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Where we're at

Conditional Probability/Bayes’ Rule
Today: Random Variables

Probability Mass Functions

Expectation, Variance

Famous Discrete Random Variables
A Brief Introduction to Markov Chains
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Random Variable: Intuition

- Sample Space

Recall the three parts of our probability model
- Events

- Probability

Often, we are interested in some function of the sample space
- Number of incumbents who win

- An indicator whether a country defaults on loans (1 if Default, 0
otherwise)
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Random Variable: Intuition

Recall the three parts of our probability model
- Sample Space
- Events
- Probability
Often, we are interested in some function of the sample space
- Number of incumbents who win
- An indicator whether a country defaults on loans (1 if Default, 0

otherwise)
- Number of casualties in a war (rather than all outcomes of casualties)
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Random Variable: Intuition

Recall the three parts of our probability model
- Sample Space
- Events
- Probability
Often, we are interested in some function of the sample space
- Number of incumbents who win

- An indicator whether a country defaults on loans (1 if Default, 0
otherwise)

- Number of casualties in a war (rather than all outcomes of casualties)

Random variables: functions defined on the sample space
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Definition: Random Variable

Definition
Random Variable: A Random variable X is a function from the sample
space to real numbers. In notation,

X : Sample Space -+ R

- X's domain are all outcomes (Sample Space)

- X's range is the Real line (or some subset of it)

Justin Grimmer (Stanford University)

o F
Methodology |



Definition: Random Variable

Definition

Random Variable: A Random variable X is a function from the sample
space to real numbers. In notation,

X : Sample Space -+ R

- X's domain are all outcomes (Sample Space)

- X's range is the Real line (or some subset of it)

- Because X is defined on outcomes, makes sense to write p(X) (we'll

talk about this soon)
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Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin (%) to assign each unit
- Assign to T =Treatment or C =control

- X = Number of units received treatment
Defining the function:

0if (C, C,C)
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Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin (%) to assign each unit
- Assign to T =Treatment or C =control

- X = Number of units received treatment
Defining the function:

0if (C, C,C)
s ) TIf(T.C.C)or (€, T,C)or (C.C,T)

9 9
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Example

Treatment assignment:

- Suppose we have 3 units, flipping fair coin (%) to assign each unit
- Assign to T =Treatment or C =control

- X = Number of units received treatment
Defining the function:

0if (C,C, Q)
X 1if (T,C,C)or (C, T,C)or (C,C, T)
2if (T, T,C)or (T.C,T
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Example

Treatment assignment:
- Suppose we have 3 units, flipping fair coin (%) to assign each unit
- Assign to T =Treatment or C =control

- X = Number of units received treatment
Defining the function:

0if (C,C, Q)
X 1if (T,C,C)or (C, T,C)or (C,C, T)
) 2if (T, T,C)or (T,C, T)or (C,T,T)
3if(T,7T,7)
=] (=) = E z
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Example

Treatment assignment:
- Suppose we have 3 units, flipping fair coin (%) to assign each unit
- Assign to T =Treatment or C =control

- X = Number of units received treatment
Defining the function:

0if (C,C, Q)
X 1if (T,C,C)or (C, T,C)or (C,C, T)
=\ 2if (T, T,C)or (T,C,T)or (C, T, T)
3if(T,7T,7)

In other words,
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Example

Treatment assignment:
- Suppose we have 3 units, flipping fair coin (%) to assign each unit
- Assign to T =Treatment or C =control

- X = Number of units received treatment
Defining the function:

0if (C,C, Q)
X 1if (T,C,C)or (C, T,C)or (C,C, T)
) 2if (T, T,C)or (T,C, T)or (C,T,T)
3if(T,7T,7)
In other words,
X((C,c,0) =0
X(T,C,C) =
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Example

Treatment assignment:
- Suppose we have 3 units, flipping fair coin (%) to assign each unit
- Assign to T =Treatment or C =control
- X = Number of units received treatment

Defining the function:

0if (C,C, Q)
X 1if (T,C,C)or (C, T,C)or (C,C, T)
=\ 2if (T, T,C)or (T,C,T)or (C, T, T)
3if(T,7T,7)

In other words,

(
X(T,C,T)) = 2
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Example

Treatment assignment:
- Suppose we have 3 units, flipping fair coin (%) to assign each unit
- Assign to T =Treatment or C =control
- X = Number of units received treatment

Defining the function:

0if (C,C, Q)
X — 1if (T,C,C)or (C, T,C)or (C,C, T)
) 2if (T, T,C)or (T,C, T)or (C,T,T)
3if(T,7T,7)
In other words,
X((C,c,0) =0
X(T,C,C) =1
X(T,C,T)) = 2
X(T,T,T)) = 3
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Another Example

X = Number of Calls into congressional office in some period p
- X(e)=c
Outcome of Election

- Define v as the proportion of vote the candidate receives
- Define X =1 if v > 0.50

- Define X =0 if v < 0.50
For example, if v = 0.48, then X(v) =0
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Another Example

