Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 21st, 2016

Questions?
 (Dose response curve and conditional density functions)

Define following terms:

- Suppose $f: \Re \rightarrow \Re$. Provide the definition of a continuous function f
- Suppose $f: \Re \rightarrow \Re$. Define the derivative of function f at x_{0}.
- Convergence of a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$
- Suppose $f: \Re^{2} \rightarrow \Re, f\left(x_{1}, x_{2}\right)$. Define $\nabla f\left(\boldsymbol{x}_{0}\right)$ where $\boldsymbol{x}_{0}=\left(x_{01}, x_{02}\right)$.

Where We've Been, Where We're Going

Finishing Up Yesterday:
5) The Multivariate Normal Distribution and You

Today:

1) Properties of Expectations
2) Changing Coordinates
3) Moment Generating Functions

Definition
Suppose $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ is a vector of random variables. If \boldsymbol{X} has pdf

$$
f(\boldsymbol{x})=(2 \pi)^{-N / 2} \operatorname{det}(\boldsymbol{\Sigma})^{-1 / 2} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

Then we will say \boldsymbol{X} is a Multivariate Normal Distribution,
$\boldsymbol{X} \sim$ Multivariate Normal $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- Regularly used for likelihood, Bayesian, and other parametric inferences

Properties of the Multivariate Normal Distribution

Suppose $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$
$X \sim \operatorname{Multivariate} \operatorname{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
\begin{aligned}
E[\boldsymbol{X}] & =\boldsymbol{\mu} \\
\operatorname{cov}(\boldsymbol{X}) & =\boldsymbol{\Sigma}
\end{aligned}
$$

Properties of the Multivariate Normal Distribution

Suppose $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$
$X \sim \operatorname{Multivariate} \operatorname{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
\begin{aligned}
E[\boldsymbol{X}] & =\boldsymbol{\mu} \\
\operatorname{cov}(\boldsymbol{X}) & =\boldsymbol{\Sigma}
\end{aligned}
$$

So that,

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\operatorname{var}\left(X_{1}\right) & \operatorname{cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{cov}\left(X_{1}, X_{N}\right) \\
\operatorname{cov}\left(X_{2}, X_{1}\right) & \operatorname{var}\left(X_{2}\right) & \ldots & \operatorname{cov}\left(X_{2}, X_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left(X_{N}, X_{1}\right) & \operatorname{cov}\left(X_{N}, X_{2}\right) & \ldots & \operatorname{var}\left(X_{N}\right)
\end{array}\right)
$$

Multivariate Normal Distribution

Consider the (bivariate) special case where $\boldsymbol{\mu}=(0,0)$ and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Multivariate Normal Distribution

Consider the (bivariate) special case where $\boldsymbol{\mu}=(0,0)$ and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then

$$
f\left(x_{1}, x_{2}\right)=(2 \pi)^{-2 / 2} 1^{-1 / 2} \exp \left(-\frac{1}{2}\left((\boldsymbol{x}-\mathbf{0})^{\prime}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\boldsymbol{x}-\mathbf{0})\right)\right)
$$

Multivariate Normal Distribution

Consider the (bivariate) special case where $\boldsymbol{\mu}=(0,0)$ and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =(2 \pi)^{-2 / 2} 1^{-1 / 2} \exp \left(-\frac{1}{2}\left((\boldsymbol{x}-\mathbf{0})^{\prime}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\boldsymbol{x}-\mathbf{0})\right)\right) \\
& =\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right)
\end{aligned}
$$

Multivariate Normal Distribution

Consider the (bivariate) special case where $\boldsymbol{\mu}=(0,0)$ and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =(2 \pi)^{-2 / 2} 1^{-1 / 2} \exp \left(-\frac{1}{2}\left((\boldsymbol{x}-\mathbf{0})^{\prime}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\boldsymbol{x}-\mathbf{0})\right)\right) \\
& =\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right) \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x_{1}^{2}}{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x_{2}^{2}}{2}\right)
\end{aligned}
$$

