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Questions?

(Dose response curve and conditional density functions)
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Define following terms:

Suppose f : R — R. Provide the definition of a continuous function f

Suppose f : 8 — R. Define the derivative of function f at xp.

Convergence of a sequence {ap}°°,
Suppose f : R2 — R, f(x1,x2). Define Vf(xq) where xo = (xo1, x02).
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Where We've Been, Where We're Going

Finishing Up Yesterday:
5) The Multivariate Normal Distribution and You
Today:

1) Properties of Expectations
2) Changing Coordinates

3) Moment Generating Functions
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Definition

Suppose X = (X1, X2,...,Xn) is a vector of random variables. If X has
pdf

Fx) = (20) Pdet(E) 2 exp (—%(x Wy u))

Then we will say X is a Multivariate Normal Distribution,

X

~

Multivariate Normal(p, X)

- Regularly used for likelihood, Bayesian, and other parametric
inferences
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Properties of the Multivariate Normal Distribution

Suppose X = (X, Xz,

oo Xn)
X ~ Multivariate Normal(u, X)

E[X] =
cov(X) =
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Properties of the Multivariate Normal Distribution
Suppose X = (X, Xz,

ooy XN)
X ~ Multivariate Normal(p, X)

E[X] = n
cov(X) = X
So that,
var(X1) cov(X1, X2) ... cov(Xi, Xn)
> COV()(Q7 X1) var(Xz) . COV(XQ, XN)
COV(XN,Xl) COV(XN,XQ)

var(Xy)
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Multivariate Normal Distribution

Consider the (bivariate) special case where p = (0,0) and

f (i
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Multivariate Normal Distribution

Consider the (bivariate) special case where p = (0,0) and

10
== (o)
Then

0 2)t-0))
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Multivariate Normal Distribution
Consider the (bivariate) special case where p = (0,0) and

10
== (o)
Then

f(X]_, X2)

(27) 221712 exp (-% ((x —0) <(1) ;’) (x - 0)>>
— gew(—50+)
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Multivariate Normal Distribution

Consider the (bivariate) special case where p = (0,0) and

Then

PN

= (1)

foa,0) = (2m) P12 exp (-% <(x _0) <(1) (1’> (x — 0)>>

1

= —exp

2
1
V22T
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Multivariate Normal Distribution

Consider the (bivariate) special case where p = (0,0) and

10
== (o)
Then

fix,x) = (2m) 2217 exp <—; ((x_O)’ <(1) 2) (x—o)>>
~ Lo (Lo )
- e () el

~> product of univariate standard normally distributed random variables

[m] = = =

it
<
¢
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Standard Multivariate Normal

Definition
Suppose Z = (23, Za, .

..,ZN) is
Z ~

Multivariate Normal(0, I ).
Then we will call Z the standard multivariate normal.
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Independence and Multivariate Normal

Proposition

Suppose X and Y are independent. Then

cov(X,Y) = 0
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Proof.

Suppose X and Y are independent.
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Proof.

Suppose X and Y are independent.

cov(X,Y)

E[XY] — E[X]E[Y]
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Proof.

Suppose X and Y are independent.

cov(X,Y)

Calculating E[XY]

E[XY] — E[X]E[Y]
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Proof.

Suppose X and Y are independent.

cov(X,Y)
Calculating E[XY]

E[XY] — E[X]E[Y]

E[XY] = /_(: /_Z xyf(x, y)dxdy
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Proof.

Suppose X and Y are independent.

cov(X,Y)
Calculating E[XY]

E[XY] — E[X]E[Y]

E[XY] = /_(: /_o:oxyf(x,y)dxdy
= [ onntsady
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Proof.
Suppose X and Y are independent.

cov(X,Y) = E[XY]- E[X]E[Y]

/ / xyf(x, y)dxdy

-/ Z / nyfx(x)fy(y)dxdy
_ /°° () A (y)dy

— 00 — 00

Calculating E[XY]

E[XY]
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Proof.

Suppose X and Y are independent.

cov(X,Y)

Calculating E[XY]

E[XY]

= E[XY] - E[X]E[Y]

/ / xyf(x, y)dxdy

/_O; /_O:o xyfx (x)fy (y)dxdy

/:: XfX(X)dX/—Z

E[X]E[Y]

yfy(y)dy
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Proof.

Suppose X and Y are independent.

cov(X,Y)

Calculating E[XY]

E[XY]

Then cov(X, Y) =0.

= E[XY] - E[X]E[Y]

/ / xyf(x, y)dxdy

/_O; /_O:o xyfx (x)fy (y)dxdy

/:: xl"x(x)dx/_(:.o

E[X]E[Y]

yfy(y)dy
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Proof.
Suppose X and Y are independent.

cov(X,Y) = E[XY]- E[X]E[Y]

/ / xyf(x, y)dxdy

/_O; /_O:o xyfx (x)fy (y)dxdy
_ /OO xfx(X)dx/OO S (y)dy

— 00 — 00

= E[X]E[Y]

Calculating E[XY]

E[XY]

Then cov(X, Y) =0.

