Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 19th, 2016

Questions?

Questions?

1) What is a random variable? Where does the randomness in the random variable come from?

Questions?

1) What is a random variable? Where does the randomness in the random variable come from?
2) What is the pmf? How would we derive it?

Questions?

1) What is a random variable? Where does the randomness in the random variable come from?
2) What is the pmf? How would we derive it?
3) What does iid mean?

Questions?

1) What is a random variable? Where does the randomness in the random variable come from?
2) What is the pmf? How would we derive it?
3) What does iid mean?
4) Define $E[X], \operatorname{var}(X)$

Questions?

1) What is a random variable? Where does the randomness in the random variable come from?
2) What is the pmf? How would we derive it?
3) What does iid mean?
4) Define $E[X], \operatorname{var}(X)$
5) What does it mean for a random variable, $Y \sim \operatorname{Poisson}(\lambda)$?

Where We've Been, Where We're Going

Continuous Random Variables:

- Random variables that are not discrete
- Widely used:
- Approval ratings
- Vote Share
- GDP
- Many analogues to distributions used on Friday

Continuous Random Variables

Continuous Random Variables

Continuous Random Variables:

Continuous Random Variables

Continuous Random Variables:

- Wait time between wars: $X(t)=t$ for all t

Continuous Random Variables

Continuous Random Variables:

- Wait time between wars: $X(t)=t$ for all t
- Proportion of vote received: $X(v)=v$ for all v

Continuous Random Variables

Continuous Random Variables:

- Wait time between wars: $X(t)=t$ for all t
- Proportion of vote received: $X(v)=v$ for all v
- Stock price $X(p)=p$ for all p

Continuous Random Variables

Continuous Random Variables:

- Wait time between wars: $X(t)=t$ for all t
- Proportion of vote received: $X(v)=v$ for all v
- Stock price $X(p)=p$ for all p
- Stock price, squared $Y(p)=p^{2}$ for all p

Continuous Random Variables

Continuous Random Variables:

- Wait time between wars: $X(t)=t$ for all t
- Proportion of vote received: $X(v)=v$ for all v
- Stock price $X(p)=p$ for all p
- Stock price, squared $Y(p)=p^{2}$ for all p

We'll need calculus to answer questions about probability.

Integration

Suppose we have some function $f(x)$

Integration

Suppose we have some function $f(x)$

What is the area under $f(x)$ between $\frac{1}{2}$ and 1 ?

Integration

Suppose we have some function $f(x)$

What is the area under $f(x)$ between $\frac{1}{2}$ and 1 ?
Area under curve $=\int_{1 / 2}^{1} f(x) d x=F(1)-F(1 / 2)$

Continuous Random Variable

Definition

X is a continuous random variable if there exists a nonnegative function defined for all $x \in \Re$ having the property for any (measurable) set of real numbers B,

$$
P(X \in B)=\int_{B} f(x) d x
$$

We'll call $f(\cdot)$ the probability density function for X.

Example: Uniform Random Variable

 $X \sim \operatorname{Uniform}(0,1)$ if

Example: Uniform Random Variable

$X \sim \operatorname{Uniform}(0,1)$ if

$$
f(x)=1 \text { if } x \in[0,1]
$$

Example: Uniform Random Variable

$X \sim \operatorname{Uniform}(0,1)$ if

$$
\begin{aligned}
& f(x)=1 \text { if } x \in[0,1] \\
& f(x)=0 \text { otherwise }
\end{aligned}
$$

Example: Uniform Random Variable

$X \sim \operatorname{Uniform}(0,1)$ if

$$
\begin{aligned}
f(x) & =1 \text { if } x \in[0,1] \\
f(x) & =0 \text { otherwise } \\
P(X \in[0.2,0.5]) & =\int_{0.2}^{0.5} 1 d x \\
& =\left.X\right|_{0.2} ^{0.5} \\
& =0.5-0.2 \\
& =0.3
\end{aligned}
$$

Example: Uniform Random Variable

$X \sim \operatorname{Uniform}(0,1)$ if

$$
\begin{aligned}
& f(x)=1 \text { if } x \in[0,1] \\
& f(x)=0 \text { otherwise } \\
& \begin{aligned}
P(X \in[0,1]) & =\int_{0}^{1} 1 d x \\
& =\left.X\right|_{0} ^{1} \\
& =1-0 \\
& =1
\end{aligned}
\end{aligned}
$$

Example: Uniform Random Variable

$X \sim \operatorname{Uniform}(0,1)$ if

$$
\begin{aligned}
f(x) & =1 \text { if } x \in[0,1] \\
f(x) & =0 \text { otherwise } \\
P(X \in[0.5,0.5]) & =\int_{0.5}^{0.5} 1 d x \\
& =\left.X\right|_{0.5} ^{0.5} \\
& =0.5-0.5 \\
& =0
\end{aligned}
$$

Example: Uniform Random Variable

$X \sim \operatorname{Uniform}(0,1)$ if

$$
\begin{aligned}
f(x) & =1 \text { if } x \in[0,1] \\
f(x) & =0 \text { otherwise } \\
P(X \in\{[0,0.2] \cup[0.5,1]\}) & =\int_{0}^{0.2} 1 d x+\int_{0.5}^{1} 1 d x \\
& =X_{0}^{0.2}+X_{0.5}^{1} \\
& =0.2-0+1-0.5 \\
& =0.7
\end{aligned}
$$

Example: Uniform Random Variable

$X \sim \operatorname{Uniform}(0,1)$ if

$$
\begin{aligned}
& f(x)=1 \text { if } x \in[0,1] \\
& f(x)=0 \text { otherwise }
\end{aligned}
$$

To summarize

- $P(X=a)=0$
- $P(X \in(-\infty, \infty))=1$
- If F is antiderivative of f, then $P(X \in[c, d])=F(d)-F(c)$
(Fundamental theorem of calculus)

Cumulative Mass Function

Probability density function (f) characterizes distribution of continuous random variable.

Cumulative Mass Function

Probability density function (f) characterizes distribution of continuous random variable.
Equivalently, Cumulative distribution function characterizes continuous random variables.

Cumulative Mass Function

Probability density function (f) characterizes distribution of continuous random variable.
Equivalently, Cumulative distribution function characterizes continuous random variables.

Definition
Cumulative Distribution function. For a continuous random variable X define its cumulative distribution function $F(x)$ as,

$$
F(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x
$$

Cumulative Mass Function

Probability density function (f) characterizes distribution of continuous random variable.
Equivalently, Cumulative distribution function characterizes continuous random variables.

