Privacy Aware Learning

John C. Duchi, Michael I. Jordan, Martin J. Wainwright

University of California, Berkeley

NIPS 2012
An example
An example

Setting: We want to construct a good image classifier, say, of military personnel
Petraeus in a market

Source: Department of Defense
Petraeus thinking

Source: CBS News
Pictures Petraeus might not want shared
Pictures Petraeus might not want shared
Maybe he shouldn’t share that?

Source: Rolling Stone
But I want a good image classifier

What should we do?
Start to develop theory of learning from private data
Start to develop theory of learning from private data

Instead of this
Start to develop theory of learning from private data
Start to develop theory of learning from private data

Learn from

Duchi (UC Berkeley) Privacy Aware Learning December 2012 8 / 28
Start to develop theory of learning from private data
Start to develop theory of learning from private data
Start to develop theory of learning from private data
Start to develop theory of learning from private data
Start to develop theory of learning from private data
Start to develop theory of learning from private data
Outline

I Problem statement and motivating examples

II The privacy game

III Statistical estimation tradeoffs

IV Conclusions and future work
What are the tradeoffs between maintaining privacy and statistical estimation?
What are the tradeoffs between maintaining privacy and statistical estimation?

Fine-grained tradeoffs between privacy and utility
Setting

- Get samples X_1, \ldots, X_n
- Have a parameter θ we want to infer
- Measure performance of parameter θ with loss $\ell(\theta; X)$
Example: breast cancer prediction

- Data in \((x, y)\) pairs (regressor \(x \in \{-1, 1\}^d\), label \(y \in \{\pm 1\}\))

\[
x = \begin{bmatrix}
1 & -1 & 1 & -1 & \cdots & 1 \\
\text{Clump} & \text{Uniform} & \text{Adhesive} & \text{Chromatin} & \cdots & \text{Mitoses}
\end{bmatrix}
\]

\[
y = \begin{cases}
+1 & \text{if cancerous} \\
-1 & \text{if not}
\end{cases}
\]
Example: breast cancer prediction

Data in \((x, y)\) pairs (regressor \(x \in \{-1, 1\}^d\), label \(y \in \{\pm 1\}\))

\[
x = \begin{bmatrix}
1 & -1 & 1 & -1 & \cdots & 1
\end{bmatrix}
\]

\[
y = \begin{cases}
+1 & \text{if cancerous} \\
-1 & \text{if not}
\end{cases}
\]

Goal: Find \(\theta\) so that \(\text{sign}(\theta^T x) = y\)
Example: breast cancer prediction

- Data in \((x, y)\) pairs (regressor \(x \in \{-1, 1\}^d\), label \(y \in \{\pm 1\}\))

\[
x = \begin{bmatrix}
1 & -1 & 1 & -1 & \cdots & 1 \\
\text{Clump} & \text{Uniform} & \text{Adhesion} & \text{Chromatin} & \cdots & \text{Mitoses}
\end{bmatrix}
\]

\[
y = \begin{cases}
+1 & \text{if cancerous} \\
-1 & \text{if not}
\end{cases}
\]

- **Goal:** Find \(\theta\) so that \(\text{sign}(\theta^\top x) = y\)

- **Loss:**

\[
\ell(\theta; \{x, y\}) = \left[1 - y\theta^\top x\right]_+
\]
Setting

\[\hat{\theta} \]

\[M \]

\[X_1 \quad X_2 \quad X_3 \quad \cdots \quad X_n \]
Formal setting

Goal: minimize a risk R measuring performance of a parameter θ:

$$\min_{\theta} R(\theta) = \mathbb{E}[\ell(\theta; X)]$$

subject to $\theta \in \Theta$ using samples X_1, \ldots, X_n.

