Introductory Lectures on Stochastic Optimization

John C. Duchi

Abstract. In this set of four lectures, we study the basic analytical tools and algorithms necessary for the solution of stochastic convex optimization problems, as well as for providing various optimality guarantees associated with the methods. As we proceed through the lectures, we will be more exact about the precise problem formulations, providing a number of examples, but roughly, by a stochastic optimization problem we mean a numerical optimization problem that arises from observing data from some (random) data-generating process. We focus almost exclusively on first-order methods for the solution of these types of problems, as they have proven quite successful in the large scale problems that have driven many advances throughout the early 2000s, so that readers should not consider these lectures in any way a comprehensive view of stochastic optimization; the book of Shapiro et al. [50] provides a more comprehensive picture of stochastic modeling problems and optimization algorithms, and several recent surveys on online learning and online convex optimization provide complementary treatments to ours [24, 48].

We briefly outline the coming lectures. The first lecture provides definitions and the convex analytic tools necessary for the development of our algorithms and other ideas, developing separation properties of convex sets as well as other properties of convex functions from basic principles. The second two lectures investigate subgradient methods and their application to certain stochastic optimization problems, demonstrating a number of convergence results. The second lecture focuses on standard subgradient-type methods, while the third investigates more advanced material on mirror descent and adaptive methods, which require more care but can yield substantial practical performance benefits. The final lecture investigates optimality guarantees for the various methods we study, demonstrating two standard techniques for proving lower bounds on the ability of any algorithm to solve stochastic optimization problems.

The lectures assume some limited familiarity with convex functions and convex optimization problems and their formulation, which will help appreciation of the techniques herein. All that is truly essential is a level of mathematical maturity that includes some real analysis, linear algebra, and introductory probability.

Contents

1 Basic Convex Analysis 2

2010 Mathematics Subject Classification. Primary 65Kxx; Secondary 90C15, 62C20.
Key words and phrases. Convexity, stochastic optimization, subgradients, mirror descent, minimax optimal.

©0000 (copyright holder)
1. Basic Convex Analysis

Lecture Summary: In this lecture, we will outline several standard facts from convex analysis, the study of the mathematical properties of convex functions and sets. For the most part, our analysis and results will all be with the aim of setting the necessary background for understanding first-order convex optimization methods, though some of the results we state will be quite general.

1.1. Introduction and Definitions This set of lecture notes considers convex optimization problems, numerical optimization problems of the form

\[
\begin{align*}
\text{minimize } & f(x) \\
\text{subject to } & x \in C,
\end{align*}
\]

(1.1.1)

where \(f \) is a convex function and \(C \) is a convex set. While we will consider tools to solve these types of optimization problems presently, this first lecture is
concerned most with the analytic tools and background that underlies solution methods for these problems.

The starting point for any study of convex functions is the definition and study of convex sets, which are intimately related to convex functions. To that end, we recall that a set $C \subset \mathbb{R}^n$ is convex if for all $x, y \in C$,

$$\lambda x + (1 - \lambda) y \in C$$

for $\lambda \in [0, 1]$.

See Figure 1.1.2.

A convex function is similarly defined: a function $f : \mathbb{R}^n \to (-\infty, \infty]$ is convex if for all $x, y \in \text{dom } f := \{x \in \mathbb{R}^n \ | \ f(x) < +\infty\}$

$$f(\lambda x + (1 - \lambda) y) \leq \lambda f(x) + (1 - \lambda) f(y)$$

for $\lambda \in [0, 1]$.

The epigraph of a function is defined as

$$\text{epi } f := \{(x, t) \ : \ f(x) \leq t\},$$

and by inspection, a function is convex if and only if its epigraph is a convex set. A convex function f is closed if its epigraph is a closed set; continuous convex functions are always closed. We will assume throughout that any convex function we deal with is closed. See Figure 1.1.3 for graphical representations of these ideas, which make clear that the epigraph is indeed a convex set.

One may ask why, precisely, we focus convex functions. In short, as Rockafellar [46] notes, convex optimization problems are the clearest dividing line between numerical problems that are efficiently solvable, often by iterative methods, and numerical problems for which we have no hope. We give one simple result in this direction first:

Observation. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and x be a local minimum of f (even a local minimum relative to a convex set C). Then x is a global minimum of f.
The convex function \(f(x) = \max\{x^2, -2x - .2\} \) and (b) its epigraph, which is a convex set.

To see this, note that if \(x \) is a local minimum then for any \(y \in C \), we have for small enough \(t > 0 \) that

\[
 f(x) \leq f(x + t(y-x)) \text{ or } 0 \leq \frac{f(x + t(y-x)) - f(x)}{t}.
\]

We now use the criterion of increasing slopes, that is, for any convex function \(f \) the function

\[
(1.1.5) \quad t \mapsto \frac{f(x + t u) - f(x)}{t}
\]

is increasing in \(t > 0 \). (See Fig. 1.1.4.) Indeed, let \(0 \leq t_1 \leq t_2 \). Then

\[
\frac{f(x + t_1 u) - f(x)}{t_1} = \frac{t_2}{t_1} \frac{f(x + t_2(t_1/t_2)u) - f(x)}{t_2}
\]
\[
\begin{align*}
&= \frac{t_2}{t_1} f((1 - t_1/t_2) x + (t_1/t_2)(x + t_2 u)) - f(x) \\
&\leq \frac{t_2}{t_1} \left((1 - t_1/t_2) f(x) + (t_1/t_2) f(x + t_2 u) - f(x) \right) = \frac{f(x + t_2 u) - f(x)}{t_2}.
\end{align*}
\]

In particular, because \(0 \leq f(x + t(y - x))\) for small enough \(t > 0\), we see that for all \(t > 0\) we have

\[
0 \leq \frac{f(x + t(y - x) - f(x)}{t} \quad \text{or} \quad f(x) \leq \inf_{t > 0} f(x + t(y - x)) \leq f(y)
\]

for all \(y \in C\).

We make a few final notational remarks before continuing. We let \(\langle x, y \rangle\) denote the inner product between \(x\) and \(y\). Given a norm \(\|\cdot\|\), its dual norm \(\|\cdot\|_*\) is defined as

\[
\|z\|_* := \sup \{ \langle z, x \rangle \mid \|x\| \leq 1 \}.
\]

Hölder’s inequality (see Exercise 4) shows that the \(\ell_p\) and \(\ell_q\) norms, defined by

\[
\|x\|_p = \left(\sum_{j=1}^n |x_j|^p \right)^{1/p}
\]

(and as the limit \(\|x\|_\infty = \max_j |x_j|\)) are dual to one another, where \(1/p + 1/q = 1\) and \(p, q \in [1, \infty]\). Throughout, we will assume that \(\|x\|_2 = \sqrt{\langle x, x \rangle}\) is the norm defined by the inner product \(\langle \cdot, \cdot \rangle\). Most of the results herein apply in general Hilbert (complete inner product) spaces, and many of our proofs will not require anything particular about finite dimensional spaces, but for simplicity we use \(\mathbb{R}^n\) as the underlying space on which all functions and sets are defined.\(^1\) While we present all proofs in the chapter, we try to provide geometric intuition that will aid a working knowledge of the results, which we believe is the most important.

1.2. Properties of Convex Sets

Convex sets enjoy a number of very nice properties that allow efficient and elegant descriptions of the sets, as well as providing a number of nice properties concerning their separation from one another. To that end, in this section, we give several fundamental properties on separating and supporting hyperplanes for convex sets. The results here begin by showing that there is a unique (Euclidean) projection to any convex set \(C\), then use this fact to show that whenever a point is not contained in a set, it can be separated from the set by a hyperplane. This result can be extended to show separation of convex sets from one another and that points in the boundary of a convex set have a hyperplane tangent to the convex set running through them. We leverage these results in the sequel by making connections of supporting hyperplanes to epigraphs and gradients, results that in turn find many applications in the design of optimization algorithms as well as optimality certificates.

\(^1\)The generality of Hilbert, or even Banach, spaces in convex analysis is seldom needed. Readers familiar with arguments in these spaces will, however, note that the proofs can generally be extended to infinite dimensional spaces in reasonably straightforward ways.
A few basic properties We list a few simple properties that convex sets have, which are evident from their definitions. First, if \(C_\alpha \) are convex sets for each \(\alpha \in A \), where \(A \) is an arbitrary index set, then the intersection
\[
C = \bigcap_{\alpha \in A} C_\alpha
\]
is also convex. Additionally, convex sets are closed under scalar multiplication: if \(\alpha \in \mathbb{R} \) and \(C \) is convex, then
\[
\alpha C := \{ \alpha x : x \in C \}
\]
is evidently convex. The Minkowski sum of two convex sets is defined by
\[
C_1 + C_2 := \{ x_1 + x_2 : x_1 \in C_1, x_2 \in C_2 \},
\]
and is also convex. To see this, note that if \(x_i, y_i \in C_i \), then
\[
\lambda (x_1 + y_1) + (1 - \lambda) (x_2 + y_2) = \lambda x_1 + (1 - \lambda) y_1 + \lambda x_2 + (1 - \lambda) y_2 \in C_1 + C_2.
\]
In particular, convex sets are closed under all linear combination: if \(\alpha \in \mathbb{R}^m \), then
\[
C = \sum_{i=1}^m \alpha_i C_i
\]
is also convex.

We also define the convex hull of a set of points \(x_1, \ldots, x_m \in \mathbb{R}^n \) by
\[
\text{Conv}\{x_1, \ldots, x_m\} = \left\{ \sum_{i=1}^m \lambda_i x_i : \lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1 \right\}.
\]
This set is clearly a convex set.

Projections We now turn to a discussion of orthogonal projection onto a convex set, which will allow us to develop a number of separation properties and alternate characterizations of convex sets. See Figure 1.2.5 for a geometric view of projection. We begin by stating a classical result about the projection of zero onto a convex set.

Theorem 1.2.1 (Projection of zero). Let \(C \) be a closed convex set not containing the origin 0. Then there is a unique point \(x_C \in C \) such that \(\| x_C \|_2 = \inf_{x \in C} \| x \|_2 \). Moreover,
\[
\| x_C \|_2 = \inf_{x \in C} \| x \|_2 \text{ if and only if } \langle x_C, y - x_C \rangle \geq 0
\]
for all \(y \in C \).

Proof. The key to the proof is the following parallelogram identity, which holds in any inner product space: for any \(x, y \),
\[
\frac{1}{2} \| x - y \|_2^2 + \frac{1}{2} \| x + y \|_2^2 = \| x \|_2^2 + \| y \|_2^2.
\]
Define \(M := \inf_{x \in C} \| x \|_2 \). Now, let \(\{ x_n \} \subset C \) be a sequence of points in \(C \) such that \(\| x_n \|_2 \to M \) as \(n \to \infty \). By the parallelogram identity \((1.2.3)\), for any \(n, m \in \mathbb{N} \), we have
\[
\frac{1}{2} \| x_n - x_m \|_2^2 = \| x_n \|_2^2 + \| x_m \|_2^2 - \frac{1}{2} \| x_n + x_m \|_2^2.
\]
Fix $\epsilon > 0$, and choose $N \in \mathbb{N}$ such that $n \geq N$ implies that $\|x_n\|^2 \leq M^2 + \epsilon$. Then for any $m, n \geq N$, we have

$$\frac{1}{2} \|x_n - x_m\|^2 \leq 2M^2 + 2\epsilon - \frac{1}{2} \|x_n + x_m\|^2.$$ \hspace{1cm} (1.2.4)

Now we use the convexity of the set C. We have $\frac{1}{2}x_n + \frac{1}{2}x_m \in C$ for any n, m, which implies

$$\frac{1}{2} \|x_n + x_m\|^2 = 2\left(\|\frac{1}{2}x_n + \frac{1}{2}x_m\|^2\right) \geq 2M^2$$

by definition of M. Using the above inequality in the bound (1.2.4), we see that

$$\frac{1}{2} \|x_n - x_m\|^2 \leq 2M^2 + 2\epsilon - 2M^2 = 2\epsilon.$$

In particular, $\|x_n - x_m\| \leq 2\sqrt{\epsilon}$; since ϵ was arbitrary, (x_n) forms a Cauchy sequence and so must converge to a point x_C. The continuity of the norm $\|\cdot\|_2$ implies that $\|x_C\|_2 = \inf_{x \in C} \|x\|_2$, and the fact that C is closed implies that $x_C \in C$.

