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I simulate an ideal gas and observe how its macroscopic properties emerge from microscopic time
evolution. First, I implement an event-based molecular dynamics engine of hard-sphere particles
bouncing around inside a box. With this engine, I demonstrate that (1) particle speeds approach a
Maxwell-Boltzmann distribution, (2) that the system agrees with the ideal gas law PV = NkBT ,
and (3) that fluctuations in local density decrease with N . These simulations verify that statistical
mechanics is indeed a reliable framework for modeling large numbers of particles.

I. INTRODUCTION

How do macroscopic ”thermodynamic” properties of
matter – temperature, pressure, and more – emerge from
the microscopic laws of physics? Statistical mechanics
provides a simple and elegant framework to answer this
question. It explains how thermodynamic properties re-
sult from the dynamics of many small particles. How-
ever, the main concepts and assumptions of statistical
mechanics are rather abstract and intangible, and fur-
thermore, they are not often “proven” in the curriculum
in an intuitively convincing way. For these reasons, it
is instructive to explicitly visualize how a large system
attains its thermodynamic properties.

Here, I simulate an ideal gas, particle-by-particle, to
demonstrate that its large-scale properties indeed result
from the dynamics of individual particles. In particular,
I demonstrate that (1) non-equilibrium states evolve to
equilibrium; (2) the gas satisfies the equation of state
PV = NkBT ; and (3) fluctuations around equilibrium
occur, and decrease with large N . Afterwards, I briefly
discuss the ergodic assumption, and then I show that the
simulation can account for non-equilibrium phenomena
such as Brownian motion.

II. DESCRIPTION OF IDEAL GAS

In this section I will describe the ideal gas microscop-
ically, and in later sections, I will explain the emergent
properties of entropy and pressure as they naturally arise.

The ‘ideal gas’ is a simple statistical mechanical model
that successfully explains many properties of real gases
such as their heat capacities. I choose to simulate an ideal
gas because it is the simplest model that demonstrates
main tenets of statistical mechanics.

My simulation consists of N classical particles with
positions ~xi and velocities ~vi, contained in a box of side
length L. Each particle is a “hard-sphere” of radius ri
and mass mi. The particles exert no forces on each other,
but they collide elastically with each other and reflect
(specularly) on the walls of their container. We can con-
sider these collisions as delta-function force spikes that
instantaneously change the particle velocity. Note that
since all interactions are elastic, the total energy of the

system

E =
∑
i

1

2
mi|~vi|2 (1)

is conserved.

A. Equations of motion

Now we describe the time evolution of these colliding
classical particles. When a particle is traveling freely
through space, it moves at a fixed velocity with a trajec-
tory given by

~xi(t+ ∆t) = ~xi(t) + ~vi∆t. (2)

A particle reflects off a wall with unit normal n̂ at posi-
tion w along the n̂ coordinate if the particle touches the
wall; that is, if

~xi − rin̂ = w. (3)

Since we only consider specular reflection, the component
of velocity normal to the wall is inverted, meaning that
its velocity changes as

~vi → ~vi − 2(~vi · n̂)n̂. (4)

A collision between two particles i and j occurs when

|~xi − ~xj | = ri + rj , (5)

or when the particles touch. During the collision, a mo-
mentum ~q is exchanged between the particles:{

~vi → ~vi + ~q/mi,

~vj → ~vj − ~q/mj .
(6)

To fix ~q, we apply two constraints. Since we only consider
elastic collisions where kinetic energy is conserved, we
must satisfy

1

2
miv

2
i +

1

2
mjv

2
j =

1

2
mi|~vi + ~q/mi|2 +

1

2
mj |~vj − ~q/mj |2,

(7)
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and since we only consider “specular collision”, ~q must
lie normal to the reflection plane; that is,

~q = q r̂ij , (8)

where r̂ij ≡ (~ri − ~rj)/|~ri − ~rj | is a unit vector pointing
between the centers of the particles. Solving these equa-
tions for q gives us

~q = −2
mimj

mi +mj

[
(~vi − ~vj) · r̂ij

]
r̂ij (9)

as the momentum transferred when two particles collide.

***

Given these equations of motion, the task of our sim-
ulation engine is threefold: (i) to propagate the particles
through space with Eq. 2 when they are not colliding;
(ii) to update the velocities with Eq. 4 whenever the par-
ticles collide with the walls (Eq. 3); and (iii) to update
the velocities with Eq. 6 whenever the particles collide
with each other (Eq. 5).

