Math Camp

Justin Grimmer

Associate Professor
Department of Political Science
Stanford University

September 16th, 2016

Where we're at

- Conditional Probability/Bayes' Rule

Where we're at

- Conditional Probability/Bayes' Rule
- Today: Random Variables

Where we're at

- Conditional Probability/Bayes' Rule
- Today: Random Variables
- Probability Mass Functions

Where we're at

- Conditional Probability/Bayes' Rule
- Today: Random Variables
- Probability Mass Functions
- Expectation, Variance

Where we're at

- Conditional Probability/Bayes' Rule
- Today: Random Variables
- Probability Mass Functions
- Expectation, Variance
- Famous Discrete Random Variables

Where we're at

- Conditional Probability/Bayes' Rule
- Today: Random Variables
- Probability Mass Functions
- Expectation, Variance
- Famous Discrete Random Variables
- A Brief Introduction to Markov Chains

Random Variable: Intuition

Recall the three parts of our probability model

Random Variable: Intuition

Recall the three parts of our probability model

- Sample Space

Random Variable: Intuition

Recall the three parts of our probability model

- Sample Space
- Events

Random Variable: Intuition

Recall the three parts of our probability model

- Sample Space
- Events
- Probability

Random Variable: Intuition

Recall the three parts of our probability model

- Sample Space
- Events
- Probability

Often, we are interested in some function of the sample space

Random Variable: Intuition

Recall the three parts of our probability model

- Sample Space
- Events
- Probability

Often, we are interested in some function of the sample space

- Number of incumbents who win

Random Variable: Intuition

Recall the three parts of our probability model

- Sample Space
- Events
- Probability

Often, we are interested in some function of the sample space

- Number of incumbents who win
- An indicator whether a country defaults on loans (1 if Default, 0 otherwise)

Random Variable: Intuition

Recall the three parts of our probability model

- Sample Space
- Events
- Probability

Often, we are interested in some function of the sample space

- Number of incumbents who win
- An indicator whether a country defaults on loans (1 if Default, 0 otherwise)
- Number of casualties in a war (rather than all outcomes of casualties)

Random Variable: Intuition

Recall the three parts of our probability model

- Sample Space
- Events
- Probability

Often, we are interested in some function of the sample space

- Number of incumbents who win
- An indicator whether a country defaults on loans (1 if Default, 0 otherwise)
- Number of casualties in a war (rather than all outcomes of casualties)

Random variables: functions defined on the sample space

Definition: Random Variable

Definition

Definition: Random Variable

Definition

Random Variable: A Random variable X is a function from the sample space to real numbers. In notation,

Definition: Random Variable

Definition

Random Variable: A Random variable X is a function from the sample space to real numbers. In notation,
X : Sample Space $\rightarrow \mathcal{R}$

Definition: Random Variable

Definition
Random Variable: A Random variable X is a function from the sample space to real numbers. In notation,
X : Sample Space $\rightarrow \mathcal{R}$

- X's domain are all outcomes (Sample Space)

Definition: Random Variable

Definition
Random Variable: A Random variable X is a function from the sample space to real numbers. In notation,
X : Sample Space $\rightarrow \mathcal{R}$

- X's domain are all outcomes (Sample Space)
- X's range is the Real line (or some subset of it)

Definition: Random Variable

Definition

Random Variable: A Random variable X is a function from the sample space to real numbers. In notation,
X : Sample Space $\rightarrow \mathcal{R}$

- X's domain are all outcomes (Sample Space)
- X's range is the Real line (or some subset of it)
- Because X is defined on outcomes, makes sense to write $p(X)$ (we'll talk about this soon)

Example

Example

Treatment assignment:

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\{
$$

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\left\{\begin{array}{l}
0 \text { if }(C, C, C) \\
\end{array}\right.
$$

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\left\{\begin{array}{l}
0 \text { if }(C, C, C) \\
1 \text { if }(T, C, C) \text { or }(C, T, C) \text { or }(C, C, T) \\
\end{array}\right.
$$

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\left\{\begin{array}{l}
0 \text { if }(C, C, C) \\
1 \text { if }(T, C, C) \text { or }(C, T, C) \text { or }(C, C, T) \\
2 \text { if }(T, T, C) \text { or }(T, C, T) \text { or }(C, T, T)
\end{array}\right.
$$

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\left\{\begin{array}{l}
0 \text { if }(C, C, C) \\
1 \text { if }(T, C, C) \text { or }(C, T, C) \text { or }(C, C, T) \\
2 \text { if }(T, T, C) \text { or }(T, C, T) \text { or }(C, T, T) \\
3 \text { if }(T, T, T)
\end{array}\right.
$$

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\left\{\begin{array}{l}
0 \text { if }(C, C, C) \\
1 \text { if }(T, C, C) \text { or }(C, T, C) \text { or }(C, C, T) \\
2 \text { if }(T, T, C) \text { or }(T, C, T) \text { or }(C, T, T) \\
3 \text { if }(T, T, T)
\end{array}\right.
$$

In other words,

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\left\{\begin{array}{l}
0 \text { if }(C, C, C) \\
1 \text { if }(T, C, C) \text { or }(C, T, C) \text { or }(C, C, T) \\
2 \text { if }(T, T, C) \text { or }(T, C, T) \text { or }(C, T, T) \\
3 \text { if }(T, T, T)
\end{array}\right.
$$

In other words,

$$
X((C, C, C))=0
$$

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\left\{\begin{array}{l}
0 \text { if }(C, C, C) \\
1 \text { if }(T, C, C) \text { or }(C, T, C) \text { or }(C, C, T) \\
2 \text { if }(T, T, C) \text { or }(T, C, T) \text { or }(C, T, T) \\
3 \text { if }(T, T, T)
\end{array}\right.
$$

In other words,

$$
\begin{aligned}
& X((C, C, C))=0 \\
& X((T, C, C))=1
\end{aligned}
$$

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\left\{\begin{array}{l}
0 \text { if }(C, C, C) \\
1 \text { if }(T, C, C) \text { or }(C, T, C) \text { or }(C, C, T) \\
2 \text { if }(T, T, C) \text { or }(T, C, T) \text { or }(C, T, T) \\
3 \text { if }(T, T, T)
\end{array}\right.
$$

In other words,

$$
\begin{aligned}
& X((C, C, C))=0 \\
& X((T, C, C))=1 \\
& X((T, C, T))=2
\end{aligned}
$$

Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin ($\frac{1}{2}$) to assign each unit
- Assign to $T=$ Treatment or $C=$ control
- $X=$ Number of units received treatment

Defining the function:

$$
X=\left\{\begin{array}{l}
0 \text { if }(C, C, C) \\
1 \text { if }(T, C, C) \text { or }(C, T, C) \text { or }(C, C, T) \\
2 \text { if }(T, T, C) \text { or }(T, C, T) \text { or }(C, T, T) \\
3 \text { if }(T, T, T)
\end{array}\right.
$$

In other words,

$$
\begin{aligned}
& X((C, C, C))=0 \\
& X((T, C, C))=1 \\
& X((T, C, T))=2 \\
& X((T, T, T))=3
\end{aligned}
$$

Another Example

Another Example

$X=$ Number of Calls into congressional office in some period p

Another Example

$X=$ Number of Calls into congressional office in some period p

- $X(c)=c$

Another Example

$X=$ Number of Calls into congressional office in some period p

- $X(c)=c$

Outcome of Election

Another Example

$X=$ Number of Calls into congressional office in some period p

- $X(c)=c$

Outcome of Election

- Define v as the proportion of vote the candidate receives

Another Example

$X=$ Number of Calls into congressional office in some period p

- $X(c)=c$

Outcome of Election

- Define v as the proportion of vote the candidate receives
- Define $X=1$ if $v>0.50$

Another Example

$X=$ Number of Calls into congressional office in some period p

- $X(c)=c$

Outcome of Election

- Define v as the proportion of vote the candidate receives
- Define $X=1$ if $v>0.50$
- Define $X=0$ if $v<0.50$

Another Example

$X=$ Number of Calls into congressional office in some period p

- $X(c)=c$

Outcome of Election

- Define v as the proportion of vote the candidate receives
- Define $X=1$ if $v>0.50$
- Define $X=0$ if $v<0.50$

For example, if $v=0.48$, then $X(v)=0$

Another Example

$X=$ Number of Calls into congressional office in some period p

- $X(c)=c$

Outcome of Election

- Define v as the proportion of vote the candidate receives
- Define $X=1$ if $v>0.50$
- Define $X=0$ if $v<0.50$

For example, if $v=0.48$, then $X(v)=0$
Big Question: How do we compute $\mathrm{P}(\mathrm{X}=1), \mathrm{P}(\mathrm{X}=0)$, etc?

Probability Mass Function: Intuition

Go back to our experiment example-probability comes from probability of outcomes

Probability Mass Function: Intuition

Go back to our experiment example-probability comes from probability of outcomes

$$
P(C, T, C)=P(C) P(T) P(C)=\frac{1}{2} \frac{1}{2} \frac{1}{2}=\frac{1}{8}
$$

Probability Mass Function: Intuition

Go back to our experiment example-probability comes from probability of outcomes
$P(C, T, C)=P(C) P(T) P(C)=\frac{1}{2} \frac{1}{2} \frac{1}{2}=\frac{1}{8}$
That's true for all outcomes.