Multivariate Normal Distribution

Consider the (bivariate) special case where $\boldsymbol{\mu}=(0,0)$ and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =(2 \pi)^{-2 / 2} 1^{-1 / 2} \exp \left(-\frac{1}{2}\left((\boldsymbol{x}-\mathbf{0})^{\prime}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\boldsymbol{x}-\mathbf{0})\right)\right) \\
& =\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right) \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x_{1}^{2}}{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x_{2}^{2}}{2}\right)
\end{aligned}
$$

\rightsquigarrow product of univariate standard normally distributed random variables

Standard Multivariate Normal

Definition
Suppose $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{N}\right)$ is
$\boldsymbol{Z} \sim$ Multivariate $\operatorname{Normal}\left(\mathbf{0}, \boldsymbol{I}_{N}\right)$.
Then we will call \boldsymbol{Z} the standard multivariate normal.

Independence and Multivariate Normal

Proposition

Suppose X and Y are independent. Then

$$
\operatorname{cov}(X, Y)=0
$$

Proof.
Suppose X and Y are independent.

Proof.

Suppose X and Y are independent.

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Proof.
Suppose X and Y are independent.

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Calculating $E[X Y]$

Proof.

Suppose X and Y are independent.

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Calculating $E[X Y]$

$$
E[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y
$$

Proof.

Suppose X and Y are independent.

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Calculating $E[X Y]$

$$
\begin{aligned}
E[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) d x d y
\end{aligned}
$$

Proof.

Suppose X and Y are independent.

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Calculating $E[X Y]$

$$
\begin{aligned}
E[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x \int_{-\infty}^{\infty} y f_{Y}(y) d y
\end{aligned}
$$

Proof.

Suppose X and Y are independent.

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Calculating $E[X Y]$

$$
\begin{aligned}
E[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x \int_{-\infty}^{\infty} y f_{Y}(y) d y \\
& =E[X] E[Y]
\end{aligned}
$$

Proof.

Suppose X and Y are independent.

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Calculating $E[X Y]$

$$
\begin{aligned}
E[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x \int_{-\infty}^{\infty} y f_{Y}(y) d y \\
& =E[X] E[Y]
\end{aligned}
$$

Then $\operatorname{cov}(X, Y)=0$.

Proof.

Suppose X and Y are independent.

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]
$$

Calculating $E[X Y]$

$$
\begin{aligned}
E[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x \int_{-\infty}^{\infty} y f_{Y}(y) d y \\
& =E[X] E[Y]
\end{aligned}
$$

Then $\operatorname{cov}(X, Y)=0$.

- More generally if X and Y are independent, $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$ for functions $g: \Re \rightarrow \Re$ and $h: \Re \rightarrow \Re$.

Zero covariance does not generally imply Independent

Suppose $X \in\{-1,1\}$ with $P(X=1)=P(X=-1)=1 / 2$.
Suppose $Y \in\{-1,0,1\}$ with $Y=0$ if $X=-1$ and
$P(Y=1)=P(Y=-1)$ if $X=1$.

$$
\begin{aligned}
E[X Y]= & \sum_{i \in\{-1,1\}} \sum_{j \in\{-1,0,1\}} i j P(X=i, Y=j) \\
= & -1 \times 0 \times P(X=-1, Y=0)+1 \times 1 \times P(X=1, Y=1) \\
& -1 \times 1 \times P(X=1, Y=-1) \\
= & 0+P(X=1, Y=1)-P(X=1, Y=-1) \\
= & 0.25-0.25=0 \\
E[X]= & 0 \\
E[Y]= & 0
\end{aligned}
$$

Proposition

Suppose $\boldsymbol{X} \sim$ Multivariate $\operatorname{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. where $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$. If $\operatorname{cov}\left(X_{i}, X_{j}\right)=0$, then X_{i} and X_{j} are independent

Iterated Expectations

Proposition

Suppose X and Y are random variables. Then

$$
E[X]=E[E[X \mid Y]]
$$

- Inner Expectation is $E[X \mid Y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x$.
- Outer expectation is over y.

