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Where we’re at

- Conditional Probability/Bayes’ Rule

- Today: Random Variables

- Probability Mass Functions

- Expectation, Variance

- Famous Discrete Random Variables

- A Brief Introduction to Markov Chains
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Random Variable: Intuition

Recall the three parts of our probability model

- Sample Space

- Events

- Probability

Often, we are interested in some function of the sample space

- Number of incumbents who win

- An indicator whether a country defaults on loans (1 if Default, 0
otherwise)

- Number of casualties in a war (rather than all outcomes of casualties)

Random variables: functions defined on the sample space
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Definition: Random Variable

Definition

Random Variable: A Random variable X is a function from the sample
space to real numbers. In notation,

X : Sample Space→ R

- X ’s domain are all outcomes (Sample Space)

- X ’s range is the Real line (or some subset of it)

- Because X is defined on outcomes, makes sense to write p(X ) (we’ll
talk about this soon)
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Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin (12) to assign each unit

- Assign to T =Treatment or C =control

- X = Number of units received treatment

Defining the function:

X =


0 if (C ,C ,C )
1 if (T ,C ,C ) or (C ,T ,C ) or (C ,C ,T )
2 if (T ,T ,C ) or (T ,C ,T ) or (C ,T ,T )
3 if (T ,T ,T )

.

In other words,

X ((C ,C ,C )) = 0

X ((T ,C ,C )) = 1

X ((T ,C ,T )) = 2

X ((T ,T ,T )) = 3
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Another Example

X = Number of Calls into congressional office in some period p

- X (c) = c

Outcome of Election

- Define v as the proportion of vote the candidate receives

- Define X = 1 if v > 0.50

- Define X = 0 if v < 0.50

For example, if v = 0.48, then X (v) = 0
Big Question: How do we compute P(X=1), P(X=0), etc?
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Probability Mass Function: Intuition

Go back to our experiment example–probability comes from probability of
outcomes

P(C ,T ,C ) = P(C )P(T )P(C ) = 1
2
1
2
1
2 = 1

8
That’s true for all outcomes.

p(X = 0) = P(C ,C ,C ) =
1

8

p(X = 1) = P(T ,C ,C ) + P(C ,T ,C ) + P(C ,C ,T ) =
3

8

p(X = 2) = P(T ,T ,C ) + P(T ,C ,T ) + P(C ,T ,T ) =
3

8

p(X = 3) = P(T ,T ,T ) =
1

8

p(X = a) = 0, for all a /∈ (0, 1, 2, 3)
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Probability Mass Function: Intuition
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Probability Mass Function: Intuition

Consider outcome of election:

- X (v) = 1 if v > 0.5 otherwise X (v) = 0

- P(X = 1) then is equal to P(v > 0.5)
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Probability Mass Function

If X is defined on an outcome space that is discrete (countable), we’ll call
it discrete.

(Brief aside) Countable: A set is countable if there is a function that can
map all its elements to the natural numbers {1, 2, 3, 4, . . .} (one-to-one,
injective). If it is onto (from S to all natural numbers, surjective), then we
say the set is countably infinite

Definition

Probability Mass Function: For a discrete random variable X , define the
probability mass function p(x) as

p(x) = P(X = x)
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Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire
department grants )
Mathematically: Probability Mass Function on Words Probability of using
word, when discussing a topic
Suppose we have a set of words:

(afghanistan, fire, department, soldier, troop, war, grant)

Topic 1 (say, war):

P(afghanistan) = 0.3; P(fire) = 0.0001; P(department) = 0.0001;
P(soldier) = 0.2; P(troop) = 0.2; P(war)=0.2997; P(grant)=0.0001

Topic 2 (say, fire departments ):

P(afghanistan) = 0.0001; P(fire) = 0.3; P(department) = 0.2;
P(soldier) = 0.0001; P(troop) = 0.0001; P(war)=0.0001;
P(grant)=0.2997

Topic Models: take a set of documents and estimate topics.
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Definition

Cumulative Mass (distribution) Function: For a random variable X , define
the cumulative mass function F (x) as,

F (x) = P(X ≤ x)

- Characterizes how probability cumulates as X gets larger

- F (x) ∈ [0, 1]

- F (x) is non-decreasing

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 12 / 53



Cumulative Mass Function: Example

Consider the three person experiment.

P(T ) = P(C ) = 1/2.
What is F (2)?

F (2) = P(X = 0) + P(X = 1) + P(X = 2)

=
1

8
+

3

8
+

3

8

=
7

8

What is F (2)− F (1)?

