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Questions?

1) What is a random variable? Where does the randomness in the
random variable come from?

2) What is the pmf? How would we derive it?

3) What does iid mean?

4) Define E [X ], var(X )

5) What does it mean for a random variable, Y ∼ Poisson(λ)?
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Where We’ve Been, Where We’re Going

Continuous Random Variables:

- Random variables that are not discrete

- Widely used:

- Approval ratings
- Vote Share
- GDP
- ...

- Many analogues to distributions used on Friday

Justin Grimmer (Stanford University) Methodology I September 19th, 2016 3 / 45



Continuous Random Variables

Continuous Random Variables:

- Wait time between wars: X (t) = t for all t

- Proportion of vote received: X (v) = v for all v

- Stock price X (p) = p for all p

- Stock price, squared Y (p) = p2 for all p

We’ll need calculus to answer questions about probability.
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Integration

Suppose we have some function f (x)
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f(
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What is the area under f (x) between 1
2 and 1?

Area under curve =
∫ 1
1/2 f (x)dx = F (1)− F (1/2)
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Continuous Random Variable

Definition

X is a continuous random variable if there exists a nonnegative function
defined for all x ∈ < having the property for any (measurable) set of real
numbers B,

P(X ∈ B) =

∫
B
f (x)dx

We’ll call f (·) the probability density function for X .
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Example: Uniform Random Variable

X ∼ Uniform(0, 1) if

f (x) = 1 if x ∈ [0, 1]

f (x) = 0 otherwise
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Example: Uniform Random Variable

X ∼ Uniform(0, 1) if

f (x) = 1 if x ∈ [0, 1]

f (x) = 0 otherwise

P(X ∈ [0.2, 0.5]) =

∫ 0.5

0.2
1dx

= X |0.50.2

= 0.5− 0.2

= 0.3
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1dx
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f (x) = 0 otherwise

P(X ∈ [0.5, 0.5]) =

∫ 0.5

0.5
1dx

= X |0.50.5

= 0.5− 0.5

= 0

Justin Grimmer (Stanford University) Methodology I September 19th, 2016 7 / 45



Example: Uniform Random Variable

X ∼ Uniform(0, 1) if

f (x) = 1 if x ∈ [0, 1]

f (x) = 0 otherwise

P(X ∈ {[0, 0.2] ∪ [0.5, 1]}) =

∫ 0.2

0
1dx +

∫ 1

0.5
1dx

= X 0.2
0 + X 1

0.5

= 0.2− 0 + 1− 0.5

= 0.7
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Example: Uniform Random Variable

X ∼ Uniform(0, 1) if

f (x) = 1 if x ∈ [0, 1]

f (x) = 0 otherwise

To summarize

- P(X = a) = 0

- P(X ∈ (−∞,∞)) = 1

- If F is antiderivative of f , then P(X ∈ [c , d ]) = F (d)− F (c)
(Fundamental theorem of calculus)
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Cumulative Mass Function
Probability density function (f ) characterizes distribution of continuous
random variable.

Equivalently, Cumulative distribution function characterizes continuous
random variables.

Definition

Cumulative Distribution function. For a continuous random variable X
define its cumulative distribution function F (x) as,

F (t) = P(X ≤ t) =

∫ t

−∞
f (x)dx

pdf cdf

Integrate

Differentiate
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Uniform Random Variable
Suppose X ∼ Uniform(0, 1), then

F (t) = P(X ≤ t)

= 0, if t < 0

= 1, if t > 1

= t, if t ∈ [0, 1]
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Expectation With Continuous Random Variables

Definition

If X is a continuous random variable then,

E [X ] =

∫ ∞
−∞

xf (x)dx
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Suppose X ∼ Uniform(0, 1). What is E [X ]?

E [X ] =

∫ ∞
−∞

xf (x)dx

=

∫ 0

−∞
x0dx +

∫ 1

0
x1dx +

∫ ∞
1

x0dx

= 0 +
x2

2
|10 + 0

= 0 +
1

2
+ 0

=
1

2
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Expectations of Functions

Proposition

Suppose X is a continuous random variable and g : < → < (that isn’t
crazy). Then,

E [g(X )] =

∫ ∞
−∞

g(x)f (x)dx
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Expectations of Functions

Suppose g(X ) = X 2 and X ∼ Uniform(0, 1). What is E[g(X)]?

E [g(X )] =

∫ ∞
−∞

g(x)f (x)dx

=

∫ 1

0
x2dx

=
x3

3
|10

=
1

3
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Corollary

Suppose X is a continuous random variable. Then,

E [aX + b] = aE [X ] + b

Proof.