Question: Can we find $\hat{\theta}$ so that $R(\hat{\theta}) - R(\theta^*)$ small without learning about X_1, \ldots, X_n?
Formal setting

Goal: minimize a risk R measuring performance of a parameter θ:

$$\text{minimize } R(\theta) = \mathbb{E}[\ell(\theta; X)]$$

subject to $\theta \in \Theta$

using samples X_1, \ldots, X_n.
Formal setting

Goal: minimize a risk R measuring performance of a parameter θ:

$$
\minimize R(\theta) = \mathbb{E}[\ell(\theta; X)] \\
\text{subject to } \theta \in \Theta
$$

using samples X_1, \ldots, X_n.

Question: Can we find $\hat{\theta}$ so that $R(\hat{\theta}) - R(\theta^*)$ small without learning about X_1, \ldots, X_n?
Formal setting

Goal: minimize a risk R measuring performance of a parameter θ:

$$
\text{minimize } R(\theta) = \mathbb{E}[\ell(\theta; X)]
$$
subject to $\theta \in \Theta$

using samples X_1, \ldots, X_n.

Question: Can we find $\hat{\theta}$ so that $R(\hat{\theta}) - R(\theta^*)$ small without learning about X_1, \ldots, X_n?

From but not about
Formalizing privacy

Prior work: Lots (Chaudhuri and collaborators, Dwork et al., Wasserman and Zhou)
Formalizing privacy

Prior work: Lots (Chaudhuri and collaborators, Dwork et al., Wasserman and Zhou)

Local Privacy: Changing privacy barrier (Evfimievski et al. 2003, Warner 1965)
Formalizing privacy

Prior work: Lots (Chaudhuri and collaborators, Dwork et al., Wasserman and Zhou)

Local Privacy: Changing privacy barrier (Evfimievski et al. 2003, Warner 1965)
Formalizing privacy

Prior work: Lots (Chaudhuri and collaborators, Dwork et al., Wasserman and Zhou)

Local Privacy: Changing privacy barrier (Evfimievski et al. 2003, Warner 1965)
How do we get privacy?

Example: Classification

- Data pairs \((x, y)\) with \(x \in \{-1, 1\}^d\), label \(y \in \{\pm 1\}\)

\[
x = \begin{bmatrix} 1 & -1 & 1 & 1 & \cdots & -1 \\ Clump & Uniform & Adheres & Chromatin & \cdots & Mitoses \end{bmatrix}
\]

\[
y = \begin{cases} +1 & \text{if cancerous} \\ -1 & \text{if not} \end{cases}
\]
How do we get privacy?

Example: Classification

- Data pairs \((x, y)\) with \(x \in \{-1, 1\}^d\), label \(y \in \{\pm 1\}\)

\[
x = \begin{bmatrix}
1 & -1 & 1 & 1 & \cdots & -1 \\
\text{Clump} & \text{Uniform} & \text{Adheres} & \text{Chromatin} & \cdots & \text{Mitoses}
\end{bmatrix}
\]

\[
y = \begin{cases}
+1 & \text{if cancerous} \\
-1 & \text{if not}
\end{cases}
\]

Idea: Add independent random noise \(W\) to coordinates of \(x\):

\[
Z_i = X_i + W
\]
How do we get privacy?

Example: Classification

- Data pairs \((x, y)\) with \(x \in \{-1, 1\}^d\), label \(y \in \{\pm 1\}\)

\[
x = \begin{bmatrix}
1 & -1 & 1 & 1 & \cdots & -1 \\
\text{Clump} & \text{Uniform} & \text{Adheres} & \text{Chromatin} & \cdots & \text{Mitoses}
\end{bmatrix}
\]

\[
y = \begin{cases}
+1 & \text{if cancerous} \\
-1 & \text{if not}
\end{cases}
\]

Idea: Add independent random noise \(W\) to coordinates of \(x\):

\[Z_i = X_i + W\]

Problem: This is **highly suboptimal**, dimension dependence blows up
Communication model

Local Privacy: Communication model to study minimization of

\[R(\theta) = \mathbb{E}[\ell(\theta; X)] \]
Local Privacy: Communication model to study minimization of

\[R(\theta) = \mathbb{E}[\ell(\theta; X)] \]

- Communicate \(\nabla \ell(\theta; X_i) \)
Communication model

Local Privacy: Communication model to study minimization of

\[R(\theta) = \mathbb{E}[\ell(\theta; X)] \]