III. IMPLEMENTATION

Now I describe my tactics for simulating the physics
described in section II A. In brief, I implement an event-
based molecular dynamics engine in python, using the
numpy and matplotlib libraries.

A. Description of event-based molecular dynamics

Here I outline the algorithm of event-based molecular
dynamics. I learned most of this information from refer-
ence [1].

The main idea of event-based molecular dynamics is
to proceed collision by collision, rather than timestep by
timestep. To do this, the engine maintains a EventQueue
of upcoming collisions, sorted by their time of occurrence.
At each step, the engine determines pops off the next
collision from the EventQueue, evolves time until this
collision using Eq. 2, and then performs this collision
using Eq. 4 or Eq. 6.

To maintain the correctness of the EventQueue, the en-
gine needs to update the timings of future events when-
ever a particle involved in that event collides. In other
words, each time a particle p undergoes a collision, the
engine needs to re-calculate the times of all future events
involving particle p, and update the EventQueue accord-
ingly. The timings of future events can be determined by
solving for t in Eqs. 3 and 5.

The data structure used to maintain the EventQueue
is a priority queue, which contains many ‘events’, each
associated with a ‘priority’. A priority queue can extract
the highest-priority event in O(logN), and can update
the priority of existing events in O(logN). In my case,
the event is a pair of colliding particles, and the priority

is the time of collision. The priority queue data structure
allows me to extract the next collision in O(logN) time,
and allows me to update the time of upcoming collisions
in O(logN) time.

The pseudocode for the algorithm is shown below.

***

[Initialize particle positions and velocities]

/* Initialize the Event Queue -- O(N^2)*/
queue <- [New Event Queue]
for [all pairs of particles]:

t <- [Calculate time until particles collide]
queue.push(t, particle pair)

[Sort the event queue by time]

While true:
/* Retrieve next event from the Queue
-- O(log N) */
t, particles <- queue.pop()

/* Evolve all particles until this time
-- O(N) */
for [all particles]:

particle.evolve_until(t)

/* Perform this event -- O(1) */
particles.collide()

/* Update the timings of all particles
involved in this event -- O(N log N)*/
for [particle in this event]:

for [upcoming events
involving this particle]

time <- [Get new collision time]

event.update_priority(time) // O(log N)

***

B. Software Architecture

I choose a clean and modular software design. A di-
agram of the architecture can be found at the end in
Figure 6.

C. Verification

I implemented and verified my event-based molecu-
lar dynamics engine as described in my progress reports.
The individual components of the system were designed
and verified separately. For instance, when I imple-
mented the particle collision velocity update rule (Eq.
6), I tested the function extensively with various initial
particle velocities and positions, and I checked that the
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new velocities were physical and that energy was con-
served.

FIG. 1. Shown above is a frame of an animation produced by
my event-based molecular dynamics engine. The behavior of
the particles appears physically probable. In light blue is the
path of one of the particles traced over time.

Once I implemented all the components of the engine, I
manually verified the overall correctness by drawing the
particles and printing the EventQueue after each colli-
sion. The resulting animations appeared visually correct
(Fig. 1). As one final sanity check, the overall system
energy is conserved as particles collide (data not shown).

***

With this molecular dynamics engine in place, I am ready
to simulate an ideal gas and observe its emergent fea-
tures.

IV. RESULTS

I find that this simulation can reproduce many of the
known and predicted properties of ideal gases. Below, I
conduct a total of 3 experiments with ideal gases, demon-
strating the Maxwell-Boltzmann distribution, the ideal
gas law PV = NkBT , and fluctuations around equilib-
rium. For each of these properties, I will first show the
experimental result, and then give the theoretical justifi-
cation.

Animations are more lucid than the static figures in
this pdf. The gifs used in my presentation can be
found under http://stanford.edu/~jeffjar/files/
physics113/.

A. Maxwell-Boltzmann distribution: Experiment

First I observe the speed distribution of the particles
evolves in time. I find that it approaches a definite shape

rather quickly (in roughlyO(N) collisions) and then stays
close to this equilibrium shape.