Iterated Expectations

Iterated Expectations

Proof.

$$
E[E[X \mid Y]]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) f_{Y}(y) d x d y
$$

Iterated Expectations

Proof.

$$
\begin{aligned}
E[E[X \mid Y]] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) f_{Y}(y) d y d x
\end{aligned}
$$

Iterated Expectations

Proof.

$$
\begin{aligned}
E[E[X \mid Y]] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) f_{Y}(y) d y d x \\
& =\int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x, y) d y d x
\end{aligned}
$$

Iterated Expectations

Proof.

$$
\begin{aligned}
E[E[X \mid Y]] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) f_{Y}(y) d y d x \\
& =\int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x, y) d y d x \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x
\end{aligned}
$$

Iterated Expectations

Proof.

$$
\begin{aligned}
E[E[X \mid Y]] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) f_{Y}(y) d y d x \\
& =\int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x, y) d y d x \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x \\
& =E[X]
\end{aligned}
$$

Iterated Expectations

Definition

Suppose Y is a continuous random variable with $Y \in[0,1]$ and pdf of Y given by

$$
f(y)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} y^{\alpha_{1}-1}(1-y)^{\alpha_{2}-1}
$$

Then we will say Y is a Beta distribution with parameters α_{1} and α_{2}. Equivalently,

$$
Y \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)
$$

- Beta is a distribution on proportions
- Beta is a special case of the Dirichlet distribution
- $E[Y]=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}$

Iterated Expectations

Suppose

$$
\begin{aligned}
\pi & \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right) \\
Y \mid \pi, n & \sim \operatorname{Binomial}(n, \pi)
\end{aligned}
$$

What is $E[Y]$?

Iterated Expectations

Suppose

$$
\begin{aligned}
\pi & \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right) \\
Y \mid \pi, n & \sim \operatorname{Binomial}(n, \pi)
\end{aligned}
$$

What is $E[Y]$?

$$
E[Y]=E[E[Y \mid \pi]]
$$

Iterated Expectations

Suppose

$$
\begin{aligned}
\pi & \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right) \\
Y \mid \pi, n & \sim \operatorname{Binomial}(n, \pi)
\end{aligned}
$$

What is $E[Y]$?

$$
\begin{aligned}
E[Y] & =E[E[Y \mid \pi]] \\
& =\int_{-\infty}^{\infty} \sum_{j=0}^{N}\binom{N}{j} j p(j \mid \pi) f(\pi) d \pi
\end{aligned}
$$

Iterated Expectations

Suppose

$$
\begin{aligned}
\pi & \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right) \\
Y \mid \pi, n & \sim \operatorname{Binomial}(n, \pi)
\end{aligned}
$$

What is $E[Y]$?

$$
\begin{aligned}
E[Y] & =E[E[Y \mid \pi]] \\
& =\int_{-\infty}^{\infty} \sum_{j=0}^{N}\binom{N}{j} j p(j \mid \pi) f(\pi) d \pi \\
& =\int_{-\infty}^{\infty} N \pi f(\pi) d \pi
\end{aligned}
$$

Iterated Expectations

Suppose

$$
\begin{aligned}
\pi & \sim \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right) \\
Y \mid \pi, n & \sim \operatorname{Binomial}(n, \pi)
\end{aligned}
$$

What is $E[Y]$?

$$
\begin{aligned}
E[Y] & =E[E[Y \mid \pi]] \\
& =\int_{-\infty}^{\infty} \sum_{j=0}^{N}\binom{N}{j} j p(j \mid \pi) f(\pi) d \pi \\
& =\int_{-\infty}^{\infty} N \pi f(\pi) d \pi \\
& =N \frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}
\end{aligned}
$$