Probability Mass Function: Intuition

Go back to our experiment example-probability comes from probability of outcomes
$P(C, T, C)=P(C) P(T) P(C)=\frac{1}{2} \frac{1}{2} \frac{1}{2}=\frac{1}{8}$
That's true for all outcomes.

$$
p(X=0)=P(C, C, C)=\frac{1}{8}
$$

Probability Mass Function: Intuition

Go back to our experiment example-probability comes from probability of outcomes
$P(C, T, C)=P(C) P(T) P(C)=\frac{1}{2} \frac{1}{2} \frac{1}{2}=\frac{1}{8}$
That's true for all outcomes.

$$
\begin{aligned}
& p(X=0)=P(C, C, C)=\frac{1}{8} \\
& p(X=1)=P(T, C, C)+P(C, T, C)+P(C, C, T)=\frac{3}{8}
\end{aligned}
$$

Probability Mass Function: Intuition

Go back to our experiment example-probability comes from probability of outcomes
$P(C, T, C)=P(C) P(T) P(C)=\frac{1}{2} \frac{1}{2} \frac{1}{2}=\frac{1}{8}$
That's true for all outcomes.

$$
\begin{aligned}
& p(X=0)=P(C, C, C)=\frac{1}{8} \\
& p(X=1)=P(T, C, C)+P(C, T, C)+P(C, C, T)=\frac{3}{8} \\
& p(X=2)=P(T, T, C)+P(T, C, T)+P(C, T, T)=\frac{3}{8}
\end{aligned}
$$

Probability Mass Function: Intuition

Go back to our experiment example-probability comes from probability of outcomes
$P(C, T, C)=P(C) P(T) P(C)=\frac{1}{2} \frac{1}{2} \frac{1}{2}=\frac{1}{8}$
That's true for all outcomes.

$$
\begin{aligned}
& p(X=0)=P(C, C, C)=\frac{1}{8} \\
& p(X=1)=P(T, C, C)+P(C, T, C)+P(C, C, T)=\frac{3}{8} \\
& p(X=2)=P(T, T, C)+P(T, C, T)+P(C, T, T)=\frac{3}{8} \\
& p(X=3)=P(T, T, T)=\frac{1}{8}
\end{aligned}
$$

Probability Mass Function: Intuition

Go back to our experiment example-probability comes from probability of outcomes
$P(C, T, C)=P(C) P(T) P(C)=\frac{1}{2} \frac{1}{2} \frac{1}{2}=\frac{1}{8}$
That's true for all outcomes.

$$
\begin{aligned}
& p(X=0)=P(C, C, C)=\frac{1}{8} \\
& p(X=1)=P(T, C, C)+P(C, T, C)+P(C, C, T)=\frac{3}{8} \\
& p(X=2)=P(T, T, C)+P(T, C, T)+P(C, T, T)=\frac{3}{8} \\
& p(X=3)=P(T, T, T)=\frac{1}{8}
\end{aligned}
$$

$p(X=a)=0$, for all $a \notin(0,1,2,3)$

Probability Mass Function: Intuition

Probability Mass Function

Probability Mass Function: Intuition

Consider outcome of election:

- $X(v)=1$ if $v>0.5$ otherwise $X(v)=0$
- $P(X=1)$ then is equal to $P(v>0.5)$

Probability Mass Function

If X is defined on an outcome space that is discrete (countable), we'll call it discrete.

Probability Mass Function

If X is defined on an outcome space that is discrete (countable), we'll call it discrete.
(Brief aside) Countable: A set is countable if there is a function that can map all its elements to the natural numbers $\{1,2,3,4, \ldots\}$ (one-to-one, injective). If it is onto (from S to all natural numbers, surjective), then we say the set is countably infinite

Probability Mass Function

If X is defined on an outcome space that is discrete (countable), we'll call it discrete.

Definition

Probability Mass Function: For a discrete random variable X, define the probability mass function $p(x)$ as

$$
p(x)=P(X=x)
$$

Probability Mass Function: Example 2

Probability Mass Function: Example 2

Topics:

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)
Mathematically: Probability Mass Function on Words

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)
Mathematically: Probability Mass Function on Words Probability of using word, when discussing a topic

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)
Mathematically: Probability Mass Function on Words Probability of using word, when discussing a topic Suppose we have a set of words:

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)
Mathematically: Probability Mass Function on Words Probability of using word, when discussing a topic Suppose we have a set of words:
(afghanistan, fire, department, soldier, troop, war, grant)

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)
Mathematically: Probability Mass Function on Words Probability of using word, when discussing a topic Suppose we have a set of words:
(afghanistan, fire, department, soldier, troop, war, grant)
Topic 1 (say, war):

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)
Mathematically: Probability Mass Function on Words Probability of using word, when discussing a topic Suppose we have a set of words:
(afghanistan, fire, department, soldier, troop, war, grant)
Topic 1 (say, war):

$$
\begin{aligned}
& \mathrm{P}(\text { afghanistan })=0.3 ; \mathrm{P}(\text { fire })=0.0001 ; \mathrm{P}(\text { department })=0.0001 ; \\
& \mathrm{P}(\text { soldier })=0.2 ; \mathrm{P}(\text { troop })=0.2 ; \mathrm{P}(\text { war })=0.2997 ; \mathrm{P}(\text { grant })=0.0001
\end{aligned}
$$

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)
Mathematically: Probability Mass Function on Words Probability of using word, when discussing a topic Suppose we have a set of words:
(afghanistan, fire, department, soldier, troop, war, grant)
Topic 1 (say, war):

$$
\begin{aligned}
& \mathrm{P}(\text { afghanistan })=0.3 ; \mathrm{P}(\text { fire })=0.0001 ; \mathrm{P}(\text { department })=0.0001 ; \\
& \mathrm{P}(\text { soldier })=0.2 ; \mathrm{P}(\text { troop })=0.2 ; \mathrm{P}(\text { war })=0.2997 ; \mathrm{P}(\text { grant })=0.0001
\end{aligned}
$$

Topic 2 (say, fire departments):

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)
Mathematically: Probability Mass Function on Words Probability of using word, when discussing a topic
Suppose we have a set of words:
(afghanistan, fire, department, soldier, troop, war, grant)
Topic 1 (say, war):

$$
\begin{aligned}
& \mathrm{P}(\text { afghanistan })=0.3 ; \mathrm{P}(\text { fire })=0.0001 ; \mathrm{P}(\text { department })=0.0001 ; \\
& \mathrm{P}(\text { soldier })=0.2 ; \mathrm{P}(\text { troop })=0.2 ; \mathrm{P}(\text { war })=0.2997 ; \mathrm{P}(\text { grant })=0.0001
\end{aligned}
$$

Topic 2 (say, fire departments):

$$
\begin{aligned}
& P(\text { afghanistan })=0.0001 ; P(\text { fire })=0.3 ; P(\text { department })=0.2 ; \\
& P(\text { soldier })=0.0001 ; P(\text { troop })=0.0001 ; P(\text { war })=0.0001 ; \\
& P(\text { grant })=0.2997
\end{aligned}
$$

Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire department grants)
Mathematically: Probability Mass Function on Words Probability of using word, when discussing a topic
Suppose we have a set of words:
(afghanistan, fire, department, soldier, troop, war, grant)
Topic 1 (say, war):

$$
\begin{aligned}
& \mathrm{P}(\text { afghanistan })=0.3 ; \mathrm{P}(\text { fire })=0.0001 ; \mathrm{P}(\text { department })=0.0001 ; \\
& \mathrm{P}(\text { soldier })=0.2 ; \mathrm{P}(\text { troop })=0.2 ; \mathrm{P}(\text { war })=0.2997 ; \mathrm{P}(\text { grant })=0.0001
\end{aligned}
$$

Topic 2 (say, fire departments):

$$
\begin{aligned}
& P(\text { afghanistan })=0.0001 ; P(\text { fire })=0.3 ; P(\text { department })=0.2 ; \\
& P(\text { soldier })=0.0001 ; P(\text { troop })=0.0001 ; P(\text { war })=0.0001 ; \\
& P(\text { grant })=0.2997
\end{aligned}
$$

Topic Models: take a set of documents and estimate topics.

Definition

Cumulative Mass (distribution) Function: For a random variable X, define the cumulative mass function $F(x)$ as,

$$
F(x)=P(X \leq x)
$$

- Characterizes how probability cumulates as X gets larger
- $F(x) \in[0,1]$
- $F(x)$ is non-decreasing

Cumulative Mass Function: Example

Consider the three person experiment.

Cumulative Mass Function: Example

Consider the three person experiment. $\quad P(T)=P(C)=1 / 2$.

Cumulative Mass Function: Example

Consider the three person experiment. $\quad P(T)=P(C)=1 / 2$. What is $F(2)$?

Cumulative Mass Function: Example

Consider the three person experiment. $\quad P(T)=P(C)=1 / 2$. What is $F(2)$?

$$
F(2)=P(X=0)+P(X=1)+P(X=2)
$$

Cumulative Mass Function: Example

Consider the three person experiment. $\quad P(T)=P(C)=1 / 2$. What is $F(2)$?

$$
\begin{aligned}
F(2) & =P(X=0)+P(X=1)+P(X=2) \\
& =\frac{1}{8}+\frac{3}{8}+\frac{3}{8}
\end{aligned}
$$

Cumulative Mass Function: Example

Consider the three person experiment. $\quad P(T)=P(C)=1 / 2$. What is $F(2)$?

$$
\begin{aligned}
F(2) & =P(X=0)+P(X=1)+P(X=2) \\
& =\frac{1}{8}+\frac{3}{8}+\frac{3}{8} \\
& =\frac{7}{8}
\end{aligned}
$$

Cumulative Mass Function: Example

Consider the three person experiment. $\quad P(T)=P(C)=1 / 2$. What is $F(2)$?

$$
\begin{aligned}
F(2) & =P(X=0)+P(X=1)+P(X=2) \\
& =\frac{1}{8}+\frac{3}{8}+\frac{3}{8} \\
& =\frac{7}{8}
\end{aligned}
$$

What is $F(2)-F(1)$?

Cumulative Mass Function: Example

Consider the three person experiment. $\quad P(T)=P(C)=1 / 2$. What is $F(2)$?

$$
\begin{aligned}
F(2) & =P(X=0)+P(X=1)+P(X=2) \\
& =\frac{1}{8}+\frac{3}{8}+\frac{3}{8} \\
& =\frac{7}{8}
\end{aligned}
$$

What is $F(2)-F(1)$?

$$
\begin{aligned}
F(2)-F(1)= & {[P(X=0)+P(X=1)+P(X=2)] } \\
& -[P(X=0)+P(X=1)]
\end{aligned}
$$

Cumulative Mass Function: Example

Consider the three person experiment. $\quad P(T)=P(C)=1 / 2$. What is $F(2)$?

$$
\begin{aligned}
F(2) & =P(X=0)+P(X=1)+P(X=2) \\
& =\frac{1}{8}+\frac{3}{8}+\frac{3}{8} \\
& =\frac{7}{8}
\end{aligned}
$$

What is $F(2)-F(1)$?

$$
\begin{aligned}
F(2)-F(1)= & {[P(X=0)+P(X=1)+P(X=2)] } \\
& -[P(X=0)+P(X=1)] \\
F(2)-F(1)= & P(X=2)
\end{aligned}
$$

Cumulative Mass Function

There is a close relationship between pmf's and cmf's.