Definition
Cumulative Distribution function. For a continuous random variable X define its cumulative distribution function $F(x)$ as,

$$
F(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x
$$

pdf

Cumulative Mass Function

Probability density function (f) characterizes distribution of continuous random variable.
Equivalently, Cumulative distribution function characterizes continuous random variables.

Definition
Cumulative Distribution function. For a continuous random variable X define its cumulative distribution function $F(x)$ as,

$$
F(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x
$$

Cumulative Mass Function

Probability density function (f) characterizes distribution of continuous random variable.
Equivalently, Cumulative distribution function characterizes continuous random variables.

Definition
Cumulative Distribution function. For a continuous random variable X define its cumulative distribution function $F(x)$ as,

$$
F(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x
$$

Cumulative Mass Function

Probability density function (f) characterizes distribution of continuous random variable.
Equivalently, Cumulative distribution function characterizes continuous random variables.

Definition
Cumulative Distribution function. For a continuous random variable X define its cumulative distribution function $F(x)$ as,

$$
F(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x
$$

Cumulative Mass Function

Probability density function (f) characterizes distribution of continuous random variable.
Equivalently, Cumulative distribution function characterizes continuous random variables.

Definition
Cumulative Distribution function. For a continuous random variable X define its cumulative distribution function $F(x)$ as,

$$
F(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x
$$

Uniform Random Variable

 Suppose $X \sim \operatorname{Uniform}(0,1)$, thenCumulative Density Function

Uniform Random Variable

Suppose $X \sim \operatorname{Uniform}(0,1)$, then

$$
F(t)=P(X \leq t)
$$

Cumulative Density Function

Uniform Random Variable

Suppose $X \sim \operatorname{Uniform}(0,1)$, then

$$
\begin{aligned}
F(t) & =P(X \leq t) \\
& =0, \text { if } t<0
\end{aligned}
$$

Cumulative Density Function

Uniform Random Variable

Suppose $X \sim \operatorname{Uniform}(0,1)$, then

$$
\begin{aligned}
F(t) & =P(X \leq t) \\
& =0, \text { if } t<0 \\
& =1, \text { if } t>1
\end{aligned}
$$

Uniform Random Variable

Suppose $X \sim \operatorname{Uniform}(0,1)$, then

$$
\begin{aligned}
F(t) & =P(X \leq t) \\
& =0, \text { if } t<0 \\
& =1, \text { if } t>1 \\
& =t, \text { if } t \in[0,1]
\end{aligned}
$$

Cumulative Density Function

Expectation With Continuous Random Variables

Definition

If X is a continuous random variable then,

$$
E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

Suppose $X \sim \operatorname{Uniform}(0,1)$. What is $E[X]$?

Suppose $X \sim \operatorname{Uniform}(0,1)$. What is $E[X]$?
$E[X]$

Suppose $X \sim \operatorname{Uniform}(0,1)$. What is $E[X]$?

$$
E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

Suppose $X \sim \operatorname{Uniform}(0,1)$. What is $E[X]$?

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{-\infty}^{0} x 0 d x+\int_{0}^{1} x 1 d x+\int_{1}^{\infty} x 0 d x
\end{aligned}
$$

Suppose $X \sim \operatorname{Uniform}(0,1)$. What is $E[X]$?

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{-\infty}^{0} x 0 d x+\int_{0}^{1} x 1 d x+\int_{1}^{\infty} x 0 d x \\
& =0+\left.\frac{x^{2}}{2}\right|_{0} ^{1}+0
\end{aligned}
$$

Suppose $X \sim \operatorname{Uniform}(0,1)$. What is $E[X]$?

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{-\infty}^{0} x 0 d x+\int_{0}^{1} x 1 d x+\int_{1}^{\infty} x 0 d x \\
& =0+\left.\frac{x^{2}}{2}\right|_{0} ^{1}+0 \\
& =0+\frac{1}{2}+0
\end{aligned}
$$

Suppose $X \sim \operatorname{Uniform}(0,1)$. What is $E[X]$?

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{-\infty}^{0} x 0 d x+\int_{0}^{1} x 1 d x+\int_{1}^{\infty} x 0 d x \\
& =0+\left.\frac{x^{2}}{2}\right|_{0} ^{1}+0 \\
& =0+\frac{1}{2}+0 \\
& =\frac{1}{2}
\end{aligned}
$$

Expectations of Functions

Proposition

Suppose X is a continuous random variable and $g: \Re \rightarrow \Re$ (that isn't crazy). Then,

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Expectations of Functions

Suppose $g(X)=X^{2}$ and $X \sim \operatorname{Uniform}(0,1)$. What is $\mathrm{E}[g(X)]$?

Expectations of Functions

Suppose $g(X)=X^{2}$ and $X \sim \operatorname{Uniform}(0,1)$. What is $\mathrm{E}[g(X)]$?
$E[g(X)]$

Expectations of Functions

Suppose $g(X)=X^{2}$ and $X \sim \operatorname{Uniform}(0,1)$. What is $\mathrm{E}[g(X)]$?

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Expectations of Functions

Suppose $g(X)=X^{2}$ and $X \sim \operatorname{Uniform}(0,1)$. What is $\mathrm{E}[g(X)]$?

$$
\begin{aligned}
E[g(X)] & =\int_{-\infty}^{\infty} g(x) f(x) d x \\
& =\int_{0}^{1} x^{2} d x
\end{aligned}
$$

Expectations of Functions

Suppose $g(X)=X^{2}$ and $X \sim \operatorname{Uniform}(0,1)$. What is $\mathrm{E}[g(X)]$?

$$
\begin{aligned}
E[g(X)] & =\int_{-\infty}^{\infty} g(x) f(x) d x \\
& =\int_{0}^{1} x^{2} d x \\
& =\left.\frac{x^{3}}{3}\right|_{0} ^{1}
\end{aligned}
$$

Expectations of Functions

Suppose $g(X)=X^{2}$ and $X \sim \operatorname{Uniform}(0,1)$. What is $\mathrm{E}[g(X)]$?

$$
\begin{aligned}
E[g(X)] & =\int_{-\infty}^{\infty} g(x) f(x) d x \\
& =\int_{0}^{1} x^{2} d x \\
& =\left.\frac{x^{3}}{3}\right|_{0} ^{1} \\
& =\frac{1}{3}
\end{aligned}
$$

Corollary

Suppose X is a continuous random variable. Then,

$$
E[a X+b]=a E[X]+b
$$

Corollary

Suppose X is a continuous random variable. Then,

$$
E[a X+b]=a E[X]+b
$$

Proof.