Surprisingly, no matter how the particles are initial-
ized, the distribution of their speeds approaches the same
shape. Shown in Figure 2 is how the speed distribution
of N = 100 particles with total energy E ≈ 2000 changes
in time. A initial uniform speed distribution evolves to
an equilibrium distribution and stays there (top panel).
Even if I initialize the speeds in a very non-equilibrium
manner, where one particle carries all 2000 units of en-
ergy, and all the other particles are at rest, the distri-
bution of speeds approaches equilibrium within 500 col-
lisions (middle panel). When the speeds are initialized
with this distribution, they stay near it (bottom panel).

The experimental tendency of the particles to ap-
proach a certain “equilibrium” of speeds begs for a
simple theoretical explanation. Looking at the anima-
tions under http://stanford.edu/~jeffjar/files/
physics113/, I can make some suggestive observations:
there are many possible ways for the speeds to dis-
tribute themselves in the equilibrium manner (Fig. 2,
right panel), but not so many ways for the inital non-
equilibrium manner. This observation suggests a statis-
tical approach of counting the “ways” or “complexions”
of comprising different distributions.

Below, I will explain the equilibrium distribution of
speeds using statistical mechanics.

B. Maxwell-Boltzmann distribution: Theory

Here, I will go through classic argument of maximizing
entropy to derive the Maxwell-Boltzmann speed distribu-
tion. To begin, I will use the maximum-entropy argument
to derive the Boltzmann factor.

Consider a system of N particles sharing a total energy
E. Suppose that the possible energies are given by εi, and
that there are ni particles having energy εi. We wish
to know the “equilibrium” distribution of energies – the
{ni}, telling us how many particles have energy εi.

As suggested earlier, the system will evolve towards
{ni}s with a greater number of “complexions” or “mi-
crostates” – different ways of assigning energy to indi-
vidual particles that still arrive at the same overall dis-
tribution. In particular, the number of complexions W
is given by the combinatoric expression

W =
N !∏
i ni!

, (10)

where the N ! in the numerator accounts for the total
number of ways of re-assigning energies to particles, and
the factors of n! in the denominator correct for over-
counting for different particles having the same energy
εi. Since this expression scales exponentially with N , it
is nice to take the logarithm of the complexion. We can
use the Sterling approximation log n! ≈ n log n − n to

http://stanford.edu/~jeffjar/files/physics113/
http://stanford.edu/~jeffjar/files/physics113/
http://stanford.edu/~jeffjar/files/physics113/
http://stanford.edu/~jeffjar/files/physics113/
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FIG. 2. The speed distribution quickly evolves to the same
distribution, regardless of the initial conditions. Left, the
speed distribution at t = 0; Right, the speed distribution af-
ter 500 collisions. Top, uniform initial velocity distribution;
Middle, uniformly-zero initial velocities, with one nonzero ve-
locity; Bottom, Maxwell-Boltzmann initial conditions, with
the theoretical distribution (Eq. 19) shown in orange. All
simulations are in 2D, V = 1002, N = 100, E ≈ 2000.

simplify the expression in limits of large n:

logW ≈ NlogN −N −
∑
i

(ni log ni − ni) (11)

= NlogN −
∑
i

ni log ni. (12)

We wish to find the distribution {ni} that maximizes
logW , subject to the constraints∑

i

ni = N ;
∑
i

εini = E.

Introducing the Lagrange multipliers α and β to imple-

ment these constraints, we find that we must extremize

G({ni}) ≡ logW + α(constraint 1) + β(constraint 2)

(13)

= N logN −
∑
i

log ni + α(N −
∑
i

ni) + β(E −
∑
i

εini)

(14)

Taking the derivative of G with respect to nj , we find

dG

dnj
= − log nj − 1− α− βεi, (15)

and setting this to zero and solving for nj , we arrive at
the result

nj = e1−αe−βεi =⇒ nj
N

=
1

Z
e−βεi , (16)

where we define Z ≡ Ne1+α =
∑
i e
−βεi . This is our

desired Boltzmann distribution; it says that the {ni} dis-
tribution with the most complexions is a decaying expo-
nential in energy.