Cumulative Mass Function

There is a close relationship between pmf's and cmf's.
Consider Previous example:

Cumulative Mass Function

There is a close relationship between pmf's and cmf's.
Consider Previous example:

Cumulative Mass Function

There is a close relationship between pmf's and cmf's.
Consider Previous example:
Cumulative Mass Function

Cumulative Mass Function

There is a close relationship between pmf's and cmf's.
Consider Previous example:
Cumulative Mass Function

Cumulative Mass Function

There is a close relationship between pmf's and cmf's.
Consider Previous example:
Cumulative Mass Function

Cumulative Mass Function

There is a close relationship between pmf's and cmf's.
Consider Previous example:
Cumulative Mass Function

Expectation

What can we expect from a trial?

Expectation

What can we expect from a trial?
Value of random variable for any outcome

Expectation

What can we expect from a trial?
Value of random variable for any outcome
Weighted by the probability of observing that outcome

Expectation

What can we expect from a trial?
Value of random variable for any outcome
Weighted by the probability of observing that outcome
Definition
Expected Value: define the expected value of a function X as,

$$
E[X]=\sum_{x: p(x)>0} x p(x)
$$

Expectation

What can we expect from a trial?
Value of random variable for any outcome
Weighted by the probability of observing that outcome
Definition
Expected Value: define the expected value of a function X as,

$$
E[X]=\sum_{x: p(x)>0} x p(x)
$$

In words: for all values of x with $p(x)$ greater than zero, take the weighted average of the values

Expectation Example: Simple Experiment

Suppose again X is number of units assigned to treatment, in one of our previous example.

Expectation Example: Simple Experiment

Suppose again X is number of units assigned to treatment, in one of our previous example. What is $E[X]$?

Expectation Example: Simple Experiment

Suppose again X is number of units assigned to treatment, in one of our previous example.
What is $E[X]$?
$E[X]$

Expectation Example: Simple Experiment

Suppose again X is number of units assigned to treatment, in one of our previous example.
What is $E[X]$?

$$
E[X]=0 \times \frac{1}{8}+1 \times \frac{3}{8}+2 \times \frac{3}{8}+3 \times \frac{1}{8}
$$

Expectation Example: Simple Experiment

Suppose again X is number of units assigned to treatment, in one of our previous example.
What is $E[X]$?

$$
\begin{aligned}
E[X] & =0 \times \frac{1}{8}+1 \times \frac{3}{8}+2 \times \frac{3}{8}+3 \times \frac{1}{8} \\
& =1.5
\end{aligned}
$$

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

- Suppose $M<N$ people approve of Barack Obama's performance as president

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

- Suppose $M<N$ people approve of Barack Obama's performance as president
- $N-M$ disapprove of his performance

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

- Suppose $M<N$ people approve of Barack Obama's performance as president
- $N-M$ disapprove of his performance

Define:

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

- Suppose $M<N$ people approve of Barack Obama's performance as president
- $N-M$ disapprove of his performance

Define:

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

- Suppose $M<N$ people approve of Barack Obama's performance as president
- $N-M$ disapprove of his performance

Define:
Draw one person i, with , $P($ Draw $i)=\frac{1}{N}$

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

- Suppose $M<N$ people approve of Barack Obama's performance as president
- $N-M$ disapprove of his performance

Define:
Draw one person i, with , $P($ Draw $i)=\frac{1}{N}$

$$
X=\left\{\begin{array}{l}
1 \text { if person Approves } \\
0 \text { if Disapproves }
\end{array}\right.
$$

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

- Suppose $M<N$ people approve of Barack Obama's performance as president
- $N-M$ disapprove of his performance

Define:
Draw one person i, with , $P($ Draw $i)=\frac{1}{N}$

$$
X=\left\{\begin{array}{l}
1 \text { if person Approves } \\
0 \text { if Disapproves }
\end{array}\right.
$$

$\mathrm{E}[\mathrm{X}]$?

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

- Suppose $M<N$ people approve of Barack Obama's performance as president
- $N-M$ disapprove of his performance

Define:
Draw one person i, with , $P($ Draw $i)=\frac{1}{N}$

$$
X=\left\{\begin{array}{l}
1 \text { if person Approves } \\
0 \text { if Disapproves }
\end{array}\right.
$$

$\mathrm{E}[\mathrm{X}]$?

$$
E[X]=1 \times P(\text { Approve })+0 \times P(\text { Disapprove })
$$

Expectation Example: A Single Person Poll

Suppose that there is a group of N people.

- Suppose $M<N$ people approve of Barack Obama's performance as president
- $N-M$ disapprove of his performance

Define:
Draw one person i, with , $P($ Draw $i)=\frac{1}{N}$

$$
X=\left\{\begin{array}{l}
1 \text { if person Approves } \\
0 \text { if Disapproves }
\end{array}\right.
$$

$\mathrm{E}[\mathrm{X}]$?

$$
\begin{aligned}
E[X] & =1 \times P(\text { Approve })+0 \times P(\text { Disapprove }) \\
& =1 \times \frac{M}{N}
\end{aligned}
$$

Indicator Variables and Probabilities

Indicator Variables and Probabilities

Proposition

Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable I such that $I=1$ if an outcome in A occurs and $I=0$ if an outcome in A^{c} occurs. Then,

Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable I such that $I=1$ if an outcome in A occurs and $I=0$ if an outcome in A^{c} occurs. Then,

$$
E[I]=P(A)
$$

Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable I such that $I=1$ if an outcome in A occurs and $I=0$ if an outcome in A^{c} occurs. Then,

$$
E[/]=P(A)
$$

Proof.

Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable I such that $I=1$ if an outcome in A occurs and $I=0$ if an outcome in A^{c} occurs. Then,

$$
E[I]=P(A)
$$

Proof.

$$
E[I]=1 \times P(A)+0 \times P\left(A^{c}\right)
$$

Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable I such that $I=1$ if an outcome in A occurs and $I=0$ if an outcome in A^{c} occurs. Then,

$$
E[/]=P(A)
$$

Proof.

$$
\begin{aligned}
E[I] & =1 \times P(A)+0 \times P\left(A^{c}\right) \\
& =P(A)
\end{aligned}
$$

Functions of Random Variables

We might (or often) apply a function to a random variable $g(X)$.

Functions of Random Variables

We might (or often) apply a function to a random variable $g(X)$. How do we compute $E[g(X)]$?

Functions of Random Variables

We might (or often) apply a function to a random variable $g(X)$. How do we compute $E[g(X)]$?

Proposition

Functions of Random Variables

We might (or often) apply a function to a random variable $g(X)$. How do we compute $E[g(X)]$?

Proposition
Expected value of a function of a random variable: Suppose X is a discrete random variable that takes on values $x_{i}, i=\{1,2, \ldots$,$\} , with$ probabilities $p\left(x_{i}\right)$.

Functions of Random Variables

We might (or often) apply a function to a random variable $g(X)$. How do we compute $E[g(X)]$?

Proposition

Expected value of a function of a random variable: Suppose X is a discrete random variable that takes on values $x_{i}, i=\{1,2, \ldots$,$\} , with$ probabilities $p\left(x_{i}\right)$. If $g: X \rightarrow \mathcal{R}$, then its expected value $E[g(X)]$ is,

Functions of Random Variables

We might (or often) apply a function to a random variable $g(X)$. How do we compute $E[g(X)]$?

Proposition

Expected value of a function of a random variable: Suppose X is a discrete random variable that takes on values $x_{i}, i=\{1,2, \ldots$,$\} , with$ probabilities $p\left(x_{i}\right)$. If $g: X \rightarrow \mathcal{R}$, then its expected value $E[g(X)]$ is,

$$
E[g(X)]=\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)
$$

Functions of Random Variables

Proof.

Functions of Random Variables

Proof.

Observation $g(X)$ is itself a random variable. Let's say it has unique values $y_{j}(j=1,2, \ldots$,

Functions of Random Variables

Proof.

Observation $g(X)$ is itself a random variable. Let's say it has unique values $y_{j}(j=1,2, \ldots$,$) So, we know that E[g(X)]=\sum_{j} y_{j} P\left(g(X)=y_{j}\right)$.

Functions of Random Variables

Proof.

Observation $g(X)$ is itself a random variable. Let's say it has unique values $y_{j}(j=1,2, \ldots$,$) So, we know that E[g(X)]=\sum_{j} y_{j} P\left(g(X)=y_{j}\right)$. And we want to show that $\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)$ is equal to that.

Functions of Random Variables

Proof.

Observation $g(X)$ is itself a random variable. Let's say it has unique values $y_{j}(j=1,2, \ldots$,$) So, we know that E[g(X)]=\sum_{j} y_{j} P\left(g(X)=y_{j}\right)$. And we want to show that $\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)$ is equal to that.

$$
\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)=\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right)
$$

Functions of Random Variables

Proof.

Observation $g(X)$ is itself a random variable. Let's say it has unique values $y_{j}(j=1,2, \ldots$,$) So, we know that E[g(X)]=\sum_{j} y_{j} P\left(g(X)=y_{j}\right)$. And we want to show that $\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)$ is equal to that.

$$
\begin{aligned}
\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right) & =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right) \\
& =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} y_{j} p\left(x_{i}\right)
\end{aligned}
$$

Functions of Random Variables

Proof.

Observation $g(X)$ is itself a random variable. Let's say it has unique values $y_{j}(j=1,2, \ldots$,$) So, we know that E[g(X)]=\sum_{j} y_{j} P\left(g(X)=y_{j}\right)$. And we want to show that $\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)$ is equal to that.

$$
\begin{aligned}
\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right) & =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right) \\
& =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} y_{j} p\left(x_{i}\right) \\
& =\sum_{j} y_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} p\left(x_{i}\right)
\end{aligned}
$$

Functions of Random Variables

Proof.