$$
E[a X+b]=\int_{-\infty}^{\infty}(a x+b) f(x) d x
$$

Corollary

Suppose X is a continuous random variable. Then,

$$
E[a X+b]=a E[X]+b
$$

Proof.

$$
\begin{aligned}
E[a X+b] & =\int_{-\infty}^{\infty}(a x+b) f(x) d x \\
& =a \int_{-\infty}^{\infty} x f(x) d x+b \int_{-\infty}^{\infty} f(x) d x
\end{aligned}
$$

Corollary

Suppose X is a continuous random variable. Then,

$$
E[a X+b]=a E[X]+b
$$

Proof.

$$
\begin{aligned}
E[a X+b] & =\int_{-\infty}^{\infty}(a x+b) f(x) d x \\
& =a \int_{-\infty}^{\infty} x f(x) d x+b \int_{-\infty}^{\infty} f(x) d x \\
& =a E[X]+b \times 1
\end{aligned}
$$

Definition

Variance. If X is a continuous random variable, define its variance, $\operatorname{Var}(X)$,

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] \\
& =\int_{-\infty}^{\infty}(x-E[X])^{2} f(x) d x \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Variance: Random Variable

$X \sim \operatorname{Uniform}(0,1)$. What is $\operatorname{Var}(X)$?

Variance: Random Variable

$X \sim \operatorname{Uniform}(0,1)$. What is $\operatorname{Var}(X)$?

$$
E\left[X^{2}\right]=\frac{1}{3}
$$

Variance: Random Variable

$X \sim \operatorname{Uniform}(0,1)$. What is $\operatorname{Var}(X)$?

$$
\begin{aligned}
& E\left[X^{2}\right]=\frac{1}{3} \\
& E[X]^{2}=\left(\frac{1}{2}\right)^{2}
\end{aligned}
$$

Variance: Random Variable

$X \sim \operatorname{Uniform}(0,1)$. What is $\operatorname{Var}(X)$?

$$
\begin{aligned}
E\left[X^{2}\right] & =\frac{1}{3} \\
E[X]^{2} & =\left(\frac{1}{2}\right)^{2} \\
& =\frac{1}{4}
\end{aligned}
$$

Variance: Random Variable

$X \sim \operatorname{Uniform}(0,1)$. What is $\operatorname{Var}(X)$?

$$
\begin{aligned}
E\left[X^{2}\right] & =\frac{1}{3} \\
E[X]^{2} & =\left(\frac{1}{2}\right)^{2} \\
& =\frac{1}{4}
\end{aligned}
$$

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}
$$

Variance: Random Variable

$X \sim \operatorname{Uniform}(0,1)$. What is $\operatorname{Var}(X)$?

$$
\begin{aligned}
E\left[X^{2}\right] & =\frac{1}{3} \\
E[X]^{2} & =\left(\frac{1}{2}\right)^{2} \\
& =\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2} \\
& =\frac{1}{3}-\frac{1}{4}=\frac{1}{12}
\end{aligned}
$$

Famous Continuous Distributions

- Normal Distribution
- Gamma distribution
- χ^{2} Distribution
- t Distribution
- Beta, Dirichlet distributions (not today!)
- F-distribution (not today!)

Definition

Suppose X is a random variable with $X \in \Re$ and density

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Then X is a normally distributed random variable with parameters μ and σ^{2}.
Equivalently, we'll write

$$
X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

Support for President Obama

Suppose we are interested in modeling presidential approval

Support for President Obama

Suppose we are interested in modeling presidential approval

- Let Y represent random variable: proportion of population who "approves job president is doing"

Support for President Obama

Suppose we are interested in modeling presidential approval

- Let Y represent random variable: proportion of population who "approves job president is doing"
- Individual responses (that constitute proportion) are independent and identically distributed (sufficient, not necessary) and we take the average of those individual responses

Support for President Obama

Suppose we are interested in modeling presidential approval

- Let Y represent random variable: proportion of population who "approves job president is doing"
- Individual responses (that constitute proportion) are independent and identically distributed (sufficient, not necessary) and we take the average of those individual responses
- Observe many responses $(N \rightarrow \infty)$

Support for President Obama

Suppose we are interested in modeling presidential approval

- Let Y represent random variable: proportion of population who "approves job president is doing"
- Individual responses (that constitute proportion) are independent and identically distributed (sufficient, not necessary) and we take the average of those individual responses
- Observe many responses $(N \rightarrow \infty)$
- Then (by Central Limit Theorm) Y is Normally distributed, or

Support for President Obama

Suppose we are interested in modeling presidential approval

- Let Y represent random variable: proportion of population who "approves job president is doing"
- Individual responses (that constitute proportion) are independent and identically distributed (sufficient, not necessary) and we take the average of those individual responses
- Observe many responses $(N \rightarrow \infty)$
- Then (by Central Limit Theorm) Y is Normally distributed, or

$$
Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

Support for President Obama

Suppose we are interested in modeling presidential approval

- Let Y represent random variable: proportion of population who "approves job president is doing"
- Individual responses (that constitute proportion) are independent and identically distributed (sufficient, not necessary) and we take the average of those individual responses
- Observe many responses $(N \rightarrow \infty)$
- Then (by Central Limit Theorm) Y is Normally distributed, or

$$
\begin{aligned}
Y & \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\
f(y) & =\frac{\exp \left(-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right)}{\sqrt{2 \pi \sigma^{2}}}
\end{aligned}
$$

Central Limit Theorem

We'll prove it on Thursday.

Mean of 2

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 3

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 4

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 5

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 6

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 7

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 8

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 9

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 10

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 11

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 12

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 13

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 14

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 15

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 16

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 17

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 18

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 19

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 20

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 21

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 22

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 23

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 24

Simulation:

Central Limit Theorem

We'll prove it on Thursday.
Mean of 25

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 26

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 27

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 28

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 29

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 30

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 31

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 32

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 33

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 34

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 35

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 36

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 37

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 38

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 39

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 40

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 41

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 42

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 43

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 44

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 45

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 46

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 47

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 48

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 49

Simulation:

Central Limit Theorem

We'll prove it on Thursday.