To derive the speed distribution from the energy dis-
tribution, we need to do a few additional steps. Since
the kinetic energy of a particle is given by ε = 1

2mv
2, the

distribution over velocities is given by

P (~v)d~v ∝ e−βm|~v|
2/2, (17)

a Gaussian in all dimensions of velocity with spread
1/
√
βm. To arrive at the distribution over speeds, we

assume an isotropic distribution of velocities, and aver-
age over angles. In three dimensions, the volume element
is d~v = 4πv2dv, so we arrive at the final result

P (v)dv ∝ v2e−βm~v
2/2 . (18)

In two dimensions, the area element is d~v = 2πvdv, so
the distribution is instead given by

P (v) dv ∝ v e−βmv
2/2. (19)

Shown in Figure 2 is a fit of this theoretical distri-
bution over the observed experimental distribution. As
seen in the figure, the simulated speeds are explained
quite convincingly by the Maxwell-Boltzmann distribu-
tion, suggesting that the theoretical framework of max-
imizing entropy and approaching equilibrium does rea-
sonably explain the behavior of many particles.

***

I have shown that the Maxwell-Boltzmann distribution
can explain my observed distribution of speeds. This
distribution, however, is parametrized by the Lagrange
multiplier β, which I have not yet related to a physical
property of my simulation. In the next section I will
relate β to E, the total energy of all particles in the
simulation. Defining kBT ≡ 1/β as the temperature, the
main result is that E = d

2NkBT, where d is the number
of dimensions in the simulation.
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***

We will now find the energy of a collection of N parti-
cles obeying a Maxwell-Boltzmann distribution of veloc-
ities (Eq. 17). In d dimensions, the kinetic energy of a
single particle is given by

ε =
1

2
m

d∑
i=0

v2i , (20)

where vi is the i’th component of velocity. The total
energy of N particles obeying this distribution is

E = N〈ε〉 (21)

=
1

2
Nm

∫ d∑
i=0

v2i .P (~v)d~v. (22)

Since P (~v) is the same for all components of v, we can
just evaluate the sum for one component i, and multiply
the result by d. To do this, we first rewrite the velocity
distribution component-wise as

P (~v)d~v ∝ e−βm
∑d

j=0 v
2
j/2d~v (23)

∝
d∏
j=0

e−βmv
2
j/2dvj . (24)

When we integrate over each of the vjs, each integral
yields a factor unity (because the distribution is normal-
ized), except for the i = j integral, which gives us

∫ +∞

−∞
v2e−βmv

2/2dv =
1

2

√
π

(
2

βm

)3

(25)

=

√
2π

(βm)3
. (26)

Putting everything together, including the normaliza-
tion constant A =

√
βm/2π, we find that the energy

is

E =
d

2
mNA

∫
v2P (v)dv (27)

=
d

2
mN

√
βm

2π

∫ +∞

−∞
v2e−βmv

2/2dv (28)

=
d

2
N

1

β
, (29)

so indeed,

E =
d

2
NkBT . (30)

I want to make one last note before moving on. There
are d contributions to the kinetic energy; each component
of the velocity adds a m〈v2i 〉/2 to kinetic energy. Each

of these “translational degrees of freedom” in turn con-
tributes an energy of kBT/2. This is an example of the
so-called equipartition theorem from classical statistical
mechanics.

This result concludes my discussion about the equilib-
rium distribution of speeds in an ideal gas. Maximizing
the entropy leads to a Maxwell-Boltzmann distribution of
velocities (Eq. 17), parametrized by the Lagrange multi-
plier β. As shown in treatments of statistical mechanics
[2], this β is the reciprocal of the temperature kBT . In
turn, the temperature of an ideal gas is related to its
energy by equation 30. I have thus related the equilib-
rium distribution of speeds of the ideal gas (in the NVE
ensemble) to the total energy of the particles.

Now that I have demonstrated explicitly the approach
towards equilibrium, I will investigate the equilibrium
property of pressure.

C. Ideal Gas Law: Experiment

When the particles collide with the walls, they deliver
momentum to the walls. This net momentum delivery
results in an average force per area of wall – the pressure
of the gas. A natural question to ask is how this pres-
sure varies with other macroscopic variables of the gas,
such as the number of particles N , the volume V , or the
temperature T (for our purposes, temperature is defined
by E = d

2NkBT ).
Shown in Figure 3 is how the simulated pressure P

depends on the volume V , the number of particles N ,
and the temperature kBT . In each of these plots, the
only the variable of interest is varied, while the others are
held constant. As seen in the plots, the pressure varies
inversely with volume and linearly with temperature and
number of particles: P ∝ NkBT/V . In fact, looking
more carefully we see that the constant of proportionality
is unity. The simulated system obeys the relation PV =
NkBT – the ideal gas law.