Observation $g(X)$ is itself a random variable. Let's say it has unique values $y_{j}(j=1,2, \ldots$,$) So, we know that E[g(X)]=\sum_{j} y_{j} P\left(g(X)=y_{j}\right)$. And we want to show that $\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)$ is equal to that.

$$
\begin{aligned}
\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right) & =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right) \\
& =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} y_{j} p\left(x_{i}\right) \\
& =\sum_{j} y_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} p\left(x_{i}\right) \\
& =\sum_{j} y_{j} P\left(g(X)=y_{j}\right)
\end{aligned}
$$

Functions of Random Variables

Proof.

Observation $g(X)$ is itself a random variable. Let's say it has unique values $y_{j}(j=1,2, \ldots$,$) So, we know that E[g(X)]=\sum_{j} y_{j} P\left(g(X)=y_{j}\right)$. And we want to show that $\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)$ is equal to that.

$$
\begin{aligned}
\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right) & =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} g\left(x_{i}\right) p\left(x_{i}\right) \\
& =\sum_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} y_{j} p\left(x_{i}\right) \\
& =\sum_{j} y_{j} \sum_{i: g\left(x_{i}\right)=y_{j}} p\left(x_{i}\right) \\
& =\sum_{j} y_{j} P\left(g(X)=y_{j}\right) \\
& =E[g(X)]
\end{aligned}
$$

Functions of Random Variables: Example

Let's suppose that X is the number of observations assigned to treatment (from our previous example).

Functions of Random Variables: Example

Let's suppose that X is the number of observations assigned to treatment (from our previous example).
Suppose that $g(X)=X^{2}$. What is $E[g(X)]$?

Functions of Random Variables: Example

Let's suppose that X is the number of observations assigned to treatment (from our previous example).
Suppose that $g(X)=X^{2}$. What is $E[g(X)]$?

$$
E[g(X)]=E\left[X^{2}\right]=0^{2} \times \frac{1}{8}+1^{2} \times \frac{3}{8}+2^{2} \times \frac{3}{8}+3^{2} \times \frac{1}{8}
$$

Functions of Random Variables: Example

Let's suppose that X is the number of observations assigned to treatment (from our previous example).
Suppose that $g(X)=X^{2}$. What is $E[g(X)]$?

$$
\begin{aligned}
E[g(X)]=E\left[X^{2}\right] & =0^{2} \times \frac{1}{8}+1^{2} \times \frac{3}{8}+2^{2} \times \frac{3}{8}+3^{2} \times \frac{1}{8} \\
& =0+\frac{3}{8}+\frac{12}{8}+\frac{9}{8}
\end{aligned}
$$

Functions of Random Variables: Example

Let's suppose that X is the number of observations assigned to treatment (from our previous example).
Suppose that $g(X)=X^{2}$. What is $E[g(X)]$?

$$
\begin{aligned}
E[g(X)]=E\left[X^{2}\right] & =0^{2} \times \frac{1}{8}+1^{2} \times \frac{3}{8}+2^{2} \times \frac{3}{8}+3^{2} \times \frac{1}{8} \\
& =0+\frac{3}{8}+\frac{12}{8}+\frac{9}{8} \\
& =\frac{24}{8}=3
\end{aligned}
$$

Functions of Random Variables: Corollary

Corollary

Suppose X is a random variable and a and b are constants (not random variables). Then,

$$
E[a X+b]=a E[X]+b
$$

Functions of Random Variables: Corollary

Corollary

Suppose X is a random variable and a and b are constants (not random variables). Then,

$$
E[a X+b]=a E[X]+b
$$

Proof.

$$
E[a X+b]=\sum_{x: p(x)>0}(a x+b) p(x)
$$

Functions of Random Variables: Corollary

Corollary

Suppose X is a random variable and a and b are constants (not random variables). Then,

$$
E[a X+b]=a E[X]+b
$$

Proof.

$$
\begin{aligned}
E[a X+b] & =\sum_{x: p(x)>0}(a x+b) p(x) \\
& =\sum_{x: p(x)>0} a x p(x)+\sum_{x: p(x)>0} b p(x)
\end{aligned}
$$

Functions of Random Variables: Corollary

Corollary

Suppose X is a random variable and a and b are constants (not random variables). Then,

$$
E[a X+b]=a E[X]+b
$$

Proof.

$$
\begin{aligned}
E[a X+b] & =\sum_{x: p(x)>0}(a x+b) p(x) \\
& =\sum_{x: p(x)>0} a x p(x)+\sum_{x: p(x)>0} b p(x) \\
& =a \sum_{x: p(x)>0} x p(x)+b \sum_{x: p(x)>0} p(x)
\end{aligned}
$$

Functions of Random Variables: Corollary

Corollary

Suppose X is a random variable and a and b are constants (not random variables). Then,

$$
E[a X+b]=a E[X]+b
$$

Proof.

$$
\begin{aligned}
E[a X+b] & =\sum_{x: p(x)>0}(a x+b) p(x) \\
& =\sum_{x: p(x)>0} a x p(x)+\sum_{x: p(x)>0} b p(x) \\
& =a \sum_{x: p(x)>0} x p(x)+b \sum_{x: p(x)>0} p(x) \\
& =a E[X]+b(1)
\end{aligned}
$$

Variance

Expected value is a measure of central tendency.

Variance

Expected value is a measure of central tendency.

What about spread?

Variance

Expected value is a measure of central tendency.

What about spread? Variance

Variance

Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center

Variance

Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared $d(x, E[x])^{2}=(x-E[x])^{2}$

Variance

Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared $d(x, E[x])^{2}=(x-E[x])^{2}$
- Then, we might take weighted average of these distances,

Variance

Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared $d(x, E[x])^{2}=(x-E[x])^{2}$
- Then, we might take weighted average of these distances,

$$
E\left[(X-E[X])^{2}\right]=\sum_{x: p(x)>0}(x-E[X])^{2} p(x)
$$

Variance

Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared $d(x, E[x])^{2}=(x-E[x])^{2}$
- Then, we might take weighted average of these distances,

$$
\begin{aligned}
E\left[(X-E[X])^{2}\right] & =\sum_{x: p(x)>0}(x-E[X])^{2} p(x) \\
& =\sum_{x: p(x)>0}\left(x^{2} p(x)\right)-
\end{aligned}
$$

Variance

Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared $d(x, E[x])^{2}=(x-E[x])^{2}$
- Then, we might take weighted average of these distances,

$$
\begin{aligned}
E\left[(X-E[X])^{2}\right]= & \sum_{x: p(x)>0}(x-E[X])^{2} p(x) \\
= & \sum_{x: p(x)>0}\left(x^{2} p(x)\right)- \\
& 2 E[X] \sum_{x: p(x)>0}(x p(x))+E[X]^{2} \sum_{x: p(x)>0} p(x)
\end{aligned}
$$

Variance

Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared $d(x, E[x])^{2}=(x-E[x])^{2}$
- Then, we might take weighted average of these distances,

$$
\begin{aligned}
E\left[(X-E[X])^{2}\right]= & \sum_{x: p(x)>0}(x-E[X])^{2} p(x) \\
= & \sum_{x: p(x)>0}\left(x^{2} p(x)\right)- \\
& 2 E[X] \sum_{x: p(x)>0}(x p(x))+E[X]^{2} \sum_{x: p(x)>0} p(x) \\
= & E\left[X^{2}\right]-2 E[X]^{2}+E[X]^{2}
\end{aligned}
$$

Variance

Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared $d(x, E[x])^{2}=(x-E[x])^{2}$
- Then, we might take weighted average of these distances,

$$
\begin{aligned}
E\left[(X-E[X])^{2}\right]= & \sum_{x: p(x)>0}(x-E[X])^{2} p(x) \\
= & \sum_{x: p(x)>0}\left(x^{2} p(x)\right)- \\
& 2 E[X] \sum_{x: p(x)>0}(x p(x))+E[X]^{2} \sum_{x: p(x)>0} p(x) \\
= & E\left[X^{2}\right]-2 E[X]^{2}+E[X]^{2} \\
= & E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Variance

Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared $d(x, E[x])^{2}=(x-E[x])^{2}$
- Then, we might take weighted average of these distances,

$$
\begin{aligned}
E\left[(X-E[X])^{2}\right]= & \sum_{x: p(x)>0}(x-E[X])^{2} p(x) \\
= & \sum_{x: p(x)>0}\left(x^{2} p(x)\right)- \\
& 2 E[X] \sum_{x: p(x)>0}(x p(x))+E[X]^{2} \sum_{x: p(x)>0} p(x) \\
= & E\left[X^{2}\right]-2 E[X]^{2}+E[X]^{2} \\
= & E\left[X^{2}\right]-E[X]^{2} \\
= & \operatorname{Var}(X)
\end{aligned}
$$

Variance

Definition

The variance of a random variable $X, \operatorname{var}(X)$, is

$$
\begin{aligned}
\operatorname{var}(X) & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

- We will define the standard deviation of $X, \operatorname{sd}(X)=\sqrt{\operatorname{var}(X)}$
$-\operatorname{var}(X) \geq 0$.

Variance Calculation

Continue the three person experiment, with $P(T)=P(C)=1 / 2$.

Variance Calculation

Continue the three person experiment, with $P(T)=P(C)=1 / 2$. What is $\operatorname{Var}(X)$?

