer (Stanford University)

< A

Э

Proposition

Suppose X is a random variable and Y = g(X), where $g : \Re \to \Re$ that is a monotonic function.

Define $g^{-1}: \Re o \Re$ such that $g^{-1}(g(X)) = X$ and is differentiable. Then,

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(y)}{\partial y} \right| \text{ if } y = g(x) \text{ for some } x$$
$$= 0 \text{ otherwise}$$

Proof.

Proof.

$$F_Y(y) = P(Y \leq y)$$

Proof.

$$F_Y(y) = P(Y \le y) \\ = P(g(X) \le y)$$

Proof.

$$F_Y(y) = P(Y \le y)$$

= $P(g(X) \le y)$
= $P(X \le g^{-1}(y))$

Proof.

$$egin{array}{rcl} {\sf F}_{{\sf Y}}(y) &=& {\sf P}({\it Y}\leq y) \ &=& {\sf P}(g(X)\leq y) \ &=& {\sf P}(X\leq g^{-1}(y)) \ &=& {\sf F}_X(g^{-1}(y)) \end{array}$$

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$egin{array}{rcl} F_Y(y) &=& P(Y\leq y) \ &=& P(g(X)\leq y) \ &=& P(X\leq g^{-1}(y)) \ &=& F_X(g^{-1}(y)) \end{array}$$

Now differentiating to get the pdf

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$egin{array}{rcl} F_Y(y) &=& P(Y\leq y) \ &=& P(g(X)\leq y) \ &=& P(X\leq g^{-1}(y)) \ &=& F_X(g^{-1}(y)) \end{array}$$

Now differentiating to get the pdf

$$\frac{\partial F_{Y}(y)}{\partial y} = \frac{\partial F_{X}(g^{-1}(y))}{\partial y}$$
$$= f_{X}(g^{-1}(y))\frac{\partial g^{-1}(y)}{\partial y}$$

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$egin{array}{rcl} F_Y(y) &=& P(Y\leq y) \ &=& P(g(X)\leq y) \ &=& P(X\leq g^{-1}(y)) \ &=& F_X(g^{-1}(y)) \end{array}$$

Now differentiating to get the pdf

$$\frac{\partial F_Y(y)}{\partial y} = \frac{\partial F_X(g^{-1}(y))}{\partial y}$$
$$= f_X(g^{-1}(y))\frac{\partial g^{-1}(y)}{\partial y}$$

Then this is a pdf because $\frac{\partial g^{-1}(Y)}{\partial y} > 0$.

Suppose X is a random variable with pdf $f_X(x)$. Suppose $Y = X^n$. Find $f_Y(y)$.

Suppose X is a random variable with pdf $f_X(x)$. Suppose $Y = X^n$. Find $f_Y(y)$. Then $g^{-1}(x) = x^{1/n}$.

Suppose X is a random variable with pdf $f_X(x)$. Suppose $Y = X^n$. Find $f_Y(y)$. Then $g^{-1}(x) = x^{1/n}$.

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(Y)}{\partial y} \right|$$

Sac

イロト 不得 トイヨト イヨト 二日

Suppose X is a random variable with pdf $f_X(x)$. Suppose $Y = X^n$. Find $f_Y(y)$. Then $g^{-1}(x) = x^{1/n}$.

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(Y)}{\partial y} \right|$$
$$= f_X(y^{1/n}) \frac{y^{\frac{1}{n}-1}}{n}$$

Suppose X is a random variable with pdf $f_X(x)$. Suppose $Y = X^n$. Find $f_Y(y)$. Then $g^{-1}(x) = x^{1/n}$.

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(Y)}{\partial y} \right|$$
$$= f_X(y^{1/n}) \frac{y^{\frac{1}{n}-1}}{n}$$

We've used this to derive many of the pdfs

Suppose X is a random variable with pdf $f_X(x)$. Suppose $Y = X^n$. Find $f_Y(y)$. Then $g^{-1}(x) = x^{1/n}$.