X = Number of Calls into congressional office in some period p
- X(c)=c

Outcome of Election

- Define v as the proportion of vote the candidate receives
- Define X =1if v > 0.50

- Define X =0 if v < 0.50
For example, if v = 0.48, then X(v) =0

Big Question: How do we compute P(X=1), P(X=0), etc?
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Probability Mass Function: Intuition

Go back to our experiment example—probability comes from probability of
outcomes
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Probability Mass Function: Intuition

Go back to our experiment example—probability comes from probability of
outcomes

P(C, T,C)=P(C)P(T)P(C) =

o F
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Probability Mass Function: Intuition

Go back to our experiment example—probability comes from probability of

outcomes
P(C.T,C)= PIOP(TIP(C) = 131 =}
That's true for all outcomes.
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Probability Mass Function: Intuition

Go back to our experiment example—probability comes from probability of

outcomes

P(C, T,C)=P(C)P(T)P(C) =

That's true for all outcomes.

1

11
22~ 8

p(X=0) = P(C,C,C) :%
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Probability Mass Function: Intuition

Go back to our experiment example—probability comes from probability of
outcomes

P(C,T,C)=P(OP(T)P(C) = 333 =}
That's true for all outcomes.
1
p(X=0) = P(C,C,C)= s

p(X=1) = P(T,C,C)+P(C,T,C)+ P(C,C, T) :2

it
<
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Probability Mass Function: Intuition

Go back to our experiment example—probability comes from probability of
outcomes

P(C,T,C)=P(C)P(T)P(C) =311 =1
That's true for all outcomes.

p(X=0) = P(C,C,C) :%

p(X=1) = P(T,C,C)+P(C,T,C)+P(C,C,T) =

p(X=2) = P(T, T,C)+P(T,C, T)+P(C, T,T)=

©] W Pl w
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Probability Mass Function: Intuition

Go back to our experiment example—probability comes from probability of
outcomes

P(C,T,C)=P(C)P(T)P(C) =311 =1
That's true for all outcomes.

p(X=0) = P(C,C,C) :%

p(X=1) = P(T,C,C)+P(C,T,C)+P(C,C,T) =
p(X=2) = P(T, T,C)+P(T,C, T)+P(C, T,T)=

pX=3) = P(T,T.T)=¢

©] W Pl w
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Probability Mass Function: Intuition

Go back to our experiment example—probability comes from probability of
outcomes

P(C,T,C)=P(C)P(T)P(C) =311 =1
That's true for all outcomes.

P(X=0) = P(C.C.C)=
pX=1) = P(T,C,C)+P(c,T,C)+P(C,C,T):%
pX=2) = P(T,T,C)+P(T,C,T)+P(C,T,T):g
pX=3) = P(T,T.T)=¢

p(X =a)=0, forall a¢(0,1,2,3)
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Probability Mass Function: Intuition

Probability Mass Function

1
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Probability Mass Function: Intuition

Consider outcome of election:

- X(v) =1if v > 0.5 otherwise X(v) =0
- P(X =1) then is equal to P(v > 0.5)
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Probability Mass Function

it discrete.

If X is defined on an outcome space that is discrete (countable), we'll call
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Probability Mass Function

If X is defined on an outcome space that is discrete (countable), we'll call
it discrete.

(Brief aside) Countable: A set is countable if there is a function that can
map all its elements to the natural numbers {1,2,3,4,...} (one-to-one,

injective). If it is onto (from S to all natural numbers, surjective), then we
say the set is countably infinite
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Probability Mass Function

If X is defined on an outcome space that is discrete (countable), we'll call
it discrete.

Definition
probability mass function p(x) as

Probability Mass Function: For a discrete random variable X, define the

p(x) =

Justin Grimmer (Stanford University)
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Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire
department grants )

Mathematically: Probability Mass Function on Words Probability of using
word, when discussing a topic

Suppose we have a set of words:

(afghanistan, fire, department, soldier, troop, war, grant)
Topic 1 (say, war):
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Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire
department grants )

Mathematically: Probability Mass Function on Words Probability of using
word, when discussing a topic

Suppose we have a set of words:
(afghanistan, fire, department, soldier, troop, war, grant)

Topic 1 (say, war):
P(afghanistan) = 0.3; P(fire) = 0.0001; P(department) = 0.0001;
P(soldier) = 0.2; P(troop) = 0.2; P(war)=0.2997; P(grant)=0.0001
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Probability Mass Function: Example 2

Topics: distinct concepts (war in Afghanistan, national debt, fire
department grants )

Mathematically: Probability Mass Function on Words Probability of using
word, when discussing a topic

Suppose we have a set of words:

(afghanistan, fire, department, soldier, troop, war, grant)

Topic 1 (say, war):
P(afghanistan) = 0.3; P(fire) = 0.0001; P(department) = 0.0001;
P(soldier) = 0.2; P(troop) = 0.2; P(war)=0.2997; P(grant)=0.0001

Topic 2 (say, fire departments ):

P(afghanistan) = 0.0001; P(fire) = 0.3; P(department) = 0.2;
P(soldier) = 0.0001; P(troop) = 0.0001; P(war)=0.0001;
P(grant)=0.2997

Topic Models: take a set of documents and estimate topics.
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Definition

F(x)

Cumulative Mass (distribution) Function: For a random variable X, define
the cumulative mass function F(x) as,

P(X < x)

- Characterizes how probability cumulates as X gets larger

- F(x) €[0,1]

- F(x) is non-decreasing

Justin Grimmer (Stanford University)
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Cumulative Mass Function: Example

Consider the three person experiment.
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Cumulative Mass Function: Example

Consider the three person experiment.