F (2)− F (1) = [P(X = 0) + P(X = 1) + P(X = 2)]

−[P(X = 0) + P(X = 1)]

F (2)− F (1) = P(X = 2)
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Cumulative Mass Function
There is a close relationship between pmf’s and cmf’s.

Consider Previous example:

No. Treated
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Expectation

What can we expect from a trial?

Value of random variable for any outcome
Weighted by the probability of observing that outcome

Definition

Expected Value: define the expected value of a function X as,

E [X ] =
∑

x :p(x)>0

xp(x)

In words: for all values of x with p(x) greater than zero, take the
weighted average of the values

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 15 / 53



Expectation

What can we expect from a trial?
Value of random variable for any outcome

Weighted by the probability of observing that outcome

Definition

Expected Value: define the expected value of a function X as,

E [X ] =
∑

x :p(x)>0

xp(x)

In words: for all values of x with p(x) greater than zero, take the
weighted average of the values

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 15 / 53



Expectation

What can we expect from a trial?
Value of random variable for any outcome
Weighted by the probability of observing that outcome

Definition

Expected Value: define the expected value of a function X as,

E [X ] =
∑

x :p(x)>0

xp(x)

In words: for all values of x with p(x) greater than zero, take the
weighted average of the values

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 15 / 53



Expectation

What can we expect from a trial?
Value of random variable for any outcome
Weighted by the probability of observing that outcome

Definition

Expected Value: define the expected value of a function X as,

E [X ] =
∑

x :p(x)>0

xp(x)

In words: for all values of x with p(x) greater than zero, take the
weighted average of the values

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 15 / 53



Expectation

What can we expect from a trial?
Value of random variable for any outcome
Weighted by the probability of observing that outcome

Definition

Expected Value: define the expected value of a function X as,

E [X ] =
∑

x :p(x)>0

xp(x)

In words: for all values of x with p(x) greater than zero, take the
weighted average of the values

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 15 / 53



Expectation Example: Simple Experiment

Suppose again X is number of units assigned to treatment, in one of our
previous example.

What is E [X ]?

E [X ] = 0× 1

8
+ 1× 3

8
+ 2× 3

8
+ 3× 1

8
= 1.5
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Expectation Example: A Single Person Poll
Suppose that there is a group of N people.

- Suppose M < N people approve of Barack Obama’s performance as
president

- N −M disapprove of his performance

Define:
Draw one person i , with , P(Draw i) = 1

N

X =

{
1 if person Approves
0 if Disapproves

.

E[X]?

E [X ] = 1× P(Approve) + 0× P(Disapprove)

= 1× M

N

=
M

N
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Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable I such that I = 1 if an
outcome in A occurs and I = 0 if an outcome in Ac occurs. Then,

E [I ] = P(A)

Proof.

E [I ] = 1× P(A) + 0× P(Ac)

= P(A)
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Functions of Random Variables

We might (or often) apply a function to a random variable g(X ).

How do we compute E [g(X )]?

Proposition

Expected value of a function of a random variable: Suppose X is a
discrete random variable that takes on values xi , i = {1, 2, . . . , }, with
probabilities p(xi ). If g : X → R, then its expected value E [g(X )] is,

E [g(X )] =
∑
i

g(xi )p(xi )

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 19 / 53



Functions of Random Variables

We might (or often) apply a function to a random variable g(X ).
How do we compute E [g(X )]?

Proposition

Expected value of a function of a random variable: Suppose X is a
discrete random variable that takes on values xi , i = {1, 2, . . . , }, with
probabilities p(xi ). If g : X → R, then its expected value E [g(X )] is,

E [g(X )] =
∑
i

g(xi )p(xi )

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 19 / 53



Functions of Random Variables

We might (or often) apply a function to a random variable g(X ).
How do we compute E [g(X )]?

Proposition

Expected value of a function of a random variable: Suppose X is a
discrete random variable that takes on values xi , i = {1, 2, . . . , }, with
probabilities p(xi ). If g : X → R, then its expected value E [g(X )] is,

E [g(X )] =
∑
i

g(xi )p(xi )

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 19 / 53



Functions of Random Variables

We might (or often) apply a function to a random variable g(X ).
How do we compute E [g(X )]?

Proposition

Expected value of a function of a random variable: Suppose X is a
discrete random variable that takes on values xi , i = {1, 2, . . . , }, with
probabilities p(xi ).

If g : X → R, then its expected value E [g(X )] is,

E [g(X )] =
∑
i

g(xi )p(xi )

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 19 / 53



Functions of Random Variables

We might (or often) apply a function to a random variable g(X ).
How do we compute E [g(X )]?