- Communicate \(\nabla \ell(\theta; X_i) \)
 - Want to minimize, \(\nabla \ell \) is sufficient
 - Use stochastic optimization techniques with \(\nabla \ell(\theta; x_i) \)
Communication model

Local Privacy: Communication model to study minimization of

\[R(\theta) = \mathbb{E}[\ell(\theta; X)] \]

- Communicate \(\nabla \ell(\theta; X_i) \)
 - Want to minimize, \(\nabla \ell \) is sufficient
 - Use stochastic optimization techniques with \(\nabla \ell(\theta; x_i) \)
- Really communicate \(Z_i \) with property
 \[\mathbb{E}_Q[Z_i | \theta, X_i] = \nabla \ell(\theta; X_i) \]
Main Contributions

Contribution 1: Optimal types of noise to guarantee privacy
Main Contributions

Contribution 1: Optimal types of noise to guarantee privacy

Contribution 2: Sharp upper and lower bounds on convergence rates as a function of privacy
Privacy Saddle Points

Optimal Local Privacy:

Maximize privacy of Q subject to

$$
\mathbb{E}_Q[Z \mid \theta, X] = \nabla \ell(\theta; X)
$$
Privacy saddle points

Goal: Maximize privacy of Z for X subject to $\hat{\theta}$ being learnable (some constraints on Z)
Privacy saddle points

Goal: Maximize privacy of Z for X subject to $\hat{\theta}$ being learnable (some constraints on Z)

Privacy metric: mutual information
Privacy saddle points

Goal: Maximize privacy of Z for X subject to $\hat{\theta}$ being learnable (some constraints on Z)

Privacy metric: mutual information

$$\sup_{P \in \mathcal{P}} I(P; Q)$$

Diagram:

$P \xrightarrow{X_i} Q \xrightarrow{Z_i}$
Privacy saddle points

Goal: Maximize privacy of Z for X subject to $\hat{\theta}$ being learnable (some constraints on Z)

Privacy metric: mutual information

$$\sup_{P \in \mathcal{P}} I(P; Q)$$

Worst case information measure

\[\begin{array}{ccc}
P & \overset{X_i}{\longrightarrow} & Q \\
\downarrow & & \downarrow \\
& \overset{Z_i}{\longrightarrow} & \\
\end{array} \]
Privacy saddle points

Goal: Maximize privacy of Z for X subject to $\hat{\theta}$ being learnable (some constraints on Z)

Privacy metric: mutual information

$$\sup_{P \in \mathcal{P}} I(P; Q)$$

Worst case information measure

Strategy: We provide general solution to

$$\minimize_{Q} \sup_{P \in \mathcal{P}} I(P; Q)$$

over distributions Q with larger support than P
Mutual information saddle point example

Setting: Data \(x \in \{-1, 1\}^d \), allow \(z \) to be in \(\|z\|_{\infty} \leq M \).
Mutual information saddle point example

Setting: Data $x \in \{-1, 1\}^d$, allow z to be in $\|z\|_\infty \leq M$.

\[
q = \frac{1}{2} - \frac{x_2}{2M} \quad q = \frac{1}{2} + \frac{x_2}{2M}
\]
Mutual information saddle point example

Setting: Data $x \in \{-1, 1\}^d$, allow z to be in $\|z\|_\infty \leq M$.

Optimal distribution Q given X:
- Independent coordinates $z_i \in \{-M, M\}$
- Distribution
 $$Q^*(Z_i = M \mid X) = \frac{1}{2} + \frac{X_i}{2M}$$
Example of optimal perturbation
Example of optimal perturbation

1 bit per bit
Example of optimal perturbation

.13 bits per bit
(2× slower convergence)
Example of optimal perturbation

.033 bits per bit
(4× slower convergence)
Example of optimal perturbation

.0081 bits per bit
(8× slower convergence)
Example of optimal perturbation

.002 bits per bit
(16× slower convergence)
Example of optimal perturbation

.0005 bits per bit
(32× slower convergence)
Example of optimal perturbation

.00013 bits per bit
(64× slower convergence)
Statistical estimation and convergence rates
Exhibiting tradeoffs