Now we show the inequality (1.2.2) holds if and only if x_C is the projection of the origin 0 onto C. Suppose that inequality (1.2.2) holds. Then

$$\|x_C\|^2 = \langle x_C, x_C \rangle \leq \langle x_C, y \rangle \leq \|x_C\|_2 \|y\|_2,$$

the last inequality following from the Cauchy-Schwartz inequality. Dividing each side by $\|x_C\|_2$ implies that $\|x_C\|_2 \leq \|y\|_2$ for all $y \in C$. For the converse, let x_C minimize $\|x\|_2$ over C. Then for any $t \in [0, 1]$ and any $y \in C$, we have

$$\|x_C\|^2 \leq \|(1-t)x_C + ty\|^2 = \|x_C + t(y - x_C)\|^2 = \|x_C\|^2 + 2t \langle x_C, y - x_C \rangle + t^2 \|y - x_C\|^2.$$

Subtracting $\|x_C\|^2$ and $t^2 \|y - x_C\|^2$ from both sides of the above inequality, we have

$$-t^2 \|y - x_C\|^2 \leq 2t \langle x_C, y - x_C \rangle.$$

Dividing both sides of the above inequality by $2t$, we have

$$-\frac{t}{2} \|y - x_C\|^2 \leq \langle x_C, y - x_C \rangle$$

for all $t \in (0, 1]$. Letting $t \downarrow 0$ gives the desired inequality. \hfill \square

With this theorem in place, a simple shift gives a characterization of more general projections onto convex sets.

Corollary 1.2.6 (Projection onto convex sets). Let C be a closed convex set and $x \in \mathbb{R}^n$. Then there is a unique point $\pi_C(x)$, called the projection of x onto C, such that $\|x - \pi_C(x)\|_2 = \inf_{y \in C} \|x - y\|_2$, that is, $\pi_C(x) = \arg\min_{y \in C} \|y - x\|_2^2$. The projection is characterized by the inequality

$$\langle \pi_C(x) - x, y - \pi_C(x) \rangle \geq 0$$

for all $y \in C$.

Figure 1.2.5. Projection of the point x onto the set C (with projection $\pi_C(x)$), exhibiting $\langle x - \pi_C(x), y - \pi_C(x) \rangle \leq 0$.

Proof. When $x \in C$, the statement is clear. For $x \notin C$, the corollary simply follows by considering the set $C' = C - x$, then using Theorem 1.2.1 applied to the recentered set.

Corollary 1.2.8 (Non-expansive projections). Projections onto convex sets are non-expansive, in particular,

$$\|\pi_C(x) - y\|_2 \leq \|x - y\|_2$$

for any $x \in \mathbb{R}^n$ and $y \in C$.

Proof. When $x \in C$, the inequality is clear, so assume that $x \notin C$. Now use inequality (1.2.7) from the previous corollary. By adding and subtracting y in the inner product, we have

$$0 \leq \langle \pi_C(x) - x, y - \pi_C(x) \rangle$$

$$= \langle \pi_C(x) - y + y - x, y - \pi_C(x) \rangle$$

$$= -\|\pi_C(x) - y\|_2^2 + \langle y - x, y - \pi_C(x) \rangle$$

We rearrange the above and then use the Cauchy-Schwarz or Hölder’s inequality, which gives

$$\|\pi_C(x) - y\|_2^2 \leq \langle y - x, y - \pi_C(x) \rangle \leq \|y - x\|_2 \|y - \pi_C(x)\|_2.$$

Now divide both sides by $\|\pi_C(x) - y\|_2$. \qed

Separation Properties. Projections are important not just because of their existence, but because they also guarantee that convex sets can be described by halfplanes that contain them as well as that any two convex sets are separated by hyperplanes. Moreover, the separation can be strict if one of the sets is compact.
Figure 1.2.9. Separation of the point x from the set C by the vector $v = x - \pi_C(x)$.

Proposition 1.2.10 (Strict separation of points). Let C be a closed convex set. Given any point $x \not\in C$, there is a vector v such that

$$\langle v, x \rangle > \sup_{y \in C} \langle v, y \rangle. \tag{1.2.11}$$

Moreover, we can take the vector $v = x - \pi_C(x)$, and $\langle v, x \rangle \geq \sup_{y \in C} \langle v, y \rangle + \|v\|^2$. See Figure 1.2.9.

Proof. Indeed, since $x \not\in C$, we have $x - \pi_C(x) \neq 0$. By setting $v = x - \pi_C(x)$, we have from the characterization (1.2.7) that

$$0 \geq \langle v, y - \pi_C(x) \rangle = \langle v, y - x + x - \pi_C(x) \rangle = \langle v, y - x + v \rangle = \langle v, y - x \rangle + \|v\|^2.$$

In particular, we see that $\langle v, x \rangle \geq \langle v, y \rangle + \|v\|^2$ for all $y \in C$. \qed

Proposition 1.2.12 (Strict separation of convex sets). Let C_1, C_2 be closed convex sets, with C_2 compact. Then there is a vector v such that

$$\inf_{x \in C_1} \langle v, x \rangle > \sup_{x \in C_2} \langle v, x \rangle.$$

Proof. The set $C = C_1 - C_2$ is convex and closed. Moreover, we have $0 \not\in C$, so that there is a vector v such that $0 < \inf_{z \in C} \langle v, z \rangle$ by Proposition 1.2.10. Thus we have

$$0 < \inf_{z \in C_1 - C_2} \langle v, z \rangle = \inf_{x \in C_1} \langle v, x \rangle - \sup_{x \in C_2} \langle v, x \rangle,$$

which is our desired result. \qed

2If C_1 is closed and C_2 is compact, then $C_1 + C_2$ is closed. Indeed, let $z_n = x_n + y_n$ be a convergent sequence of points (say $z_n \to z$) with $z_n \in C_1 + C_2$. We claim that $z \in C_1 + C_2$. Indeed, passing to a subsequence if necessary, we may assume $y_n \to y$. Then on the subsequence, we have $x_n = z_n - y_n \to z - y$, so that x_n is convergent and necessarily converges to a point $x \in C_1$.

We can also investigate the existence of hyperplanes that support the convex set \(C \), meaning that they touch only its boundary and never enter its interior. Such hyperplanes—and the halfspaces associated with them—provide alternate descriptions of convex sets and functions. See Figure 1.2.13.

Figure 1.2.13. Supporting hyperplanes to a convex set.

Theorem 1.2.14 (Supporting hyperplanes). Let \(C \) be a closed convex set and \(x \in \text{bd} \ C \), the boundary of \(C \). Then there exists a vector \(v \neq 0 \) supporting \(C \) at \(x \), that is,

\[
\langle v, x \rangle \geq \langle v, y \rangle \quad \text{for all } y \in C.
\]

Proof. Let \((x_n) \) be a sequence of points approaching \(x \) from outside \(C \), that is, \(x_n \notin C \) for any \(n \), but \(x_n \to x \). For each \(n \), we can take \(s_n = x_n - \pi_C(x_n) \) and define \(v_n = s_n / \|v_n\|_2 \). Then \((v_n) \) is a sequence satisfying \(\langle v_n, x \rangle > \langle v_n, y \rangle \) for all \(y \in C \), and since \(\|v_n\|_2 = 1 \), the sequence \((v_n) \) belongs to the compact set \(\{v : \|v\|_2 \leq 1\} \).\(^3\) Passing to a subsequence if necessary, it is clear that there is a vector \(v \) such that \(v_n \to v \), and we have \(\langle v, x \rangle \geq \langle v, y \rangle \) for all \(y \in C \). \(\square \)

Theorem 1.2.16 (Halfspace intersections). Let \(C \subseteq \mathbb{R}^n \) be a closed convex set not equal to the whole space in which it exists. Then \(C \) is the intersection of all the spaces containing it; moreover,

\[
C = \bigcap_{x \in \text{bd} \ C} \mathcal{H}_x
\]

where \(\mathcal{H}_x \) denotes the intersection of the halfspaces contained in hyperplanes supporting \(C \) at \(x \).

\(^3\)In a general Hilbert space, this set is actually weakly compact by Alaoglu’s theorem. However, in a weakly compact set, any sequence has a weakly convergent subsequence, that is, there exists a subsequence \(n(m) \) and vector \(v \) such that \(\langle v_n(m), y \rangle \to \langle v, y \rangle \) for all \(y \).
Proof. It is clear that $C \subseteq \bigcap_{x \in \text{bd} C} H_x$. Indeed, let $h_x \neq 0$ be a hyperplane supporting to C at $x \in \text{bd} C$ and consider $H_x = \{y : \langle h_x, x \rangle \geq \langle h_x, y \rangle \}$. By Theorem 1.2.14 we see that $H_x \supseteq C$.

Now we show the other inclusion: $\bigcap_{x \in \text{bd} C} H_x \subseteq C$. Suppose for the sake of contradiction that $z \in \bigcap_{x \in \text{bd} C} H_x$ satisfies $z \notin C$. We will construct a hyperplane supporting C that separates z from C, which will be a contradiction to our supposition. Since C is closed, the projection of $\pi_C(z)$ of z onto C satisfies $\langle z - \pi_C(z), z \rangle > \sup_{y \in C} \langle z - \pi_C(z), y \rangle$ by Proposition 1.2.10. In particular, defining $v_z = z - \pi_C(z)$, the hyperplane $\{y : \langle v_z, y \rangle = \langle v_z, \pi_C(z) \rangle \}$ is supporting to C at the point $\pi_C(z)$ (Corollary 1.2.6) and the halfspace $\{y : \langle v_z, y \rangle \leq \langle v_z, \pi_C(z) \rangle \}$ does not contain z but does contain C. This contradicts the assumption that $z \in \bigcap_{x \in \text{bd} C} H_x$. □

As a not too immediate consequence of Theorem 1.2.16 we obtain the following characterization of a convex function as the supremum of all affine functions that minorize the function. This is intuitive: if f is a closed convex function, meaning that $\text{epi} f$ is closed, then $\text{epi} f$ is the intersection of all the halfspaces containing it. The challenge is showing that we may restrict this intersection to non-vertical halfspaces. See Figure 1.2.18.

Figure 1.2.18. Affine underestimators of the function f.

Corollary 1.2.19. Let f be a closed convex function that is not identically $-\infty$. Then

$$f(x) = \sup_{v \in \mathbb{R}^n, b \in \mathbb{R}} \{\langle v, x \rangle + b : f(y) \geq b + \langle v, y \rangle \text{ for all } y \in \mathbb{R}^n\}.$$

Proof. First, we note that $\text{epi} f$ is closed by definition. Moreover, we know that we can write

$$\text{epi} f = \cap \{H : H \ni \text{epi} f\},$$

where H denotes a halfspace. More specifically, we may index each halfspace by $(v, a, c) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$, and we have $H_{v,a,c} = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : \langle v, x \rangle + at \leq c\}$.
Now, because $H \supset epi f$, we must be able to take $t \to \infty$ so that $a \leq 0$. If $a < 0$, we may divide by $|a|$ and assume without loss of generality that $a = -1$, while otherwise $a = 0$. So if we let

$$H_1 := \{(v, c) : H_{v,-1,c} \supset epi f\} \quad \text{and} \quad H_0 := \{(v, c) : H_{v,0,c} \supset epi f\},$$

then

$$epi f = \bigcap_{(v,c) \in H_1} H_{v,-1,c} \cap \bigcap_{(v,c) \in H_0} H_{v,0,c}.$$

We would like to show that $epi f = \bigcap_{(v,c) \in H_1} H_{v,-1,c}$, as the set $H_{v,0,c}$ is a vertical hyperplane separating the domain of $f, \text{dom } f$, from the rest of the space.

To that end, we show that for any $(v_1, c_1) \in H_1$ and $(v_0, c_0) \in H_0$, then

$$H := \bigcap_{\lambda \geq 0} H_{v_1 + \lambda v_0 - 1, c_1 + \lambda c_0} = H_{v_1 - 1, c_1} \cap H_{v_0, c_0}.$$

Indeed, suppose that $(x, t) \in H_{v_1 - 1, c_1} \cap H_{v_0, c_0}$. Then

$$\langle v_1, x \rangle - t \leq c_1 \quad \text{and} \quad \lambda \langle v_0, x \rangle \leq c_0 \quad \text{for all } \lambda \geq 0.$$

Summing these, we have

$$\langle v_1 + \lambda v_0, x \rangle - t \leq c_1 + \lambda c_0 \quad \text{for all } \lambda \geq 0,$$

or $(x, t) \in H$. Conversely, if $(x, t) \in H$ then inequality (1.2.20) holds, so that taking $\lambda \to \infty$ we have $\langle v_0, x \rangle \leq c_0$, while taking $\lambda = 0$ we have $\langle v_1, x \rangle - t \leq c_1$.