D. Ideal Gas Law: Theory

Now I will derive the ideal gas law.
There are a number of ways to derive the ideal gas

law. The most general way, based in statistical mechan-
ics, is by taking the appropriate derivatives of the par-
tition function Z and then solving for relationships be-
tween the thermodynamic variables. However, these ap-
proaches rely on a background framework of statistical
mechanics, which I do not have the room to construct.
Instead, here, I will take a simpler microscopic approach
in the spirit of “kinetic molecular theory”. I think this
approach lies more in line with the explicit nature of my
simulation.

Let us consider the momentum delivered to a wall
patch of area A during time τ . The only momentum
comes from the component of velocities normal to the
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FIG. 3. The pressure of the simulated ideal gas agrees very
well with the theoretical P = NkBT/V prediction. Clockwise
from top left: Pressure to volume, pressure to inverse volume
(for linearization), pressure to number of particles, pressure to
temperature. All simulations are in 2D, and the non-varying
parameters are held at V0 = 200, kBT0 = 20, N0 = 100. The
measured pressure is averaged over 500 events. Particles are
initialized with position drawn from a uniform distribution
within the boundaries and velocities drawn from a Maxwell-
Boltzmann distribution of temperature kT .

wall, vx. For now, we consider only particles with veloc-
ity component vx; to arrive at the final result, we inte-
grate over the x-components of velocity, weighted by the
Maxwell-Boltzmann distribution.

To determine the momentum transmitted to the wall,
we multiply the momentum transferred per collision by
the number of collisions. Each collision with a particle of
mass m delivers a momentum of 2mvx to the wall. Only
particles within a distance of τvx will be able to hit the
wall in time τ , so “collidable zone” thus has a volume
of τvxA. The number of particles in this collidable zone
is given by the number density N/V times the volume
of this zone. Putting these together, we find that the
momentum delivered by particles of velocity component
vx, to a wall patch of area A in time τ , is

= (collidable volume) ∗ (density) ∗ (mom. per collision)

= (τvxA)(
N

V
)(2mvx)

= 2mv2x
N

V
τA.

Next, we must integrate over the vxs, weighted by their
distribution. The range of integration is 0 to +∞, since
only particles traveling towards the wall will collide with

it. As a result, we end up with a factor of one-half com-
pared to the mean squared speed, meaning that

(Momentum delivered to wall) = m〈v2x〉
N

V
τA.

To find the pressure, we find the force (momentum per
time), and divide by the area:

P =
(Momentum delivered to wall)

τA
= m〈v2x〉

N

V
. (31)

We wish to write the mean squared velocity in terms of
the temperature kBT . To do this, recall the “equipar-
tition theorem”: each component of the velocity, with
kinetic energy m〈v2i 〉/2, has a thermal energy of kBT/2.
We can also see this explicitly by performing the inte-
gral in Eq. 25. In any case, we see that m〈v2i 〉 = kBT .
Putting this into Eq. 31 yields the ideal gas law

P = NkBT/V . (32)

E. Density Fluctuations: Experiment

To motivate the study of fluctuations, I would like to
bring attention to the last panel of Fig. 2. The his-
togram of speeds does not perfectly overlap the theo-
retical shape, but is only close to the theoretical shape.
Looking at some of the animations in http://stanford.
edu/~jeffjar/files/physics113/, it is evident that
systems do not evolve to equilibrium, but rather, they
evolve close to equilibrium. To fully describe the behav-
ior of systems, then, we must how close they lie to their
equilibrium position.

Rather than studying the fluctuations of the speed dis-
tribution, I will study fluctuations in local density. Al-
though it is possible to quantify the “distance” from the
equilibrium distribution (for instance, with a χ2 statis-
tic), I will discuss fluctuations in density, because it is
easier to think about the question “what fraction of the
particles are on the left half of the box?”. As it turns
out, density fluctuations behave similarly to other sorts
of fluctuations, such as pressure fluctuations, or energy
fluctuations in the canonical ensemble. Studying the “toy
example” of fluctuations in density can help us think
about the phenomena of fluctuations in general.