Mean of 50

Simulation:

Expected Value/Variance of Normal Distribution

Z is a standard normal distribution if

Expected Value/Variance of Normal Distribution

Z is a standard normal distribution if

$$
Z \sim \operatorname{Normal}(0,1)
$$

Expected Value/Variance of Normal Distribution

Z is a standard normal distribution if

$$
Z \sim \operatorname{Normal}(0,1)
$$

We'll call the cumulative density function of Z,

Expected Value/Variance of Normal Distribution

Z is a standard normal distribution if

$$
Z \sim \operatorname{Normal}(0,1)
$$

We'll call the cumulative density function of Z,

$$
F_{Z}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-z^{2} / 2\right) d z
$$

Expected Value/Variance of Normal Distribution

Z is a standard normal distribution if

$$
Z \sim \operatorname{Normal}(0,1)
$$

We'll call the cumulative density function of Z,

$$
F_{Z}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-z^{2} / 2\right) d z
$$

Proposition
Scale/Location. If $Z \sim N(0,1)$, then $X=a Z+b$ is,

$$
X \sim \operatorname{Normal}\left(b, a^{2}\right)
$$

Intuition

Suppose $Z \sim \operatorname{Normal}(0,1)$.

Intuition

Suppose $Z \sim \operatorname{Normal}(0,1)$.
$Y=2 Z+6$

Intuition

Suppose $Z \sim \operatorname{Normal}(0,1)$.
$Y=2 Z+6$
$Y \sim \operatorname{Normal}(6,4)$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

To prove

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

To prove we need to show that density for Y is a normal distribution.

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

To prove we need to show that density for Y is a normal distribution. That is, we'll show $F_{Y}(x)$ is Normal cdf.

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

To prove we need to show that density for Y is a normal distribution. That is, we'll show $F_{Y}(x)$ is Normal cdf. Call $F_{Z}(x)$ cdf for standardized normal.

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

To prove we need to show that density for Y is a normal distribution. That is, we'll show $F_{Y}(x)$ is Normal cdf.
Call $F_{Z}(x)$ cdf for standardized normal.

$$
F_{Y}(x)=P(Y \leq x)
$$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

To prove we need to show that density for Y is a normal distribution. That is, we'll show $F_{Y}(x)$ is Normal cdf.
Call $F_{Z}(x)$ cdf for standardized normal.

$$
\begin{aligned}
F_{Y}(x) & =P(Y \leq x) \\
& =P(a Z+b \leq x)
\end{aligned}
$$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

To prove we need to show that density for Y is a normal distribution. That is, we'll show $F_{Y}(x)$ is Normal cdf.
Call $F_{Z}(x)$ cdf for standardized normal.

$$
\begin{aligned}
F_{Y}(x) & =P(Y \leq x) \\
& =P(a Z+b \leq x) \\
& =P\left(Z \leq\left[\frac{x-b}{a}\right]\right)
\end{aligned}
$$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

To prove we need to show that density for Y is a normal distribution. That is, we'll show $F_{Y}(x)$ is Normal cdf.
Call $F_{Z}(x)$ cdf for standardized normal.

$$
\begin{aligned}
F_{Y}(x) & =P(Y \leq x) \\
& =P(a Z+b \leq x) \\
& =P\left(Z \leq\left[\frac{x-b}{a}\right]\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{x-b}{a}} \exp \left(-\frac{z^{2}}{2}\right) d z
\end{aligned}
$$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

To prove we need to show that density for Y is a normal distribution. That is, we'll show $F_{Y}(x)$ is Normal cdf.
Call $F_{Z}(x)$ cdf for standardized normal.

$$
\begin{aligned}
F_{Y}(x) & =P(Y \leq x) \\
& =P(a Z+b \leq x) \\
& =P\left(Z \leq\left[\frac{x-b}{a}\right]\right) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{x-b}{a}} \exp \left(-\frac{z^{2}}{2}\right) d z \\
& =F_{Z}\left(\frac{x-b}{a}\right)
\end{aligned}
$$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

So, we can work with $F_{Z}\left(\frac{x-b}{a}\right)$.

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

So, we can work with $F_{Z}\left(\frac{x-b}{a}\right)$.

$$
\frac{\partial F_{Y}(x)}{\partial x}=\frac{\partial F_{Z}\left(\frac{x-b}{a}\right)}{\partial x}
$$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

So, we can work with $F_{Z}\left(\frac{x-b}{a}\right)$.

$$
\begin{aligned}
\frac{\partial F_{Y}(x)}{\partial x} & =\frac{\partial F_{Z\left(\frac{x-b}{a}\right)}^{\partial x}}{} \\
& =f_{Z}\left(\frac{x-b}{a}\right) \frac{1}{a} \text { By the chain rule }
\end{aligned}
$$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

So, we can work with $F_{Z}\left(\frac{x-b}{a}\right)$.

$$
\begin{aligned}
\frac{\partial F_{Y}(x)}{\partial x} & =\frac{\partial F_{Z}\left(\frac{x-b}{a}\right)}{\partial x} \\
& =f_{Z}\left(\frac{x-b}{a}\right) \frac{1}{a} \text { By the chain rule } \\
& =\frac{1}{\sqrt{2 \pi} a} \exp \left[-\frac{\left(\frac{x-b}{a}\right)^{2}}{2}\right] \text { By definition of } f_{Z}(x) \text { or FTC }
\end{aligned}
$$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

So, we can work with $F_{Z}\left(\frac{x-b}{a}\right)$.

$$
\begin{aligned}
\frac{\partial F_{Y}(x)}{\partial x} & =\frac{\partial F_{Z}\left(\frac{x-b}{a}\right)}{\partial x} \\
& =f_{Z}\left(\frac{x-b}{a}\right) \frac{1}{a} \text { By the chain rule } \\
& =\frac{1}{\sqrt{2 \pi} a} \exp \left[-\frac{\left(\frac{x-b}{a}\right)^{2}}{2}\right] \text { By definition of } f_{Z}(x) \text { or FTC } \\
& =\frac{1}{\sqrt{2 \pi} a} \exp \left[-\frac{(x-b)^{2}}{2 a^{2}}\right]
\end{aligned}
$$

Proof: $Z \sim N(0,1)$ and $Y=a Z+b$, then $Y \sim N\left(b, a^{2}\right)$

So, we can work with $F_{Z}\left(\frac{x-b}{a}\right)$.

$$
\begin{aligned}
\frac{\partial F_{Y}(x)}{\partial x} & =\frac{\partial F_{Z}\left(\frac{x-b}{a}\right)}{\partial x} \\
& =f_{Z}\left(\frac{x-b}{a}\right) \frac{1}{a} \text { By the chain rule } \\
& =\frac{1}{\sqrt{2 \pi} a} \exp \left[-\frac{\left(\frac{x-b}{a}\right)^{2}}{2}\right] \text { By definition of } f_{Z}(x) \text { or FTC } \\
& =\frac{1}{\sqrt{2 \pi} a} \exp \left[-\frac{(x-b)^{2}}{2 a^{2}}\right] \\
& =\operatorname{Normal}\left(b, a^{2}\right)
\end{aligned}
$$