Noting that $H \in \{H_{v_1 - 1, c} : (v, c) \in H_1\}$, we see that

$$epi f = \bigcap_{(v,c) \in H_1} H_{v,-1,c} = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : \langle v, x \rangle - t \leq c \quad \text{for all } (v, c) \in H_1\}.$$

This is equivalent to the claim in the corollary. \square

1.3. Continuity and Local Differentiability of Convex Functions

Here we discuss several important results concerning convex functions in finite dimensions. We will see that assuming that a function f is convex is quite strong. In fact, we will see the (intuitive if one pictures a convex function) facts that f is continuous, has a directional derivative everywhere, and in fact is locally Lipschitz. We prove the first two results here on continuity in Appendix A.1, as they are not fully necessary for our development.

We begin with the simple fact that if f is defined on a compact domain, then f has an upper bound. This lemma can be proved by a simple argument with the definition of convexity.

Lemma 1.3.1. Let f be convex and defined on the ℓ_1 ball in n dimensions: $B_1 = \{x \in \mathbb{R}^n : \|x\|_1 \leq 1\}$. Then there exist $-\infty < m \leq M < \infty$ such that $m \leq f(x) \leq M$ for all $x \in B_1$.

We provide a proof of this lemma, as well as the coming theorem, in Appendix A.1, as they are not central to our development, relying on a few results in the sequel. The coming theorem makes use of the above lemma to show that on
compact domains, convex functions are Lipschitz continuous. The proof of the theorem begins by showing that if a convex function is bounded in some set, then it is Lipschitz continuous in the set, then using Lemma 1.3.1 we can show that on compact sets \(f \) is indeed bounded.

Theorem 1.3.2. Let \(f \) be convex and defined on a set \(C \) with non-empty interior. Let \(B \subseteq \text{int} \, C \) be compact. Then there is a constant \(L \) such that \(|f(x) - f(y)| \leq L \|x - y\| \) on \(B \), that is, \(f \) is \(L \)-Lipschitz continuous on \(B \).

The last result, which we make strong use of in the next section, concerns the existence of directional derivatives for convex functions.

Definition 1.3.3. The directional derivative of a function \(f \) at a point \(x \) in the direction \(u \)

\[
 f'(x; u) := \lim_{\alpha \to 0} \frac{1}{\alpha} [f(x + \alpha u) - f(x)].
\]

This definition makes sense by our earlier arguments that convex functions have increasing slopes (recall expression (1.1.5)). To see that the above definition makes sense, we restrict our attention to \(x \in \text{int} \, \text{dom} \, f \), so that we can approach \(x \) from all directions. By taking \(u = y - x \) for any \(y \in \text{dom} \, f \),

\[
 f(x + \alpha(y - x)) = f((1 - \alpha)x + \alpha y) \leq (1 - \alpha)f(x) + \alpha f(y)
\]

so that

\[
 \frac{1}{\alpha} [f(x + \alpha(y - x)) - f(x)] \leq \frac{1}{\alpha} [\alpha f(y) - \alpha f(x)] = f(y) - f(x) = f(x + u) - f(x).
\]

We also know from Theorem 1.3.2 that \(f \) is locally Lipschitz, so for small enough \(\alpha \) there exists some \(L \) such that \(f(x + \alpha u) \geq f(x) - L\|u\| \), and thus \(f'(x; u) \geq -L\|u\| \). Further, a simple argument by convexity (increasing slopes) shows that the function

\[
 \alpha \mapsto \frac{1}{\alpha} [f(x + \alpha u) - f(x)]
\]

is increasing, so we can replace the limit in the definition of \(f'(x; u) \) with an infimum over \(\alpha > 0 \), that is, \(f'(x; u) = \inf_{\alpha > 0} \frac{1}{\alpha} [f(x + \alpha u) - f(x)] \). Noting that if \(x \) is on the boundary of \(\text{dom} \, f \) and \(x + \alpha u \notin \text{dom} \, f \) for any \(\alpha > 0 \), then \(f'(x; u) = +\infty \), we have proved the following theorem.

Theorem 1.3.4. For convex \(f \), at any point \(x \in \text{dom} \, f \) and for any \(u \), the directional derivative \(f'(x; u) \) exists and is

\[
 f'(x; u) = \lim_{\alpha \to 0} \frac{1}{\alpha} [f(x + \alpha u) - f(x)] = \inf_{\alpha > 0} \frac{1}{\alpha} [f(x + \alpha u) - f(x)].
\]

If \(x \in \text{int} \, \text{dom} \, f \), there exists a constant \(L < \infty \) such that \(|f'(x; u)| \leq L \|u\| \) for any \(u \in \mathbb{R}^n \). If \(f \) is Lipschitz continuous with respect to the norm \(\|\cdot\| \), we can take \(L \) to be the Lipschitz constant of \(f \).

Lastly, we state a well-known condition that is equivalent to convexity. This is intuitive: if a function is bowl-shaped, it should have positive second derivatives.
Theorem 1.3.5. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be twice continuously differentiable. Then \(f \) is convex if and only if \(\nabla^2 f(x) \succeq 0 \) for all \(x \), that is, \(\nabla^2 f(x) \) is positive semidefinite.

Proof. We may essentially reduce the argument to one-dimensional problems, because if \(f \) is twice continuously differentiable, then for each \(v \in \mathbb{R}^n \) we may define \(h_v : \mathbb{R} \to \mathbb{R} \) by

\[
h_v(t) = f(x + tv),
\]
and \(f \) is convex if and only if \(h_v \) is convex for each \(v \) (because convexity is a property only of lines, by definition). Moreover, we have

\[
h_v''(0) = v^T \nabla^2 f(x)v,
\]
and \(\nabla^2 f(x) \succeq 0 \) if and only if \(h_v''(0) \geq 0 \) for all \(v \).

Thus, with no loss of generality, we assume \(n = 1 \) and show that \(f \) is convex if and only if \(f''(x) \geq 0 \) for all \(x \). Then using that

\[
f(y) = f(x) + f'(x)(y - x) + \frac{1}{2}(y - x)^2 f''(\tilde{x})
\]
for some \(\tilde{x} \) between \(x \) and \(y \), we have that \(f(y) \geq f(x) + f'(x)(y - x) \) for all \(x, y \).

Let \(\lambda \in [0, 1] \). Then we have

\[
\begin{align*}
f(y) & \geq f(\lambda x + (1 - \lambda)y) + \lambda f'(\lambda x + (1 - \lambda)y)(y - x) \\
f(x) & \geq f(\lambda x + (1 - \lambda)y) + (1 - \lambda)f'(\lambda x + (1 - \lambda)y)(x - y).
\end{align*}
\]

Multiplying the first equation by \(1 - \lambda \) and the second by \(\lambda \), then adding, we obtain

\[
(1 - \lambda)f(y) + \lambda f(x) \geq (1 - \lambda)f(\lambda x + (1 - \lambda)y) + \lambda f(\lambda x + (1 - \lambda)y) = f(\lambda x + (1 - \lambda)y),
\]
that is, \(f \) is convex.

For the converse, let \(\delta > 0 \) and define \(x_1 = x + \delta > x > x - \delta = x_0 \). Then we have \(x_1 - x_0 = 2\delta \), and

\[
f(x_1) = f(x) + f'(x)\delta + 2\delta^2 f''(\tilde{x}_1) \quad \text{and} \quad f(x_0) = f(x) - f'(x)\delta + 2\delta^2 f''(\tilde{x}_0)
\]
for \(\tilde{x}_1, \tilde{x}_0 \in [x - \delta, x + \delta] \). Adding these quantities and defining \(c_\delta = f(x_1) + f(x_0) - 2f(x) \geq 0 \) (the last inequality by convexity), we have

\[
c_\delta = 2\delta^2 f''(\tilde{x}_1) + f''(\tilde{x}_0).
\]

By continuity, we have \(f''(\tilde{x}_1) \to f''(x) \) as \(\delta \to 0 \), and as \(c_\delta / 2\delta^2 \geq 0 \) for all \(\delta > 0 \), we must have

\[
2f''(x) = \lim_{\delta \to 0} \sup\{f''(\tilde{x}_1) + f''(\tilde{x}_0)\} = \lim_{\delta \to 0} \sup_{\delta \to 0} \frac{c_\delta}{2\delta^2} \geq 0.
\]

This gives the result. \(\square \)

1.4. Subgradients and Optimality Conditions The subgradient set of a function \(f \) at a point \(x \in \text{dom } f \) is defined as follows:

\[
\partial f(x) := \{ g : f(y) \geq f(x) + \langle g, y - x \rangle \quad \text{for all } y \}.
\]
Intuitively, since a function is convex if and only if \(\text{epi } f \) is convex, the subgradient set \(\partial f \) should be non-empty and consist of supporting hyperplanes to \(\text{epi } f \). That is, \(f \) should always have global linear underestimators of itself. When a function \(f \) is convex, the subgradient generalizes the derivative of \(f \) (which is a global linear underestimator of \(f \) when \(f \) is differentiable), and is also intimately related to optimality conditions for convex minimization.

Figure 1.4.2. Subgradients of a convex function. At the point \(x_1 \), the subgradient \(g_1 \) is the gradient. At the point \(x_2 \), there are multiple subgradients, because the function is non-differentiable. We show the linear functions given by \(g_2, g_3 \in \partial f(x_2) \).

Existence and characterizations of subgradients Our first theorem guarantees that the subdifferential set is non-empty.

Theorem 1.4.3. Let \(x \in \text{int dom } f \). Then \(\partial f(x) \) is nonempty, closed convex, and compact.

Proof. The fact that \(\partial f(x) \) is closed and convex is straightforward. Indeed, all we need to see this is to recognize that

\[
\partial f(x) = \bigcap_z \{ g : f(z) \geq f(x) + \langle g, z-x \rangle \}
\]

which is an intersection of half-spaces, which are all closed and convex.

Now we need to show that \(\partial f(x) \neq \emptyset \). This will essentially follow from the following fact: the set \(\text{epi } f \) has a supporting hyperplane at the point \((x, f(x)) \). Indeed, from Theorem 1.2.14, we know that there exist a vector \(v \) and scalar \(b \) such that

\[
\langle v, x \rangle + bf(x) \geq \langle v, y \rangle + bt
\]

for all \((y, t) \in \text{epi } f \) (that is, \(y \) and \(t \) such that \(f(y) \leq t \)). Rearranging slightly, we have

\[
\langle v, x-y \rangle \geq b(t-f(x))
\]
and setting \(y = x \) shows that \(b \leq 0 \). This is close to what we desire, since if \(b < 0 \) we set \(t = f(y) \) and see that

\[
-bf(y) \geq -bf(x) + \langle v, y - x \rangle \quad \text{or} \quad f(y) \geq f(x) - \frac{\langle v, y - x \rangle}{b}
\]

for all \(y \), by dividing both sides by \(-b\). In particular, \(-v/b\) is a subgradient. Thus, suppose for the sake of contradiction that \(b = 0 \). In this case, we have \(\langle v, x - y \rangle \geq 0 \) for all \(y \in \text{dom} f \), but we assumed that \(x \in \text{int dom} f \), so for small enough \(\epsilon > 0 \), we can set \(y = x + \epsilon v \). This would imply that \(\langle v, x - y \rangle = -\epsilon \langle v, v \rangle = 0 \), contradicting the fact that at least one of \(v \) and \(b \) must be non-zero.

For the compactness of \(\partial f(x) \), note that as \(x \in \text{int dom} f \) by assumption, there is some \(\epsilon > 0 \) such that \(x + \epsilon B \subset \text{int dom} f \) for the \(\ell_1 \)-ball \(B = \{ v : \|v\|_1 \leq 1 \} \). As \(\sup_{v \in B} f(x + \epsilon v) = M < \infty \) by Lemma 1.3.1, we have \(M \geq f(x + \epsilon v) \geq f(x) + \epsilon \langle g, v \rangle \) for all \(v \in B \) and \(g \in \partial f(x) \), or \(\|g\|_\infty \leq (M - f(x))/\epsilon \). Thus \(\partial f(x) \) is closed and bounded, hence compact. \(\square \)

The next two results require a few auxiliary results related to the directional derivative of a convex function. The reason for this is that both require connecting the local properties of the convex function \(f \) with the sub-differential \(\partial f(x) \), which is difficult in general since \(\partial f(x) \) can consist of multiple vectors. However, by looking at directional derivatives, we can accomplish what we desire. The connection between a directional derivative and the subdifferential is contained in the next two lemmas.