In particular, I will examine the behavior of the vari-
able f , the fraction of particles on the left half of the
box. The equilibrium value of f is 1/2, which we can
derive from an entropic argument in the flavor of sec-
tion IV B. The instantaneous value of f , however, may
vary with time, because the particles are moving around.
To observe this variation, I conduct experiments where I
measure f as a function of time.

Shown in Figure 4 are experimental results, tracking
f (the fraction of particles on the left half of the box)
over time. The visual appearance of the plots makes it
clear why we call this phenomenon “fluctuations”: as

http://stanford.edu/~jeffjar/files/physics113/
http://stanford.edu/~jeffjar/files/physics113/
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time evolves, the value of f fluctuates around its equilib-
rium value of 1/2. To quantify the magnitude of these
fluctuations, we define the root-mean-square fluctuation
∆f ≡

√
|f − 〈f〉|2. (Again, I think that this definition is

motivated by looking at the plot.)
Looking at the plots in Figure 4, we see that the mag-

nitude of fluctuations ∆f decreases as N increases from
10 to 50 to 100. To attempt to determine the dependence
of ∆f on N , I simulate gases with N varying from 10 to
150, and observe that ∆f decreases, rather sharply at
first, and then more slowly (bottom right panel).

To explain these observations about fluctuations, I will
again discuss some standard statistical mechanical the-
ory.

FIG. 4. The fraction of the particles on the left half of the
box, f , fluctuates as a function of time. Shown above are
the density fluctuations for N = 10, N = 50, and N = 100.
Bottom right, the root mean squared deviation of the density,
∆f ≡

√
|f − 〈f〉|2, is plotted as a function of N . The fluctua-

tions clearly decrease with N , but the attempted 1/
√
N fit is

not very successful. All simulations are in 2D, with a volume
of V = 2002 and kBT = 20. Fluctuations are averaged over
10000 events.

F. Density Fluctuations: Theory

There is a straightforward statistical argument that
explains the trend between ∆f and N , but the assump-
tions going into this argument (ie, independence, ergod-
icity and long-time averaging) are rather subtle. I will
first state the argument, and then I will comment on its
assumptions.

***

Suppose we model the positions of the N particles as
following: (1) each particle has a uniform probability of
being anywhere in the box, and (2) each particle’s posi-
tion is independent of the others’. Under these assump-
tions, each particle can be modeled as a random variable,
with 1/2 probability of being 1 (left half), and 1/2 prob-
ability of being 0 (right half). (The expectation of this
random variable is 1/2, as is the standard deviation.) f
is given by the average of N such random variables.

By the central limit theorem of statistics, when N is
“sufficiently large,” 〈f〉 is the expected value of the ran-
dom variable, and ∆f is its standard deviation divided
by
√
N . In this case, the central limit theorem predicts

∆f = 1/(2
√
N) – that fluctuations fall off as 1/

√
N .

***

In the bottom left panel of Fig. 4, it is evident that
a 1/

√
N curve does a poor job of fitting the experi-

mental density fluctuations. A very plausible reason is
that N is too small in these simulations. The central
limit theorem only holds when N is sufficiently large that
higher-order probability moments are insignificant. For
instance, when N small and the predicted ∆f is big, the
f distribution definitely cannot be normal, since f must
lie between 0 and 1.

Upon further inspection of the experimental data, how-
ever, we realize that the assumptions we make to invoke
the central limit theorem are somewhat subtle. First of
all, in the theoretical approach, we take a phase-space
average of the particle position (that is, we consider the
possible positions in the box) – but in the experimental
observation, we take a time average of the particle po-
sitions. It is not obvious that time averages correspond
to phase-space averages in any meaningful way. It takes
careful thought to consider what this assumption really
means. By explicitly tracing time evolution, as in this
simulation, we can glean a bit of intuitive insight on this
question of ergodicity.

Furthermore, the experimentally measured fluctua-
tions are not independent samples from a phase space
distribution – observations at time t are correlated with
observations at time t+∆t. We can clearly see this on the
plots in Figure 4: if we move a small distance along the
x-axis, the fluctuation f tends to change less than if we
move a large distance along the x-axis. In the parlance of
non-equilibrium statistical mechanics, we have a nonzero
correlation function g(t) = 〈x(t)x(0)〉. Our samples of f
are clearly not independent.