Expectation and Variance

Assume we know:

$$
\begin{aligned}
E[Z] & =0 \\
\operatorname{Var}(Z) & =1
\end{aligned}
$$

Expectation and Variance

Assume we know:

$$
\begin{aligned}
E[Z] & =0 \\
\operatorname{Var}(Z) & =1
\end{aligned}
$$

This implies that, for $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

Expectation and Variance

Assume we know:

$$
\begin{aligned}
E[Z] & =0 \\
\operatorname{Var}(Z) & =1
\end{aligned}
$$

This implies that, for $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
E[Y]=E[\sigma Z+\mu]
$$

Expectation and Variance

Assume we know:

$$
\begin{aligned}
E[Z] & =0 \\
\operatorname{Var}(Z) & =1
\end{aligned}
$$

This implies that, for $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
E[Y] & =E[\sigma Z+\mu] \\
& =\sigma E[Z]+\mu
\end{aligned}
$$

Expectation and Variance

Assume we know:

$$
\begin{aligned}
E[Z] & =0 \\
\operatorname{Var}(Z) & =1
\end{aligned}
$$

This implies that, for $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
E[Y] & =E[\sigma Z+\mu] \\
& =\sigma E[Z]+\mu \\
& =\mu
\end{aligned}
$$

Expectation and Variance

Assume we know:

$$
\begin{aligned}
E[Z] & =0 \\
\operatorname{Var}(Z) & =1
\end{aligned}
$$

This implies that, for $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
E[Y] & =E[\sigma Z+\mu] \\
& =\sigma E[Z]+\mu \\
& =\mu \\
\operatorname{Var}(Y) & =\operatorname{Var}(\sigma Z+\mu)
\end{aligned}
$$

Expectation and Variance

Assume we know:

$$
\begin{aligned}
E[Z] & =0 \\
\operatorname{Var}(Z) & =1
\end{aligned}
$$

This implies that, for $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
E[Y] & =E[\sigma Z+\mu] \\
& =\sigma E[Z]+\mu \\
& =\mu \\
\operatorname{Var}(Y) & =\operatorname{Var}(\sigma Z+\mu) \\
& =\sigma^{2} \operatorname{Var}(Z)+\operatorname{Var}(\mu)
\end{aligned}
$$

Expectation and Variance

Assume we know:

$$
\begin{aligned}
E[Z] & =0 \\
\operatorname{Var}(Z) & =1
\end{aligned}
$$

This implies that, for $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
E[Y] & =E[\sigma Z+\mu] \\
& =\sigma E[Z]+\mu \\
& =\mu \\
\operatorname{Var}(Y) & =\operatorname{Var}(\sigma Z+\mu) \\
& =\sigma^{2} \operatorname{Var}(Z)+\operatorname{Var}(\mu) \\
& =\sigma^{2}+0
\end{aligned}
$$

Expectation and Variance

Assume we know:

$$
\begin{aligned}
E[Z] & =0 \\
\operatorname{Var}(Z) & =1
\end{aligned}
$$

This implies that, for $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
E[Y] & =E[\sigma Z+\mu] \\
& =\sigma E[Z]+\mu \\
& =\mu \\
\operatorname{Var}(Y) & =\operatorname{Var}(\sigma Z+\mu) \\
& =\sigma^{2} \operatorname{Var}(Z)+\operatorname{Var}(\mu) \\
& =\sigma^{2}+0 \\
& =\sigma^{2}
\end{aligned}
$$

Back To Obama

Suppose $\mu=0.39$ and $\sigma^{2}=0.0025$

Back To Obama

$$
\begin{aligned}
& \text { Suppose } \mu=0.39 \text { and } \sigma^{2}=0.0025 \\
& P(Y \geq 0.45) \text { (What is the probability it isn't that bad?) ? }
\end{aligned}
$$

Back To Obama

Suppose $\mu=0.39$ and $\sigma^{2}=0.0025$
$P(Y \geq 0.45)$ (What is the probability it isn't that bad?) ?

$$
P(Y \geq 0.45)=1-P(Y \leq 0.45)
$$

Back To Obama

Suppose $\mu=0.39$ and $\sigma^{2}=0.0025$
$P(Y \geq 0.45)$ (What is the probability it isn't that bad?) ?

$$
\begin{aligned}
P(Y \geq 0.45) & =1-P(Y \leq 0.45) \\
& =1-P(0.05 Z+0.39 \leq 0.45)
\end{aligned}
$$

Back To Obama

Suppose $\mu=0.39$ and $\sigma^{2}=0.0025$
$P(Y \geq 0.45)$ (What is the probability it isn't that bad?) ?

$$
\begin{aligned}
P(Y \geq 0.45) & =1-P(Y \leq 0.45) \\
& =1-P(0.05 Z+0.39 \leq 0.45) \\
& =1-P\left(Z \leq \frac{0.45-0.39}{0.05}\right)
\end{aligned}
$$

Back To Obama

Suppose $\mu=0.39$ and $\sigma^{2}=0.0025$
$P(Y \geq 0.45)$ (What is the probability it isn't that bad?) ?

$$
\begin{aligned}
P(Y \geq 0.45) & =1-P(Y \leq 0.45) \\
& =1-P(0.05 Z+0.39 \leq 0.45) \\
& =1-P\left(Z \leq \frac{0.45-0.39}{0.05}\right) \\
& =1-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{6 / 5} \exp \left(-z^{2} / 2\right) d z
\end{aligned}
$$

Back To Obama

Suppose $\mu=0.39$ and $\sigma^{2}=0.0025$
$P(Y \geq 0.45)$ (What is the probability it isn't that bad?) ?

$$
\begin{aligned}
P(Y \geq 0.45) & =1-P(Y \leq 0.45) \\
& =1-P(0.05 Z+0.39 \leq 0.45) \\
& =1-P\left(Z \leq \frac{0.45-0.39}{0.05}\right) \\
& =1-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{6 / 5} \exp \left(-z^{2} / 2\right) d z \\
& =1-F_{Z}\left(\frac{6}{5}\right)
\end{aligned}
$$

Back To Obama

Suppose $\mu=0.39$ and $\sigma^{2}=0.0025$
$P(Y \geq 0.45)$ (What is the probability it isn't that bad?) ?