Proposition

Expected value of a function of a random variable: Suppose X is a
discrete random variable that takes on values xi , i = {1, 2, . . . , }, with
probabilities p(xi ). If g : X → R, then its expected value E [g(X )] is,

E [g(X )] =
∑
i

g(xi )p(xi )

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 19 / 53



Functions of Random Variables

We might (or often) apply a function to a random variable g(X ).
How do we compute E [g(X )]?

Proposition

Expected value of a function of a random variable: Suppose X is a
discrete random variable that takes on values xi , i = {1, 2, . . . , }, with
probabilities p(xi ). If g : X → R, then its expected value E [g(X )] is,

E [g(X )] =
∑
i

g(xi )p(xi )

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 19 / 53



Functions of Random Variables

Proof.

Observation g(X ) is itself a random variable. Let’s say it has unique
values yj (j = 1, 2, . . . , ) So, we know that E [g(X )] =

∑
j yjP(g(X ) = yj).

And we want to show that
∑

i g(xi )p(xi ) is equal to that.∑
i

g(xi )p(xi ) =
∑
j

∑
i :g(xi )=yj

g(xi )p(xi )

=
∑
j

∑
i :g(xi )=yj

yjp(xi )

=
∑
j

yj
∑

i :g(xi )=yj

p(xi )

=
∑
j

yjP(g(X ) = yj)

= E [g(X )]
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Functions of Random Variables: Example

Let’s suppose that X is the number of observations assigned to treatment
(from our previous example).

Suppose that g(X ) = X 2. What is E [g(X )]?

E [g(X )] = E [X 2] = 02 × 1

8
+ 12 × 3

8
+ 22 × 3

8
+ 32 × 1

8

= 0 +
3

8
+

12

8
+

9

8

=
24

8
= 3
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Functions of Random Variables: Corollary

Corollary

Suppose X is a random variable and a and b are constants (not random
variables). Then,

E [aX + b] = aE [X ] + b

Proof.

E [aX + b] =
∑

x :p(x)>0

(ax + b)p(x)

=
∑

x :p(x)>0

axp(x) +
∑

x :p(x)>0

bp(x)

= a
∑

x :p(x)>0

xp(x) + b
∑

x :p(x)>0

p(x)

= aE [X ] + b(1)
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Variance
Expected value is a measure of central tendency.

What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared d(x ,E [x ])2 = (x − E [x ])2

- Then, we might take weighted average of these distances,

E [(X − E [X ])2] =
∑

x :p(x)>0

(x − E [X ])2p(x)

=
∑

x :p(x)>0

(
x2p(x)

)
−

2E [X ]
∑

x :p(x)>0

(xp(x)) + E [X ]2
∑

x :p(x)>0

p(x)

= E [X 2]− 2E [X ]2 + E [X ]2

= E [X 2]− E [X ]2

= Var(X )
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Variance

Definition

The variance of a random variable X , var(X ), is

var(X ) = E [(X − E [X ])2]

= E [X 2]− E [X ]2

- We will define the standard deviation of X , sd(X ) =
√

var(X )

- var(X ) ≥ 0.
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Variance Calculation

Continue the three person experiment, with P(T ) = P(C ) = 1/2.

What is Var(X )?
We have two components to our variance calculation:

E [X 2] = 3

E [X ]2 = 1.52 = 2.25

Var(X ) = E [X 2]− E [X ]2

= 3− 2.25 = 0.75
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Variance Corollary

Corollary

Var(aX + b) = a2Var(X)

Proof.

Define Y = aX + b. Now, we know that
Var(Y ) = E [(Y − E [Y ])2]. Let’s substitute and use our other corollary

Var(Y ) = E [(aX + b − aE [X ]− b)2]

= E [(a2X 2 − 2a2XE [X ] + a2E [X ]2)]

= a2E [X 2]− 2a2E [X ]2 + a2E [X ]2

= a2(E [X 2]− E [X ]2)

= a2Var(X )
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Famous Distributions

- Bernoulli

- Binomial

- Multinomial

- Poisson

Models of how world works.
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Bernoulli Random Variable

Definition

Suppose X is a random variable, with X ∈ {0, 1} and P(X = 1) = π.
Then we will say that X is Bernoulli random variable,

p(k) = πk(1− π)1−k

for k ∈ {0, 1} and p(k) = 0 otherwise.
We will (equivalently) say that

Y ∼ Bernoulli(π)
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Bernoulli Random Variable

Suppose we flip a fair coin and Y = 1 if the outcome is Heads .