P(T) = P(C) =1/2.
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Cumulative Mass Function: Example
Consider the three person experiment.
What is F(2)?

P(T) = P(C) =1/2.
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Cumulative Mass Function: Example
Consider the three person experiment.
What is F(2)?

P(T) = P(C) =1/2.
F2) =

P(X=0)+P(X=1)4+P(X =2)
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Cumulative Mass Function: Example

Consider the three person experiment. P(T) = P(C) =1/2.

What is F(2)?

F2) = PX=0+PX=1)+P(X=2)
1.3 .3
~ 87878
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Cumulative Mass Function: Example

Consider the three person experiment. P(T) = P(C) =1/2.

What is F(2)?

F(2) =

Justin Grimmer (Stanford University)

P(X=0)+P(X=1)4+P(X =2)
1 3 3

87878
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Cumulative Mass Function: Example

Consider the three person experiment. P(T) = P(C) =1/2.
What is F(2)?

F(2) = P(X=0)+P(X=1)+P(X=2)
3 3
BERERE

| N~ T

What is F(2) — F(1)7
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Cumulative Mass Function: Example

Consider the three person experiment. P(T) = P(C) =1/2.
What is F(2)?

F2) = PX=0+PX=1)+P(X=2)
1.3 .3
~ 87878
T
= 8

What is F(2) — F(1)7

F2)— F(1) = [P(X=0)+P(X=1)+P(X =2)]
—[P(X = 0)+ P(X = 1)]
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Cumulative Mass Function: Example

Consider the three person experiment. P(T) = P(C) =1/2.
What is F(2)?

F2) = PX=0+PX=1)+P(X=2)
1,3 3
BERERE
T
-8

What is F(2) — F(1)?

F2)— F(1) = [P(X=0)+P(X=1)+P(X =2)]

F(2)—F(1) = P(X=2)
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Cumulative Mass Function

There is a close relationship between pmf's and cmf's.

Probability Mass Function

Probability
0.000 0.125 0.250 0.375 0.500

No. Treated
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Cumulative Mass Function

There is a close relationship between pmf's and cmf's.
Consider Previous example:

Probability Mass Function

Probability
0.000 0.125 0.250 0.375 0.500

No. Treated

u]
8

1l
n
tht
S
»
i)

Justin Grimmer (Stanford University) Methodology |



Cumulative Mass Function

There is a close relationship between pmf's and cmf's.
Consider Previous example:

Probability Mass Function

Probability
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Cumulative Mass Function
There is a close relationship between pmf's and cmf's.
Consider Previous example:

Cumulative Mass Function

< |
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Cumulative Mass Function
There is a close relationship between pmf's and cmf's.
Consider Previous example:

Cumulative Mass Function
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Cumulative Mass Function
There is a close relationship between pmf's and cmf's.
Consider Previous example:

Cumulative Mass Function

< |
o caEEEs——
X0
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Cumulative Mass Function

There is a close relationship between pmf's and cmf's.
Consider Previous example:

Cumulative Mass Function

0.9

X0
\L_L/o-f A———
p(1)
e
o
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0 1 2 3 4
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Expectation

What can we expect from a trial?
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Expectation

What can we expect from a trial?

Value of random variable for any outcome
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Expectation
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Expectation

What can we expect from a trial?
Value of random variable for any outcome
Weighted by the probability of observing that outcome

Definition
Expected Value: define the expected value of a function X as,

EX = Y xpx)

x:p(x)>0

Justin Grimmer (Stanford University) Methodology |



Expectation

What can we expect from a trial?
Value of random variable for any outcome
Weighted by the probability of observing that outcome

Definition
Expected Value: define the expected value of a function X as,

EX = Y xpx)

x:p(x)>0

In words: for all values of x with p(x) greater than zero, take the

weighted average of the values
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Expectation Example: Simple Experiment

Suppose again X is number of units assigned to treatment, in one of our
previous example.
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Suppose again X is number of units assigned to treatment, in one of our
previous example.

What is E[X]?
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Suppose again X is number of units assigned to treatment, in one of our
previous example.

What is E[X]?

E[X]
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Expectation Example: Simple Experiment

Suppose again X is number of units assigned to treatment, in one of our
previous example.

What is E[X]?

EX] =

3 3 1
0><§+1><§-|—2><§+3><§
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Expectation Example: Simple Experiment

Suppose again X is number of units assigned to treatment, in one of our
previous example.

What is E[X]?