E [aX + b] =

∫ ∞
−∞

(ax + b)f (x)dx

= a

∫ ∞
−∞

xf (x)dx + b

∫ ∞
−∞

f (x)dx

= aE [X ] + b × 1
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Definition

Variance. If X is a continuous random variable, define its variance,
Var(X ),

Var(X ) = E [(X − E [X ])2]

=

∫ ∞
−∞

(x − E [X ])2f (x)dx

= E [X 2]− E [X ]2
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Variance: Random Variable

X ∼ Uniform(0, 1). What is Var(X )?

E [X 2] =
1

3

E [X ]2 =

(
1

2

)2

=
1

4

Var(X ) = E [X 2]− E [X ]2

=
1

3
− 1

4
=

1

12
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Famous Continuous Distributions

- Normal Distribution

- Gamma distribution

- χ2 Distribution

- t Distribution

- Beta, Dirichlet distributions (not today!)

- F -distribution (not today!)
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Definition

Suppose X is a random variable with X ∈ < and density

f (x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
Then X is a normally distributed random variable with parameters µ and
σ2.
Equivalently, we’ll write

X ∼ Normal(µ, σ2)
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Support for President Obama

Suppose we are interested in modeling presidential approval

- Let Y represent random variable: proportion of population who
“approves job president is doing”

- Individual responses (that constitute proportion) are independent and
identically distributed (sufficient, not necessary) and we take the
average of those individual responses

- Observe many responses (N →∞)

- Then (by Central Limit Theorm) Y is Normally distributed, or

Y ∼ Normal(µ, σ2)

f (y) =
exp

(
− (y−µ)2

2σ2

)
√

2πσ2
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Central Limit Theorem
We’ll prove it on Thursday.

Simulation:
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Expected Value/Variance of Normal Distribution

Z is a standard normal distribution if

Z ∼ Normal(0, 1)

We’ll call the cumulative density function of Z ,

FZ (x) =
1√
2π

∫ x

−∞
exp(−z2/2)dz

Proposition

Scale/Location. If Z ∼ N(0, 1), then X = aZ + b is,

X ∼ Normal(b, a2)
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Intuition
Suppose Z ∼ Normal(0, 1).

Y = 2Z + 6
Y ∼ Normal(6, 4)
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Proof:Z ∼ N(0, 1) and Y = aZ + b, then Y ∼ N(b, a2)

To prove

we need to show that density for Y is a normal distribution.
That is, we’ll show FY (x) is Normal cdf.
Call FZ (x) cdf for standardized normal.

FY (x) = P(Y ≤ x)

= P(aZ + b ≤ x)

= P(Z ≤
[
x − b

a

]
)

=
1√
2π

∫ x−b
a

−∞
exp(−z2

2
)dz

= FZ (
x − b

a
)
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Proof:Z ∼ N(0, 1) and Y = aZ + b, then Y ∼ N(b, a2)

So, we can work with FZ ( x−ba ).

∂FY (x)

∂x
=

∂FZ ( x−ba )

∂x

= fZ (
x − b

a
)

1

a
By the chain rule

=
1√
2πa

exp

[
−
(
x−b
a

)2
2

]
By definition of fZ (x) or FTC

=
1√
2πa

exp

[
−(x − b)2

2a2

]
= Normal(b, a2)
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Expectation and Variance

Assume we know:

E [Z ] = 0

Var(Z ) = 1

This implies that, for Y ∼ Normal(µ, σ2)

E [Y ] = E [σZ + µ]

= σE [Z ] + µ

= µ

Var(Y ) = Var(σZ + µ)

= σ2Var(Z ) + Var(µ)

= σ2 + 0

= σ2
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Back To Obama

Suppose µ = 0.39 and σ2 = 0.0025

P(Y ≥ 0.45) (What is the probability it isn’t that bad?) ?

P(Y ≥ 0.45) = 1− P(Y ≤ 0.45)

= 1− P(0.05Z + 0.39 ≤ 0.45)

= 1− P(Z ≤ 0.45− 0.39

0.05
)

= 1− 1√
2π

∫ 6/5

−∞
exp(−z2/2)dz

= 1− FZ (
6

5
)

= 0.1150697
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Back To Obama

Via simulation:
< code >
draws<- rnorm(1e7, mean = 0.39, sd = sqrt(0.0025) )

greater<- which(draws>0.45)

p.45 <- length(greater)/1e7

print(p.45)

[1] 0.1149824

< / code >
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The Gamma Function

Definition

Suppose α > 0. Then define Γ(α) as

Γ(α) =

∫ ∞
0

yα−1e−ydy

- For α ∈ {1, 2, 3, . . .}
Γ(α) = (α− 1)!