Y ∼ Bernoulli(1/2)

p(1) = (1/2)1(1− 1/2)1−1 = 1/2

p(0) = (1/2)0(1− 1/2)1−0 = (1− 1/2)

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 29 / 53



Bernoulli Random Variable Moments

Suppose Y ∼ Bernoulli(π)

E [Y ] = 1× P(Y = 1) + 0× P(Y = 0)

= π + 0(1− π) = π

var(Y ) = E [Y 2]− E [Y ]2

E [Y 2] = 12P(Y = 1) + 02P(Y = 0)

= π

var(Y ) = π − π2

= π(1− π)

E [Y ] = π
var(Y ) = π(1− π) What is the maximum variance?
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var(Y ) = π(1− π)

What is the maximum variance?
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Example: Winning a War
Suppose country 1 is engaged in a conflict and can either win or lose.

Define Y = 1 if the country wins and Y = 0 otherwise.
Then,

Y ∼ Bernoulli(π)

Suppose country 1 is deciding whether to fight a war.
Engaging in the war will cost the country c .
If they win, country 1 receives B.
What is 1’s expected utility from fighting a war?

E [U(war)] = (Utility|win)× P(win) + (Utility|lose)× P(lose)

= (B − c)P(Y = 1) + (−c)P(Y = 0)

= B × p(Y = 1)− c(P(Y = 1) + P(Y = 0))

= B × π − c
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Binomial Random Variable
- A model to count the number of successes across N trials

- Assume the Bernoulli trials are independent
- Each Bernoulli trial i is

Yi ∼ Bernoulli(π)

Independent and identically distributed.

- Z = number of successful trials
- Derive probability mass function P(Z = M) = p(M)
- One way to obtain M successful trials:

P(Y1 = 1,Y2 = 0,Y3 = 1, . . . ,YN = 1)

= P(Y1 = 1)P(Y2 = 0) · · ·P(YN = 1)

= P(Y1 = 1)P(Y3 = 1) · · ·P(Yz = 1)︸ ︷︷ ︸
M

×P(Y2 = 0) · · ·P(YN = 0)︸ ︷︷ ︸
N−M

= ππ · · ·π︸ ︷︷ ︸
M

× (1− π)(1− π) · · · (1− π)︸ ︷︷ ︸
N−M

= πM(1− π)N−M
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Are we done?

No

- This is just one instance of M successes

- How many total instances?

- N total trials
- We want to select M

-
(N
M

)
= N!

(N−M)!M!

Then,

P(Z = M) = p(M) =

(
N

M

)
πM(1− π)N−M
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M

)
πM(1− π)N−M
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Definition

Suppose X is a random variable that counts the number of successes in N
independent and identically distributed Bernoulli trials. Then X is a
Binomial random variable,

p(k) =

(
N

k

)
πk(1− π)1−k

for k ∈ {0, 1, 2, . . . ,N} and p(k) = 0 otherwise.
Equivalently,

Y ∼ Binomial(N, π)
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Binomial Example

Recall our experiment example:

P(T ) = P(C ) = 1/2.
Z = number of units assigned to treatment

Z ∼ Binomial(1/2)

p(0) =

(
3

0

)
(1/2)0(1− 1/2)3−0 = 1× 1

8

p(1) =

(
3

1

)
(1/2)1(1− 1/2)2 = 3× 1

8

p(2) =

(
3

2

)
(1/2)2(1− 1/2)1 = 3× 1

8

p(3) =

(
3

3

)
(1/2)3(1− 1/2)0 = 1× 1

8
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Binomial Random Variable Moments

Z =
∑N

i=1 Yi where Yi ∼ Bernoulli(π)

E [Z ] = E [Y1 + Y2 + Y3 + . . .+ YN ]

=
N∑
i=1

E [Yi ]

= Nπ

var(Z ) =
N∑
i=1

var(Yi )

= Nπ(1− π)

E [Z ] = Nπ
var(Z ) = Nπ(1− π)
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Voter Turnout
Suppose we have a set N voters, with iid turnout decisions
Yi ∼ Bernoulli(π)

What is the probability that at least M voters turnout?

P(k ≥ M) =
N∑

k=M

(
N

k

)
πk(1− π)N−k
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Voter Turnout

Suppose we have a set N voters, with iid turnout decisions
Yi ∼ Bernoulli(π)
What is the probability that at least M voters turnout?

P(k ≥ M) =
N∑

k=M

(
N

k

)
πk(1− π)N−k

R Code!
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Voter Turnout, with Spillovers

Suppose we have the same set of N voters.