Variance Calculation

Continue the three person experiment, with $P(T)=P(C)=1 / 2$. What is $\operatorname{Var}(X)$?
We have two components to our variance calculation:

Variance Calculation

Continue the three person experiment, with $P(T)=P(C)=1 / 2$. What is $\operatorname{Var}(X)$?
We have two components to our variance calculation:

$$
E\left[X^{2}\right]=3
$$

Variance Calculation

Continue the three person experiment, with $P(T)=P(C)=1 / 2$. What is $\operatorname{Var}(X)$?
We have two components to our variance calculation:

$$
\begin{aligned}
& E\left[X^{2}\right]=3 \\
& E[X]^{2}=1.5^{2}=2.25
\end{aligned}
$$

Variance Calculation

Continue the three person experiment, with $P(T)=P(C)=1 / 2$. What is $\operatorname{Var}(X)$?
We have two components to our variance calculation:

$$
\begin{aligned}
E\left[X^{2}\right] & =3 \\
E[X]^{2} & =1.5^{2}=2.25 \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Variance Calculation

Continue the three person experiment, with $P(T)=P(C)=1 / 2$. What is $\operatorname{Var}(X)$?
We have two components to our variance calculation:

$$
\begin{aligned}
E\left[X^{2}\right] & =3 \\
E[X]^{2} & =1.5^{2}=2.25 \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2} \\
& =3-2.25=0.75
\end{aligned}
$$

Variance Corollary

Corollary
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Variance Corollary

Corollary
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof.
Define $Y=a X+b$. Now, we know that

Variance Corollary

Corollary
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof.
Define $Y=a X+b$. Now, we know that
$\operatorname{Var}(Y)=E\left[(Y-E[Y])^{2}\right]$. Let's substitute and use our other corollary

Variance Corollary

Corollary
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof.
Define $Y=a X+b$. Now, we know that
$\operatorname{Var}(Y)=E\left[(Y-E[Y])^{2}\right]$. Let's substitute and use our other corollary

$$
\operatorname{Var}(Y)=E\left[(a X+b-a E[X]-b)^{2}\right]
$$

Variance Corollary

Corollary
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof.
Define $Y=a X+b$. Now, we know that
$\operatorname{Var}(Y)=E\left[(Y-E[Y])^{2}\right]$. Let's substitute and use our other corollary

$$
\begin{aligned}
\operatorname{Var}(Y) & =E\left[(a X+b-a E[X]-b)^{2}\right] \\
& =E\left[\left(a^{2} X^{2}-2 a^{2} X E[X]+a^{2} E[X]^{2}\right)\right]
\end{aligned}
$$

Variance Corollary

Corollary
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof.
Define $Y=a X+b$. Now, we know that
$\operatorname{Var}(Y)=E\left[(Y-E[Y])^{2}\right]$. Let's substitute and use our other corollary

$$
\begin{aligned}
\operatorname{Var}(Y) & =E\left[(a X+b-a E[X]-b)^{2}\right] \\
& =E\left[\left(a^{2} X^{2}-2 a^{2} X E[X]+a^{2} E[X]^{2}\right)\right] \\
& =a^{2} E\left[X^{2}\right]-2 a^{2} E[X]^{2}+a^{2} E[X]^{2}
\end{aligned}
$$

Variance Corollary

Corollary
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof.
Define $Y=a X+b$. Now, we know that
$\operatorname{Var}(Y)=E\left[(Y-E[Y])^{2}\right]$. Let's substitute and use our other corollary

$$
\begin{aligned}
\operatorname{Var}(Y) & =E\left[(a X+b-a E[X]-b)^{2}\right] \\
& =E\left[\left(a^{2} X^{2}-2 a^{2} X E[X]+a^{2} E[X]^{2}\right)\right] \\
& =a^{2} E\left[X^{2}\right]-2 a^{2} E[X]^{2}+a^{2} E[X]^{2} \\
& =a^{2}\left(E\left[X^{2}\right]-E[X]^{2}\right)
\end{aligned}
$$

Variance Corollary

Corollary
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof.
Define $Y=a X+b$. Now, we know that
$\operatorname{Var}(Y)=E\left[(Y-E[Y])^{2}\right]$. Let's substitute and use our other corollary

$$
\begin{aligned}
\operatorname{Var}(Y) & =E\left[(a X+b-a E[X]-b)^{2}\right] \\
& =E\left[\left(a^{2} X^{2}-2 a^{2} X E[X]+a^{2} E[X]^{2}\right)\right] \\
& =a^{2} E\left[X^{2}\right]-2 a^{2} E[X]^{2}+a^{2} E[X]^{2} \\
& =a^{2}\left(E\left[X^{2}\right]-E[X]^{2}\right) \\
& =a^{2} \operatorname{Var}(X)
\end{aligned}
$$

Famous Distributions

- Bernoulli
- Binomial
- Multinomial
- Poisson

Models of how world works.

Bernoulli Random Variable

Definition

Suppose X is a random variable, with $X \in\{0,1\}$ and $P(X=1)=\pi$.
Then we will say that X is Bernoulli random variable,

$$
p(k)=\pi^{k}(1-\pi)^{1-k}
$$

for $k \in\{0,1\}$ and $p(k)=0$ otherwise.
We will (equivalently) say that

$$
Y \sim \text { Bernoulli }(\pi)
$$

Bernoulli Random Variable

Suppose we flip a fair coin and $Y=1$ if the outcome is Heads.

$$
\begin{aligned}
Y & \sim \text { Bernoulli(1/2) } \\
p(1) & =(1 / 2)^{1}(1-1 / 2)^{1-1}=1 / 2 \\
p(0) & =(1 / 2)^{0}(1-1 / 2)^{1-0}=(1-1 / 2)
\end{aligned}
$$

Bernoulli Random Variable Moments

Suppose $Y \sim \operatorname{Bernoulli}(\pi)$

Bernoulli Random Variable Moments

Suppose $Y \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Y] & =1 \times P(Y=1)+0 \times P(Y=0) \\
& =\pi+0(1-\pi)=\pi
\end{aligned}
$$

$E[Y]=\pi$

Bernoulli Random Variable Moments

Suppose $Y \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Y] & =1 \times P(Y=1)+0 \times P(Y=0) \\
& =\pi+0(1-\pi)=\pi \\
\operatorname{var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2}
\end{aligned}
$$

$E[Y]=\pi$

Bernoulli Random Variable Moments

Suppose $Y \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Y] & =1 \times P(Y=1)+0 \times P(Y=0) \\
& =\pi+0(1-\pi)=\pi \\
\operatorname{var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2} \\
E\left[Y^{2}\right] & =1^{2} P(Y=1)+0^{2} P(Y=0)
\end{aligned}
$$

$E[Y]=\pi$

Bernoulli Random Variable Moments

Suppose $Y \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Y] & =1 \times P(Y=1)+0 \times P(Y=0) \\
& =\pi+0(1-\pi)=\pi \\
\operatorname{var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2} \\
E\left[Y^{2}\right] & =1^{2} P(Y=1)+0^{2} P(Y=0) \\
& =\pi
\end{aligned}
$$

$E[Y]=\pi$

Bernoulli Random Variable Moments

Suppose $Y \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Y] & =1 \times P(Y=1)+0 \times P(Y=0) \\
& =\pi+0(1-\pi)=\pi \\
\operatorname{var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2} \\
E\left[Y^{2}\right] & =1^{2} P(Y=1)+0^{2} P(Y=0) \\
& =\pi \\
\operatorname{var}(Y) & =\pi-\pi^{2}
\end{aligned}
$$

$E[Y]=\pi$

Bernoulli Random Variable Moments

Suppose $Y \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Y] & =1 \times P(Y=1)+0 \times P(Y=0) \\
& =\pi+0(1-\pi)=\pi \\
\operatorname{var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2} \\
E\left[Y^{2}\right] & =1^{2} P(Y=1)+0^{2} P(Y=0) \\
& =\pi \\
\operatorname{var}(Y) & =\pi-\pi^{2} \\
& =\pi(1-\pi)
\end{aligned}
$$

$E[Y]=\pi$
$\operatorname{var}(Y)=\pi(1-\pi)$

Bernoulli Random Variable Moments

Suppose $Y \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Y] & =1 \times P(Y=1)+0 \times P(Y=0) \\
& =\pi+0(1-\pi)=\pi \\
\operatorname{var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2} \\
E\left[Y^{2}\right] & =1^{2} P(Y=1)+0^{2} P(Y=0) \\
& =\pi \\
\operatorname{var}(Y) & =\pi-\pi^{2} \\
& =\pi(1-\pi)
\end{aligned}
$$

$E[Y]=\pi$
$\operatorname{var}(Y)=\pi(1-\pi)$ What is the maximum variance?

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose.

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose. Define $Y=1$ if the country wins and $Y=0$ otherwise.

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose. Define $Y=1$ if the country wins and $Y=0$ otherwise.

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose. Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose. Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,
$Y \sim \operatorname{Bernoulli}(\pi)$

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose.
Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,

$$
Y \sim \operatorname{Bernoulli}(\pi)
$$

Suppose country 1 is deciding whether to fight a war.

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose.
Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,

$$
Y \sim \operatorname{Bernoulli}(\pi)
$$

Suppose country 1 is deciding whether to fight a war. Engaging in the war will cost the country c.

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose.
Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,

$$
Y \sim \operatorname{Bernoulli}(\pi)
$$

Suppose country 1 is deciding whether to fight a war. Engaging in the war will cost the country c. If they win, country 1 receives B.

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose.
Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,

$$
Y \sim \operatorname{Bernoulli}(\pi)
$$

Suppose country 1 is deciding whether to fight a war.
Engaging in the war will cost the country c.
If they win, country 1 receives B.
What is 1 's expected utility from fighting a war?