Lemma 1.4.4. An equivalent characterization of the subdifferential \(\partial f(x) \) of \(f \) at \(x \) is

\[
\partial f(x) = \{ g : \langle g, u \rangle \leq f'(x; u) \text{ for all } u \}.
\]

Proof. Denote the set on the right hand side of the equality (1.4.5) by \(S = \{ g : \langle g, u \rangle \leq f'(x; u) \} \), and let \(g \in S \). By the increasing slopes condition, we have

\[
\langle g, u \rangle \leq f'(x; u) \leq \frac{f(x + \alpha u) - f(x)}{\alpha}
\]

for all \(u \) and \(\alpha > 0 \); in particular, by taking \(\alpha = 1 \) and \(u = y - x \), we have the standard subgradient inequality that \(f(x) + \langle g, y - x \rangle \leq f(y) \). So if \(g \in S \), then \(g \in \partial f(x) \). Conversely, for any \(g \in \partial f(x) \), the definition of a subgradient implies that

\[
f(x + \alpha u) \geq f(x) + \langle g, x + \alpha u - x \rangle = f(x) + \alpha \langle g, u \rangle.
\]

Subtracting \(f(x) \) from both sides and dividing by \(\alpha \) gives that

\[
\frac{1}{\alpha} [f(x + \alpha u) - f(x)] \geq \sup_{g \in \partial f(x)} \langle g, u \rangle
\]

for all \(\alpha > 0 \); in particular, \(g \in S \).

This representation shows that \(\partial f(x) \) is compact, as \(f'(x; u) \) is finite for all \(u \) as \(x \in \text{int dom} f \), and \(g \in \partial f(x) \) satisfies \(\|g\|_2 = \sup_{u : \|u\|_2 \leq 1} \langle g, u \rangle \leq \sup_{u : \|u\|_2 \leq 1} f'(x; u) < \infty \). \(\square \)
Lemma 1.4.6. Let f be closed convex and $\partial f(x) \neq \emptyset$. Then

$$f'(x; u) = \sup_{g \in \partial f(x)} \langle g, u \rangle.$$ \hspace{1cm} (1.4.7)

Proof. Certainly, Lemma 1.4.4 shows that $f'(x; u) \geq \sup_{g \in \partial f(x)} \langle g, u \rangle$. We must show the other direction. To that end, note that viewed as a function of u, we have $f'(x; u)$ is convex and positively homogeneous, meaning that $f'(x; tu) = tf'(x; u)$ for $t \geq 0$. Thus, we can always write (by Corollary 1.2.19)

$$f'(x; u) = \sup \{ \langle v, u \rangle + b : f'(x; w) \geq b + \langle v, w \rangle \text{ for all } w \in \mathbb{R}^n \}.$$

Using the positive homogeneity, we have $f'(x; 0) = 0$ and thus we must have $b = 0$, so that $u \mapsto f'(x; u)$ is characterized as the supremum of by linear functions:

$$f'(x; u) = \sup \{ \langle v, u \rangle : f'(x; w) \geq \langle v, w \rangle \text{ for all } w \in \mathbb{R}^n \}.$$

But the set $\{ v : \langle v, w \rangle \leq f'(x; w) \text{ for all } w \}$ is simply $\partial f(x)$ by Lemma 1.4.4. \hfill \square

A relatively straightforward calculation using Lemma 1.4.4, which we give in the next proposition, shows that the subgradient is simply the gradient of differentiable convex functions. Note that as a consequence of this, we have the first-order inequality that $f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle$ for any differentiable convex function.

Proposition 1.4.8. Let f be convex and differentiable at a point x. Then $\partial f(x) = \{ \nabla f(x) \}$.

Proof. If f is differentiable at a point x, then the chain rule implies that

$$f'(x; u) = \langle \nabla f(x), u \rangle \geq \langle g, u \rangle$$

for any $g \in \partial f(x)$, the inequality following from Lemma 1.4.4. By replacing u with $-u$, we have $f'(x; -u) = -\langle \nabla f(x), u \rangle \geq -\langle g, u \rangle$ as well, or $\langle g, u \rangle = \langle \nabla f(x), u \rangle$ for all u. Letting u vary (for example) the set $\{ u : \|u\|_2 \leq 1 \}$ gives the result. \hfill \square

Lastly, we have the following consequence of the previous lemmas, which relates the norms of subgradients $g \in \partial f(x)$ to the Lipschitzian properties of f. Recall that a function f is L-Lipschitz with respect to the norm $\|\cdot\|$ over a set C if

$$|f(x) - f(y)| \leq L \|x - y\|$$

for all $x, y \in C$. Then the following proposition is an immediate consequence of Lemma 1.4.6.

Proposition 1.4.9. Suppose that f is L-Lipschitz with respect to the norm $\|\cdot\|$ over a set C, where $C \subset \text{int dom } f$. Then

$$\sup \{ \|g\|_* : g \in \partial f(x), x \in C \} \leq L.$$

Examples. We can provide a number of examples of subgradients. A general rule of thumb is that, if it is possible to compute the function, it is possible to compute its subgradients. As a first example, we consider

$$f(x) = |x|.$$
Then by inspection, we have
\[\partial f(x) = \begin{cases}
-1 & \text{if } x < 0 \\
[-1, 1] & \text{if } x = 0 \\
1 & \text{if } x > 0.
\end{cases} \]

A more complex example is given by any vector norm $\|\cdot\|$. In this case, we use the fact that the dual norm is defined by
\[\|y\|_* := \sup_{x : \|x\| \leq 1} \langle x, y \rangle. \]
Moreover, we have that $\|x\| = \sup_{y : \|y\|_* \leq 1} \langle y, x \rangle$. Fixing $x \in \mathbb{R}^n$, we thus see that if $\|g\|_* \leq 1$ and $\langle g, x \rangle = \|x\|$, then
\[\|x\| + \langle g, y - x \rangle = \|x\| - \|x\| + \langle g, y \rangle \leq \sup_{v : \|v\|_* \leq 1} \langle v, y \rangle = \|y\|. \]
It is possible to show a converse—we leave this as an exercise for the interested reader—and we claim that
\[\partial \|x\| = \{ g \in \mathbb{R}^n : \|g\|_* \leq 1, \langle g, x \rangle = \|x\| \}. \]
For a more concrete example, we have
\[\partial \|x\|_2 = \begin{cases}
\frac{x}{\|x\|_2} & \text{if } x \neq 0 \\
\{ u : \|u\|_2 \leq 1 \} & \text{if } x = 0.
\end{cases} \]

Optimality properties Subgradients also allows us to characterize solutions to convex optimization problems, giving similar characterizations as those we provided for projections. The next theorem, containing necessary and sufficient conditions for a point x to minimize a convex function f, generalizes the standard first-order optimality conditions for differentiable f (e.g., Section 4.2.3 in [10]).

The intuition for Theorem 1.4.11 is that there is a vector in the g in the subgradient set $\partial f(x)$ such that $-g$ is a supporting hyperplane to the feasible set C at the point x. That is, the directions of decrease of the function f lie outside the optimization set C. Figure 1.4.10 shows this behavior.

Theorem 1.4.11. Let f be convex. The point $x \in \text{int dom } f$ minimizes f over a convex set C if and only if there exists a subgradient $g \in \partial f(x)$ such that
(1.4.12) $\langle g, y - x \rangle \geq 0$
for all $y \in C$.

Proof. One direction of the theorem is easy. Indeed, pick $y \in C$. Then certainly there exists $g \in \partial f(x)$ for which $\langle g, y - x \rangle \geq 0$. Then by definition,
\[f(y) \geq f(x) + \langle g, y - x \rangle \geq f(x). \]
This holds for any $y \in C$, so x is clearly optimal.
For the converse, suppose that x minimizes f over C. Then for any $y \in C$ and any $t \geq 0$ such that $x + t(y - x) \in C$, we have
\[
f(x + t(y - x)) \geq f(x) \quad \text{or} \quad 0 \leq \frac{f(x + t(y - x)) - f(x)}{t}.
\]
Taking the limit as $t \to 0$, we have $f'(x; y - x) \geq 0$ for all $y \in C$. Now, let us suppose for the sake of contradiction that there exists a y such that for all $g \in \partial f(x)$, we have $\langle g, y - x \rangle < 0$. Because $\partial f(x) = \{ g : \langle g, u \rangle \leq f'(x; u) \text{ for all } u \in \mathbb{R}^n \}$ by Lemma 1.4.6, and $\partial f(x)$ is compact, we have that $\sup_{g \in \partial f(x)} \langle g, y - x \rangle$ is attained, which would imply
\[
f'(x; y - x) < 0.
\]
This is a contradiction. \qed

1.5. Calculus rules with subgradients We present a number of calculus rules that show how subgradients are, essentially, similar to derivatives, with a few exceptions. When we develop methods for optimization problems based on subgradients, these basic calculus rules will prove useful.

Scaling If we let $h(x) = \alpha f(x)$ for some $\alpha \geq 0$, then $\partial h(x) = \alpha \partial f(x)$.

Sums and integrals Suppose that f_1, \ldots, f_m are convex functions and let $f = \sum_{i=1}^m f_i$. Then
\[
\partial f(x) = \sum_{i=1}^m \partial f_i(x),
\]
where the addition is Minkowski addition. To see that $\sum_{i=1}^m \partial f_i(x) \subset \partial f(x)$, let $g_i \in \partial f_i(x)$ for each i, in which case it is clear that $f(y) = \sum_{i=1}^m f_i(y) \geq
\[\sum_{i=1}^{m} f_i(x) + \langle g_i, y - x \rangle, \] so that \[\sum_{i=1}^{m} g_i \in \partial f(x). \] The converse is somewhat more technical and is a special case of the results to come.

More generally, we can extend this summation result to integrals, assuming the integrals exist. Indeed, for each \(s \in S \), where \(S \) is some set, let \(f_s \) be convex. Let \(\mu \) be a positive measure on the set \(S \), and define the convex function \(f(x) = \int f_s(x) \, d\mu(s) \). Then if we let \(g_s(x) \in \partial f_s(x) \) for each \(s \in S \), we have (assuming the integral exists and that the selections \(g_s(x) \) are appropriately measurable)

\[\int g_s(x) \, d\mu(s) \in \partial f(x). \]

To see the inclusion, note that for any \(y \) we have

\[\left\langle \int g_s(x) \, d\mu(s), y - x \right\rangle = \left\langle g_s(x), y - x \right\rangle \, d\mu(s) \leq \left(\int f_s(y) - f_s(x) \right) \, d\mu(s) = f(y) - f(x). \]

So the inclusion (1.5.1) holds. Eliding a few technical details, one generally obtains that

\[\partial f(x) = \left\{ \int g_s(x) \, d\mu(s) : g_s(x) \in \partial f_s(x) \text{ for each } s \in S \right\}. \]

For example, if we have a collection of functions \(f : \mathbb{R}^n \times S \to \mathbb{R} \), where for each \(s \in S \) the function \(f(\cdot, s) \) is convex, then \(f(x) = \mathbb{E}[f(x, S)] \) is convex when we take expectations over \(S \), and taking

\[g(x, s) \in \partial f(x, s) \]

gives a stochastic gradient with the property that \(\mathbb{E}[g(x, S)] \in \partial f(x) \). For more on these calculations and conditions, see the classic paper of Bertsekas [6], which addresses the measurability issues.

Affine transformations Let \(f : \mathbb{R}^m \to \mathbb{R} \) be convex and \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \). Then \(h : \mathbb{R}^n \to \mathbb{R} \) defined by \(h(x) = f(Ax + b) \) is convex and has subdifferential

\[\partial h(x) = A^T \partial f(Ax + b). \]

Indeed, let \(g \in \partial f(Ax + b) \), so that

\[h(y) = f(Ay + b) \geq f(Ax + b) + \langle g, (Ay + b) - (Ax + b) \rangle = h(x) + \langle A^T g, y - x \rangle, \]

giving the result.