Change of Coordinates

Proposition

Suppose X is a random variable and $Y=g(X)$, where $g: \Re \rightarrow \Re$ that is a monotonic function.
Define $g^{-1}: \Re \rightarrow \Re$ such that $g^{-1}(g(X))=X$ and is differentiable. Then,

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(g^{-1}(y)\right)\left|\frac{\partial g^{-1}(y)}{\partial y}\right| \text { if } y=g(x) \text { for some } x \\
& =0 \text { otherwise }
\end{aligned}
$$

Change of Coordinates

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

Change of Coordinates

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$
F_{Y}(y)=P(Y \leq y)
$$

Change of Coordinates

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(g(X) \leq y)
\end{aligned}
$$

Change of Coordinates

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(g(X) \leq y) \\
& =P\left(X \leq g^{-1}(y)\right)
\end{aligned}
$$

Change of Coordinates

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(g(X) \leq y) \\
& =P\left(X \leq g^{-1}(y)\right) \\
& =F_{X}\left(g^{-1}(y)\right)
\end{aligned}
$$

Change of Coordinates

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(g(X) \leq y) \\
& =P\left(X \leq g^{-1}(y)\right) \\
& =F_{X}\left(g^{-1}(y)\right)
\end{aligned}
$$

Now differentiating to get the pdf

Change of Coordinates

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(g(X) \leq y) \\
& =P\left(X \leq g^{-1}(y)\right) \\
& =F_{X}\left(g^{-1}(y)\right)
\end{aligned}
$$

Now differentiating to get the pdf

$$
\begin{aligned}
\frac{\partial F_{Y}(y)}{\partial y} & =\frac{\partial F_{X}\left(g^{-1}(y)\right)}{\partial y} \\
& =f_{X}\left(g^{-1}(y)\right) \frac{\partial g^{-1}(y)}{\partial y}
\end{aligned}
$$

Change of Coordinates

Proof.

Suppose $g(\cdot)$ is monotonically increasing (WLOG)

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(g(X) \leq y) \\
& =P\left(X \leq g^{-1}(y)\right) \\
& =F_{X}\left(g^{-1}(y)\right)
\end{aligned}
$$

Now differentiating to get the pdf

$$
\begin{aligned}
\frac{\partial F_{Y}(y)}{\partial y} & =\frac{\partial F_{X}\left(g^{-1}(y)\right)}{\partial y} \\
& =f_{X}\left(g^{-1}(y)\right) \frac{\partial g^{-1}(y)}{\partial y}
\end{aligned}
$$

Then this is a pdf because $\frac{\partial g^{-1}(Y)}{\partial y}>0$.

Change of Coordinates

Suppose X is a random variable with pdf $f_{X}(x)$. Suppose $Y=X^{n}$. Find $f_{Y}(y)$.

Change of Coordinates

Suppose X is a random variable with pdf $f_{X}(x)$. Suppose $Y=X^{n}$. Find $f_{Y}(y)$.
Then $g^{-1}(x)=x^{1 / n}$.

Change of Coordinates

Suppose X is a random variable with pdf $f_{X}(x)$. Suppose $Y=X^{n}$. Find $f_{Y}(y)$.
Then $g^{-1}(x)=x^{1 / n}$.

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{\partial g^{-1}(Y)}{\partial y}\right|
$$

Change of Coordinates

Suppose X is a random variable with pdf $f_{X}(x)$. Suppose $Y=X^{n}$. Find $f_{Y}(y)$.
Then $g^{-1}(x)=x^{1 / n}$.

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(g^{-1}(y)\right)\left|\frac{\partial g^{-1}(Y)}{\partial y}\right| \\
& =f_{X}\left(y^{1 / n}\right) \frac{y^{\frac{1}{n}-1}}{n}
\end{aligned}
$$

Change of Coordinates

Suppose X is a random variable with pdf $f_{X}(x)$. Suppose $Y=X^{n}$. Find $f_{Y}(y)$.
Then $g^{-1}(x)=x^{1 / n}$.