Goal: Understand tradeoff between mutual information bound

\[I^* := \min_Q \sup_P I(X; Z) \]

and number of samples \(n \)

Reminder: \(\hat{\theta} \) is our estimate, based on \(X_1, \ldots, X_n \),

\[R(\theta) := \mathbb{E}[\ell(\theta; X)] \]
Exhibiting tradeoffs

Goal: Understand tradeoff between mutual information bound

\[I^* := \min_{Q} \sup_{P} I(X; Z) \]

and number of samples \(n \) for risk minimization problems
Exhibiting tradeoffs

Goal: Understand tradeoff between mutual information bound

\[I^* := \min_Q \sup_P I(X; Z) \]

and number of samples \(n \) for risk minimization problems

Theorem: Effective sample size for \(d \) dimensional problem is made worse by

\[n \mapsto \frac{nI^*}{d} \]
Exhibiting tradeoffs

Goal: Understand tradeoff between mutual information bound

\[I^* := \min_Q \sup_P I(X; Z) \]

and number of samples \(n \) for risk minimization problems

Theorem: Effective sample size for \(d \) dimensional problem is made worse by

\[n \mapsto n \frac{I^*}{d} \]

- Lower bound holds for all methods
- Upper bound achieved by stochastic approximation
Exhibiting tradeoffs

Have mutual information

\[I^* := \min_Q \sup_P I(X; Z) \]

Theorem: Optimality gap for \(d \) dimensional problem

\[
\Omega(1) \frac{1}{\sqrt{n}} \leq \mathbb{E}[R(\hat{\theta})] - R(\theta^*) \leq O(1) \frac{1}{\sqrt{n}}
\]
Exhibiting tradeoffs

Have mutual information

\[I^* := \min_{Q} \sup_{P} I(X; Z) \]

Theorem: Optimality gap for \(d\) dimensional problem

\[
\Omega(1) \frac{\sqrt{d}}{\sqrt{nI^*}} \leq \mathbb{E}[R(\hat{\theta})] - R(\theta^*) \leq O(1) \frac{\sqrt{d}}{\sqrt{nI^*}}
\]
Exhibiting tradeoffs

Have mutual information

\[I^* := \min_Q \sup_P I(X; Z) \]

Theorem: Optimality gap for \(d \) dimensional problem

\[\Omega(1) \frac{\sqrt{d}}{\sqrt{nI^*}} \leq \mathbb{E}[R(\hat{\theta})] - R(\theta^*) \leq O(1) \frac{\sqrt{d}}{\sqrt{nI^*}} \]

- Lower bound holds for all methods
- Upper bound achieved by stochastic approximation
Experimental example: breast cancer prediction

- Regressors x are markers for breast cancer, labels y are presence/absence of tumor
- Measure predictive performance: count $\text{sign}(\theta^T x_i) = y_i$
Conclusions and future work

1. Have given sharp rates of convergence when providers of data play “privacy game.” Extensions to differential privacy as well.
Conclusions and future work

1. Have given sharp rates of convergence when providers of data play “privacy game.” Extensions to differential privacy as well.

2. In a soon to be on arXiv paper, we generalize this: no more privacy game, essentially all statistical estimators
Conclusions and future work

1. Have given sharp rates of convergence when providers of data play “privacy game.” Extensions to differential privacy as well.

2. In a soon to be on arXiv paper, we generalize this: no more privacy game, essentially all statistical estimators.

3. Is it possible to release a perturbed version of the data X_1, \ldots, X_n?
Conclusions and future work

1. Have given sharp rates of convergence when providers of data play “privacy game.” Extensions to differential privacy as well.

2. In a soon to be on arXiv paper, we generalize this: no more privacy game, essentially all statistical estimators

3. Is it possible to release a perturbed version of the data X_1, \ldots, X_n?

4. What if all we care about is protecting some function $\varphi(X_i)$?
Conclusions and future work

1. Have given sharp rates of convergence when providers of data play “privacy game.” Extensions to differential privacy as well.