Finite maxima Let \(f_i, i = 1, \ldots, m \), be convex functions, and \(f(x) = \max_{i \leq m} f_i(x) \). Then we have

\[\text{epi } f = \bigcap_{i \leq m} \text{epi } f_i, \]

which is convex, and \(f \) is convex. Now, let \(i \) be any index such that \(f_i(x) = f(x) \), and let \(g_i \in \partial f_i(x) \). Then we have for any \(y \in \mathbb{R}^n \) that

\[f(y) \geq f_i(y) \geq f_i(x) + \langle g_i, y - x \rangle = f(x) + \langle g_i, y - x \rangle. \]

So \(g_i \in \partial f(x) \). More generally, we have the result that

\[\partial f(x) = \text{Conv} \{ \partial f_i(x) : f_i(x) = f(x) \}, \]
that is, the subgradient set of f is the convex hull of the subgradients of active functions at x, that is, those attaining the maximum. If there is only a single unique active function f_i, then $\partial f(x) = \partial f_i(x)$. See

![Figure 1.5.3. Subgradients of finite maxima. The function $f(x) = \max\{f_1(x), f_2(x)\}$ where $f_1(x) = x^2$ and $f_2(x) = -2x - \frac{1}{5}$, and f is differentiable everywhere except at $x_0 = -1 + \sqrt{4/5}$.](image)

Uncountable maxima (supremum) Lastly, consider $f(x) = \sup_{\alpha \in S} f_\alpha(x)$, where A is an arbitrary index set and f_α is convex for each α. First, let us assume that the supremum is attained at some $\alpha \in A$. Then, identically to the above, we have that $\partial f_\alpha(x) \subset \partial f(x)$. More generally, we have

$$\partial f(x) \supset \text{Conv}(\partial f_\alpha(x) : f_\alpha(x) = f(x)).$$

Achieving equality in the preceding definition requires a number of conditions, and if the supremum is not attained, the function f may not be subdifferentiable.

Notes and further reading The study of convex analysis and optimization originates, essentially, with Rockafellar’s 1970 book *Convex Analysis* [46]. Because of the limited focus of these lecture notes, we have only barely touched on many topics in convex analysis, developing only those we need. Two omissions are perhaps the most glaring: except tangentially, we have provided no discussion of conjugate functions and conjugacy, and we have not discussed Lagrangian duality, both of which are central to any study of convex analysis and optimization.

A number of books provide coverage of convex analysis in finite and infinite dimensional spaces and make excellent further reading. For broad coverage of convex optimization problems, theory, and algorithms, Boyd and Vandenberghe [10] is an excellent reference, also providing coverage of basic convex duality theory and conjugate functions. For deeper forays into convex analysis, personal favorites of mine include the books of Hiriart-Urruty and Lemaréchal [25, 26], as
well as the shorter volume [27], and Bertsekas [7] also provides an elegant geometric picture of convex analysis and optimization. Our approach here follows Hiriart-Urruty and Lemaréchal’s most closely. For a treatment of the issues of separation, convexity, duality, and optimization in infinite dimensional spaces, an excellent reference is the classic book by Luenberger [34].

2. Subgradient Methods

Lecture Summary: In this lecture, we discuss first order methods for the minimization of convex functions. We focus almost exclusively on subgradient-based methods, which are essentially universally applicable for convex optimization problems, because they rely very little on the structure of the problem being solved. This leads to effective but slow algorithms in classical optimization problems. In large scale problems arising out of machine learning and statistical tasks, however, subgradient methods enjoy a number of (theoretical) optimality properties and have excellent practical performance.

2.1. Introduction

In this lecture, we explore a basic subgradient method, and a few variants thereof, for solving general convex optimization problems. Throughout, we will attack the problem

\[
\begin{align*}
\text{minimize } & f(x) \quad \text{subject to } x \in C \\
\end{align*}
\]

where \(f : \mathbb{R}^n \to \mathbb{R} \) is convex (though it may take on the value \(+\infty\) for \(x \notin \text{dom } f \)) and \(C \) is a closed convex set. Certainly in this generality, finding a universally good method for solving the problem (2.1.1) is hopeless, though we will see that the subgradient method does essentially apply in this generality.

Convex programming methodologies developed in the last fifty years or so have given powerful methods for solving optimization problems. The performance of many methods for solving convex optimization problems is measured by the amount of time or number of iterations required of them to give an \(\epsilon \)-optimal solution to the problem (2.1.1), roughly, how long it takes to find some \(\hat{x} \) such that \(f(\hat{x}) - f(x^*) \leq \epsilon \) and \(\text{dist}(\hat{x}, C) \leq \epsilon \) for an optimal \(x^* \in C \). Essentially any problem for which we can compute subgradients efficiently can be solved to accuracy \(\epsilon \) in time polynomial in the dimension \(n \) of the problem and \(\log \frac{1}{\epsilon} \) by the ellipsoid method (cf. [38, 42]). Moreover, for somewhat better structured (but still quite general) convex problems, interior point and second order methods [10, 42] are practically and theoretically quite efficient, sometimes requiring only \(O(\log^2 \frac{1}{\epsilon}) \) iterations to achieve optimization error \(\epsilon \). These methods use the Newton method as a basic solver, along with specialized representations of the constraint set \(C \), and are quite powerful.

However, for large scale problems, the time complexity of standard interior point and Newton methods can be prohibitive. Indeed, for \(n \)-dimensional problems—that is, when \(x \in \mathbb{R}^n \)—interior point methods scale at best as \(O(n^3) \), and can be
much worse. When \(n \) is large (where today, large may mean \(n \approx 10^9 \)), this becomes highly non-trivial. In such large scale problems and problems arising from any type of data-collection process, it is reasonable to expect that our representation of problem data is inexact at best. In statistical machine learning problems, for example, this is often the case; generally, many applications do not require accuracy higher than, say \(\epsilon = 10^{-2} \) or \(10^{-3} \), in which case faster but less exact methods become attractive.

It is with this motivation that we attack solving the problem (2.1.1) in this document, showing classical subgradient algorithms. These algorithms have the advantage that their iteration costs are low—\(O(n) \) or smaller for \(n \)-dimensional problems—but they achieve low accuracy solutions to (2.1.1) very quickly. Moreover, depending on problem structure, they can sometimes achieve convergence rates that are independent of problem dimension. More precisely, and as we will see later, the methods we study will guarantee convergence to an \(\epsilon \)-optimal solution to problem (2.1.1) in \(O(1/\epsilon^2) \) iterations, while methods that achieve better dependence on \(\epsilon \) require at least \(n \log 1/\epsilon \) iterations.

\[
\begin{align*}
\text{Figure 2.2.1.} & \quad \text{Left: linear approximation to the function } f(x) = \log(1 + e^x) \text{ at the point } x_k = 0. \quad \text{Right: linear plus quadratic upper bound for the function } f(x) = \log(1 + e^x) \text{ at the point } x_k = 0. \quad \text{This is the upper-bound and approximation of the gradient method (2.2.3) with the choice } \alpha_k = 1.
\end{align*}
\]

2.2. The gradient and subgradient methods We begin by focusing on the unconstrained case, that is, when the set \(C \) in problem (2.1.1) is \(C = \mathbb{R}^n \). That is, we wish to solve

\[
\min_{x \in \mathbb{R}^n} f(x).
\]

We first review the gradient descent method, using it as motivation for what follows. In the gradient descent method, minimize the objective (2.1.1) by iteratively updating

\[
(2.2.2) \quad x_{k+1} = x_k - \alpha_k \nabla f(x_k),
\]
where $\alpha_k > 0$ is a positive sequence of stepsizes. The original motivations for this choice of update come from the fact that x^* minimizes a convex f if and only if $0 = \nabla f(x^*)$; we believe a more compelling justification comes from the idea of modeling the convex function being minimized. Indeed, the update (2.2.2) is equivalent to

$$(2.2.3) \quad x_{k+1} = \underset{x}{\text{argmin}} \left\{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \| x - x_k \|_2^2 \right\}.$$

The interpretation is as follows: the linear functional $x \mapsto \{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle \}$ is the best linear approximation to the function f at the point x_k, and we would like to make progress minimizing x. So we minimize this linear approximation, but to make sure that it has fidelity to the function f, we add a quadratic $\| x - x_k \|_2^2$ to penalize moving too far from x_k, which would invalidate the linear approximation. See Figure 2.2.1. Assuming that f is continuously differentiable (often, one assumes the gradient $\nabla f(x)$ is Lipschitz), then gradient descent is a descent method if the stepsize $\alpha_k > 0$ is small enough—it monotonically decreases the objective $f(x_k)$. We spend no more time on the convergence of gradient-based methods, except to say that the choice of the stepsize α_k is often extremely important, and there is a body of research on carefully choosing directions as well as stepsize lengths; Nesterov [41] provides an excellent treatment of many of the basic issues.

Subgradient algorithms The subgradient method is a minor variant of the method (2.2.2), except that instead of using the gradient, we use a subgradient. The method can be written simply: for $k = 1, 2, \ldots$, we iterate

i. Choose any subgradient $g_k \in \partial f(x_k)$

ii. Take the subgradient step

$$(2.2.4) \quad x_{k+1} = x_k - \alpha_k g_k.$$

Unfortunately, the subgradient method is not, in general, a descent method. For a simple example, take the function $f(x) = |x|$, and let $x_1 = 0$. Then except for the choice $g = 0$, all subgradients $g \in \partial f(0) = [-1, 1]$ are ascent directions. This is not just an artifact of 0 being optimal for f; in higher dimensions, this behavior is common. Consider, for example, $f(x) = \|x\|_1$ and let $x = e_1 \in \mathbb{R}^n$, the first standard basis vector. Then $\partial f(x) = e_1 + \sum_{i=2}^n t_i e_i$, where $t_i \in [-1, 1]$. Any vector $g = e_1 + \sum_{i=2}^n t_i e_i$ with $\sum_{i=2}^n |t_i| > 1$ is an ascent direction for f, meaning that $f(x - \alpha g) > f(x)$ for all $\alpha > 0$. If we were to pick a uniformly random $g \in \partial f(e_1)$, for example, then the probability that g is a descent direction is exponentially small in the dimension n.
In general, the characterization of the subgradient set \(\partial f(x) \) as \(\{ g : f'(x; u) \geq \langle g, u \rangle \} \) for all \(u \), where \(f'(x; u) = \lim_{t \to 0} \frac{f(x+tu) - f(x)}{t} \) is the directional derivative, and the fact that \(f'(x; u) = \sup_{g \in \partial f(x)} \langle g, u \rangle \) guarantees that

\[
\text{argmin}_{g \in \partial f(x)} \left\{ \| g \|^2 \right\}
\]

is a descent direction, but we do not prove this here. Indeed, finding such a descent direction would require explicitly calculating the entire subgradient set \(\partial f(x) \), which for a number of functions is non-trivial and breaks the simplicity of the subgradient method \((2.2.4)\), which works with any subgradient.

It is the case, however, that so long as the point \(x \) does not minimize \(f(x) \), then subgradients descend on a related quantity: the distance of \(x \) to any optimal point. Indeed, let \(g \in \partial f(x) \), and let \(x^* \in \text{argmin} f(x) \) (we assume such a point exists), which need not be unique. Then we have for any \(\alpha \) that

\[
\frac{1}{2} \| x - \alpha g - x^* \|^2 = \frac{1}{2} \| x - x^* \|^2 - \alpha \langle g, x - x^* \rangle + \frac{\alpha^2}{2} \| g \|^2.
\]

But now we may use the defining inequality of the subgradient, that is, that \(f(y) \geq f(x) + \langle g, y - x \rangle \) for all \(y \), including \(x^* \). This gives \(-\langle g, x - x^* \rangle = \langle g, x^* - x \rangle \leq f(x^*) - f(x) \), and thus

\[
(2.2.5) \quad \frac{1}{2} \| x - \alpha g - x^* \|^2 \leq \frac{1}{2} \| x - x^* \|^2 - \alpha (f(x) - f(x^*)) + \frac{\alpha^2}{2} \| g \|^2.
\]

From inequality \((2.2.5)\), we see immediately that, no matter our choice \(g \in \partial f(x) \), we have

\[
0 < \alpha < \frac{2(f(x) - f(x^*))}{\| g \|^2} \implies \| x - \alpha g - x^* \|^2 < \| x - x^* \|^2.
\]

Summarizing, by noting that \(f(x) - f(x^*) > 0 \), we have

Observation 2.2.6. If \(0 \not\in \partial f(x) \), then for any \(x^* \in \text{argmin}_x f(x) \) and any \(g \in \partial f(x) \), there is a stepsize \(\alpha > 0 \) such that \(\| x - \alpha g - x^* \|^2 < \| x - x^* \|^2 \).