$$
\begin{aligned}
P(Y \geq 0.45) & =1-P(Y \leq 0.45) \\
& =1-P(0.05 Z+0.39 \leq 0.45) \\
& =1-P\left(Z \leq \frac{0.45-0.39}{0.05}\right) \\
& =1-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{6 / 5} \exp \left(-z^{2} / 2\right) d z \\
& =1-F_{Z}\left(\frac{6}{5}\right) \\
& =0.1150697
\end{aligned}
$$

Back To Obama

Via simulation:
< code >
draws<- rnorm(1e7, mean $=0.39$, sd $=\operatorname{sqrt}(0.0025)$)
greater<- which(draws>0.45)
p. 45 <- length(greater)/1e7
print(p.45)
[1] 0.1149824
$</$ code $>$

The Gamma Function

Definition

Suppose $\alpha>0$. Then define $\Gamma(\alpha)$ as

$$
\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y
$$

- For $\alpha \in\{1,2,3, \ldots\}$

$$
\Gamma(\alpha)=(\alpha-1)!
$$

- $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

$$
\begin{aligned}
\frac{\Gamma(\alpha)}{\Gamma(\alpha)} & =\frac{\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y}{\Gamma(\alpha)} \\
1 & =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y
\end{aligned}
$$

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

$$
\begin{aligned}
\frac{\Gamma(\alpha)}{\Gamma(\alpha)} & =\frac{\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y}{\Gamma(\alpha)} \\
1 & =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y
\end{aligned}
$$

Set $X=Y / \beta$

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

$$
\begin{aligned}
\frac{\Gamma(\alpha)}{\Gamma(\alpha)} & =\frac{\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y}{\Gamma(\alpha)} \\
1 & =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y
\end{aligned}
$$

Set $X=Y / \beta$

$$
F(x)=P(X \leq x)=P(Y / \beta \leq x)
$$

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

$$
\begin{aligned}
\frac{\Gamma(\alpha)}{\Gamma(\alpha)} & =\frac{\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y}{\Gamma(\alpha)} \\
1 & =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y
\end{aligned}
$$

Set $X=Y / \beta$

$$
\begin{aligned}
F(x)=P(X \leq x) & =P(Y / \beta \leq x) \\
& =P(Y \leq x \beta)
\end{aligned}
$$

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

$$
\begin{aligned}
\frac{\Gamma(\alpha)}{\Gamma(\alpha)} & =\frac{\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y}{\Gamma(\alpha)} \\
1 & =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y
\end{aligned}
$$

Set $X=Y / \beta$

$$
\begin{aligned}
F(x)=P(X \leq x) & =P(Y / \beta \leq x) \\
& =P(Y \leq x \beta) \\
& =F_{Y}(x \beta)
\end{aligned}
$$

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

$$
\begin{aligned}
\frac{\Gamma(\alpha)}{\Gamma(\alpha)} & =\frac{\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y}{\Gamma(\alpha)} \\
1 & =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y
\end{aligned}
$$

Set $X=Y / \beta$

$$
\begin{aligned}
F(x)=P(X \leq x) & =P(Y / \beta \leq x) \\
& =P(Y \leq x \beta) \\
& =F_{Y}(x \beta) \\
\frac{\partial F_{Y}(x \beta)}{\partial x} & =f_{Y}(x \beta) \beta
\end{aligned}
$$

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

$$
\begin{aligned}
\frac{\Gamma(\alpha)}{\Gamma(\alpha)} & =\frac{\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y}{\Gamma(\alpha)} \\
1 & =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y
\end{aligned}
$$

Set $X=Y / \beta$

$$
\begin{aligned}
F(x)=P(X \leq x) & =P(Y / \beta \leq x) \\
& =P(Y \leq x \beta) \\
& =F_{Y}(x \beta) \\
\frac{\partial F_{Y}(x \beta)}{\partial x} & =f_{Y}(x \beta) \beta
\end{aligned}
$$

The result is:

Gamma Distribution

Suppose we have $\Gamma(\alpha)$,

$$
\begin{aligned}
\frac{\Gamma(\alpha)}{\Gamma(\alpha)} & =\frac{\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y}{\Gamma(\alpha)} \\
1 & =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y
\end{aligned}
$$

Set $X=Y / \beta$

$$
\begin{aligned}
F(x)=P(X \leq x) & =P(Y / \beta \leq x) \\
& =P(Y \leq x \beta) \\
& =F_{Y}(x \beta) \\
\frac{\partial F_{Y}(x \beta)}{\partial x} & =f_{Y}(x \beta) \beta
\end{aligned}
$$

The result is:

$$
f(x \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-x \beta}
$$

Definition

Suppose X is a continuous random variable, with $X \geq 0$. Then if the pdf of X is

$$
f(x \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-x \beta}
$$

if $x \geq 0$ and 0 otherwise, we will say X is a Gamma distribution.

$X \sim \operatorname{Gamma}(\alpha, \beta)$

Gamma Distribution

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$

Gamma Distribution

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$

$$
E[X]=\frac{\alpha}{\beta}
$$

Gamma Distribution

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$

$$
\begin{aligned}
E[X] & =\frac{\alpha}{\beta} \\
\operatorname{var}(X) & =\frac{\alpha}{\beta^{2}}
\end{aligned}
$$

Gamma Distribution

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$

$$
\begin{aligned}
E[X] & =\frac{\alpha}{\beta} \\
\operatorname{var}(X) & =\frac{\alpha}{\beta^{2}}
\end{aligned}
$$

Suppose $\alpha=1$ and $\beta=\lambda$. If

Gamma Distribution

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$

$$
\begin{aligned}
E[X] & =\frac{\alpha}{\beta} \\
\operatorname{var}(X) & =\frac{\alpha}{\beta^{2}}
\end{aligned}
$$

Suppose $\alpha=1$ and $\beta=\lambda$. If

$$
X \sim \operatorname{Gamma}(1, \lambda)
$$

Gamma Distribution

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$

$$
\begin{aligned}
E[X] & =\frac{\alpha}{\beta} \\
\operatorname{var}(X) & =\frac{\alpha}{\beta^{2}}
\end{aligned}
$$

Suppose $\alpha=1$ and $\beta=\lambda$. If

$$
\begin{aligned}
X & \sim \operatorname{Gamma}(1, \lambda) \\
f(x \mid 1, \lambda) & =\lambda e^{-x \lambda}
\end{aligned}
$$

Gamma Distribution

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$

$$
\begin{aligned}
E[X] & =\frac{\alpha}{\beta} \\
\operatorname{var}(X) & =\frac{\alpha}{\beta^{2}}
\end{aligned}
$$

