Multiple Optimality Guarantees in Statistical Learning

Multiple Optimality Guarantees in Statistical Learning

John C. Duchi

Ph.D. Thesis, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 2014.

Classically, the performance of estimators in statistical learning problems is measured in terms of their predictive ability or estimation error as the sample size n grows. In modern statistical and machine learning applications, however, computer scientists, statisticians, and analysts have a variety of additional criteria they must balance: estimators must be efficiently computable, data providers may wish to maintain anonymity, large datasets must be stored and accessed. In this thesis, we consider the fundamental questions that arise when trading between multiple such criteria--computation, communication, privacy--while maintaining statistical performance. Can we develop lower bounds that show there must be tradeoffs? Can we develop new procedures that are both theoretically optimal and practically useful? To answer these questions, we explore examples from optimization, confidentiality preserving statistical inference, and distributed estimation under communication constraints. Viewing our examples through a general lens of constrained minimax theory, we prove fundamental lower bounds on the statistical performance of any algorithm subject to the constraints--computational, confidentiality, or communication--specified. These lower bounds allow us to guarantee the optimality of the new algorithms we develop addressing the additional criteria we consider, and additionally, we show some of the practical benefits that a focus on multiple optimality criteria brings. In somewhat more detail, the central contributions of this thesis include the following: we