- More generally if X and Y are independent,
Elg(X)h(Y)] = E[g(X)]E[h(Y)] for functions g: R — R and h: R — R.
o = = = =

DA
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Zero covariance does not generally imply Independent

Suppose X € {—1,1} with P(X =1) = P(X = -1) =1/2.
Suppose Y € {—1,0,1} with Y =0 if X = —1 and
P(Y=1)=P(Y = -1)if X = L.

EXY] = > > iPX=iY=))
ie{-1,1}je{-1,0,1}
= —1x0xPX=-1,Y=0)+1x1xPX=1Y=1)
“Ix1xPX=1Y=-1)
= 0+P(X=1Y=1)-PX=1Y =-1)
= 025-025=0
EIX] = 0
ElY] = 0
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Proposition

Suppose X ~ Multivariate Normal(p, X). where X = (X1, Xa,
If cov(X;, Xj) = 0, then X; and X; are independent

L Xn).
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lterated Expectations

Proposition

Suppose X and Y are random variables. Then

EX] = EEXIY]
- Inner Expectation is E[X|Y] = [ xfx|y(x]y)dx.
- Outer expectation is over y.
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lterated Expectations
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lterated Expectations

Proof.

E[EIX|Y]] = /_°° /_°° xfy (xly) i (y )iy
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lterated Expectations

Proof.

E[EIX|Y]] = /_°° /_°° xfy (xly) i (y )iy

-/ Z / Z xfy (xly)fy () dydx
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lterated Expectations

Proof.

E[EIXIY]] =

/_Z /_: xfx|y (x|y)fy (y)dxdy
/_Z /_Z xtx|y (x|y)fy (y)dydx

/ x/ f(x,y)dydx
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lterated Expectations
Proof.

E[EIXIY]] =

/_Z /_: xfx|y (x|y)fy (y)dxdy
/_Z /_Z xtx|y (x|y)fy (y)dydx

/ x/ f(x,y)dydx

/OO xfx (x)dx
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lterated Expectations
Proof.

E[EIX|Y]]

/_Z /_: xfx|y (x|y)fy (y)dxdy
/_Z /_Z xtx|y (x|y)fy (y)dydx

= / x/ f(x,y)dydx
= / xfx (x)dx
= E[X]
DJ
o F = = £ DA
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lterated Expectations
Definition

Suppose Y is a continuous random variable with Y € [0, 1] and pdf of Y
given by

fly) = ;Ezi)ﬁ(z;y"”‘l(l—y)”‘l

Then we will say Y is a Beta distribution with parameters o and ao.
Equivalently,

Y ~ Beta(ai,az)

- Beta is a distribution on proportions

- Beta is a special case of the Dirichlet distribution
- E[Y] N © 5 .

ai+oo
Justin Grimmer (Stanford University)
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lterated Expectations
Suppose

m

Y|im,n ~
What is E[Y]?
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lterated Expectations
Suppose

™

~

Beta(al,ag)
Y|im,n ~

Binomial(n, )
What is E[Y]?

E[Y]

E[E[Y|x]]
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lterated Expectations
Suppose

™

~

Beta(al,ag)
Y|im,n ~

Binomial(n, )
What is E[Y]?

E[Y] =

E[E[Y|x]]

/ Z( )Jpjlﬂ)f(ﬂ)
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lterated Expectations
Suppose

™~ Beta(al,ag)
Y|r,n ~ Binomial(n, )
What is E[Y]?
E[Y] = E[E[Y][x]]

/ Z( )Jpjlﬂ)f(ﬂ)
_ /_  Nef(m)dr
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lterated Expectations

Suppose

™~ Beta(al, CM2)

Y|r,n ~ Binomial(n, )

What is E[Y]?

E[Y]

Justin Grimmer (Stanford University)
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Change of Coordinates

Proposition
Suppose X is a random variable and Y = g(X), where g : ® — R that is
a monotonic function.