E[X] =

3 3 1
0><§+1><§-|—2><§+3><§
= 15
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Expectation Example: A Single Person Poll
Suppose that there is a group of N people.
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- Suppose M < N people approve of Barack Obama’s performance as
president
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- Suppose M < N people approve of Barack Obama’s performance as
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- N — M disapprove of his performance
Define:
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Expectation Example: A Single Person Poll
Suppose that there is a group of N people.

- Suppose M < N people approve of Barack Obama’s performance as
president

- N — M disapprove of his performance
Define:

Draw one person i, with , P(Draw i) =

2=
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Expectation Example: A Single Person Poll
Suppose that there is a group of N people.

- Suppose M < N people approve of Barack Obama’s performance as
president

- N — M disapprove of his performance
Define:

Draw one person i, with , P(Draw i) = &

X 1 if person Approves
~ | O if Disapproves
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Expectation Example: A Single Person Poll
Suppose that there is a group of N people.

- Suppose M < N people approve of Barack Obama’s performance as
president

- N — M disapprove of his performance
Define:

Draw one person i, with , P(Draw i) = &

X 1 if person Approves
~ | O if Disapproves
E[X]?
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Expectation Example: A Single Person Poll
Suppose that there is a group of N people.

- Suppose M < N people approve of Barack Obama’s performance as
president

- N — M disapprove of his performance
Define:
Draw one person i, with , P(Draw /) = %

X 1 if person Approves
~ | O if Disapproves '

E[X]?

E[X] = 1 x P(Approve) + 0 x P(Disapprove)
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Expectation Example: A Single Person Poll
Suppose that there is a group of N people.

- Suppose M < N people approve of Barack Obama’s performance as
president

- N — M disapprove of his performance

Define:
Draw one person i, with , P(Draw /) = %

X 1 if person Approves
~ | O if Disapproves '

E[X]?
E[X] = 1 x P(Approve) + 0 x P(Disapprove)
M

- 1xZ
N
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Indicator Variables and Probabilities
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Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable | such that | =1 if an
outcome in A occurs and | = 0 if an outcome in A occurs. Then,
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Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable | such that | =1 if an
outcome in A occurs and | = 0 if an outcome in A occurs. Then,

Elll =

P(A)
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Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable | such that | =1 if an
outcome in A occurs and | = 0 if an outcome in A occurs. Then,

E[ll = P(A)
Proof.
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Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable | such that | =1 if an
outcome in A occurs and | = 0 if an outcome in A occurs. Then,

E[l] =
Proof.

P(A)

Elll =

1 x P(A) +0 x P(A°)
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Indicator Variables and Probabilities

Proposition

Suppose A is an event. Define random variable | such that | =1 if an
outcome in A occurs and | = 0 if an outcome in A occurs. Then,

E[l] =
Proof.

P(A)

Elll =

1 x P(A) +0 x P(A°)
= P(A)
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Functions of Random Variables

We might (or often) apply a function to a random variable g(X).
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Functions of Random Variables

We might (or often) apply a function to a random variable g(X).
How do we compute E[g(X)]?
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Functions of Random Variables

We might (or often) apply a function to a random variable g(X).
How do we compute E[g(X)]?
Proposition
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Functions of Random Variables

We might (or often) apply a function to a random variable g(X).
How do we compute E[g(X)]?

Proposition

Expected value of a function of a random variable: Suppose X is a

discrete random variable that takes on values x;, i = {1,2,...,}, with
probabilities p(x;).
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Functions of Random Variables

We might (or often) apply a function to a random variable g(X).
How do we compute E[g(X)]?

Proposition

Expected value of a function of a random variable: Suppose X is a
discrete random variable that takes on values x;, i = {1,2,...,}, with
probabilities p(x;). If g : X — R, then its expected value E[g(X)] is,
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Functions of Random Variables

We might (or often) apply a function to a random variable g(X).
How do we compute E[g(X)]?
Proposition

Expected value of a function of a random variable: Suppose X is a
discrete random variable that takes on values x;, i = {1,2,...,}, with
probabilities p(x;). If g : X — R, then its expected value E[g(X)] is,

E[g Zg XI)P XI

u]
8
I
i
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Functions of Random Variables
Proof.
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Functions of Random Variables
Proof.

Observation g(X) is itself a random variable. Let's say it has unique
values y; (j =1,2,...,)
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Functions of Random Variables
Proof.

Observation g(X) is itself a random variable. Let's say it has unique
values y; (j =1,2,...,) So, we know that E[g(X)] = >, y;P(g(X) = yj).
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Functions of Random Variables
Proof.
Observation g(X) is itself a random variable. Let's say it has unique

values y; (j =1,2,...,) So, we know that E[g(X)] = >, y;P(g(X) = yj).
And we want to show that ). g(x;)p(x;) is equal to that.
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Functions of Random Variables
Proof.

Observation g(X) is itself a random variable. Let's say it has unique
values y; (j =1,2,...,) So, we know that E[g(X)] = >, y;P(g(X) = yj).
And we want to show that ). g(x;)p(x;) is equal to that.

