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Questions?
(Dose response curve and conditional density functions)
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Define following terms:

- Suppose f : < → <. Provide the definition of a continuous function f

- Suppose f : < → <. Define the derivative of function f at x0.

- Convergence of a sequence {an}∞n=1

- Suppose f : <2 → <, f (x1, x2). Define ∇f (x0) where x0 = (x01, x02).
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Where We’ve Been, Where We’re Going

Finishing Up Yesterday:

5) The Multivariate Normal Distribution and You

Today:

1) Properties of Expectations

2) Changing Coordinates

3) Moment Generating Functions
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Definition

Suppose X = (X1,X2, . . . ,XN) is a vector of random variables. If X has
pdf

f (x) = (2π)−N/2det (Σ)−1/2 exp

(
−1

2
(x − µ)

′
Σ−1(x − µ)

)
Then we will say X is a Multivariate Normal Distribution,

X ∼ Multivariate Normal(µ,Σ)

- Regularly used for likelihood, Bayesian, and other parametric
inferences
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Properties of the Multivariate Normal Distribution

Suppose X = (X1,X2, . . . ,XN)
X ∼ Multivariate Normal(µ,Σ)

E [X ] = µ

cov(X ) = Σ

So that,

Σ =


var(X1) cov(X1,X2) . . . cov(X1,XN)

cov(X2,X1) var(X2) . . . cov(X2,XN)
...

...
. . .

...
cov(XN ,X1) cov(XN ,X2) . . . var(XN)


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Multivariate Normal Distribution

Consider the (bivariate) special case where µ = (0, 0) and

Σ =

(
1 0
0 1

)

Then

f (x1, x2) = (2π)−2/21−1/2 exp

(
−1

2

(
(x − 0)

′
(

1 0
0 1

)
(x − 0)

))
=

1

2π
exp

(
−1

2
(x21 + x22 )

)
=

1√
2π

exp

(
−x21

2

)
1√
2π

exp

(
−x22

2

)

 product of univariate standard normally distributed random variables
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Standard Multivariate Normal

Definition

Suppose Z = (Z1,Z2, . . . ,ZN) is

Z ∼ Multivariate Normal(0, IN).

Then we will call Z the standard multivariate normal.

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 8 / 29



Independence and Multivariate Normal

Proposition

Suppose X and Y are independent. Then

cov(X ,Y ) = 0
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Proof.
Suppose X and Y are independent.

cov(X ,Y ) = E [XY ]− E [X ]E [Y ]

Calculating E [XY ]

E [XY ] =

∫ ∞
−∞

∫ ∞
−∞

xyf (x , y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xyfX (x)fY (y)dxdy

=

∫ ∞
−∞

xfX (x)dx

∫ ∞
−∞

yfY (y)dy

= E [X ]E [Y ]

Then cov(X ,Y ) = 0.

- More generally if X and Y are independent,
E [g(X )h(Y )] = E [g(X )]E [h(Y )] for functions g : < → < and h : < → <.
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Zero covariance does not generally imply Independent

Suppose X ∈ {−1, 1} with P(X = 1) = P(X = −1) = 1/2.
Suppose Y ∈ {−1, 0, 1} with Y = 0 if X = −1 and
P(Y = 1) = P(Y = −1) if X = 1.

E [XY ] =
∑

i∈{−1,1}

∑
j∈{−1,0,1}

ijP(X = i ,Y = j)

= −1× 0× P(X = −1,Y = 0) + 1× 1× P(X = 1,Y = 1)

−1× 1× P(X = 1,Y = −1)

= 0 + P(X = 1,Y = 1)− P(X = 1,Y = −1)

= 0.25− 0.25 = 0

E [X ] = 0

E [Y ] = 0
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Proposition

Suppose X ∼ Multivariate Normal(µ,Σ). where X = (X1,X2, . . . ,XN).
If cov(Xi ,Xj) = 0, then Xi and Xj are independent
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Iterated Expectations

Proposition

Suppose X and Y are random variables. Then

E [X ] = E [E [X |Y ]]

- Inner Expectation is E [X |Y ] =
∫∞
−∞ xfX |Y (x |y)dx .