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose.
Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,

$$
Y \sim \operatorname{Bernoulli}(\pi)
$$

Suppose country 1 is deciding whether to fight a war.
Engaging in the war will cost the country c.
If they win, country 1 receives B.
What is 1 's expected utility from fighting a war?

$$
E[U(\text { war })]=(\text { Utility } \mid \text { win }) \times P(\text { win })+(\text { Utility } \mid \text { lose }) \times P(\text { lose })
$$

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose.
Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,

$$
Y \sim \operatorname{Bernoulli}(\pi)
$$

Suppose country 1 is deciding whether to fight a war.
Engaging in the war will cost the country c.
If they win, country 1 receives B.
What is 1 's expected utility from fighting a war?

$$
\begin{aligned}
E[U(\text { war })] & =(\text { Utility } \mid \text { win }) \times P(\text { win })+(\text { Utility } \mid \text { lose }) \times P(\text { lose }) \\
& =(B-c) P(Y=1)+(-c) P(Y=0)
\end{aligned}
$$

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose.
Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,

$$
Y \sim \operatorname{Bernoulli}(\pi)
$$

Suppose country 1 is deciding whether to fight a war.
Engaging in the war will cost the country c.
If they win, country 1 receives B.
What is 1 's expected utility from fighting a war?

$$
\begin{aligned}
E[U(\text { war })] & =(\text { Utility } \mid \text { win }) \times P(\text { win })+(\text { Utility } \mid \text { lose }) \times P(\text { lose }) \\
& =(B-c) P(Y=1)+(-c) P(Y=0) \\
& =B \times p(Y=1)-c(P(Y=1)+P(Y=0))
\end{aligned}
$$

Example: Winning a War

Suppose country 1 is engaged in a conflict and can either win or lose.
Define $Y=1$ if the country wins and $Y=0$ otherwise.
Then,

$$
Y \sim \operatorname{Bernoulli}(\pi)
$$

Suppose country 1 is deciding whether to fight a war.
Engaging in the war will cost the country c.
If they win, country 1 receives B.
What is 1 's expected utility from fighting a war?

$$
\begin{aligned}
E[U(\text { war })] & =(\text { Utility } \mid \text { win }) \times P(\text { win })+(\text { Utility } \mid \text { lose }) \times P(\text { lose }) \\
& =(B-c) P(Y=1)+(-c) P(Y=0) \\
& =B \times p(Y=1)-c(P(Y=1)+P(Y=0)) \\
& =B \times \pi-c
\end{aligned}
$$

Binomial Random Variable

- A model to count the number of successes across N trials

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

- $Z=$ number of successful trials

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

- $Z=$ number of successful trials
- Derive probability mass function $P(Z=M)=p(M)$

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

- $Z=$ number of successful trials
- Derive probability mass function $P(Z=M)=p(M)$
- One way to obtain M successful trials:

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

- $Z=$ number of successful trials
- Derive probability mass function $P(Z=M)=p(M)$
- One way to obtain M successful trials:
$P\left(Y_{1}=1, Y_{2}=0, Y_{3}=1, \ldots, Y_{N}=1\right)$

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

- $Z=$ number of successful trials
- Derive probability mass function $P(Z=M)=p(M)$
- One way to obtain M successful trials:

$$
\begin{aligned}
& P\left(Y_{1}=1, Y_{2}=0, Y_{3}=1, \ldots, Y_{N}=1\right) \\
& \quad=P\left(Y_{1}=1\right) P\left(Y_{2}=0\right) \cdots P\left(Y_{N}=1\right)
\end{aligned}
$$

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

- $Z=$ number of successful trials
- Derive probability mass function $P(Z=M)=p(M)$
- One way to obtain M successful trials:

$$
\begin{aligned}
& P\left(Y_{1}=1, Y_{2}=0, Y_{3}=1, \ldots, Y_{N}=1\right) \\
& \quad=P\left(Y_{1}=1\right) P\left(Y_{2}=0\right) \cdots P\left(Y_{N}=1\right) \\
& \quad=\underbrace{P\left(Y_{1}=1\right) P\left(Y_{3}=1\right) \cdots P\left(Y_{z}=1\right)}_{M} \times \underbrace{P\left(Y_{2}=0\right) \cdots P\left(Y_{N}=0\right)}_{N-M}
\end{aligned}
$$

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

- $Z=$ number of successful trials
- Derive probability mass function $P(Z=M)=p(M)$
- One way to obtain M successful trials:

$$
\begin{aligned}
P\left(Y_{1}\right. & \left.=1, Y_{2}=0, Y_{3}=1, \ldots, Y_{N}=1\right) \\
& =P\left(Y_{1}=1\right) P\left(Y_{2}=0\right) \cdots P\left(Y_{N}=1\right) \\
& =\underbrace{P\left(Y_{1}=1\right) P\left(Y_{3}=1\right) \cdots P\left(Y_{z}=1\right)}_{M} \times \underbrace{P\left(Y_{2}=0\right) \cdots P\left(Y_{N}=0\right)}_{N-M} \\
& =\underbrace{\pi \pi \cdots \pi}_{M} \times \underbrace{(1-\pi)(1-\pi) \cdots(1-\pi)}_{N-M}
\end{aligned}
$$

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

- $Z=$ number of successful trials
- Derive probability mass function $P(Z=M)=p(M)$
- One way to obtain M successful trials:

$$
\begin{aligned}
P\left(Y_{1}\right. & \left.=1, Y_{2}=0, Y_{3}=1, \ldots, Y_{N}=1\right) \\
& =P\left(Y_{1}=1\right) P\left(Y_{2}=0\right) \cdots P\left(Y_{N}=1\right) \\
& =\underbrace{P\left(Y_{1}=1\right) P\left(Y_{3}=1\right) \cdots P\left(Y_{z}=1\right)}_{M} \times \underbrace{P\left(Y_{2}=0\right) \cdots P\left(Y_{N}=0\right)}_{N-M} \\
& =\underbrace{\pi \pi \cdots \pi}_{M} \times \underbrace{(1-\pi)(1-\pi) \cdots(1-\pi)}_{N-M} \\
& =\pi^{M}(1-\pi)^{N-M}
\end{aligned}
$$

Binomial Random Variable

- A model to count the number of successes across N trials
- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

$$
Y_{i} \sim \operatorname{Bernoulli}(\pi)
$$

Independent and identically distributed.

- $Z=$ number of successful trials
- Derive probability mass function $P(Z=M)=p(M)$
- One way to obtain M successful trials:

$$
\begin{aligned}
P\left(Y_{1}\right. & \left.=1, Y_{2}=0, Y_{3}=1, \ldots, Y_{N}=1\right) \\
& =P\left(Y_{1}=1\right) P\left(Y_{2}=0\right) \cdots P\left(Y_{N}=1\right) \\
& =\underbrace{P\left(Y_{1}=1\right) P\left(Y_{3}=1\right) \cdots P\left(Y_{z}=1\right)}_{M} \times \underbrace{P\left(Y_{2}=0\right) \cdots P\left(Y_{N}=0\right)}_{N-M} \\
& =\underbrace{\pi \pi \cdots \pi}_{M} \times \underbrace{(1-\pi)(1-\pi) \cdots(1-\pi)}_{N-M} \\
& =\pi^{M}(1-\pi)^{N-M}
\end{aligned}
$$

Are we done?

Are we done? No

Are we done? No

- This is just one instance of M successes

Are we done? No

- This is just one instance of M successes
- How many total instances?

Are we done? No

- This is just one instance of M successes
- How many total instances?
- N total trials

Are we done? No

- This is just one instance of M successes
- How many total instances?
- N total trials
- We want to select M

Are we done? No

- This is just one instance of M successes
- How many total instances?
- N total trials
- We want to select M
$-\binom{N}{M}=\frac{N!}{(N-M)!M!}$

Are we done? No

- This is just one instance of M successes
- How many total instances?
- N total trials
- We want to select M
- $\binom{N}{M}=\frac{N!}{(N-M)!M!}$

Then,

Are we done? No

- This is just one instance of M successes
- How many total instances?
- N total trials
- We want to select M
- $\binom{N}{M}=\frac{N!}{(N-M)!M!}$

Then,

$$
P(Z=M)=p(M)=\binom{N}{M} \pi^{M}(1-\pi)^{N-M}
$$

Are we done? No

- This is just one instance of M successes
- How many total instances?
- N total trials
- We want to select M
- $\binom{N}{M}=\frac{N!}{(N-M)!M!}$

Then,

$$
P(Z=M)=p(M)=\binom{N}{M} \pi^{M}(1-\pi)^{N-M}
$$

Definition

Suppose X is a random variable that counts the number of successes in N independent and identically distributed Bernoulli trials. Then X is a Binomial random variable,

$$
p(k)=\binom{N}{k} \pi^{k}(1-\pi)^{1-k}
$$

for $k \in\{0,1,2, \ldots, N\}$ and $p(k)=0$ otherwise.
Equivalently,

$$
Y \sim \operatorname{Binomial}(N, \pi)
$$

Binomial Example

Recall our experiment example:

Binomial Example

Recall our experiment example: $P(T)=P(C)=1 / 2$.

Binomial Example

Recall our experiment example:
$P(T)=P(C)=1 / 2$.
$Z=$ number of units assigned to treatment

Binomial Example

Recall our experiment example:
$P(T)=P(C)=1 / 2$.
$Z=$ number of units assigned to treatment
$Z \sim \operatorname{Binomial}(1 / 2)$

Binomial Example

Recall our experiment example:
$P(T)=P(C)=1 / 2$.
$Z=$ number of units assigned to treatment

$$
\begin{aligned}
Z & \sim \operatorname{Binomial}(1 / 2) \\
p(0) & =\binom{3}{0}(1 / 2)^{0}(1-1 / 2)^{3-0}=1 \times \frac{1}{8}
\end{aligned}
$$

Binomial Example

Recall our experiment example:
$P(T)=P(C)=1 / 2$.
$Z=$ number of units assigned to treatment

$$
\begin{aligned}
Z & \sim \text { Binomial }(1 / 2) \\
p(0) & =\binom{3}{0}(1 / 2)^{0}(1-1 / 2)^{3-0}=1 \times \frac{1}{8} \\
p(1) & =\binom{3}{1}(1 / 2)^{1}(1-1 / 2)^{2}=3 \times \frac{1}{8}
\end{aligned}
$$

Binomial Example

Recall our experiment example:
$P(T)=P(C)=1 / 2$.
$Z=$ number of units assigned to treatment

$$
\begin{aligned}
Z & \sim \operatorname{Binomial}(1 / 2) \\
p(0) & =\binom{3}{0}(1 / 2)^{0}(1-1 / 2)^{3-0}=1 \times \frac{1}{8} \\
p(1) & =\binom{3}{1}(1 / 2)^{1}(1-1 / 2)^{2}=3 \times \frac{1}{8} \\
p(2) & =\binom{3}{2}(1 / 2)^{2}(1-1 / 2)^{1}=3 \times \frac{1}{8}
\end{aligned}
$$