Zg(XI)P(Xi) = > > glx)p(x)

Joig(xi)=y;
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Functions of Random Variables
Proof.

Observation g(X) is itself a random variable. Let's say it has unique
values y; (j =1,2,...,) So, we know that E[g(X)] = >, y;P(g(X) = yj).
And we want to show that ). g(x;)p(x;) is equal to that.

Zg(x,-)p(x;) = > >

Joig(xi)=y;
= > > vipla)
i ig(xi)=y;
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Functions of Random Variables
Proof.

Observation g(X) is itself a random variable. Let's say it has unique
values y; (j =1,2,...,) So, we know that E[g(X)] = >_; y;P(g(X) = yj).
And we want to show that ). g(x;)p(x;) is equal to that.

Zg(XI)P(Xi) = > > glx)p(x)

Joig(xi)=y;

= > > yplx)

i ig(xi)=y;

= >y > plx)

J i:g(xi)=y;
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Functions of Random Variables
Proof.

Observation g(X) is itself a random variable. Let's say it has unique
values y; (j =1,2,...,) So, we know that E[g(X)] = >_; y;P(g(X) = yj).
And we want to show that ). g(x;)p(x;) is equal to that.

Zg(XI)P(Xi) = > > glx)p(x)

Joig(xi)=y;

= > > yplx)

i ig(xi)=y;

= >y > plx)

J i:g(xi)=y;

= D_yiPE(X) =)
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Functions of Random Variables
Proof.

Observation g(X) is itself a random variable. Let's say it has unique
values y; (j =1,2,...,) So, we know that E[g(X)] = >_; y;P(g(X) = yj).
And we want to show that ). g(x;)p(x;) is equal to that.

Zg(XI)P(Xi) = > > glx)p(x)

Joig(xi)=y;

= > > yplx)

i ig(xi)=y;

= >y > plx)
J i:g(x)=y;

= D_yiPE(X) =)

= Elg(X)]
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Functions of Random Variables: Example

Let's suppose that X is the number of observations assigned to treatment
(from our previous example).
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Let's suppose that X is the number of observations assigned to treatment
(from our previous example).

Suppose that g(X) = X2. What is E[g(X)]?
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Functions of Random Variables: Example

Let's suppose that X is the number of observations assigned to treatment
(from our previous example).
Suppose that g(X) = X2. What is E[g(X)]?

Elg(X)] = E[X?]

02><§+12><§+22x§+32><1
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Functions of Random Variables: Example

Let's suppose that X is the number of observations assigned to treatment
(from our previous example).

Suppose that g(X) = X2. What is E[g(X)]?

1 1
Elg(X)] = E[X?] = Rxip12xy2x g2yt
8 8 8 8

- 8 8 '8
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Functions of Random Variables: Example

Let's suppose that X is the number of observations assigned to treatment
(from our previous example).
Suppose that g(X) = X2. What is E[g(X)]?

1 1
Elg(X)] = E[X?] = Rxip12xy2x g2yt
8 8 8 8
- 8 8 '8
24
= —:3
8

u]
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Functions of Random Variables: Corollary
Corollary

Suppose X is a random variable and a and b are constants (not random
variables). Then,

E[aX +b] = aE[X]+b
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Functions of Random Variables: Corollary
Corollary

Suppose X is a random variable and a and b are constants (not random
variables). Then,

E[aX + b] = aE[X]+ b
Proof.
ElaX+b] = Y (ax+b)p(x)
x:p(x)>0
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Functions of Random Variables: Corollary
Corollary

Suppose X is a random variable and a and b are constants (not random
variables). Then,

E[aX +b] = aE[X]+b

Proof.

ElaX+b] = Y (ax+b)p(x)
x:p(x)>0

= Y aet)+ Y b

x:p(x)>0 x:p(x)>0
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Functions of Random Variables: Corollary
Corollary

Suppose X is a random variable and a and b are constants (not random
variables). Then,

ElaX +b] = aE[X]+b
Proof.
ElaX+b] = Y (ax+b)p(x)
x:p(x)>0
= Y a0+ Y )
x:p(x)>0 x:p(x)>0
= a Z xp(x) + b Z p(x)
x:p(x)>0 x:p(x)>0
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Functions of Random Variables: Corollary
Corollary

Suppose X is a random variable and a and b are constants (not random
variables). Then,

ElaX +b] = aE[X]+b
Proof.
ElaX+b] = Y (ax+b)p(x)
x:p(x)>0
= Y a0+ Y )
x:p(x)>0 x:p(x)>0
= a Z xp(x) + b Z p(x)
x:p(x)>0 x:p(x)>0

= aE[X]+ b(1)
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Variance

Expected value is a measure of central tendency.
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Variance

Expected value is a measure of central tendency.
What about spread?
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- For each value, we might measure distance from center
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- For each value, we might measure distance from center

- Euclidean distance, squared d(x, E[x])? = (x — E[x])?
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Variance

Expected value is a measure of central tendency.
What about spread? Variance

- For each value, we might measure distance from center

- Euclidean distance, squared d(x, E[x])? = (x — E[x])?
- Then, we might take weighted average of these distances,
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Variance