- Outer expectation is over y .
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Iterated Expectations

Proof.

E [E [X |Y ]] =

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dydx

=

∫ ∞
−∞

x

∫ ∞
−∞

f (x , y)dydx

=

∫ ∞
−∞

xfX (x)dx

= E [X ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 14 / 29



Iterated Expectations

Proof.

E [E [X |Y ]] =

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dydx

=

∫ ∞
−∞

x

∫ ∞
−∞

f (x , y)dydx

=

∫ ∞
−∞

xfX (x)dx

= E [X ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 14 / 29



Iterated Expectations

Proof.

E [E [X |Y ]] =

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dydx

=

∫ ∞
−∞

x

∫ ∞
−∞

f (x , y)dydx

=

∫ ∞
−∞

xfX (x)dx

= E [X ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 14 / 29



Iterated Expectations

Proof.

E [E [X |Y ]] =

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dydx

=

∫ ∞
−∞

x

∫ ∞
−∞

f (x , y)dydx

=

∫ ∞
−∞

xfX (x)dx

= E [X ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 14 / 29



Iterated Expectations

Proof.

E [E [X |Y ]] =

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dydx

=

∫ ∞
−∞

x

∫ ∞
−∞

f (x , y)dydx

=

∫ ∞
−∞

xfX (x)dx

= E [X ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 14 / 29



Iterated Expectations

Proof.

E [E [X |Y ]] =

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xfX |Y (x |y)fY (y)dydx

=

∫ ∞
−∞

x

∫ ∞
−∞

f (x , y)dydx

=

∫ ∞
−∞

xfX (x)dx

= E [X ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 14 / 29



Iterated Expectations

Definition

Suppose Y is a continuous random variable with Y ∈ [0, 1] and pdf of Y
given by

f (y) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
yα1−1(1− y)α2−1

Then we will say Y is a Beta distribution with parameters α1 and α2.
Equivalently,

Y ∼ Beta(α1, α2)

- Beta is a distribution on proportions

- Beta is a special case of the Dirichlet distribution

- E [Y ] = α1
α1+α2
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Iterated Expectations

Suppose

π ∼ Beta(α1, α2)

Y |π, n ∼ Binomial(n, π)

What is E [Y ]?

E [Y ] = E [E [Y |π]]

=

∫ ∞
−∞

N∑
j=0

(
N

j

)
jp(j |π)f (π)dπ

=

∫ ∞
−∞

Nπf (π)dπ

= N
α1

α1 + α2
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Change of Coordinates

Proposition

Suppose X is a random variable and Y = g(X ), where g : < → < that is
a monotonic function.
Define g−1 : < → < such that g−1(g(X )) = X and is differentiable. Then,

fY (y) = fX (g−1(y))

∣∣∣∣∂g−1(y)

∂y

∣∣∣∣ if y = g(x) for some x

= 0 otherwise
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Change of Coordinates

Proof.

Suppose g(·) is monotonically increasing (WLOG)

FY (y) = P(Y ≤ y)

= P(g(X ) ≤ y)

= P(X ≤ g−1(y))

= FX (g−1(y))

Now differentiating to get the pdf

∂FY (y)

∂y
=

∂FX (g−1(y))

∂y

= fX (g−1(y))
∂g−1(y)

∂y

Then this is a pdf because ∂g−1(Y )
∂y > 0.
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Suppose g(·) is monotonically increasing (WLOG)

FY (y) = P(Y ≤ y)
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Change of Coordinates

Suppose X is a random variable with pdf fX (x). Suppose Y = X n. Find
fY (y).

Then g−1(x) = x1/n.

fY (y) = fX (g−1(y))

∣∣∣∣∂g−1(Y )

∂y

∣∣∣∣
= fX (y1/n)

y
1
n
−1

n

We’ve used this to derive many of the pdfs

- Normal distribution

- Chi-Squared Distribution
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Moment Generating Functions

Definition

Suppose X is a random variable with pdf f . Define,

E [X n] =

∫ ∞
−∞

xnf (x)dx

We will call X n the nth moment of X

- By this definition var(X ) = Second Moment− First Moment2

- We are assuming that the integral converges
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Moment Generating Functions

Proposition

Suppose X is a random variable with pdf f (x). Call M(t) = E [etX ],

M(t) = E [etX ]

=

∫ ∞
−∞

etx f (x)dx

We will call M(t) the moment generating function, because:

∂nM(t)

∂nt
|0 = E [X n]

(Assuming that we can interchange derivative and integral)
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Moment Generating Functions

Proof.