There is a timescale τ associated with the correlation
in f , however, and if we measure f over a long enough
time T >> τ , we can ensure that we are sampling a true
time average. (This timescale τ is related to how fast the
correlation function decays to zero.) For instance, in the
bottom left panel of Fig. 4, we see that the behavior of
fluctuations do not fully reveal themselves after 50 units
of time. Even with the 350 units of time shown in the
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figure, it does not appear that we have fully thoroughly
sampled the behavior of fluctuations. The fact that we
sample f for too short of a time compared to its auto-
correlation time τ , could explain why our ∆f -to-N plot
on the bottom right panel of Fig. 4 is not well described
by a 1/

√
N curve.

To summarize the above discussion: the classic statis-
tical argument to arrive at 1/

√
N fluctuations involves

distributions over phase space, whereas the actual ex-
perimental observation involves distributions over time.
Since measurements occurring closely in time are corre-
lated with another, we must observe the system for much
longer than the correlation time τ to correctly sample
the time distribution. Finally, even if we obtain the true
time distribution, we must make the ergodic assumption
– that the laws of time evolution properly sample the
phase space distribution – in order to apply the central
limit theorem argument.

These arguments may seem rather theoretical and tan-
gential, but I find them fascinating and rather crucial.
Thinking carefully about these fluctuation-to-time plots
gives us a glimpse into the marvelous world of non-
equilibrium statistical mechanics.

V. EXTENSIONS

My event-based molecular dynamics engine can be eas-
ily extended to simulate related phenomena. Because
my implementation has a modular architecture, users can
easily add and remove features from the simulation. Here
I briefly discuss one simple extension in the realm of non-
equilibrium statistical mechanics.

A. Brownian motion

By placing a larger, more massive particle in the midst
of the smaller gas particles, I can observe Brownian mo-
tion. Shown in Figure 5 is an example trajectory of a
larger particle diffusing around inside the fluid. Notice
that the diffusing particle appears to undergo a random

motion, even though the motion of every individual par-
ticle in the simulation is deterministic. With this visual-
ization, we can explicitly see how the seemingly random
behavior of diffusion emerges from the statistical effect
of many moving particles.

The behavior of the diffusing particle can be modeled
as a random walk, where the mean squared deviation
from the starting position increases linearly with time.
In particular, the trajectory ~x(t) can be modeled with

〈|~x(t)− ~x(0)|2〉 = 2dDt, (33)

where d is the dimensionality of the system and D is
the so-called diffusion coefficient, with units of length
squared per time [3]. I can verify this simple random-
walk model by tracing the trajectory of the Brownian
particle under different initial conditions. Shown in Fig-
ure 5 is the trajectory of the diffusing particle, with 10
different initial conditions. The squared deviation of the
particle roughly increases linearly with time, suggesting
that Eq. 33 is somewhat reasonable. With more simu-
lations, I can explicitly measure the diffusion coefficient
of the Brownian particle by fitting the average squared
deviation to a straight line.

VI. CONCLUSION

In summary, I have explicitly demonstrated the core
principles of statistical mechanics by simulating an ideal
gas. I first demonstrate that the distribution of veloci-
ties quickly approach a Maxwell-Boltzmann distribution,
regardless of their initial conditions. By seeing this sys-
tem evolve to equilibrium, we see explicitly how systems
evolve from low-entropy to high-entropy states. Next, I
demonstrate the ideal gas law PV = NkBT by measur-
ing the pressure as a function of V , N , and kBT , and
find that my simulation agrees with the theoretical gas
law. Finally, I show that fluctuations around equilibrium
decrease with N , which explains why they are negligible
in the “thermodynamic” large-N limit.
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FIG. 5. The simulation engine can describe the Brownian motion of massive particles as they are buffeted around by the lighter
gas molecules. Left, an example trace of the motion of a diffusing Brownian particle. Right, the squared deviation |~x(t)−~0(0)|2
of the Brownian particle as a function of time, for ten different random initial seeds. Notice the roughly linear average increase.
(The diffusing particle has 10x the mass and 5x the radius of the gas particles.)
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FIG. 6. Shown above is the software architecture of the code. The State object maintains a priority queue of Events, sorted by
time. As the State evolves, the various Trackers monitor variables such as the pressure and total energy. Trackers also perform
GUI tasks, such as drawing the state of the box, or displaying the distribution of speeds.
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