Now, N/2 are leaders, who turnout with probability (1/2)
But, N/2 are followers, whose turnout depends on a specific leader
Suppose follower i depends on only one leader j (and each follower has
their own leader)

Yi ∼ Bernoulli(0.9) if j votes

Yi ∼ Bernoulli(0.1) if j does not

Let Z be the number of voters who turnout.
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Voter Turnout, with Spillovers
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Trials with More than Two Outcomes

Definition

Suppose we observe a trial, which might result in J outcomes.
And that P(outcome = i) = πi
Y = (Y1,Y2, . . . ,YJ) where Yj = 1 if outcome j occurred and 0 otherwise.
Then Y follows a multinomial distribution, with

p(y) = πy11 π
y2
2 . . . πykk

if
∑k

i=1 yi = 1 and the pmf is 0 otherwise.
Equivalently, we’ll write

Y ∼ Multnomial(1,π)

Y ∼ Categorial(π)
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Multinomial Properties + Notes

Computer scientists: commonly call Multinomial(1,π) Discrete(π).

E [Xi ] = Nπi

var(Xi ) = Nπi (1− πi )

Investigate Further in Homework!

Justin Grimmer (Stanford University) Methodology I September 16th, 2016 41 / 53



Counting the Number of Events

Often interested in counting number of events that occur:

1) Number of wars started

2) Number of speeches made

3) Number of bribes offered

4) Number of people waiting for license

Generally referred to as event counts
Stochastic processes: a course provide introduction to many processes
(Queing Theory)
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Poisson Distribution

Definition

Suppose X is a random variable that takes on values X ∈ {0, 1, 2, . . . , }
and that P(X = k) = p(k) is,

p(k) = e−λ
λk

k!

for k ∈ {0, 1, . . . , } and 0 otherwise. Then we will say that X follows a
Poisson distribution with rate parameter λ.

X ∼ Poisson(λ)
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Example: Poisson Distribution
Suppose the number of threats a president makes in a term is given by
X ∼ Poisson(5).

What is the probability the president will make ten or
more threats?
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P(X ≥ 10) = e−λ
∞∑

k=10

5k

k!

= 1− P(X < 10)

R code!
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Poisson Distribution

Properties:

1) It is a probability distribution.

Recall the Taylor expansion of ex

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .

e−λ
∞∑
k=0

λk

k!
= e−λ(1 + λ+

λ2

2!
+ . . .)

= e−λ(eλ) = 1
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Poisson Distribution
Properties:

2) E [X ] = λ

E [X ] = e−λ
∞∑
k=0

k
λk

k!

= e−λλ
∞∑
k=1

λk−1

(k − 1)!

Define j = k − 1, then

E [X ] = e−λλ
∞∑
j=0

λj

j!

= e−λλeλ

= λ
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Poisson Distribution
Properties:

3) var(X ) = λ

E [X 2] =
∞∑
k=0

k2e−λλk

k!

= λe−λ

( ∞∑
k=1

kλk−1

(k − 1)!

)
Let j = k − 1,

E [X 2] = λe−λ
∞∑
j=0

(j + 1)λj

j!

= λe−λ

 ∞∑
j=0

(j)λj

j!
+
∞∑
j=0

(1)λj

j!


= λe−λ(λeλ + eλ)
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Poisson Distribution

Properties

3) var(X ) = λ

E [X 2] = λe−λ(λeλ + eλ)

= λ(λ+ 1)

var(X ) = E [X 2]− E [X ] = λ2 + λ− λ2 = λ
Very useful distribution, with strong assumptions. We’ll explore in
homework!
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Often interested in how processes evolve over time

- Given voting history, probability of voting in the future

- Given history of candidate support, probability of future support

- Given prior conflicts, probability of future war

- Given previous words in a sentence, probability of next word

Potentially complex history
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Stochastic Process

Definition

Suppose we have a sequence of random variables
{X}Mi=0 = X0,X1,X2, . . . ,XM that take on the countable values of S. We
will call {X}Mi=0 a stochastic process with state space S.

If index gives time, then we might condition on history to obtain probability

PMF Xt , given history = P(Xt |Xt−1,Xt−2, . . . ,X1,X0)

Still Complex
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Markov Chain

Definition

Suppose we have a stochastic process {X}Mi=0 with countable state space
S. Then {X}Mi=0 is a markov chain if:

P(Xt |Xt−1,Xt−2, . . . ,X1,X0) = P(Xt |Xt−1)

A Markov chain’s future depends only on its current state
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Transition Matrix

Habitual turnout?

T =

 Votet Not Votet
Votet−1 0.8 0.2

Not Votet−1 0.3 0.7


- Suppose someone starts as a voter—what is their behavior after

- 1 iteration?

- 2 interations?

- The long run?

R Code!
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Monday: Continuous Random Variables!
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