Recall the Taylor Expansion of etX at 0,

etX = 1 + tx +
t2x2

2!
+

t3x3

3!
+ . . .

Then,

E [etX ] = 1 + tE [X ] +
t2

2!
E [X 2] +

t3

3!
E [X 3] + . . .

Differentiate once:

∂M(t)

∂t
= 0 + E [X ] +

2t

2!
E [X 2] + . . .

M
′
(0) = 0 + E [X ] + 0 + 0 . . .
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Proof.
Differentiate n times

∂nM(t)

∂nt
= 0 + 0 + 0 + . . .+

n × n − 1× . . . 2× t0E [X n]

n!
+

n!tE [X n+1]

(n + 1)!
+ . . .

=
n!E [X n]

n!
+

n!tE [X n+1]

(n + 1)!
+ . . .

Evaluated at 0, yields Mn(0) = E [X n]

- If two random variables, X and Y have the same moment generating
functions, then FX (x) = FY (y) for almost all x .
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The Moments of the Normal Distribution

Suppose Z ∼ N(0, 1).

E [etX ] =
1√
2π

∫ ∞
−∞

etxe−x
2/2dx

tx − 1
2x

2 = −1
2

(
(x − t)2 − t2

)
E [etX ] =

1√
2π

e
t2

2

∫ ∞
−∞

e−(x−t)
2/2dx

= e
t2

2
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Extracting Moments of the Normal Distribution

M
′
(0) = E [X ] = et

2/2t|0 = 0

M
′′

(0) = E [X 2] = et
2/2(t2 + 1)|0 = 1

M
′′′

(0) = E [X 3] = et
2/2t(t2 + 3)|0 = 0

M
′′′′

(0) = E [X 4] = et
2/2(t4 + 6t2 + 3)|0 = 3

M5(0) = E [X 5] = et
2/2t(t4 + 10t2 + 15)|0 = 0

M6(0) = E [X 6] = et
2/2(t6 + 15t4 + 45t2 + 15)|0 = 15
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Proposition

Suppose Xi are a sequence of independent random variables. Define

Y =
N∑
i=1

Xi

Then

MY (t) =
N∏
i=1

MXi
(t)
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Proof.

MY (t) = E [etY ]

= E [et
∑N

i=1 Xi ]

= E [etX1+tX2+...tXN ]

= E [etX1 ]E [etX2 ] . . .E [etXN ] (by independence)

=
N∏
i=1

E [etXi ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 28 / 29



Proof.

MY (t) = E [etY ]

= E [et
∑N

i=1 Xi ]

= E [etX1+tX2+...tXN ]

= E [etX1 ]E [etX2 ] . . .E [etXN ] (by independence)

=
N∏
i=1

E [etXi ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 28 / 29



Proof.

MY (t) = E [etY ]

= E [et
∑N

i=1 Xi ]

= E [etX1+tX2+...tXN ]

= E [etX1 ]E [etX2 ] . . .E [etXN ] (by independence)

=
N∏
i=1

E [etXi ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 28 / 29



Proof.

MY (t) = E [etY ]

= E [et
∑N

i=1 Xi ]

= E [etX1+tX2+...tXN ]

= E [etX1 ]E [etX2 ] . . .E [etXN ] (by independence)

=
N∏
i=1

E [etXi ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 28 / 29



Proof.

MY (t) = E [etY ]

= E [et
∑N

i=1 Xi ]

= E [etX1+tX2+...tXN ]

= E [etX1 ]E [etX2 ] . . .E [etXN ] (by independence)

=
N∏
i=1

E [etXi ]

Justin Grimmer (Stanford University) Methodology I September 21st, 2016 28 / 29



Tomorrow:
Sequences of Random Variables
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