Suppose $\alpha=1$ and $\beta=\lambda$. If

$$
\begin{aligned}
X & \sim \operatorname{Gamma}(1, \lambda) \\
f(x \mid 1, \lambda) & =\lambda e^{-x \lambda}
\end{aligned}
$$

We will say

Gamma Distribution

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$

$$
\begin{aligned}
E[X] & =\frac{\alpha}{\beta} \\
\operatorname{var}(X) & =\frac{\alpha}{\beta^{2}}
\end{aligned}
$$

Suppose $\alpha=1$ and $\beta=\lambda$. If

$$
\begin{aligned}
X & \sim \operatorname{Gamma}(1, \lambda) \\
f(x \mid 1, \lambda) & =\lambda e^{-x \lambda}
\end{aligned}
$$

We will say

$$
X \sim \text { Exponential }(\lambda)
$$

Properties of Gamma Distributions

Proposition

Suppose we have a sequence of independent random variables, with

$$
X_{i} \sim \operatorname{Gamma}\left(\alpha_{i}, \beta\right)
$$

Then

$$
Y=\sum_{i=1}^{N} X_{i}
$$

$Y \sim \operatorname{Gamma}\left(\sum_{i=1}^{N} \alpha_{i}, \beta\right)$

We can evaluate in R with dgamma and simulate with rgamma $X \sim \operatorname{Gamma}(3,5)$ and we evaluate at 3 , dgamma(3, shape= 3, rate $=5$) and we can simulate with rgamma (1000, shape $=3$, rate $=5$)

χ^{2} Distribution

Suppose $Z \sim \operatorname{Normal}(0,1)$.

χ^{2} Distribution

Suppose $Z \sim \operatorname{Normal}(0,1)$.
Consider $X=Z^{2}$

χ^{2} Distribution

Suppose $Z \sim \operatorname{Normal}(0,1)$.
Consider $X=Z^{2}$

$$
F_{X}(x)=P(X \leq x)
$$

χ^{2} Distribution

Suppose $Z \sim \operatorname{Normal}(0,1)$.
Consider $X=Z^{2}$

$$
\begin{aligned}
F_{X}(x) & =P(X \leq x) \\
& =P\left(Z^{2} \leq x\right)
\end{aligned}
$$

χ^{2} Distribution

Suppose $Z \sim \operatorname{Normal}(0,1)$.
Consider $X=Z^{2}$

$$
\begin{aligned}
F_{X}(x) & =P(X \leq x) \\
& =P\left(Z^{2} \leq x\right) \\
& =P(-\sqrt{x} \leq Z \leq x)
\end{aligned}
$$

χ^{2} Distribution

Suppose $Z \sim \operatorname{Normal}(0,1)$.
Consider $X=Z^{2}$

$$
\begin{aligned}
F_{X}(x) & =P(X \leq x) \\
& =P\left(Z^{2} \leq x\right) \\
& =P(-\sqrt{x} \leq Z \leq x) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\sqrt{x}}^{\sqrt{x}} e^{-\frac{z^{2}}{2}} d z
\end{aligned}
$$

χ^{2} Distribution

Suppose $Z \sim \operatorname{Normal}(0,1)$.
Consider $X=Z^{2}$

$$
\begin{aligned}
F_{X}(x) & =P(X \leq x) \\
& =P\left(Z^{2} \leq x\right) \\
& =P(-\sqrt{x} \leq Z \leq x) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\sqrt{x}}^{\sqrt{x}} e^{-\frac{z^{2}}{2}} d z \\
& =F_{Z}(\sqrt{x})-F_{Z}(-\sqrt{x})
\end{aligned}
$$

χ^{2} Distribution

Suppose $Z \sim \operatorname{Normal}(0,1)$.
Consider $X=Z^{2}$

$$
\begin{aligned}
F_{X}(x) & =P(X \leq x) \\
& =P\left(Z^{2} \leq x\right) \\
& =P(-\sqrt{x} \leq Z \leq x) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\sqrt{x}}^{\sqrt{x}} e^{-\frac{z^{2}}{2}} d z \\
& =F_{Z}(\sqrt{x})-F_{Z}(-\sqrt{x})
\end{aligned}
$$

The pdf then is

χ^{2} Distribution

Suppose $Z \sim \operatorname{Normal}(0,1)$.
Consider $X=Z^{2}$

$$
\begin{aligned}
F_{X}(x) & =P(X \leq x) \\
& =P\left(Z^{2} \leq x\right) \\
& =P(-\sqrt{x} \leq Z \leq x) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\sqrt{x}}^{\sqrt{x}} e^{-\frac{z^{2}}{2}} d z \\
& =F_{Z}(\sqrt{x})-F_{Z}(-\sqrt{x})
\end{aligned}
$$

The pdf then is

$$
\frac{\partial F_{X}(x)}{\partial x}=f_{Z}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{Z}(-\sqrt{x}) \frac{1}{2 \sqrt{x}}
$$

χ^{2} Distribution

$$
\frac{\partial F_{X}(x)}{\partial x}=f_{Z}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{Z}(-\sqrt{x}) \frac{1}{2 \sqrt{x}}
$$

χ^{2} Distribution

$$
\begin{aligned}
\frac{\partial F_{X}(x)}{\partial x} & =f_{Z}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{Z}(-\sqrt{x}) \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{x}} \frac{1}{2 \sqrt{2 \pi}}\left(2 e^{-\frac{x}{2}}\right)
\end{aligned}
$$

χ^{2} Distribution

$$
\begin{aligned}
\frac{\partial F_{X}(x)}{\partial x} & =f_{Z}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{Z}(-\sqrt{x}) \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{x}} \frac{1}{2 \sqrt{2 \pi}}\left(2 e^{-\frac{x}{2}}\right) \\
& =\frac{1}{\sqrt{x}} \frac{1}{\sqrt{2 \pi}}\left(e^{-\frac{x}{2}}\right)
\end{aligned}
$$

χ^{2} Distribution

$$
\begin{aligned}
\frac{\partial F_{X}(x)}{\partial x} & =f_{Z}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{Z}(-\sqrt{x}) \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{x}} \frac{1}{2 \sqrt{2 \pi}}\left(2 e^{-\frac{x}{2}}\right) \\
& =\frac{1}{\sqrt{x}} \frac{1}{\sqrt{2 \pi}}\left(e^{-\frac{x}{2}}\right) \\
& =\frac{\left(\frac{1}{2}\right)^{1 / 2}}{\Gamma\left(\frac{1}{2}\right)}\left(x^{1 / 2-1} e^{-\frac{x}{2}}\right)
\end{aligned}
$$