Expected value is a measure of central tendency.
What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared d(x, E[x])? = (x — E[x])?
- Then, we might take weighted average of these distances,
2
E[(X — E[X])7]

= D (x—EXD?p(x)

x:p(x)>0
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Variance

Expected value is a measure of central tendency.
What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared d(x, E[x])? = (x — E[x])?
- Then, we might take weighted average of these distances,
2
E[(X — E[X])7]

= D (x—EXD?p(x)

x:p(x)>0

= Y () -

x:p(x)>0
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Variance

Expected value is a measure of central tendency.
What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared d(x, E[x])? = (x — E[x])?
- Then, we might take weighted average of these distances,
E[(X - EX]?] = > (x—EX])?p(x)

x:p(x)>0

= > (p(x) -

x:p(x)>0

x:p(x)>0

2E[X] Y ((x) +EXP Y px)

x:p(x)>0
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Variance

Expected value is a measure of central tendency.
What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared d(x, E[x])? = (x — E[x])?
- Then, we might take weighted average of these distances,
E[(X - EX]?] = > (x—EX])?p(x)

x:p(x)>0

= > (p(x) -

x:p(x)>0

x:p(x)>0

x:p(x)>0
= E[X?] —2E[X]? + E[X]?

2E[X] Y ((x) +EXP Y px)
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Variance

Expected value is a measure of central tendency.
What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared d(x, E[x])? = (x — E[x])?

- Then, we might take weighted average of these distances,

E(X—EXD?] = > (x—EX])?p(x)

x:p(x)>0
= Y () -
x:p(x)>0
26X Y () +EXE Y p(x)
x:p(x)>0 x:p(x)>0

= E[X?] —2E[X]? + E[X]?
= E[X?] - E[X]?
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Variance

Expected value is a measure of central tendency.
What about spread? Variance

- For each value, we might measure distance from center
- Euclidean distance, squared d(x, E[x])? = (x — E[x])?
- Then, we might take weighted average of these distances,

E(X—EXD?] = > (x—EX])?p(x)

x:p(x)>0
= Y () -
x:p(x)>0
26X Y () +EXE Y p(x)
x:p(x)>0 x:p(x)>0

= E[X?] —2E[X]? + E[X]?
E[X?] — E[X]?
= Var(X)
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Variance

Definition
The variance of a random variable X, var(X), is

var(X) = E[(X — E[X])?]

E[X?] - E[X]?
- var(X) > 0.

- We will define the standard deviation of X, sd(X) = \/var(X)

Justin Grimmer (Stanford University)
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Variance Calculation

Continue the three person experiment, with P(T)

P(C) =1/2.
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Variance Calculation

Continue the three person experiment, with P(T)
What is Var(X)?

P(C) =1/2.
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Variance Calculation

Continue the three person experiment, with P(T)
What is Var(X)?

We have two components to our variance calculation:

Justin Grimmer (Stanford University)

o F
Methodology |

P(C) =1/2.



Variance Calculation

Continue the three person experiment, with P(T) =
What is Var(X)?

— P(C)=1/2.

We have two components to our variance calculation:

E[X?] = 3
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Variance Calculation

Continue the three person experiment, with P(T)
What is Var(X)?

=P(C)=1)2.
We have two components to our variance calculation:
E[X?] 3
E[X]? 1.5%2 = 2.25
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Variance Calculation

Continue the three person experiment, with P(T)
What is Var(X)?

=P(C)=1)2.
We have two components to our variance calculation:
E[X?] 3
EX]? = 15°=225
Var(X) = E[X?] - E[X]?
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Variance Calculation

Continue the three person experiment, with P(T) = P(C) =1/2.
What is Var(X)?

We have two components to our variance calculation:

E[X?] = 3

EX]? = 15°=225

Var(X) = E[X?] - E[X]?
= 3-225=0.75
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Variance Corollary

Corollary

Var(aX + b) = a*Var(X)

Justin Grimmer (Stanford University)

Methodology |



Variance Corollary

Corollary

Var(aX + b) = a*Var(X)

Proof.
Define Y = aX + b. Now, we know that
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Variance Corollary

Corollary

Var(aX + b) = a*Var(X)

Proof.

Define Y = aX + b. Now, we know that
Var(Y) = E[(Y — E[Y])?]. Let's substitute and use our other corollary
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Variance Corollary

Corollary

Var(aX + b) = a*Var(X)

Proof.

Define Y = aX + b. Now, we know that
Var(Y) = E[(Y — E[Y])?]. Let's substitute and use our other corollary

Var(Y) = E[(aX + b— aE[X] — b)?]
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Variance Corollary

Corollary

Var(aX + b) = a*Var(X)

Proof.
Define Y = aX + b. Now, we know that

Var(Y) = E[(Y — E[Y])?]. Let's substitute and use our other corollary
Var(Y) = E[(aX + b — aE[X] — b)?]
E[(a®X? — 222 XE[X] + aE[X]?)]
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Variance Corollary

Corollary

Var(aX + b) = a*Var(X)

Proof.