Define g=1 : R — R such that g~1(g(X)) = X and is differentiable. Then,

fr(y) = fx(g () |8g_—1(y) if y = g(x) for some x

dy

= 0 otherwise
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Change of Coordinates

Proof.
Suppose g(-) is monotonically increasing (WLOG)
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Change of Coordinates

Proof.
Suppose g(-) is monotonically increasing (WLOG)

Fy(y) = P(Y <y)
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Change of Coordinates

Proof.
Suppose g(-) is monotonically increasing (WLOG)

Fy(y) = P(Y <y)
P(g(X) <vy)
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Change of Coordinates

Proof.
Suppose g(-) is monotonically increasing (WLOG)

Fy(y) = P(Y <y)
= P(g(X)<y)
= P(X<gy)
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Change of Coordinates

Proof.
Suppose g(-) is monotonically increasing (WLOG)

Fy(y) = P(Y <y)

= (() y)
<g ()
= Fx(g'(y))

I
’>?
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Change of Coordinates

Proof.
Suppose g(-) is monotonically increasing (WLOG)

Fy(y) = P(Y <y)

= (() y)
<g ()
= Fx(g'(y))

Now differentiating to get the pdf

I
’>?
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Change of Coordinates

Proof.
Suppose g(-) is monotonically increasing (WLOG)

Fy(y) = P(Y <y)

= P(g(X)<y)
= P(X<g'(y))
= Fx(g"'(¥))
Now differentiating to get the pdf
OFy(y) _ OFx(g'(y))
Oy dy

= fx(gl(y))—ag;y
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Change of Coordinates

Proof.
Suppose g(-) is monotonically increasing (WLOG)

Fy(y) = P(Y <y)

= P(g(X)<y)
= P(X<g'(y))
= Fx(g"'(¥))
Now differentiating to get the pdf
OFy(y) _ OFx(g'(y))
Oy dy

= fx(gl(y))—ag;y

Then this is a pdf because @g*a_;(y) > 0.
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Change of Coordinates

fy(y)-

Suppose X is a random variable with pdf fx(x). Suppose Y = X". Find
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Change of Coordinates

fy(y)-

Suppose X is a random variable with pdf fx(x). Suppose Y = X". Find
Then g~1(x) = x/".
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Change of Coordinates

fy(y)-

Suppose X is a random variable with pdf fx(x). Suppose Y = X". Find
Then g7 1(x) = x!/n

fr(y) =

dy

e 0|25
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Change of Coordinates

fy(y)-

Suppose X is a random variable with pdf fx(x). Suppose Y = X". Find
Then g7 1(x) = x!/n

—1
fly) = (—1(y))]8g y‘y)\
fx(yl/")yn—n_1
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Change of Coordinates

fy(y)-

Suppose X is a random variable with pdf fx(x). Suppose Y = X". Find
Then g7 1(x) = x!/n

fr(y) =

- #le 0|25

11

£ 1/mY"
x (v )_n
We've used this to derive many of the pdfs
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Change of Coordinates

fy(y)-

Suppose X is a random variable with pdf fx(x). Suppose Y = X". Find
Then g7 1(x) = x!/n

~1
fly) = (—l(y))]f’g y(y)\
fx(yl/n)L_l

n
We've used this to derive many of the pdfs
- Normal distribution

- Chi-Squared Distribution
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Moment Generating Functions

Definition
Suppose X is a random variable with pdf f. Define,

E[X"] = /oo x"f(x)dx

We will call X" the nt" moment of X

- By this definition var(X) = Second Moment — First Moment?

- We are assuming that the integral converges

Justin Grimmer (Stanford University)
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Moment Generating Functions

Proposition

Suppose X is a random variable with pdf f(x). Call M(t) = E[e%X],

M(t) = E[eX]

= /oo e™f(x)dx

We will call M(t) the moment generating function, because:
0"M(t)
= E[X"
Gny 10 (X"]

(Assuming that we can interchange derivative and integral)

Justin Grimmer (Stanford University)
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Moment Generating Functions
Proof.

Recall the Taylor Expansion of eX at 0,
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Proof.
Recall the Taylor Expansion of eX at 0,

etX
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Moment Generating Functions
Proof.

Recall the Taylor Expansion of eX at 0,

e tX

2,2 t3X3
= 14tx+—F—F...
2! 3!
Then,
y
] = =
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Moment Generating Functions
Proof.

Recall the Taylor Expansion of eX at 0,

X 2.2 t3X3
Then,
t2 t3
Ele®™] = 1+tEX]+ EE[XQ] + aE[x3] + ...
] = =
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Moment Generating Functions
Proof.

Recall the Taylor Expansion of eX at 0,

e tX

2.2 t3X3
Then,
t2 t3
Ele®™] = 1+tEX]+ EE[XQ] + aE[x3] +
Differentiate once:
] = =
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Moment Generating Functions

Proof.

Recall the Taylor Expansion of eX at 0,

t2x2 t3x3
X _ tx X
e = 14+tx+ ol + 30 + ...
Then,
X t? oy, B 3
E[e¥] = 1+tE[X]+§E[X ]+§E[X J+...
Differentiate once:
oOM(t) 2t _ o
-7 = E[X —E[X
Bt 0+ E[X]+ o [X°]+
M(@©) = 0+4E[X]+0+0...
DJ
[m] = =
Justin Grimmer (Stanford University)
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Proof.