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(g^{-1}(y)\right)\left|\frac{\partial g^{-1}(Y)}{\partial y}\right| \\
& =f_{X}\left(y^{1 / n}\right) \frac{y^{\frac{1}{n}-1}}{n}
\end{aligned}
$$

We've used this to derive many of the pdfs

Change of Coordinates

Suppose X is a random variable with pdf $f_{X}(x)$. Suppose $Y=X^{n}$. Find $f_{Y}(y)$.
Then $g^{-1}(x)=x^{1 / n}$.

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(g^{-1}(y)\right)\left|\frac{\partial g^{-1}(Y)}{\partial y}\right| \\
& =f_{X}\left(y^{1 / n}\right) \frac{y^{\frac{1}{n}-1}}{n}
\end{aligned}
$$

We've used this to derive many of the pdfs

- Normal distribution
- Chi-Squared Distribution

Moment Generating Functions

Definition

Suppose X is a random variable with pdf f. Define,

$$
E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f(x) d x
$$

We will call X^{n} the $n^{\text {th }}$ moment of X

- By this definition $\operatorname{var}(X)=$ Second Moment - First Moment ${ }^{2}$
- We are assuming that the integral converges

Moment Generating Functions

Proposition

Suppose X is a random variable with pdf $f(x)$. Call $M(t)=E\left[e^{t X}\right]$,

$$
\begin{aligned}
M(t) & =E\left[e^{t x}\right] \\
& =\int_{-\infty}^{\infty} e^{t x} f(x) d x
\end{aligned}
$$

We will call $M(t)$ the moment generating function, because:

$$
\left.\frac{\partial^{n} M(t)}{\partial^{n} t}\right|_{0}=E\left[X^{n}\right]
$$

(Assuming that we can interchange derivative and integral)

CMTMPHATSICK OFMOUSHITEATH

Moment Generating Functions

Proof.
Recall the Taylor Expansion of $e^{t X}$ at 0 ,

Moment Generating Functions

Proof.
Recall the Taylor Expansion of $e^{t X}$ at 0 ,

$$
e^{t x}=1+t x+\frac{t^{2} x^{2}}{2!}+\frac{t^{3} x^{3}}{3!}+\ldots
$$

Moment Generating Functions

Proof.
Recall the Taylor Expansion of $e^{t X}$ at 0 ,

$$
e^{t x}=1+t x+\frac{t^{2} x^{2}}{2!}+\frac{t^{3} x^{3}}{3!}+\ldots
$$

Then,

Moment Generating Functions

Proof.
Recall the Taylor Expansion of $e^{t X}$ at 0 ,

$$
e^{t x}=1+t x+\frac{t^{2} x^{2}}{2!}+\frac{t^{3} x^{3}}{3!}+\ldots
$$

Then,

$$
E\left[e^{t X}\right]=1+t E[X]+\frac{t^{2}}{2!} E\left[X^{2}\right]+\frac{t^{3}}{3!} E\left[X^{3}\right]+\ldots
$$

Moment Generating Functions

Proof.
Recall the Taylor Expansion of $e^{t X}$ at 0 ,

$$
e^{t x}=1+t x+\frac{t^{2} x^{2}}{2!}+\frac{t^{3} x^{3}}{3!}+\ldots
$$

Then,

$$
E\left[e^{t X}\right]=1+t E[X]+\frac{t^{2}}{2!} E\left[X^{2}\right]+\frac{t^{3}}{3!} E\left[X^{3}\right]+\ldots
$$

Differentiate once:

Moment Generating Functions

Proof.
Recall the Taylor Expansion of $e^{t X}$ at 0 ,

$$
e^{t x}=1+t x+\frac{t^{2} x^{2}}{2!}+\frac{t^{3} x^{3}}{3!}+\ldots
$$

Then,

$$
E\left[e^{t X}\right]=1+t E[X]+\frac{t^{2}}{2!} E\left[X^{2}\right]+\frac{t^{3}}{3!} E\left[X^{3}\right]+\ldots
$$

Differentiate once:

$$
\begin{aligned}
\frac{\partial M(t)}{\partial t} & =0+E[X]+\frac{2 t}{2!} E\left[X^{2}\right]+\ldots \\
M^{\prime}(0) & =0+E[X]+0+0 \ldots
\end{aligned}
$$

Proof.
Differentiate n times

$$
\begin{aligned}
& \text { Proof. } \\
& \text { Differentiate } n \text { times } \\
& \frac{\partial^{n} M(t)}{\partial^{n} t}=0+0+0+\ldots+\frac{n \times n-1 \times \ldots 2 \times t^{0} E\left[X^{n}\right]}{n!}+\frac{n!t E\left[X^{n+1}\right]}{(n+1)!}+\ldots
\end{aligned}
$$

Proof.

Differentiate n times

$$
\begin{aligned}
\frac{\partial^{n} M(t)}{\partial^{n} t} & =0+0+0+\ldots+\frac{n \times n-1 \times \ldots 2 \times t^{0} E\left[X^{n}\right]}{n!}+\frac{n!t E\left[X^{n+1}\right]}{(n+1)!}+\ldots \\
& =\frac{n!E\left[X^{n}\right]}{n!}+\frac{n!t E\left[X^{n+1}\right]}{(n+1)!}+\ldots
\end{aligned}
$$

Proof.

Differentiate n times

$$
\begin{aligned}
\frac{\partial^{n} M(t)}{\partial^{n} t} & =0+0+0+\ldots+\frac{n \times n-1 \times \ldots 2 \times t^{0} E\left[X^{n}\right]}{n!}+\frac{n!t E\left[X^{n+1}\right]}{(n+1)!}+\ldots \\
& =\frac{n!E\left[X^{n}\right]}{n!}+\frac{n!t E\left[X^{n+1}\right]}{(n+1)!}+\ldots
\end{aligned}
$$

Evaluated at 0 , yields $M^{n}(0)=E\left[X^{n}\right]$

Proof.

Differentiate n times

$$
\begin{aligned}
\frac{\partial^{n} M(t)}{\partial^{n} t} & =0+0+0+\ldots+\frac{n \times n-1 \times \ldots 2 \times t^{0} E\left[X^{n}\right]}{n!}+\frac{n!t E\left[X^{n+1}\right]}{(n+1)!}+\ldots \\
& =\frac{n!E\left[X^{n}\right]}{n!}+\frac{n!t E\left[X^{n+1}\right]}{(n+1)!}+\ldots
\end{aligned}
$$

Evaluated at 0 , yields $M^{n}(0)=E\left[X^{n}\right]$

- If two random variables, X and Y have the same moment generating functions, then $F_{X}(x)=F_{Y}(y)$ for almost all x.

The Moments of the Normal Distribution

Suppose $Z \sim N(0,1)$.

The Moments of the Normal Distribution

Suppose $Z \sim N(0,1)$.

$$
E\left[e^{t x}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-x^{2} / 2} d x
$$

The Moments of the Normal Distribution

Suppose $Z \sim N(0,1)$.

$$
E\left[e^{t x}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-x^{2} / 2} d x
$$

$$
t x-\frac{1}{2} x^{2}=-\frac{1}{2}\left((x-t)^{2}-t^{2}\right)
$$

The Moments of the Normal Distribution

Suppose $Z \sim N(0,1)$.

$$
E\left[e^{t x}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-x^{2} / 2} d x
$$

$$
t x-\frac{1}{2} x^{2}=-\frac{1}{2}\left((x-t)^{2}-t^{2}\right)
$$

$$
E\left[e^{t x}\right]=\frac{1}{\sqrt{2 \pi}} e^{t^{\frac{t^{2}}{2}}} \int_{-\infty}^{\infty} e^{-(x-t)^{2} / 2} d x
$$