Binomial Example

Recall our experiment example:
$P(T)=P(C)=1 / 2$.
$Z=$ number of units assigned to treatment

$$
\begin{aligned}
Z & \sim \text { Binomial(1/2) } \\
p(0) & =\binom{3}{0}(1 / 2)^{0}(1-1 / 2)^{3-0}=1 \times \frac{1}{8} \\
p(1) & =\binom{3}{1}(1 / 2)^{1}(1-1 / 2)^{2}=3 \times \frac{1}{8} \\
p(2) & =\binom{3}{2}(1 / 2)^{2}(1-1 / 2)^{1}=3 \times \frac{1}{8} \\
p(3) & =\binom{3}{3}(1 / 2)^{3}(1-1 / 2)^{0}=1 \times \frac{1}{8}
\end{aligned}
$$

Binomial Example

Recall our experiment example:
$P(T)=P(C)=1 / 2$.
$Z=$ number of units assigned to treatment

$$
\begin{aligned}
Z & \sim \text { Binomial(1/2) } \\
p(0) & =\binom{3}{0}(1 / 2)^{0}(1-1 / 2)^{3-0}=1 \times \frac{1}{8} \\
p(1) & =\binom{3}{1}(1 / 2)^{1}(1-1 / 2)^{2}=3 \times \frac{1}{8} \\
p(2) & =\binom{3}{2}(1 / 2)^{2}(1-1 / 2)^{1}=3 \times \frac{1}{8} \\
p(3) & =\binom{3}{3}(1 / 2)^{3}(1-1 / 2)^{0}=1 \times \frac{1}{8}
\end{aligned}
$$

Binomial Random Variable Moments

$Z=\sum_{i=1}^{N} Y_{i}$ where $Y_{i} \sim \operatorname{Bernoulli}(\pi)$

Binomial Random Variable Moments

$Z=\sum_{i=1}^{N} Y_{i}$ where $Y_{i} \sim \operatorname{Bernoulli}(\pi)$

$$
E[Z]=E\left[Y_{1}+Y_{2}+Y_{3}+\ldots+Y_{N}\right]
$$

Binomial Random Variable Moments

$Z=\sum_{i=1}^{N} Y_{i}$ where $Y_{i} \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Z] & =E\left[Y_{1}+Y_{2}+Y_{3}+\ldots+Y_{N}\right] \\
& =\sum_{i=1}^{N} E\left[Y_{i}\right]
\end{aligned}
$$

Binomial Random Variable Moments

$Z=\sum_{i=1}^{N} Y_{i}$ where $Y_{i} \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Z] & =E\left[Y_{1}+Y_{2}+Y_{3}+\ldots+Y_{N}\right] \\
& =\sum_{i=1}^{N} E\left[Y_{i}\right] \\
& =N \pi
\end{aligned}
$$

$E[Z]=N \pi$

Binomial Random Variable Moments

$Z=\sum_{i=1}^{N} Y_{i}$ where $Y_{i} \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Z] & =E\left[Y_{1}+Y_{2}+Y_{3}+\ldots+Y_{N}\right] \\
& =\sum_{i=1}^{N} E\left[Y_{i}\right] \\
& =N \pi \\
\operatorname{var}(Z) & =\sum_{i=1}^{N} \operatorname{var}\left(Y_{i}\right)
\end{aligned}
$$

$E[Z]=N \pi$

Binomial Random Variable Moments

$Z=\sum_{i=1}^{N} Y_{i}$ where $Y_{i} \sim \operatorname{Bernoulli}(\pi)$

$$
\begin{aligned}
E[Z] & =E\left[Y_{1}+Y_{2}+Y_{3}+\ldots+Y_{N}\right] \\
& =\sum_{i=1}^{N} E\left[Y_{i}\right] \\
& =N \pi \\
\operatorname{var}(Z) & =\sum_{i=1}^{N} \operatorname{var}\left(Y_{i}\right) \\
& =N \pi(1-\pi)
\end{aligned}
$$

$E[Z]=N \pi$
$\operatorname{var}(Z)=N \pi(1-\pi)$

Voter Turnout

Suppose we have a set N voters, with iid turnout decisions $Y_{i} \sim \operatorname{Bernoulli}(\pi)$

Voter Turnout

Suppose we have a set N voters, with iid turnout decisions
$Y_{i} \sim \operatorname{Bernoulli}(\pi)$
What is the probability that at least M voters turnout?

Voter Turnout

Suppose we have a set N voters, with iid turnout decisions
$Y_{i} \sim \operatorname{Bernoulli}(\pi)$
What is the probability that at least M voters turnout?

$$
P(k \geq M)=\sum_{k=M}^{N}\binom{N}{k} \pi^{k}(1-\pi)^{N-k}
$$

Voter Turnout

Suppose we have a set N voters, with iid turnout decisions
$Y_{i} \sim \operatorname{Bernoulli}(\pi)$
What is the probability that at least M voters turnout?

$$
P(k \geq M)=\sum_{k=M}^{N}\binom{N}{k} \pi^{k}(1-\pi)^{N-k}
$$

Voter Turnout

Suppose we have a set N voters, with iid turnout decisions
$Y_{i} \sim \operatorname{Bernoulli}(\pi)$
What is the probability that at least M voters turnout?

$$
P(k \geq M)=\sum_{k=M}^{N}\binom{N}{k} \pi^{k}(1-\pi)^{N-k}
$$

Voter Turnout

Suppose we have a set N voters, with iid turnout decisions $Y_{i} \sim \operatorname{Bernoulli}(\pi)$
What is the probability that at least M voters turnout?

$$
\begin{aligned}
P(k \geq M)= & \sum_{k=M}^{N}\binom{N}{k} \pi^{k}(1-\pi)^{N-k} \\
& \mathrm{R} \text { Code! }
\end{aligned}
$$

Voter Turnout, with Spillovers

Suppose we have the same set of N voters.

Voter Turnout, with Spillovers

Suppose we have the same set of N voters.
Now, $N / 2$ are leaders, who turnout with probability (1/2)

Voter Turnout, with Spillovers

Suppose we have the same set of N voters.
Now, $N / 2$ are leaders, who turnout with probability (1/2)
But, $N / 2$ are followers, whose turnout depends on a specific leader

Voter Turnout, with Spillovers

Suppose we have the same set of N voters.
Now, $N / 2$ are leaders, who turnout with probability (1/2)
But, $N / 2$ are followers, whose turnout depends on a specific leader Suppose follower i depends on only one leader j (and each follower has their own leader)

Voter Turnout, with Spillovers

Suppose we have the same set of N voters.
Now, $N / 2$ are leaders, who turnout with probability (1/2)
But, $N / 2$ are followers, whose turnout depends on a specific leader Suppose follower i depends on only one leader j (and each follower has their own leader)

$$
Y_{i} \sim \text { Bernoulli(0.9) if } j \text { votes }
$$

Voter Turnout, with Spillovers

Suppose we have the same set of N voters.
Now, $N / 2$ are leaders, who turnout with probability (1/2)
But, $N / 2$ are followers, whose turnout depends on a specific leader Suppose follower i depends on only one leader j (and each follower has their own leader)
$Y_{i} \sim$ Bernoulli(0.9) if j votes
$Y_{i} \sim$ Bernoulli(0.1) if j does not

Voter Turnout, with Spillovers

Suppose we have the same set of N voters.
Now, $N / 2$ are leaders, who turnout with probability (1/2)
But, $N / 2$ are followers, whose turnout depends on a specific leader Suppose follower i depends on only one leader j (and each follower has their own leader)

$$
\begin{aligned}
& Y_{i} \sim \text { Bernoulli(0.9) if } j \text { votes } \\
& Y_{i} \sim \text { Bernoulli(0.1) if } j \text { does not }
\end{aligned}
$$

Let Z be the number of voters who turnout.

Voter Turnout, with Spillovers

Suppose we have the same set of N voters.
Now, $N / 2$ are leaders, who turnout with probability (1/2)
But, $N / 2$ are followers, whose turnout depends on a specific leader Suppose follower i depends on only one leader j (and each follower has their own leader)

$$
\begin{aligned}
& Y_{i} \sim \text { Bernoulli(0.9) if } j \text { votes } \\
& Y_{i} \sim \text { Bernoulli(0.1) if } j \text { does not }
\end{aligned}
$$

Let Z be the number of voters who turnout.

Voter Turnout, with Spillovers

Comparing Network, Independent

Trials with More than Two Outcomes

Definition

Suppose we observe a trial, which might result in J outcomes.
And that $P($ outcome $=i)=\pi_{i}$
$\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{J}\right)$ where $Y_{j}=1$ if outcome j occurred and 0 otherwise. Then \boldsymbol{Y} follows a multinomial distribution, with

$$
p(\boldsymbol{y})=\pi_{1}^{y_{1}} \pi_{2}^{y_{2}} \ldots \pi_{k}^{y_{k}}
$$

if $\sum_{i=1}^{k} y_{i}=1$ and the pmf is 0 otherwise.
Equivalently, we'll write

$$
\begin{aligned}
& \boldsymbol{Y} \sim \operatorname{Multnomial}(1, \boldsymbol{\pi}) \\
& \boldsymbol{Y} \sim \operatorname{Categorial}(\boldsymbol{\pi})
\end{aligned}
$$

Multinomial Properties + Notes

Computer scientists: commonly call Multinomial $(1, \boldsymbol{\pi})$ Discrete $(\boldsymbol{\pi})$.

$$
\begin{aligned}
E\left[X_{i}\right] & =N \pi_{i} \\
\operatorname{var}\left(X_{i}\right) & =N \pi_{i}\left(1-\pi_{i}\right)
\end{aligned}
$$

Investigate Further in Homework!

Counting the Number of Events

Often interested in counting number of events that occur:

1) Number of wars started
2) Number of speeches made
3) Number of bribes offered
4) Number of people waiting for license

Generally referred to as event counts
Stochastic processes: a course provide introduction to many processes (Queing Theory)

Poisson Distribution

Definition

Suppose X is a random variable that takes on values $X \in\{0,1,2, \ldots$, and that $P(X=k)=p(k)$ is,

$$
p(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

for $k \in\{0,1, \ldots$,$\} and 0$ otherwise. Then we will say that X follows a Poisson distribution with rate parameter λ.

$$
X \sim \operatorname{Poisson}(\lambda)
$$

Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by $X \sim$ Poisson(5).

Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by $X \sim$ Poisson(5). What is the probability the president will make ten or more threats?

Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by $X \sim$ Poisson(5). What is the probability the president will make ten or more threats?

Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by $X \sim$ Poisson(5). What is the probability the president will make ten or more threats?

Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by $X \sim$ Poisson(5). What is the probability the president will make ten or more threats?

$$
P(X \geq 10)=e^{-\lambda} \sum_{k=10}^{\infty} \frac{5^{k}}{k!}
$$

Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by $X \sim$ Poisson(5). What is the probability the president will make ten or more threats?

$$
\begin{aligned}
P(X \geq 10) & =e^{-\lambda} \sum_{k=10}^{\infty} \frac{5^{k}}{k!} \\
& =1-P(X<10)
\end{aligned}
$$

Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by $X \sim$ Poisson(5). What is the probability the president will make ten or more threats?

$$
\begin{aligned}
P(X \geq 10) & =e^{-\lambda} \sum_{k=10}^{\infty} \frac{5^{k}}{k!} \\
& =1-P(X<10)
\end{aligned}
$$

R code!

Poisson Distribution

Properties:

1) It is a probability distribution.

Poisson Distribution

Properties:

1) It is a probability distribution.

Recall the Taylor expansion of e^{x}

Poisson Distribution

Properties:

1) It is a probability distribution.

Recall the Taylor expansion of e^{x}

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Poisson Distribution

Properties:

1) It is a probability distribution.

Recall the Taylor expansion of e^{x}

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} & =e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2!}+\ldots\right)
\end{aligned}
$$

Poisson Distribution

Properties:

1) It is a probability distribution.

Recall the Taylor expansion of e^{x}

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} & =e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2!}+\ldots\right) \\
& =e^{-\lambda}\left(e^{\lambda}\right)=1
\end{aligned}
$$

Poisson Distribution

Properties:

Poisson Distribution

Properties:
2) $E[X]=\lambda$

Poisson Distribution

Properties:
2) $E[X]=\lambda$

$$
E[X]=e^{-\lambda} \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!}
$$

Poisson Distribution

Properties:
2) $E[X]=\lambda$

$$
\begin{aligned}
E[X] & =e^{-\lambda} \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}
\end{aligned}
$$

Poisson Distribution

Properties:
2) $E[X]=\lambda$

$$
\begin{aligned}
E[X] & =e^{-\lambda} \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}
\end{aligned}
$$

Define $j=k-1$, then

Poisson Distribution

Properties:
2) $E[X]=\lambda$

$$
\begin{aligned}
E[X] & =e^{-\lambda} \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}
\end{aligned}
$$

Define $j=k-1$, then

$$
E[X]=e^{-\lambda} \lambda \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}
$$

Poisson Distribution

Properties:
2) $E[X]=\lambda$

$$
\begin{aligned}
E[X] & =e^{-\lambda} \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}
\end{aligned}
$$

Define $j=k-1$, then

$$
\begin{aligned}
E[X] & =e^{-\lambda} \lambda \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} \\
& =e^{-\lambda} \lambda e^{\lambda}
\end{aligned}
$$

Poisson Distribution

Properties:
2) $E[X]=\lambda$

$$
\begin{aligned}
E[X] & =e^{-\lambda} \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}
\end{aligned}
$$

Define $j=k-1$, then

$$
\begin{aligned}
E[X] & =e^{-\lambda} \lambda \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} \\
& =e^{-\lambda} \lambda e^{\lambda} \\
& =\lambda
\end{aligned}
$$

Poisson Distribution

Properties:

Poisson Distribution

Properties:

3) $\operatorname{var}(X)=\lambda$

Poisson Distribution

Properties:
3) $\operatorname{var}(X)=\lambda$

$$
E\left[X^{2}\right]=\sum_{k=0}^{\infty} \frac{k^{2} e^{-\lambda} \lambda^{k}}{k!}
$$

Poisson Distribution

Properties:
3) $\operatorname{var}(X)=\lambda$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{k=0}^{\infty} \frac{k^{2} e^{-\lambda} \lambda^{k}}{k!} \\
& =\lambda e^{-\lambda}\left(\sum_{k=1}^{\infty} \frac{k \lambda^{k-1}}{(k-1)!}\right)
\end{aligned}
$$

Poisson Distribution

Properties:
3) $\operatorname{var}(X)=\lambda$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{k=0}^{\infty} \frac{k^{2} e^{-\lambda} \lambda^{k}}{k!} \\
& =\lambda e^{-\lambda}\left(\sum_{k=1}^{\infty} \frac{k \lambda^{k-1}}{(k-1)!}\right)
\end{aligned}
$$

Let $j=k-1$,

Poisson Distribution

Properties:
3) $\operatorname{var}(X)=\lambda$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{k=0}^{\infty} \frac{k^{2} e^{-\lambda} \lambda^{k}}{k!} \\
& =\lambda e^{-\lambda}\left(\sum_{k=1}^{\infty} \frac{k \lambda^{k-1}}{(k-1)!}\right)
\end{aligned}
$$

Let $j=k-1$,

$$
E\left[X^{2}\right]=\lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{(j+1) \lambda^{j}}{j!}
$$

Poisson Distribution

Properties:
3) $\operatorname{var}(X)=\lambda$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{k=0}^{\infty} \frac{k^{2} e^{-\lambda} \lambda^{k}}{k!} \\
& =\lambda e^{-\lambda}\left(\sum_{k=1}^{\infty} \frac{k \lambda^{k-1}}{(k-1)!}\right)
\end{aligned}
$$

Let $j=k-1$,

$$
\begin{aligned}
E\left[X^{2}\right] & =\lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{(j+1) \lambda^{j}}{j!} \\
& =\lambda e^{-\lambda}\left(\sum_{j=0}^{\infty} \frac{(j) \lambda^{j}}{j!}+\sum_{j=0}^{\infty} \frac{(1) \lambda^{j}}{j!}\right)
\end{aligned}
$$

Poisson Distribution

Properties:
3) $\operatorname{var}(X)=\lambda$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{k=0}^{\infty} \frac{k^{2} e^{-\lambda} \lambda^{k}}{k!} \\
& =\lambda e^{-\lambda}\left(\sum_{k=1}^{\infty} \frac{k \lambda^{k-1}}{(k-1)!}\right)
\end{aligned}
$$

Let $j=k-1$,

$$
\begin{aligned}
E\left[X^{2}\right] & =\lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{(j+1) \lambda^{j}}{j!} \\
& =\lambda e^{-\lambda}\left(\sum_{j=0}^{\infty} \frac{(j) \lambda^{j}}{j!}+\sum_{j=0}^{\infty} \frac{(1) \lambda^{j}}{j!}\right) \\
& =\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right)
\end{aligned}
$$

Poisson Distribution

Properties
3) $\operatorname{var}(X)=\lambda$

$$
E\left[X^{2}\right]=\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right)
$$

Poisson Distribution

Properties
3) $\operatorname{var}(X)=\lambda$

$$
\begin{aligned}
E\left[X^{2}\right] & =\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right) \\
& =\lambda(\lambda+1)
\end{aligned}
$$

Poisson Distribution

Properties
3) $\operatorname{var}(X)=\lambda$

$$
\begin{aligned}
E\left[X^{2}\right] & =\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right) \\
& =\lambda(\lambda+1)
\end{aligned}
$$

$\operatorname{var}(X)=E\left[X^{2}\right]-E[X]$

Poisson Distribution

Properties

$$
\text { 3) } \operatorname{var}(X)=\lambda
$$

$$
\begin{aligned}
E\left[X^{2}\right] & =\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right) \\
& =\lambda(\lambda+1)
\end{aligned}
$$

$$
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Poisson Distribution

Properties

$$
\text { 3) } \operatorname{var}(X)=\lambda
$$

$$
\begin{aligned}
E\left[X^{2}\right] & =\lambda e^{-\lambda}\left(\lambda e^{\lambda}+e^{\lambda}\right) \\
& =\lambda(\lambda+1)
\end{aligned}
$$

$\operatorname{var}(X)=E\left[X^{2}\right]-E[X]=\lambda^{2}+\lambda-\lambda^{2}=\lambda$
Very useful distribution, with strong assumptions. We'll explore in homework!

Often interested in how processes evolve over time

- Given voting history, probability of voting in the future
- Given history of candidate support, probability of future support
- Given prior conflicts, probability of future war
- Given previous words in a sentence, probability of next word Potentially complex history

Often interested in how processes evolve over time

- Given voting history, probability of voting in the future
- Given history of candidate support, probability of future support
- Given prior conflicts, probability of future war
- Given previous words in a sentence, probability of next word

Potentially complex history

Stochastic Process

Definition

Suppose we have a sequence of random variables
$\{X\}_{i=0}^{M}=X_{0}, X_{1}, X_{2}, \ldots, X_{M}$ that take on the countable values of S. We will call $\{X\}_{i=0}^{M}$ a stochastic process with state space S.

If index gives time, then we might condition on history to obtain probability

$$
\text { PMF } X_{t} \text {, given history }=P\left(X_{t} \mid X_{t-1}, X_{t-2}, \ldots, X_{1}, X_{0}\right)
$$

Markov Chain

Definition

Suppose we have a stochastic process $\{X\}_{i=0}^{M}$ with countable state space S. Then $\{X\}_{i=0}^{M}$ is a markov chain if:

$$
P\left(X_{t} \mid X_{t-1}, X_{t-2}, \ldots, X_{1}, X_{0}\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

A Markov chain's future depends only on its current state

Transition Matrix

Habitual turnout?

$$
\boldsymbol{T}=\left(\begin{array}{ccc}
& \text { Vote }_{t} & \text { Not Vote }_{t} \\
\text { Vote }_{t-1} & 0.8 & 0.2 \\
\text { Not Vote }_{t-1} & 0.3 & 0.7
\end{array}\right)
$$

- Suppose someone starts as a voter-what is their behavior after
- 1 iteration?
- 2 interations?
- The long run?

R Code!

Monday: Continuous Random Variables!