- Γ(12) =
√
π
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Gamma Distribution
Suppose we have Γ(α),

Γ(α)

Γ(α)
=

∫∞
0 yα−1e−ydy

Γ(α)

1 =

∫ ∞
0

1

Γ(α)
yα−1e−ydy

Set X = Y /β

F (x) = P(X ≤ x) = P(Y /β ≤ x)

= P(Y ≤ xβ)

= FY (xβ)

∂FY (xβ)

∂x
= fY (xβ)β

The result is:

f (x |α, β) =
βα

Γ(α)
xα−1e−xβ
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Definition

Suppose X is a continuous random variable, with X ≥ 0. Then if the pdf
of X is

f (x |α, β) =
βα

Γ(α)
xα−1e−xβ

if x ≥ 0 and 0 otherwise, we will say X is a Gamma distribution.

X ∼ Gamma(α, β)
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Gamma Distribution

Suppose X ∼ Gamma(α, β)

E [X ] =
α

β

var(X ) =
α

β2

Suppose α = 1 and β = λ. If

X ∼ Gamma(1, λ)

f (x |1, λ) = λe−xλ

We will say

X ∼ Exponential(λ)
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Properties of Gamma Distributions

Proposition

Suppose we have a sequence of independent random variables, with

Xi ∼ Gamma(αi , β)

Then

Y =
N∑
i=1

Xi

Y ∼ Gamma(
∑N

i=1 αi , β)
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We can evaluate in R with dgamma and simulate with rgamma

X ∼ Gamma(3, 5) and we evaluate at 3,
dgamma(3, shape= 3, rate = 5)

and we can simulate with
rgamma(1000, shape = 3, rate = 5)
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χ2 Distribution

Suppose Z ∼ Normal(0, 1).

Consider X = Z 2

FX (x) = P(X ≤ x)

= P(Z 2 ≤ x)

= P(−
√
x ≤ Z ≤ x)

=
1√
2π

∫ √x
−
√
x
e−

z2

2 dz

= FZ (
√
x)− FZ (−

√
x)

The pdf then is

∂FX (x)

∂x
= fZ (

√
x)

1

2
√
x

+ fZ (−
√
x)

1

2
√
x
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χ2 Distribution

∂FX (x)

∂x
= fZ (

√
x)

1

2
√
x

+ fZ (−
√
x)

1

2
√
x

=
1√
x

1

2
√

2π
(2e−

x
2 )

=
1√
x

1√
2π

(e−
x
2 )

=
(12)1/2

Γ(12)

(
x1/2−1e−

x
2

)
X ∼ Gamma(1/2, 1/2)
Then if X =

∑N
i=1 Z

2

X ∼ Gamma(n/2, 1/2)
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Definition

Suppose X is a continuous random variable with X ≥ 0, with pdf

f (x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

Then we will say X is a χ2 distribution with n degrees of freedom.
Equivalently,

X ∼ χ2(n)
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χ2 Properties

Suppose X ∼ χ2(n)

E [X ] = E

[
N∑
i=1

Z 2
i

]

=
N∑
i=1

E [Z 2
i ]

var(Zi ) = E [Z 2
i ]− E [Zi ]

2

1 = E [Z 2
i ]− 0

E [X ] = n
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χ2 Properties

var(X ) =
N∑
i=1

var(Z 2
i )

=
N∑
i=1

(
E [Z 4

i ]− E [Zi ]
2
)

=
N∑
i=1

(3− 1) = 2n

We will use the χ2 in 350a, 350b, and across statistics.

Justin Grimmer (Stanford University) Methodology I September 19th, 2016 40 / 45



Student’s t-Distribution

Definition

Suppose Z ∼ Normal(0, 1) and U ∼ χ2(n). Define the random variable Y
as,

Y =
Z√
U
n

If Z and U are independent then Y ∼ t(n), with pdf

f (x) =
Γ(n+1

2 )
√
πnΓ(n2 )

(
1 +

x2

n

)− n+1
2

We will use the t-distribution extensively for test-statistics
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Student’s t-Distribution, Properties
Suppose n = 1, Cauchy distribution
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Student’s t-Distribution, Properties

Suppose n = 1, Cauchy distribution
If X ∼ Cauchy(1), then:
E [X ] = undefined
var(X ) = undefined
If X ∼ t(2)
E[X] = 0
var(X ) = undefined
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Student’s t-Distribution, Properties

Suppose n > 2, then
var(X ) = n

n−2
As n→∞ var(X )→ 1.

Justin Grimmer (Stanford University) Methodology I September 19th, 2016 44 / 45



Tomorrow: Joint Distributions and Multivariate Normal Distribution
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