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(Y)}{\partial y} \right|$$
$$= f_X(y^{1/n}) \frac{y^{\frac{1}{n}-1}}{n}$$

We've used this to derive many of the pdfs

- Normal distribution
- Chi-Squared Distribution

Definition

Suppose X is a random variable with pdf f. Define,

$$E[X^n] = \int_{-\infty}^{\infty} x^n f(x) dx$$

We will call X^n the n^{th} moment of X

- By this definition var(X) =Second Moment First Moment²
- We are assuming that the integral converges

Proposition

Suppose X is a random variable with pdf f(x). Call $M(t) = E[e^{tX}]$,

$$M(t) = E[e^{tX}] \\ = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

We will call M(t) the moment generating function, because:

$$\frac{\partial^n M(t)}{\partial^n t}|_0 = E[X^n]$$

(Assuming that we can interchange derivative and integral)

Justin Grimmer	(Stanford	University)
----------------	-----------	-------------

GETTING REAL SICK OF YOUR SHIT CARL

Justin Grimmer (Stanford University)

Methodology I

< ∃ > September 21st, 2016 22 / 29

Proof.

Recall the Taylor Expansion of e^{tX} at 0,

Justin Grimmer	(Stanford University)
----------------	-----------------------

< A

Э

Proof.

Recall the Taylor Expansion of e^{tX} at 0,

$$e^{tX} = 1 + tx + \frac{t^2x^2}{2!} + \frac{t^3x^3}{3!} + \dots$$

			き うくぐ
Justin Grimmer (Stanford University)	Methodology I	September 21st, 2016	23 / 29

Proof.

Recall the Taylor Expansion of e^{tX} at 0,

$$e^{tX} = 1 + tx + \frac{t^2x^2}{2!} + \frac{t^3x^3}{3!} + \dots$$

Then,

	4		500
Justin Grimmer (Stanford University)	Methodology I	September 21st, 2016	23 / 29

Proof.

Recall the Taylor Expansion of e^{tX} at 0,

$$e^{tX} = 1 + tx + \frac{t^2x^2}{2!} + \frac{t^3x^3}{3!} + \dots$$

Then,

$$E[e^{tX}] = 1 + tE[X] + \frac{t^2}{2!}E[X^2] + \frac{t^3}{3!}E[X^3] + \dots$$

			500
Justin Grimmer (Stanford University)	Methodology I	September 21st, 2016	23 / 29

Proof.

Recall the Taylor Expansion of e^{tX} at 0,

$$e^{tX} = 1 + tx + \frac{t^2x^2}{2!} + \frac{t^3x^3}{3!} + \dots$$

Then.

$$E[e^{tX}] = 1 + tE[X] + \frac{t^2}{2!}E[X^2] + \frac{t^3}{3!}E[X^3] + \dots$$

Differentiate once:

< A

3

Sac

Proof.

Recall the Taylor Expansion of e^{tX} at 0,

$$e^{tX} = 1 + tx + \frac{t^2x^2}{2!} + \frac{t^3x^3}{3!} + \dots$$

Then.

$$E[e^{tX}] = 1 + tE[X] + \frac{t^2}{2!}E[X^2] + \frac{t^3}{3!}E[X^3] + \dots$$

Differentiate once:

$$\frac{\partial M(t)}{\partial t} = 0 + E[X] + \frac{2t}{2!}E[X^2] + \dots$$

$$M'(0) = 0 + E[X] + 0 + 0 \dots$$

< A

3

Sac

Proof. Differentiate *n* times

E

990

<ロト <回ト < 回ト < 回ト

Differentiate n times

$$\frac{\partial^n M(t)}{\partial^n t} = 0 + 0 + 0 + \ldots + \frac{n \times n - 1 \times \ldots 2 \times t^0 E[X^n]}{n!} + \frac{n! t E[X^{n+1}]}{(n+1)!} + \ldots$$