Define Y = aX + b. Now, we know that
Var(Y) = E[(Y — E[Y])?]. Let's substitute and use our other corollary

Var(Y) = E[(aX + b— aE[X] — b)?]

= E[(a®X2 — 22°XE[X] + a2E[X]?)]
a?E[X?] — 2a%E[X]? + a*E[X]?
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Variance Corollary

Corollary
Var(aX + b) = a*Var(X)

Proof.

Define Y = aX + b. Now, we know that
Var(Y) = E[(Y — E[Y])?]. Let's substitute and use our other corollary

Var(Y) = E[(aX 4+ b— aE[X] — b)?]
E[(a®X? — 222 XE[X] + aE[X]?)]
a*E[X?] — 2a°E[X]? + ?E[X]?
= (E[X?] - E[X])
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Variance Corollary

Corollary
Var(aX + b) = a*Var(X)

Proof.

Define Y = aX + b. Now, we know that
Var(Y) = E[(Y — E[Y])?]. Let's substitute and use our other corollary

Var(Y) = E[(aX 4+ b— aE[X] — b)?]
E[(a®X? — 222 XE[X] + aE[X]?)]
a*E[X?] — 2a°E[X]? + ?E[X]?
a?(E[X?] - EIXT?)

= a?Var(X)
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Famous Distributions

Bernoulli

Binomial

Multinomial

- Poisson

Models of how world works.
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Bernoulli Random Variable
Definition
Suppose X is a random variable, with X € {0,1} and P(X =1) ==
Then we will say that X is Bernoulli random variable,
p(k) =

7Tk(1 _ 7_‘_)l—k
for k € {0,1} and p(k) = 0 otherwise.
We will (equivalently) say that

Y ~ Bernoulli(r)
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Bernoulli Random Variable

~

Suppose we flip a fair coin and Y = 1 if the outcome is Heads .

Bernoulli(1/2)
(1/2)1-1/2)t 1 =1/2
(1/2)°(1 =1/2)"% = (1 - 1/2)
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Bernoulli Random Variable Moments

Suppose Y ~ Bernoulli(7)
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Bernoulli Random Variable Moments

Suppose Y ~ Bernoulli(7)

ElY] =

1x P(Y =1)+0x P(Y =0)
= 17401l-7)=mn
ElY]=n
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Bernoulli Random Variable Moments

Suppose Y ~ Bernoulli(7)

E[Y] = 1xP(Y=1)4+0xP(Y =0)
= 17401l-7)=mn

var(Y) = E[Y?] - E[Y]?

E[Y?] = 12P(Y =1)+0?P(Y =0)

var(Y) ; T — 2
(1l —m)

ElY]=n
var(Y) = m(1 — m) What is the maximum variance?
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Then,
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Definition

Suppose X is a random variable that counts the number of successes in N

independent and identically distributed Bernoulli trials. Then X is a
Binomial random variable,

p) = [ )atr -y

for k € {0,1,2,..., N} and p(k) = 0 otherwise.
Equivalently,

Y ~ Binomial(N,)
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Binomial Random Variable Moments

Z = ZlNzl Y: where Y; ~ Bernoulli()
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Binomial Random Variable Moments
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Binomial Random Variable Moments

Z = ZlNzl Y: where Y; ~ Bernoulli()
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Binomial Random Variable Moments

Z = ZlNzl Y: where Y; ~ Bernoulli()

E[Z] = E[Y1+Y2+Y3—|-...

N
= D _ElV]
i=1
Nm
N
var(Z) = Zvar(Y;)

E[Z] = N
var(Z) = Nr(1 —7)
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Voter Turnout
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What is the probability that at least M voters turnout?

N
P(k > M)

— k;ﬂ (Q’)H(l — m)N=k
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Voter Turnout

Suppose we have a set N voters, with iid turnout decisions
Y; ~ Bernoulli(m)
What is the probability that at least M voters turnout?

P(k > M) Z( > (1—m)N=k

k=M

0.08
1

0.06

Probability
0.04
1

0.02
1
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Voter Turnout

Suppose we have a set N voters, with iid turnout decisions
Y; ~ Bernoulli(m)
What is the probability that at least M voters turnout?

N

P(k>M) = Z (ll\:)ﬂk(l — )Nk

k=M

Probability
0.04 0.06 0.08
| | |

0.02
1

0.00
1
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I
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Voter Turnout

Suppose we have a set N voters, with iid turnout decisions
Y; ~ Bernoulli(m)
What is the probability that at least M voters turnout?

N

Pk=M) = 3 (’Z)ﬂk(l N

k=M

R Code!
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Voter Turnout, with Spillovers
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Trials with More than Two Qutcomes

Definition
Suppose we observe a trial, which might result in J outcomes.
And that P(outcome = i) =m;

Y = (Y1, Y2,...,Y)) where Y; = 1 if outcome j occurred and 0 otherwise.
Then Y follows a multinomial distribution, with

ply) = mi'my...m)*

if Zf'(:1 yi = 1 and the pmf is 0 otherwise.
Equivalently, we'll write

Y ~ Multnomial(1,)
Y ~ Categorial(m)
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Multinomial Properties + Notes

Computer scientists: commonly call Multinomial(1, 7) Discrete(mr).