The Moments of the Normal Distribution

Suppose $Z \sim N(0,1)$.

$$
E\left[e^{t x}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-x^{2} / 2} d x
$$

$$
t x-\frac{1}{2} x^{2}=-\frac{1}{2}\left((x-t)^{2}-t^{2}\right)
$$

$$
\begin{aligned}
E\left[e^{t X}\right] & =\frac{1}{\sqrt{2 \pi}} e^{t^{\frac{t^{2}}{2}}} \int_{-\infty}^{\infty} e^{-(x-t)^{2} / 2} d x \\
& =e^{\frac{t^{2}}{2}}
\end{aligned}
$$

Extracting Moments of the Normal Distribution

Extracting Moments of the Normal Distribution

$$
M^{\prime}(0)=E[X]=\left.e^{t^{2} / 2} t\right|_{0}=0
$$

Extracting Moments of the Normal Distribution

$$
\begin{aligned}
M^{\prime}(0) & =E[X]=\left.e^{t^{2} / 2} t\right|_{0}=0 \\
M^{\prime \prime}(0) & =E\left[X^{2}\right]=\left.e^{t^{2} / 2}\left(t^{2}+1\right)\right|_{0}=1
\end{aligned}
$$

Extracting Moments of the Normal Distribution

$$
\begin{aligned}
M^{\prime}(0) & =E[X]=\left.e^{t^{2} / 2} t\right|_{0}=0 \\
M^{\prime \prime}(0) & =E\left[X^{2}\right]=\left.e^{t^{2} / 2}\left(t^{2}+1\right)\right|_{0}=1 \\
M^{\prime \prime \prime}(0) & =E\left[X^{3}\right]=\left.e^{t^{2} / 2} t\left(t^{2}+3\right)\right|_{0}=0
\end{aligned}
$$

Extracting Moments of the Normal Distribution

$$
\begin{aligned}
M^{\prime}(0) & =E[X]=\left.e^{t^{2} / 2} t\right|_{0}=0 \\
M^{\prime \prime}(0) & =E\left[X^{2}\right]=\left.e^{t^{2} / 2}\left(t^{2}+1\right)\right|_{0}=1 \\
M^{\prime \prime \prime}(0) & =E\left[X^{3}\right]=\left.e^{t^{2} / 2} t\left(t^{2}+3\right)\right|_{0}=0 \\
M^{\prime \prime \prime \prime}(0) & =E\left[X^{4}\right]=\left.e^{t^{2} / 2}\left(t^{4}+6 t^{2}+3\right)\right|_{0}=3
\end{aligned}
$$

Extracting Moments of the Normal Distribution

$$
\begin{aligned}
M^{\prime}(0) & =E[X]=\left.e^{t^{2} / 2} t\right|_{0}=0 \\
M^{\prime \prime}(0) & =E\left[X^{2}\right]=\left.e^{t^{2} / 2}\left(t^{2}+1\right)\right|_{0}=1 \\
M^{\prime \prime \prime}(0) & =E\left[X^{3}\right]=\left.e^{t^{2} / 2} t\left(t^{2}+3\right)\right|_{0}=0 \\
M^{\prime \prime \prime \prime}(0) & =E\left[X^{4}\right]=\left.e^{t^{2} / 2}\left(t^{4}+6 t^{2}+3\right)\right|_{0}=3 \\
M^{5}(0) & =E\left[X^{5}\right]=\left.e^{t^{2} / 2} t\left(t^{4}+10 t^{2}+15\right)\right|_{0}=0
\end{aligned}
$$