2. In a soon to be on arXiv paper, we generalize this: no more privacy game, essentially all statistical estimators

3. Is it possible to release a perturbed version of the data X_1, \ldots, X_n?

4. What if all we care about is protecting some function $\varphi(X_i)$?

Thanks!
Conclusions and future work

1. Have given sharp rates of convergence when providers of data play “privacy game.” Extensions to differential privacy as well.

2. In a soon to be on arXiv paper, we generalize this: no more privacy game, essentially all statistical estimators

3. Is it possible to release a perturbed version of the data X_1, \ldots, X_n?

4. What if all we care about is protecting some function $\varphi(X_i)$?

Exhibiting tradeoffs

Have mutual information

\[I^* := \min_Q \sup_P I(X; Z) \]

Theorem: There are constants \(a, b \) with \(b/a = \mathcal{O}(1) \) dependent only on learning problem such that

\[
\frac{\sqrt{d}}{\sqrt{nI^*}} a \leq \mathbb{E}[R(\hat{\theta})] - R(\theta^*) \leq \frac{\sqrt{d}}{\sqrt{nI^*}} b
\]
Exhibiting tradeoffs

Have mutual information

\[I^* := \min_{Q} \sup_{P} I(X; Z) \]

Theorem: There are constants \(a, b\) with \(b/a = \mathcal{O}(1)\) dependent only on learning problem such that

\[
\frac{\sqrt{d}}{\sqrt{nI^*}} a \leq \mathbb{E}[R(\hat{\theta})] - R(\theta^*) \leq \frac{\sqrt{d}}{\sqrt{nI^*}} b
\]

- Lower bound holds for all methods
- Upper bound achieved by stochastic approximation
Mutual information saddle points

Goal: Channel Q^* (where $Z \sim Q^*(\cdot \mid X)$) so that

$$\min_Q \max_{P,\ell} I(P,Q) \geq \max_{P,\ell} I(P,Q^*)$$
Mutual information saddle points

Goal: Channel Q^* (where $Z \sim Q^*(\cdot \mid X)$) so that

$$
\min_Q \max_{P,\ell} I(P, Q) \geq \max_{P,\ell} I(P, Q^*)
$$

Diagram:
- D: Input space
- C: Preimage space
- $Z \in D$: Output space
- $X \in C$: Input space

Duchi (UC Berkeley) Privacy Aware Learning December 2012 31 / 28
Mutual information saddle points

Goal: Channel Q^* (where $Z \sim Q^*(\cdot \mid X)$) so that

$$\min_Q \max_{P, \ell} I(P, Q) \geq \max_{P, \ell} I(P, Q^*)$$

Theorem: Let $\nabla \ell(\theta; X) \in C$, $Z \in D$.

![Diagram](image.png)
Mutual information saddle points

Goal: Channel Q^* (where $Z \sim Q^*(\cdot \mid X)$) so that

$$\min_Q \max_{P, \ell} I(P, Q) \geq \max_{P, \ell} I(P, Q^*)$$

Theorem: Let $\nabla \ell(\theta; X) \in C, Z \in D$. If
- P^* is uniform on extreme points of C
- Q^* supported on extreme points of D, maximizes entropy of Z given X

Also Q^* is unique
Mutual information saddle points

Goal: Channel Q^* (where $Z \sim Q^*(\cdot \mid X)$) so that

$$
\min_Q \max_{P, \ell} I(P, Q) \geq \max_{P, \ell} I(P, Q^*)
$$

Theorem: Let $\nabla \ell(\theta; X) \in C$, $Z \in D$. If

- P^* is uniform on extreme points of C
- Q^* supported on extreme points of D, maximizes entropy of Z given X

Also Q^* is unique

$$
\min_Q \max_{P, \ell} I(X; Z) = \max_{P, \ell} \min_Q I(X; Z) = I(X^*; Z^*).
$$
Privacy intuition
Privacy intuition

[Diagrams showing the intuition of privacy with variables X, Z, and Z']