χ^{2} Distribution

$$
\begin{aligned}
\frac{\partial F_{X}(x)}{\partial x} & =f_{Z}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{Z}(-\sqrt{x}) \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{x}} \frac{1}{2 \sqrt{2 \pi}}\left(2 e^{-\frac{x}{2}}\right) \\
& =\frac{1}{\sqrt{x}} \frac{1}{\sqrt{2 \pi}}\left(e^{-\frac{x}{2}}\right) \\
& =\frac{\left(\frac{1}{2}\right)^{1 / 2}}{\Gamma\left(\frac{1}{2}\right)}\left(x^{1 / 2-1} e^{-\frac{x}{2}}\right)
\end{aligned}
$$

$X \sim \operatorname{Gamma}(1 / 2,1 / 2)$

χ^{2} Distribution

$$
\begin{aligned}
\frac{\partial F_{X}(x)}{\partial x} & =f_{Z}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{Z}(-\sqrt{x}) \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{x}} \frac{1}{2 \sqrt{2 \pi}}\left(2 e^{-\frac{x}{2}}\right) \\
& =\frac{1}{\sqrt{x}} \frac{1}{\sqrt{2 \pi}}\left(e^{-\frac{x}{2}}\right) \\
& =\frac{\left(\frac{1}{2}\right)^{1 / 2}}{\Gamma\left(\frac{1}{2}\right)}\left(x^{1 / 2-1} e^{-\frac{x}{2}}\right)
\end{aligned}
$$

$X \sim \operatorname{Gamma}(1 / 2,1 / 2)$
Then if $X=\sum_{i=1}^{N} Z^{2}$

χ^{2} Distribution

$$
\begin{aligned}
\frac{\partial F_{X}(x)}{\partial x} & =f_{Z}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{Z}(-\sqrt{x}) \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{x}} \frac{1}{2 \sqrt{2 \pi}}\left(2 e^{-\frac{x}{2}}\right) \\
& =\frac{1}{\sqrt{x}} \frac{1}{\sqrt{2 \pi}}\left(e^{-\frac{x}{2}}\right) \\
& =\frac{\left(\frac{1}{2}\right)^{1 / 2}}{\Gamma\left(\frac{1}{2}\right)}\left(x^{1 / 2-1} e^{-\frac{x}{2}}\right)
\end{aligned}
$$

$X \sim \operatorname{Gamma}(1 / 2,1 / 2)$
Then if $X=\sum_{i=1}^{N} Z^{2}$
$X \sim \operatorname{Gamma}(n / 2,1 / 2)$

Definition

Suppose X is a continuous random variable with $X \geq 0$, with pdf

$$
f(x)=\frac{1}{2^{n / 2} \Gamma(n / 2)} x^{n / 2-1} e^{-x / 2}
$$

Then we will say X is a χ^{2} distribution with n degrees of freedom. Equivalently,

$$
X \sim \chi^{2}(n)
$$

Chi-Squared 1 Degrees of Freedom

Chi-Squared 11 Degrees of Freedom

Chi-Squared 21 Degrees of Freedom

Chi-Squared 31 Degrees of Freedom

Chi-Squared 41 Degrees of Freedom

Chi-Squared 51 Degrees of Freedom

Chi-Squared 61 Degrees of Freedom

Chi-Squared 71 Degrees of Freedom

Chi-Squared 81 Degrees of Freedom

Chi-Squared 91 Degrees of Freedom

χ^{2} Properties

Suppose $X \sim \chi^{2}(n)$

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{N} Z_{i}^{2}\right] \\
& =\sum_{i=1}^{N} E\left[Z_{i}^{2}\right] \\
\operatorname{var}\left(Z_{i}\right) & =E\left[Z_{i}^{2}\right]-E\left[Z_{i}\right]^{2} \\
1 & =E\left[Z_{i}^{2}\right]-0 \\
E[X] & =n
\end{aligned}
$$

χ^{2} Properties

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{i=1}^{N} \operatorname{var}\left(Z_{i}^{2}\right) \\
& =\sum_{i=1}^{N}\left(E\left[Z_{i}^{4}\right]-E\left[Z_{i}\right]^{2}\right) \\
& =\sum_{i=1}^{N}(3-1)=2 n
\end{aligned}
$$

We will use the χ^{2} in 350a, 350b, and across statistics.

Student's t-Distribution

Definition

Suppose $Z \sim \operatorname{Normal}(0,1)$ and $U \sim \chi^{2}(n)$. Define the random variable Y as,

$$
Y=\frac{Z}{\sqrt{\frac{U}{n}}}
$$

If Z and U are independent then $Y \sim t(n)$, with $p d f$

$$
f(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{x^{2}}{n}\right)^{-\frac{n+1}{2}}
$$

We will use the t-distribution extensively for test-statistics

Degrees of Freedom 1

Degrees of Freedom 2

Degrees of Freedom 3

Degrees of Freedom 4

Degrees of Freedom 5

Degrees of Freedom 6

Degrees of Freedom 7

Degrees of Freedom 8

Degrees of Freedom 9

Degrees of Freedom 10

Degrees of Freedom 11

Degrees of Freedom 12

Degrees of Freedom 13

Degrees of Freedom 14

Degrees of Freedom 15

Degrees of Freedom 16

Degrees of Freedom 17

Degrees of Freedom 18

Degrees of Freedom 19

Degrees of Freedom 20

Degrees of Freedom 21

Degrees of Freedom 22

Degrees of Freedom 23

Degrees of Freedom 24

Degrees of Freedom 25

Degrees of Freedom 26

Degrees of Freedom 27

Degrees of Freedom 28

Degrees of Freedom 29

Degrees of Freedom 30

Student's t-Distribution, Properties

Suppose $n=1$, Cauchy distribution

Student's t-Distribution, Properties

Suppose $n=1$, Cauchy distribution
If $X \sim$ Cauchy(1), then:
$E[X]=$ undefined
$\operatorname{var}(X)=$ undefined
If $X \sim t(2)$
$\mathrm{E}[\mathrm{X}]=0$
$\operatorname{var}(X)=$ undefined

Student's t-Distribution, Properties

Suppose $n>2$, then
$\operatorname{var}(X)=\frac{n}{n-2}$
As $n \rightarrow \infty \operatorname{var}(X) \rightarrow 1$.

Tomorrow: Joint Distributions and Multivariate Normal Distribution