This observation is the key to the analysis of subgradient methods.

Convergence guarantees Perhaps unsurprisingly, given the simplicity of the subgradient method, the analysis of convergence for the method is also quite simple. We begin by stating a general result on the convergence of subgradient methods; we provide a number of variants in the sequel. We make a few simplifying assumptions in stating our result, several of which are not completely necessary, but which considerably simplify the analysis. We enumerate them here:

i. There is at least one minimizing point \(x^* \in \text{argmin}_x f(x) \) with \(f(x^*) = \inf_x f(x) > -\infty \)

ii. The subgradients are bounded: for all \(x \) and all \(g \in \partial f(x) \), we have the subgradient bound \(\| g \|_2 \leq M < \infty \).
Theorem 2.2.7. Let $\alpha_k \geq 0$ be any non-negative sequence of step sizes and the preceding assumptions hold. Let x_k be generated by the subgradient iteration (2.2.4). Then for all $K \geq 1$,
\[
\sum_{k=1}^{K} \alpha_k [f(x_k) - f(x^*)] \leq \frac{1}{2} \|x_1 - x^*\|^2_2 + \frac{1}{2} \sum_{k=1}^{K} \alpha_k^2 M^2.
\]

Proof. The entire proof essentially amounts to writing down the distance $\|x_{k+1} - x^*\|_2^2$ and expanding the square, which we do. By applying inequality (2.2.5), we have
\[
\frac{1}{2} \|x_{k+1} - x^*\|_2^2 = \frac{1}{2} \|x_k - \alpha g_k - x^*\|_2^2
\]
\[
\leq \frac{1}{2} \|x_k - x^*\|_2^2 - \alpha_k(f(x_k) - f(x^*)) + \frac{\alpha_k^2}{2} \|g_k\|_2^2.
\]
Rearranging this inequality and using that $\|g_k\|_2^2 \leq M^2$, we obtain
\[
\alpha_k [f(x_k) - f(x^*)] \leq \frac{1}{2} \|x_k - x^*\|_2^2 - \frac{1}{2} \|x_{k+1} - x^*\|_2^2 + \frac{\alpha_k^2}{2} \|g_k\|_2^2
\]
\[
\leq \frac{1}{2} \|x_k - x^*\|_2^2 - \frac{1}{2} \|x_{k+1} - x^*\|_2^2 + \frac{\alpha_k^2}{2} M^2.
\]
By summing the preceding expression from $k = 1$ to $k = K$ and canceling the alternating $\pm \|x_k - x^*\|_2$ terms, we obtain the theorem. □

Theorem 2.2.7 is the starting point from which we may derive a number of useful consequences. First, we use convexity to obtain the following immediate corollary (we assume that $\alpha_k > 0$ in the corollary).

Corollary 2.2.8. Let $A_k = \sum_{i=1}^{k} \alpha_i$ and define $x_k = \frac{1}{A_k} \sum_{k=1}^{K} \alpha_k x_k$. Then
\[
f(x_k) - f(x^*) \leq \frac{\|x_1 - x^*\|^2_2 + \sum_{k=1}^{K} \alpha_k^2 M^2}{2 \sum_{k=1}^{K} \alpha_k}.
\]

Proof. Noting that $A_k^{-1} \sum_{k=1}^{K} \alpha_k = 1$, we see by convexity that
\[
f(x_k) - f(x^*) \leq \frac{1}{A_k^{-1} \sum_{k=1}^{K} \alpha_k} \sum_{k=1}^{K} \alpha_k [f(x_k) - f(x^*)] = A_k^{-1} \sum_{k=1}^{K} \alpha_k (f(x_k) - f(x^*)).
\]
Applying Theorem 2.2.7 gives the result. □

Corollary 2.2.8 allows us to give a number of basic convergence guarantees based on our stepsize choices. For example, we see that whenever we have
\[
\alpha_k \to 0 \text{ and } \sum_{k=1}^{\infty} \alpha_k = \infty,
\]
then $\sum_{k=1}^{K} \alpha_k^2 / \sum_{k=1}^{K} \alpha_k \to 0$ and so
\[
f(x_k) - f(x^*) \to 0 \text{ as } K \to \infty.
\]
Moreover, we can give specific stepsize choices to optimize the bound. For example, let us assume for simplicity that $R^2 = \|x_1 - x^*\|_2^2$ is our distance (radius) to
optimality. Then choosing a fixed stepsize $\alpha_k = \alpha$, we have

$$f(\bar{x}_K) - f(x^*) \leq \frac{R^2}{2K\alpha} + \frac{\alpha M^2}{2}. \tag{2.2.9}$$

Optimizing this bound by taking $\alpha = \frac{R}{M\sqrt{K}}$ gives

$$f(\bar{x}_K) - f(x^*) \leq \frac{RM}{\sqrt{K}}.$$

Given that subgradient descent methods are not descent methods, it often makes sense, instead of tracking the (weighted) average of the points or using the final point, to use the best point observed thus far. Naturally, if we let

$$x_{k}^\text{best} = \arg\min_{x_i : i \leq k} f(x_i)$$

and define $f_k^\text{best} = f(x_k^\text{best})$, then we have the same convergence guarantees that

$$f(x_k^\text{best}) - f(x^*) \leq \frac{R^2}{2} + \frac{\sum_{k=1}^{K} \alpha_k^2 M^2}{2 \sum_{k=1}^{K} \alpha_k}.$$

A number of more careful stepsize choices are possible, though we refer to the notes at the end of this lecture for more on these choices and applications outside of those we consider, as our focus is naturally circumscribed.

Figure 2.2.10. Subgradient method applied to the robust regression problem (2.2.12) with fixed stepsizes.

Example We now present an example that has applications in robust statistics and other data fitting scenarios. As a motivating scenario, suppose we have a sequence of vectors $a_i \in \mathbb{R}^n$ and target responses $b_i \in \mathbb{R}$, and we would like to predict b_1 via the inner product $\langle a_i, x \rangle$ for some vector x. If there are outliers or other data corruptions in the targets b_i, a natural objective for this task, given the
data matrix $A = [a_1 \cdots a_m]^T \in \mathbb{R}^{m \times n}$ and vector $b \in \mathbb{R}^m$, is the absolute error

$$f(x) = \frac{1}{m} \|Ax - b\|_1 = \frac{1}{m} \sum_{i=1}^m |\langle a_i, x \rangle - b_i|.$$

We perform subgradient descent on this objective, which has subgradient

$$g(x) = \frac{1}{m} A^T \text{sign}(Ax - b) = \frac{1}{m} \sum_{i=1}^m a_i \text{sign}(\langle a_i, x \rangle - b_i) \in \partial f(x)$$

at the point x, for $K = 4000$ iterations with a fixed stepsize $\alpha_k \equiv \alpha$ for all k. We give the results in Figures 2.2.10 and 2.2.11, which exhibit much of the typical behavior of subgradient methods. From the plots, we see roughly a few phases of behavior: the method with a large stepsize make progress very quickly initially, but then enters its “jamming” phase, where it essentially makes no more progress. The accuracy of the methods with different stepsizes varies greatly, as well—the smaller the stepsize, the better the (final) performance of the iterates x_k, but initial progress is much slower.

2.3 Projected subgradient methods

It is often the case that we wish to solve problems not over \mathbb{R}^n but over some constrained set, for example, in the Lasso [53] and in compressed sensing applications [18] one minimizes an objective such as $\|Ax - b\|_2^2$ subject to $\|x\|_1 \leq R$ for some constant $R < \infty$. Recalling the problem (2.1.1), we more generally wish to solve problem

$$\text{minimize } f(x) \text{ subject to } x \in C \subset \mathbb{R}^n,$$
where C is a closed convex set, not necessarily \mathbb{R}^n. The projected subgradient method is close to the subgradient method, except that we replace the iteration with

\[x_{k+1} = \pi_C (x_k - \alpha_k g_k) \tag{2.3.1} \]

where

\[\pi_C (x) = \arg\min_{y \in C} \|x - y\|_2 \]

denotes the (Euclidean) projection onto C. As in the gradient case (2.2.3), we can reformulate the update as making a linear approximation, with quadratic damping, to f and minimizing this approximation: by algebraic manipulation, the update (2.3.1) is equivalent to

\[x_{k+1} = \arg\min_{x \in C} \left\{ f(x_k) + \langle g_k, x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}. \tag{2.3.2} \]

Figure 2.3.3 shows an example of the iterations of the projected gradient method applied to minimizing $f(x) = \|Ax - b\|_2^2$ subject to the ℓ_1-constraint $\|x\|_1 \leq 1$. Note that the method iterates between moving outside the ℓ_1-ball toward the minimum of f (the level curves) and projecting back onto the ℓ_1-ball.

It is very important in the projected subgradient method that the projection mapping π_C be efficiently computable—the method is effective essentially only in problems where this is true. In many situations, this is the case, but some care is necessary if the objective f is simple while the set C is complex. In such scenarios, projecting onto the set C may be as complex as solving the original optimization problem (2.1.1). For example, a general linear programming problem is described by

\[\min_{x} \langle c, x \rangle \text{ subject to } Ax = b, \ Cx \leq d. \]
Then computing the projection onto the set \(\{ x : Ax = b, Cx \leq d \} \) is at least as difficult as solving the original problem.

Examples of projections As noted above, it is important that projections \(\pi_C \) be efficiently calculable, and often a method’s effectiveness is governed by how quickly one can compute the projection onto the constraint set \(C \). With that in mind, we now provide two examples exhibiting convex sets \(C \) onto which projection is reasonably straightforward and for which we can write explicit, concrete projected subgradient updates.

Example 2.1: Suppose that \(C \) is an affine set, represented by \(C = \{ x \in \mathbb{R}^n : Ax = b \} \) for \(A \in \mathbb{R}^{m \times n}, m \leq n \), where \(A \) is full rank. (So that \(A \) is a short and fat matrix and \(AA^T \succ 0 \).) Then the projection \(\pi_C(x) = (I - A^T(AA^T)^{-1} A) x + A^T(AA^T)^{-1} b, \) and if we begin the iterates from a point \(x_k \in C \), i.e. with \(Ax_k = b \), then
\[
x_{k+1} = \pi_C(x_k - \alpha_k g_k) = x_k - \alpha_k (I - A^T(AA^T)^{-1} A) g_k,
\]
that is, we simply project \(g_k \) onto the nullspace of \(A \) and iterate.

Example 2.2 (Some norm balls): Let us consider updates when \(C = \{ x : \|x\|_p \leq 1 \} \) for \(p \in \{1, 2, \infty \} \), each of which is reasonably simple, though the projections are no longer affine. First, for \(p = \infty \), we consider each coordinate \(j = 1, 2, \ldots, n \) in turn, giving
\[
[\pi_C(x)]_j = \min \{ 1, \max \{ x_j, -1 \} \},
\]
that is, we simply truncate the coordinates of \(x \) to be in the range \([-1, 1]\). For \(p = 2 \), we have a similarly simple to describe update:
\[
\pi_C(x) = \begin{cases}
 x & \text{if } \|x\|_2 \leq 1 \\
 x/\|x\|_2 & \text{otherwise.}
\end{cases}
\]
When \(p = 1 \), that is, \(C = \{ x : \|x\|_1 \leq 1 \} \), the update is somewhat more complex. If \(\|x\|_1 \leq 1 \), then \(\pi_C(x) = x \). Otherwise, we find the (unique) \(t \geq 0 \) such that
\[
\sum_{j=1}^n \left[|x_j| - t \right]_+ = 1,
\]
and then set the coordinates \(j \) via
\[
[\pi_C(x)]_j = \text{sign}(x_j) \left[|x_j| - t \right]_+.
\]
There are numerous efficient algorithms for finding this \(t \) (e.g. \([12, 21]\)).

Convergence results We prove the convergence of the projected subgradient using an argument similar to our proof of convergence for the classic (unconstrained) subgradient method. We assume that the set \(C \) is contained in the
interior of the domain of the function f, which (as noted in the lecture on convex analysis) guarantees that f is Lipschitz continuous and subdifferentiable, so that there exists $M < \infty$ with $\|g\|_2 \leq M$ for all $g \in \partial f$. We make the following assumptions in the next theorem.

i. The set $C \subset \mathbb{R}^n$ is compact and convex, and $\|x - x^*\|_2 \leq R < \infty$ for all $x \in C$.

ii. There exists $M < \infty$ such that $\|g\|_2 \leq M$ for all $g \in \partial f(x)$ and $x \in C$.