Extracting Moments of the Normal Distribution

$$
\begin{aligned}
M^{\prime}(0) & =E[X]=\left.e^{t^{2} / 2} t\right|_{0}=0 \\
M^{\prime \prime}(0) & =E\left[X^{2}\right]=\left.e^{t^{2} / 2}\left(t^{2}+1\right)\right|_{0}=1 \\
M^{\prime \prime \prime}(0) & =E\left[X^{3}\right]=\left.e^{t^{2} / 2} t\left(t^{2}+3\right)\right|_{0}=0 \\
M^{\prime \prime \prime \prime}(0) & =E\left[X^{4}\right]=\left.e^{t^{2} / 2}\left(t^{4}+6 t^{2}+3\right)\right|_{0}=3 \\
M^{5}(0) & =E\left[X^{5}\right]=\left.e^{t^{2} / 2} t\left(t^{4}+10 t^{2}+15\right)\right|_{0}=0 \\
M^{6}(0) & =E\left[X^{6}\right]=\left.e^{t^{2} / 2}\left(t^{6}+15 t^{4}+45 t^{2}+15\right)\right|_{0}=15
\end{aligned}
$$

Extracting Moments of the Normal Distribution

$$
\begin{aligned}
M^{\prime}(0) & =E[X]=\left.e^{t^{2} / 2} t\right|_{0}=0 \\
M^{\prime \prime}(0) & =E\left[X^{2}\right]=\left.e^{t^{2} / 2}\left(t^{2}+1\right)\right|_{0}=1 \\
M^{\prime \prime \prime}(0) & =E\left[X^{3}\right]=\left.e^{t^{2} / 2} t\left(t^{2}+3\right)\right|_{0}=0 \\
M^{\prime \prime \prime \prime}(0) & =E\left[X^{4}\right]=\left.e^{t^{2} / 2}\left(t^{4}+6 t^{2}+3\right)\right|_{0}=3 \\
M^{5}(0) & =E\left[X^{5}\right]=\left.e^{t^{2} / 2} t\left(t^{4}+10 t^{2}+15\right)\right|_{0}=0 \\
M^{6}(0) & =E\left[X^{6}\right]=\left.e^{t^{2} / 2}\left(t^{6}+15 t^{4}+45 t^{2}+15\right)\right|_{0}=15
\end{aligned}
$$

Proposition

Suppose X_{i} are a sequence of independent random variables. Define

$$
Y=\sum_{i=1}^{N} X_{i}
$$

Then

$$
M_{Y}(t)=\prod_{i=1}^{N} M_{X_{i}}(t)
$$

Proof.

$$
M_{Y}(t)=E\left[e^{t Y}\right]
$$

Proof.

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t Y}\right] \\
& =E\left[e^{t \sum_{i=1}^{N} x_{i}}\right]
\end{aligned}
$$

Proof.

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t Y}\right] \\
& =E\left[e^{t \sum_{i=1}^{N} X_{i}}\right] \\
& =E\left[e^{t X_{1}+t X_{2}+\ldots t X_{N}}\right]
\end{aligned}
$$

Proof.

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t Y}\right] \\
& =E\left[e^{t \sum_{i=1}^{N} X_{i}}\right] \\
& =E\left[e^{t X_{1}+t X_{2}+\ldots t X_{N}}\right] \\
& =E\left[e^{t X_{1}}\right] E\left[e^{t X_{2}}\right] \ldots E\left[e^{t X_{N}}\right] \text { (by independence) }
\end{aligned}
$$

Proof.

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t Y}\right] \\
& =E\left[e^{t \sum_{i=1}^{N} X_{i}}\right] \\
& =E\left[e^{t X_{1}+t X_{2}+\ldots t X_{N}}\right] \\
& =E\left[e^{t X_{1}}\right] E\left[e^{t X_{2}}\right] \ldots E\left[e^{t X_{N}}\right] \text { (by independence) } \\
& =\prod_{i=1}^{N} E\left[e^{t X_{i}}\right]
\end{aligned}
$$

Tomorrow:
 Sequences of Random Variables