Differentiate n times
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Proof.

Differentiate n times

a"M(t)
ont o

0+0+0+...

nxn—1x...2xt°E[X"
n!

nltE[X "]
T
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Proof.

Differentiate n times

0" M(t)
ont

0+0+0+4+...+

nxn—1x...2xt°E[X"]  nltE[X "]
n! *
MEXT] | nltE[X"]
N n! (n+1)!

(n+1)!
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Proof.

Differentiate n times

a"M(t) nxn—1x...2xt9E[X"]  nltE[X"+1]
T 04+0+4+0+...+ p + (n+ 1)1
_ME[XT] | nlEXT
B n! (n+1)!
Evaluated

at 0, yields M"(0) = E[X"]

Justin Grimmer (Stanford University)

Methodology |




Proof.

Differentiate n times

o"M(t) nxn—1x...2xt°E[X"]  nltE[X "]
T 0+04+0+...+ p + (n+ 1)1
_ mEXT] | aleE[X]
B n! (n+1)!
Evaluated

at 0, yields M"(0) = E[X"]

- If two random variables, X and Y have the same moment generating
functions, then Fx(x) = Fy(y) for almost all x.
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The Moments of the Normal Distribution

Suppose Z ~ N(0,1).

Justin Grimmer (Stanford University)

Methodology |



The Moments of the Normal Distribution

Suppose Z ~ N(0,1).

E[etX] — \/%/ etxe_x2/2dx
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The Moments of the Normal Distribution

Suppose Z ~ N(0,1).

1 & 2
E[etX] - = eXe=X /ZdX
V21 J s
tx — %Xz =

A (-1 )
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The Moments of the Normal Distribution

Suppose Z ~ N(0,1).

1 & 2

E etX _ _/ eXe=X /ZdX
[e™] el A

tx —ix2 = -1 ((x —t)> - ?)

E[etX] 1
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The Moments of the Normal Distribution

Suppose Z ~ N(0,1).

1 & 2

E etX _ _/ eXe=X /ZdX
[e™] el A

tx —ix2 = -1 ((x —t)> - ?)

1 2 [
E[etX] — \/Ee7 / ef(xft)2/2dx
= e%
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Extracting Moments of the Normal Distribution
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Extracting Moments of the Normal Distribution

M(0) =

E[X] = e*/?t|p =0
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Extracting Moments of the Normal Distribution

M (0)

M (0)

E[X] = e*/?t|p =0

EIX?Y = e +1))p=1
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Extracting Moments of the Normal Distribution

M (0)

E[X] = e*/?t|p =0
EIX?Y = e +1))p=1

E[X3] = e/2t(t2 +3)[o = 0
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Extracting Moments of the Normal Distribution

Justin Grimmer (Stanford University)
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EIX?Y = e +1))p=1
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Extracting Moments of the Normal Distribution

Justin Grimmer (Stanford University)

E[X] = e*/?t|p =0

EIX?Y = e +1))p=1

E[X3] = e /2t(2 +3)|p =0

E[X* = e®/2(t* + 612 + 3)|p =3
E[X%] = e/2¢(t* + 10£% + 15)|p = 0
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Extracting Moments of the Normal Distribution

) = E[X]=e"?tlp=0
) = EX=e"P(+1)p=1
) = E[X3 =e2t(t2+3)]o =0
M"(0) = E[X*]=et/?(t* +6t2+3)|p =3
) E[X%] = e/2¢(t* + 10£% + 15)|p = 0
) = E[X®] = e"/2(t% + 15¢* + 4512 + 15)|o = 15
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Extracting Moments of the Normal Distribution

) = E[X]=e"?tlp=0
) = EX=e"P(+1)p=1
) = E[X3 =e2t(t2+3)]o =0
M"(0) = E[X*]=et/?(t* +6t2+3)|p =3
) E[X%] = e/2¢(t* + 10£% + 15)|p = 0
) = E[X®] = e"/2(t% + 15¢* + 4512 + 15)|o = 15
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Proposition

Suppose X; are a sequence of independent random variables. Define
Then
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Proof.

My(t) = E[e'"]
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Proof.

My(t) = E[e'"]

E[etZ?I:I X’]
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Proof.

My(t) = E[e"]
— E[etzf\lzl X’]
— E[etX1+tX2+...tXN]
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Proof.

My(t) = E[e"]
— E[etzf\lzl X‘]
_ E[etX1+tX2+...tXN]

= E[e™]E[e??]... E[e®*¥] (by independence)
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Proof.

My(t) = E[e"]
— E[etzf\lzl X‘]
_ E[etX1+tX2+...tXN]

= E[e™]E[e??]... E[e®*¥] (by independence)

N
= JIEE™]
i=1
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Tomorrow:

Sequences of Random Variables
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