Ξ

990

<ロト <回ト < 回ト < 回ト

Differentiate n times

$$\frac{\partial^n M(t)}{\partial^n t} = 0 + 0 + 0 + \dots + \frac{n \times n - 1 \times \dots 2 \times t^0 E[X^n]}{n!} + \frac{n! t E[X^{n+1}]}{(n+1)!} + \dots$$
$$= \frac{n! E[X^n]}{n!} + \frac{n! t E[X^{n+1}]}{(n+1)!} + \dots$$

E

990

<ロト <回ト < 回ト < 回ト

Differentiate n times

$$\frac{\partial^{n} M(t)}{\partial^{n} t} = 0 + 0 + 0 + \dots + \frac{n \times n - 1 \times \dots 2 \times t^{0} E[X^{n}]}{n!} + \frac{n! t E[X^{n+1}]}{(n+1)!} + \dots$$
$$= \frac{n! E[X^{n}]}{n!} + \frac{n! t E[X^{n+1}]}{(n+1)!} + \dots$$

Evaluated at 0, yields $M^n(0) = E[X^n]$

A E > A E >

< □ > < 同 >

Э

Differentiate n times

$$\begin{aligned} \frac{\partial^n M(t)}{\partial^n t} &= 0 + 0 + 0 + \ldots + \frac{n \times n - 1 \times \ldots 2 \times t^0 E[X^n]}{n!} + \frac{n! t E[X^{n+1}]}{(n+1)!} + \ldots \\ &= \frac{n! E[X^n]}{n!} + \frac{n! t E[X^{n+1}]}{(n+1)!} + \ldots \end{aligned}$$

Evaluated at 0, yields $M^n(0) = E[X^n]$

- If two random variables, X and Y have the same moment generating functions, then $F_X(x) = F_Y(y)$ for almost all x.

3

- b

Suppose $Z \sim N(0, 1)$.

Suppose $Z \sim N(0, 1)$.

$$E[e^{tX}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-x^2/2} dx$$

-

3

< 口 > < 同

Suppose $Z \sim N(0, 1)$.

$$E[e^{tX}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-x^2/2} dx$$
$$tx - \frac{1}{2}x^2 = -\frac{1}{2} \left((x - t)^2 - t^2 \right)$$

- < fi

Suppose $Z \sim N(0, 1)$.

$$E[e^{tX}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-x^2/2} dx$$
$$tx - \frac{1}{2}x^2 = -\frac{1}{2} \left((x-t)^2 - t^2 \right)$$
$$E[e^{tX}] = \frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2}} \int_{-\infty}^{\infty} e^{-(x-t)^2/2} dx$$

< A

Suppose $Z \sim N(0, 1)$.

$$E[e^{tX}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-x^2/2} dx$$
$$tx - \frac{1}{2}x^2 = -\frac{1}{2} \left((x - t)^2 - t^2 \right)$$
$$E[e^{tX}] = -\frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2}} \int_{-\infty}^{\infty} e^{-(x - t)^2/2} dx$$

$$\begin{bmatrix} e^{tx} \end{bmatrix} = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}} \int_{-\infty} e^{-(x-t)^2/2} dx$$
$$= e^{\frac{t^2}{2}}$$

- < A

Justin Grimmer (Stanford University)