We make the compactness assumption to allow for a slightly different result than Theorem 2.2.7.

Theorem 2.3.4. Let x_k be generated by the projected subgradient iteration (2.3.1), where the stepsizes $\alpha_k > 0$ are non-increasing. Then

$$\sum_{k=1}^{K} [f(x_k) - f(x^*)] \leq \frac{R^2}{2 \alpha_{\infty}} + \frac{1}{2} \sum_{k=1}^{K} \alpha_k M^2.$$

Proof. The starting point of the proof is the same basic inequality as we have been using, that is, the distance $\|x_{k+1} - x^*\|_2^2$. In this case, we note that projections can never increase distances to points $x^* \in C$, so that

$$\|x_{k+1} - x^*\|_2^2 = \|\pi_C(x_k - \alpha_k g_k) - x^*\|_2^2 \leq \|x_k - \alpha_k g_k - x^*\|_2^2.$$

Now, as in our earlier derivation, we apply inequality (2.2.5) to obtain

$$\frac{1}{2} \|x_{k+1} - x^*\|_2^2 \leq \frac{1}{2} \|x_k - x^*\|_2^2 - \alpha_k f(x_k) - f(x^*) + \frac{\alpha_k^2}{2} \|g_k\|_2^2.$$

Rearranging this slightly by dividing by α_k, we find that

$$f(x_k) - f(x^*) \leq \frac{1}{2 \alpha_k} [\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2] + \frac{\alpha_k}{2} \|g_k\|_2^2.$$

Now, using a variant of the telescoping sum in the proof of Theorem 2.2.7 we have

(2.3.5)

$$\sum_{k=1}^{K} [f(x_k) - f(x^*)] \leq \sum_{k=1}^{K} \frac{1}{2 \alpha_k} [\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2] + \sum_{k=1}^{K} \frac{\alpha_k}{2} \|g_k\|_2^2.$$

We rearrange the middle sum in expression (2.3.5), obtaining

$$\sum_{k=1}^{K} \frac{1}{2 \alpha_k} [\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2]$$

$$= \sum_{k=2}^{K} \left(\frac{1}{2 \alpha_k} - \frac{1}{2 \alpha_{k-1}} \right) \|x_k - x^*\|_2^2 + \frac{1}{2 \alpha_1} \|x_1 - x^*\|_2^2 - \frac{1}{2 \alpha_K} \|x_K - x^*\|_2^2$$

$$\leq \sum_{k=2}^{K} \left(\frac{1}{2 \alpha_k} - \frac{1}{2 \alpha_{k-1}} \right) R^2 + \frac{1}{2 \alpha_1} R^2$$

because $\alpha_k \leq \alpha_{k-1}$. Noting that this last sum telescopes and that $\|g_k\|_2^2 \leq M^2$ in inequality (2.3.5) gives the result. \square
One application of this result is when we use a decreasing stepsize of $\alpha_k = \alpha / \sqrt{k}$, which allows nearly as strong of a convergence rate as in the fixed stepsize case when the number of iterations K is known, but the algorithm provides a guarantee for all iterations k. Here, we have that

$$\sum_{k=1}^{K} \frac{1}{\sqrt{k}} \leq \int_{0}^{K} t^{-\frac{1}{2}} \, dt = 2\sqrt{K},$$

and so by taking $x_K = \frac{1}{K} \sum_{k=1}^{K} x_k$ we obtain the following corollary.

Corollary 2.3.6. In addition to the conditions of the preceding paragraph, let the conditions of Theorem 2.3.4 hold. Then

$$f(x_K) - f(x^*) \leq \frac{R^2}{2\alpha\sqrt{K}} + \frac{M^2\alpha}{\sqrt{K}}.$$

So we see that convergence is guaranteed, at the “best” rate $1/\sqrt{K}$, for all iterations. Here, we say “best” because this rate is unimprovable—there are worst case functions for which no method can achieve a rate of convergence faster than RM/\sqrt{K}—but in practice, one would hope to attain better behavior by leveraging problem structure.

2.4. Stochastic subgradient methods

The real power of subgradient methods, which has become evident in the last ten or fifteen years, is in their applicability to large scale optimization problems. Indeed, while subgradient methods guarantee only slow convergence—requiring $1/e^2$ iterations to achieve ε-accuracy—they provide the benefit that they are robust to a number of errors. In fact, subgradient methods achieve unimprovable rates of convergence for a number of optimization problems with noise, and they often do so very computationally efficiently.

Stochastic optimization problems The basic building block for stochastic gradient methods is the stochastic gradient, often called the stochastic gradient oracle. Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a convex function, and fix $x \in \text{dom} \, f$. Then a random vector g is a stochastic gradient for f at the point x if $\mathbb{E}[g] \in \partial f(x)$, or

$$f(y) \geq f(x) + \langle \mathbb{E}[g], y - x \rangle$$

for all y.

Said somewhat more formally, we make the following definition.

Definition 2.4.1. A stochastic gradient oracle for the function f consists of a triple (g, S, P), where S is a sample space, P is a probability distribution, and $g : \mathbb{R}^n \times S \to \mathbb{R}^n$ is a mapping that for each $x \in \text{dom} \, f$ satisfies

$$\mathbb{E}_P[g(x, S)] = \int g(x, s) \, dP(s) \in \partial f(x),$$

where $S \subseteq S$ is a sample drawn from P.

Often, with some abuse of notation, we will use g or $g(x)$ for shorthand of the random vector $g(x, S)$ when this does not cause confusion.
A standard example for these types of problems is stochastic programming, where we wish to solve the convex optimization problem

\[
\begin{align*}
&\text{minimize } f(x) := \mathbb{E}_P[F(x; S)] \\
&\text{subject to } x \in C.
\end{align*}
\]

(2.4.2)

Here S is a random variable on the space S with distribution P (so the expectation $\mathbb{E}_P[F(x; S)]$ is taken according to P), and for each $s \in S$, the function $x \mapsto F(x; s)$ is convex. Then we immediately see that if we let

\[g(x, s) \in \partial_x F(x; s), \]

then g is a stochastic gradient when we draw $S \sim P$ and set $g = g(x, S)$, as in Lecture 1 (recall expression (1.5.1)). Recalling this calculation, we have

\[f(y) = \mathbb{E}_P[F(y; S)] \geq \mathbb{E}_P[F(x; S) + \langle g(x, S), y - x \rangle] = f(x) + \langle \mathbb{E}_P[g(x, S)], y - x \rangle \]

so that $\mathbb{E}_P[g(x, S)]$ is a stochastic subgradient.

To make the setting (2.4.2) more concrete, consider the robust regression problem (2.2.12), which uses

\[f(x) = \frac{1}{m} \|Ax - b\|_1 = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle - b_i|. \]

Then a natural stochastic gradient, which requires time only $O(n)$ to compute (as opposed to $O(m \cdot n)$ to compute $Ax - b$), is to uniformly at random draw an index $i \in [m]$, then return

\[g = a_i \text{ sign}(\langle a_i, x \rangle - b_i). \]

More generally, given any problem in which one has a large dataset $\{s_1, \ldots, s_m\}$, and we wish to minimize the sum

\[f(x) = \frac{1}{m} \sum_{i=1}^{m} F(x; s_i), \]

then drawing an index $i \in \{1, \ldots, m\}$ uniformly at random and using $g \in \partial_x F(x; s_i)$ is a stochastic gradient. Computing this stochastic gradient requires only the time necessary for computing some element of the subgradient set $\partial_x F(x; s_i)$, while the standard subgradient method applied to these problems is m-times more expensive in each iteration.

More generally, the expectation $\mathbb{E}[F(x; S)]$ is generally intractable to compute, especially if S is a high-dimensional distribution. In statistical and machine learning applications, we may not even know the distribution P, but we can observe samples $S_i \sim P$. In these cases, it may be impossible to even implement the calculation of a subgradient $f'(x) \in \partial f(x)$, but sampling from P is possible, allowing us to compute stochastic subgradients.
Stochastic subgradient method With this motivation in place, we can describe
the (projected) stochastic subgradient method. Simply, the method iterates as
follows:

(1) Compute a stochastic subgradient \(g_k \) at the point \(x_k \), where
\[
\mathbb{E}[g_k | x_k] \in \partial f(x)
\]
(2) Perform the projected subgradient step
\[
x_{k+1} = \pi_C (x_k - \alpha_k g_k).
\]
This is essentially identical to the projected gradient method (2.3.1), except that
we replace the true subgradient with a stochastic gradient.

\[
\text{Figure 2.4.3. Stochastic subgradient method versus non-
stochastic subgradient method performance on problem (2.4.4).}
\]

In the next section, we analyze the convergence of the procedure, but here we
give two examples example here that exhibit some of the typical behavior of these
methods.

Robust regression example We consider the robust regression problem (2.2.12),
solving
\[
\text{(2.4.4) minimize } f(x) = \frac{1}{m} \sum_{l=1}^{m} |\langle a_l, x \rangle - b_l | \text{ subject to } \|x\|_2 \leq R,
\]
using the random sample \(g = a_i \text{ sign}(\langle a_i, x \rangle - b_l) \) as our stochastic gradient. We
generate \(A = [a_1 \cdots a_m]^T \) by drawing \(a_i \overset{iid}{\sim} N(0, I_{n \times n}) \) and \(b_l = \langle a_l, u \rangle + \varepsilon_i |\varepsilon_i|^3 \),
where \(\varepsilon_i \overset{iid}{\sim} N(0, 1) \) and \(u \) is a Gaussian random variable with identity covariance.
We use \(n = 50, m = 100, \) and \(R = 4 \) for this experiment.

We plot the results of running the stochastic gradient iteration versus stan-
dard projected subgradient descent in Figure 2.4.3, both methods run with the
fixed stepsize \(\alpha = R/M \sqrt{K} \) for \(M^2 = \frac{1}{m} \|A\|_{fr}^2 \), which optimizes the convergence
We represent single training examples as pairs \mathbf{a}, where $\mathbf{a} = (\mathbf{x}, y)$ and $y \in \{0, 1, \ldots, k\}$, and as a convex surrogate for a misclassification error that the matrix \mathbf{X} makes on the pair (\mathbf{a}, b), we use the multiclass hinge loss function

$$F(X; (\mathbf{a}, b)) = \max_{l \neq b} \{1 + (\mathbf{a}, \mathbf{x}_l - \mathbf{x}_b)\}^+$$

where $[t]^+ = \max(t, 0)$ denotes the positive part. Then F is convex in X, and for a pair (\mathbf{a}, b) we have $F(X; (\mathbf{a}, b)) = 0$ if and only if the classifier represented by X has a large margin, meaning that

$$\langle \mathbf{a}, \mathbf{x}_l \rangle \geq \langle \mathbf{a}, \mathbf{x}_b \rangle + 1 \text{ for all } l \neq b.$$

In this example, we have a sample of $N = 7291$ digits (\mathbf{a}_i, b_i), and we compare the performance of stochastic subgradient descent to standard subgradient descent for solving the problem

$$(2.4.5) \quad \text{minimize } f(X) = \frac{1}{N} \sum_{i=1}^{N} F(X; (\mathbf{a}_i, b_i)) \text{ subject to } \|X\|_{F} \leq R$$

where $R = 40$. We perform stochastic subgradient descent using stepsizes $\alpha_k = \alpha_1/\sqrt{k}$, where $\alpha_1 = R/M$ and $M^2 = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{a}_i\|^2_2$ (this is an approximation to the Lipschitz constant of f). For our stochastic gradient oracle, we select an index $i \in \{1, \ldots, N\}$ uniformly at random, then take $g \in \partial F(X; (\mathbf{a}_i, b_i))$. For the standard subgradient method, we also perform projected subgradient descent, where we compute subgradients by taking $g_i \in \partial F(X; (\mathbf{a}_i, b_i))$ and setting $g = \frac{1}{N} \sum_{i=1}^{N} g_i \in \partial f(X)$. We use an identical stepsize strategy of setting $\alpha_k = \alpha_1/\sqrt{k}$, but use the five stepsizes $\alpha_j = 10^{-j} R/M$ for $j \in \{-2, -1, \ldots, 2\}$. We plot the results.
of this experiment in Figure 2.4.6. The plot makes clear that computing the entire subgradient \(\partial f(X) \) is wasteful: the non-stochastic methods’ convergence, in terms of iteration count, is potentially faster than that for the stochastic method, but the huge \((7291 \times)\) per-iteration speedup the stochastic method enjoys because of its random sampling yields substantially better performance. This is true even across a wide range of stepsize choices, suggesting the benefits of stochastic gradient methods in stochastic programming problems such as problem (2.4.5).

\[
\begin{align*}
\text{Figure 2.4.6. Comparison of stochastic versus non-stochastic methods for the average hinge-loss minimization problem (2.4.5). The horizontal axis is a measure of the time used by each method, represented as the number of times the matrix-vector product } X^T a_i \text{ is computed. Stochastic gradient descent vastly outperforms the non-stochastic methods.}
\end{align*}
\]

Convergence guarantees We now turn to guarantees of convergence for the stochastic subgradient method. As in our analysis of the projected subgradient method, we assume that \(C \) is compact and there is some \(R < \infty \) such that \(\|x^* - x\|_2 \leq R \) for all \(x \in C \), that projections \(\pi_C \) are efficiently computable, and that for all \(x \in C \) we have the bound \(E[\|g(x, S)\|_2^2] \leq M^2 \) for our stochastic oracle \(g \). (The oracle’s noise \(S \) may depend on the previous iterates, but we always have the unbiased condition \(E[g(x, S)] \in \partial f(x) \).)