E[Xi]] = N
var(X;)
Investigate Further in Homework!

Nm;(1 — 7;)
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Counting the Number of Events

Often interested in counting number of events that occur:
1) Number of wars started
2) Number of speeches made
3) Number of bribes offered
4) Number of people waiting for license

Generally referred to as event counts

Stochastic processes: a course provide introduction to many processes
(Queing Theory)
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Poisson Distribution

Definition

Suppose X is a random variable that takes on values X € {0,1,2,...,}
and that P(X = k) = p(k) is,

p(k) =

NG
k!

e
for k € {0,1,...,} and 0 otherwise. Then we will say that X follows a
Poisson distribution with rate parameter \.

X

~

Poisson(\)
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Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by
X ~ Poisson(5).
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Suppose the number of threats a president makes in a term is given by

X ~ Poisson(5). What is the probability the president will make ten or
more threats?
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Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by
X ~ Poisson(5). What is the probability the president will make ten or
more threats?

P(X > 10)

Justin Grimmer (Stanford University)

o F
Methodology |



Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by

X ~ Poisson(5). What is the probability the president will make ten or
more threats?

[ee] 5k
_ —A
P(X>10) = e ) T
k=10
= 1-P(X <10)
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Example: Poisson Distribution

Suppose the number of threats a president makes in a term is given by
X ~ Poisson(5). What is the probability the president will make ten or
more threats?

[ee] 5k
_ —A
P(X>10) = e ) T
k=10
= 1-P(X <10)

R code!
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Poisson Distribution

Properties:

1) It is a probability distribution.
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Properties:

1) It is a probability distribution.

Recall the Taylor expansion of e*
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Poisson Distribution

Properties:

) It is a probability distribution.
Recall the Taylor expansion of e
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Poisson Distribution

Properties:

1) It is a probability distribution.
Recall the Taylor expansion of e*

2 X3

e” = 1+x+X—+§+...
oo
MK A2
Y _ A
e Zﬂ = (1+A+2,+...
k=0
= eMeM=1
o =
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Poisson Distribution
Properties:
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Poisson Distribution
Properties:

2) E[X] =\
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Poisson Distribution
Properties:

2) E[X] =\

A = >‘k
EIX] = e ZkF
k=0
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Poisson Distribution
Properties:
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Poisson Distribution

Properties:

3) var(X) = A
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Poisson Distribution
Properties:

3) var(X) = A

E[X?] = i

k=0
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Poisson Distribution
Properties:

3) var(X) = A

Kl
k=0
0 kAk_l
_ -
= Ae (k;(k—l)!>
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Poisson Distribution
Properties:

3) var(X) = A
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Poisson Distribution
Properties:

3) var(X) = A

kK1
= )\e_’\<2 A
il
Let j=k—1,

E[X?Y = Ae—*zw

Jj=0
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Poisson Distribution

Properties:

3) var(X) = A
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Poisson Distribution

Properties:
3) var(X) = A
Let j=k—1,
E[X?]
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Poisson Distribution

Properties
3) var(X) =\
E[X?] = Xe M)t +eY)
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Poisson Distribution

Properties

3) var(X) =\

var(X) = E[X?] — E[X]
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Poisson Distribution

Properties

3) var(X) =\

E[X?] = Xe M)t +eY)

= AMA+1)
var(X) = E[X?] — E[X] = A2+ A — A2 = \
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Poisson Distribution

Properties

3) var(X) =\

E[X?]

e M Net + et)
AA+1)
var(X) = E[X?] — E[X] = A2+ A — A2 = A

Very useful distribution, with strong assumptions. We'll explore in
homework!
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Often interested in how processes evolve over time
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Often interested in how processes evolve over time
- Given voting history, probability of voting in the future
- Given history of candidate support, probability of future support

Given prior conflicts, probability of future war

Given previous words in a sentence, probability of next word

Potentially complex history
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Stochastic Process

Definition

Suppose we have a sequence of random variables

{X},—"i0 = Xy, X1, X0, ..., Xy that take on the countable values of S. We
will call {X}M, a stochastic process with state space S.

If index gives time, then we might condition on history to obtain probability
PMF X;, given history = P(X¢|Xt—1,X¢i—2,..., X1, X0)

Still Complex
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Markov Chain

Definition

S. Then {X}M, is a markov chain if:

Suppose we have a stochastic process {X },"i o with countable state space
P(Xt‘Xt—laxt—L

X1, Xo) = P(Xe|Xe-1)
A Markov chain’s future depends only on its current state
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Transition Matrix

Habitual turnout?

Vote; Not Vote;
T = Vote; 1 0.8 0.2
Not Vote;—1 0.3 0.7

- Suppose someone starts as a voter—what is their behavior after
- 1 iteration?
- 2 interations?

- The long run?

R Code!
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Monday: Continuous Random Variables!
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