$$M'(0) = E[X] = e^{t^2/2}t|_0 = 0$$

$$M'(0) = E[X] = e^{t^2/2}t|_0 = 0$$

$$M''(0) = E[X^2] = e^{t^2/2}(t^2 + 1)|_0 = 1$$

$$M'(0) = E[X] = e^{t^2/2}t|_0 = 0$$

$$M''(0) = E[X^2] = e^{t^2/2}(t^2 + 1)|_0 = 1$$

$$M'''(0) = E[X^3] = e^{t^2/2}t(t^2 + 3)|_0 = 0$$

$$M'(0) = E[X] = e^{t^2/2}t|_0 = 0$$

$$M''(0) = E[X^2] = e^{t^2/2}(t^2 + 1)|_0 = 1$$

$$M'''(0) = E[X^3] = e^{t^2/2}t(t^2 + 3)|_0 = 0$$

$$M''''(0) = E[X^4] = e^{t^2/2}(t^4 + 6t^2 + 3)|_0 = 3$$

$$M'(0) = E[X] = e^{t^2/2}t|_0 = 0$$

$$M''(0) = E[X^2] = e^{t^2/2}(t^2 + 1)|_0 = 1$$

$$M'''(0) = E[X^3] = e^{t^2/2}t(t^2 + 3)|_0 = 0$$

$$M''''(0) = E[X^4] = e^{t^2/2}(t^4 + 6t^2 + 3)|_0 = 3$$

$$M^5(0) = E[X^5] = e^{t^2/2}t(t^4 + 10t^2 + 15)|_0 = 0$$

$$M'(0) = E[X] = e^{t^2/2}t|_0 = 0$$

$$M''(0) = E[X^2] = e^{t^2/2}(t^2 + 1)|_0 = 1$$

$$M'''(0) = E[X^3] = e^{t^2/2}t(t^2 + 3)|_0 = 0$$

$$M''''(0) = E[X^4] = e^{t^2/2}(t^4 + 6t^2 + 3)|_0 = 3$$

$$M^5(0) = E[X^5] = e^{t^2/2}t(t^4 + 10t^2 + 15)|_0 = 0$$

$$M^6(0) = E[X^6] = e^{t^2/2}(t^6 + 15t^4 + 45t^2 + 15)|_0 = 15$$

$$M'(0) = E[X] = e^{t^2/2}t|_0 = 0$$

$$M''(0) = E[X^2] = e^{t^2/2}(t^2 + 1)|_0 = 1$$

$$M'''(0) = E[X^3] = e^{t^2/2}t(t^2 + 3)|_0 = 0$$

$$M''''(0) = E[X^4] = e^{t^2/2}(t^4 + 6t^2 + 3)|_0 = 3$$

$$M^5(0) = E[X^5] = e^{t^2/2}t(t^4 + 10t^2 + 15)|_0 = 0$$

$$M^6(0) = E[X^6] = e^{t^2/2}(t^6 + 15t^4 + 45t^2 + 15)|_0 = 15$$

Proposition

Suppose X_i are a sequence of independent random variables. Define

$$Y = \sum_{i=1}^{N} X_i$$

Then

$$M_Y(t) = \prod_{i=1}^N M_{X_i}(t)$$

Justin Grimmer	(Stanford Universit	:y)
----------------	---------------------	-----

Sac

$M_Y(t) = E[e^{tY}]$

$$M_Y(t) = E[e^{tY}]$$

= $E[e^{t\sum_{i=1}^N X_i}]$

Ξ

900

・ロト ・四ト ・日ト ・日ト

$$\begin{aligned} M_{Y}(t) &= E[e^{tY}] \\ &= E[e^{t\sum_{i=1}^{N} X_{i}}] \\ &= E[e^{tX_{1}+tX_{2}+...tX_{N}}] \end{aligned}$$

Ξ

900

・ロト ・四ト ・日ト ・日ト

$$M_{Y}(t) = E[e^{tY}]$$

= $E[e^{t\sum_{i=1}^{N} X_{i}}]$
= $E[e^{tX_{1}+tX_{2}+...tX_{N}}]$
= $E[e^{tX_{1}}]E[e^{tX_{2}}]...E[e^{tX_{N}}]$ (by independence)

Ξ

900

・ロト ・四ト ・日ト ・日ト

$$M_{Y}(t) = E[e^{tY}]$$

= $E[e^{t\sum_{i=1}^{N} X_i}]$
= $E[e^{tX_1 + tX_2 + \dots tX_N}]$
= $E[e^{tX_1}]E[e^{tX_2}]\dots E[e^{tX_N}]$ (by independence)
= $\prod_{i=1}^{N} E[e^{tX_i}]$

Ξ

900

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Tomorrow: Sequences of Random Variables

∃ ⊳ -

< A

E