Theorem 2.4.7. Let the conditions of the preceding paragraph hold and let \(\alpha_k > 0 \) be a non-increasing sequence of stepsizes. Let \(x_K = \frac{1}{K} \sum_{k=1}^{K} x_k \). Then

\[
E[f(x_K) - f(x^*)] \leq R^2 \frac{R}{2K\alpha K} + \frac{1}{2K} \sum_{k=1}^{K} \alpha_k M^2.
\]
Proof. The analysis is quite similar to our previous analyses, in that we simply expand the error $\|x_{k+1} - x^*\|_2^2$. Let use define $f'(x) := E[g(x, S)] \in \partial f(x)$ to be the expected subgradient returned by the stochastic gradient oracle, and let $\xi_k = g_k - f'(x_k)$ be the error in the kth subgradient. Then

$$\frac{1}{2} \|x_{k+1} - x^*\|_2 = \frac{1}{2} \|\pi_C(x_k - \alpha_k g_k) - x^*\|_2^2$$

$$\leq \frac{1}{2} \|x_k - \alpha_k g_k - x^*\|_2^2$$

$$= \frac{1}{2} \|x_k - x^*\|_2^2 - \alpha_k \langle g_k, x_k - x^* \rangle + \frac{\alpha_k^2}{2} \|g_k\|_2^2,$$

as in the proof of Theorems 2.2.7 and 2.3.4. Now, we add and subtract $\alpha_k \langle f'(x_k), x_k - x^* \rangle$, which gives

$$\frac{1}{2} \|x_{k+1} - x^*\|_2^2 \leq \frac{1}{2} \|x_k - x^*\|_2^2 - \alpha_k \langle f'(x_k), x_k - x^* \rangle + \frac{\alpha_k^2}{2} \|g_k\|_2^2 - \alpha_k \langle \xi_k, x_k - x^* \rangle,$$

where we have used the standard first-order convexity inequality.

Except for the error term $\langle \xi_k, x_k - x^* \rangle$, the proof is completely identical to that of Theorem 2.3.4. Indeed, dividing each side of the preceding display by α_k and rearranging, we have

$$f(x_k) - f(x^*) \leq \frac{1}{2 \alpha_k} \left(\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2 \right) + \frac{\alpha_k^2}{2} \|g_k\|_2^2 - \alpha_k \langle \xi_k, x_k - x^* \rangle.$$

Summing this inequality, as in the proof of Theorem 2.3.4 following inequality (2.3.5), yields that

$$\sum_{k=1}^K [f(x_k) - f(x^*)] \leq \frac{R^2}{2 \alpha K} + \frac{1}{2} \sum_{k=1}^K \alpha_k \|g_k\|_2^2 - \sum_{k=1}^K \langle \xi_k, x_k - x^* \rangle.$$

The inequality (2.4.8) is the basic inequality from which all our subsequent convergence guarantees follow.

For this theorem, we need only take expectations, realizing that

$$E[\langle \xi_k, x_k - x^* \rangle] = E \left[E[g(x_k) - f'(x_k), x_k - x^*] \mid x_k \right]$$

$$= E \left[\left(E[g(x_k) \mid x_k] - f'(x_k) \right), x_k - x^* \right] = 0.$$

Thus we obtain

$$E \left[\sum_{k=1}^K (f(x_k) - f(x^*)) \right] \leq \frac{R^2}{2 \alpha K} + \frac{1}{2} \sum_{k=1}^K \alpha_k M^2$$

once we realize that $E[\|g_k\|_2] \leq M^2$, which gives the desired result. \qed

Theorem 2.4.7 makes it clear that, in expectation, we can achieve the same convergence guarantees as in the non-noisy case. This does not mean that stochastic
subgradient methods are always as good as non-stochastic methods, but it does show the robustness of the subgradient method even to substantial noise. So while the subgradient method is very slow, its slowness comes with the benefit that it can handle large amounts of noise.

We now provide a few corollaries on the convergence of stochastic gradient descent. For background on probabilistic modes of convergence, see Appendix A.2.

Corollary 2.4.9. Let the conditions of Theorem 2.4.7 hold, and let \(\alpha_k = \frac{R}{M \sqrt{k}} \) for each \(k \). Then

\[
\mathbb{E}[f(x_k)] - f(x^*) \leq \frac{3RM}{2\sqrt{k}}
\]

for all \(k \in \mathbb{N} \).

The proof of the corollary is identical to that of Corollary 2.3.6 for the projected gradient method, once we substitute \(\alpha = \frac{R}{M} \) in the bound. We can also obtain convergence in probability of the iterates more generally.

Corollary 2.4.10. Let \(\alpha_k \) be non-summable but convergent to zero, that is, \(\sum_{k=1}^{\infty} \alpha_k = \infty \) and \(\alpha_k \to 0 \). Then \(f(x_k) - f(x^*) \overset{p}{\to} 0 \) as \(K \to \infty \), that is, for all \(\epsilon > 0 \) we have

\[
\limsup_{K \to \infty} \mathbb{P}(f(x_k) - f(x^*) \geq \epsilon) = 0.
\]

The above corollaries guarantee convergence of the iterates in expectation and with high probability, but sometimes it is advantageous to give finite sample guarantees of convergence with high probability. We can do this under somewhat stronger conditions on the subgradient noise sequence and using the Azuma-Hoeffding inequality (Theorem A.2.5 in Appendix A.2), which we present now.

Theorem 2.4.11. In addition to the conditions of Theorem 2.4.7, assume that \(\|g\|_2 \leq M \) for all stochastic subgradients \(g \). Then for any \(\epsilon > 0 \),

\[
f(x_k) - f(x^*) \leq \frac{R^2}{2K\alpha_k} + \sum_{k=1}^{K} \frac{\alpha_k}{2} M^2 + \frac{RM}{\sqrt{k} \epsilon} + \frac{M}{\sqrt{K} \epsilon^2}
\]

with probability at least \(1 - e^{-\frac{1}{2} \epsilon^2} \).

Written differently, we see that by taking \(\alpha_k = \frac{R}{\sqrt{k} M} \) and setting \(\delta = e^{-\frac{1}{2} \epsilon^2} \), we have

\[
f(x_k) - f(x^*) \leq \frac{3RM}{\sqrt{K}} + \frac{MR \sqrt{2 \log \frac{1}{\delta}}}{\sqrt{K}}
\]

with probability at least \(1 - \delta \). That is, we have convergence of \(O(MR/\sqrt{K}) \) with high probability.

Proof. We begin with the basic inequality of Theorem 2.4.7, inequality (2.4.8). We see that we would like to bound the probability that

\[
\sum_{k=1}^{K} \langle \xi_k, x^* - x_k \rangle
\]
is large. First, we note that the iterate x_k is a function of ξ_1, \ldots, ξ_{k-1}, and we have the conditional expectation

$$E[\xi_k | \xi_1, \ldots, \xi_{k-1}] = E[\xi_k | x_k] = 0.$$

Moreover, using the boundedness assumption that $\|g\|_2 \leq M$, we have $\|\xi_k\|_2 = \|g_k - f'(x_k)\|_2 \leq 2M$ and

$$\|\xi_k\|_2 \leq 2M.$$

Thus, the sequence $\sum_{k=1}^K \langle \xi_k, x_k - x^* \rangle$ is a bounded difference martingale sequence, and we may apply Azuma’s inequality (Theorem A.2.5), which guarantees

$$P\left(\sum_{k=1}^K \langle \xi_k, x_k - x^* \rangle \geq t \right) \leq \exp\left(-\frac{t^2}{2KM^2R^2} \right)$$

for all $t \geq 0$. Substituting $t = MR\sqrt{K\epsilon}$, we obtain that

$$P\left(\frac{1}{K} \sum_{k=1}^K \langle \xi_k, x_k - x^* \rangle \geq \epsilon MR \sqrt{K} \right) \leq \exp\left(-\frac{\epsilon^2}{2} \right),$$

as desired. □

Summarizing the results of this section, we see a number of consequences. First, stochastic gradient methods guarantee that after $O(1/\epsilon^2)$ iterations, we have error at most $O(\epsilon)$ in the error $f(x) - f(x^*)$. Secondly, this convergence is (at least to the order in ϵ) the same as in the non-noisy case; that is, stochastic gradient methods are robust enough to noise that their convergence is hardly affected by it.

In addition to this, they are often applicable in situations in which we cannot even evaluate the objective f, whether for computational reasons or because we do not have access to it, as in statistical problems. This robustness to noise and good performance has led to wide adoption of subgradient-like methods as the de facto choice for many large-scale data-based optimization problems. In the coming sections, we give further discussion of the optimality of stochastic subgradient methods, showing that—roughly—when we have access only to noisy data, it is impossible to solve (certain) problems to accuracy better than ϵ given $1/\epsilon^2$ data points; thus, using more expensive but accurate optimization methods may have limited benefit (though there may still be some benefit practically!).

Notes and further reading Our treatment in this chapter borrows from a number of resources. The two heaviest are the lecture notes for Stephen Boyd’s Stanford’s EE364b course [8,9] and Polyak’s Introduction to Optimization [44]. Our guarantees of high probability convergence are similar to those originally developed by Cesa-Bianchi et al. [14] in the context of online learning, which Nemirovski et al. [37] more fully develop. More references on subgradient methods include the lecture notes of Nemirovski [40] and Nesterov [41].
A number of extensions of (stochastic) subgradient methods are possible, including to online scenarios in which we observe streaming sequences of functions [23, 58]; our analysis in this section follows closely that of Zinkevich [58]. The classic paper of Polyak and Juditsky [45] shows that stochastic gradient descent methods, coupled with averaging, can achieve asymptotically optimal rates of convergence even to constant factors. Recent work in machine learning by a number of authors [16, 30, 49] has shown how to leverage the structure of optimization problems based on finite sums, that is, when \(f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x) \), to develop methods that achieve convergence rates similar to those of interior point methods but with iteration complexity close to stochastic gradient methods.

3. The Choice of Metric in Subgradient Methods

Lecture Summary: Standard subgradient and projected subgradient methods are inherently Euclidean—they rely on measuring distances using Euclidean norms, and their updates are based on Euclidean steps. In this lecture, we study methods for more carefully choosing the metric, giving rise to mirror descent, also known as non-Euclidean subgradient descent, as well as methods for adapting the updates performed to the problem at hand. By more carefully studying the geometry of the optimization problem being solved, we show how faster convergence guarantees are possible.

3.1. Introduction
In the previous lecture, we studied projected subgradient methods for solving the problem (1.1.1) by iteratively updating \(x_{k+1} = \pi_C(x_k - \alpha_k g_k) \), where \(\pi_C \) denotes Euclidean projection. The convergence of these methods, as exemplified by Corollaries 2.2.8 and 2.4.9, scales as

\[
(3.1.1) \quad f(x_K) - f(x^*) \leq \frac{MR}{\sqrt{K}} = O(1) \frac{\text{diam}(C) \text{Lip}(f)}{\sqrt{K}},
\]

where \(R = \sup_{x \in C} \|x - x^*\|_2 \) and \(M \) is the Lipschitz constant of \(f \) over the set \(C \) with respect to the \(\ell_2 \)-norm,

\[
M = \sup_{x \in C} \sup_{g \in \partial f(x)} \left\{ \|g\|_2 = \left(\sum_{j=1}^{n} g_j^2 \right)^{\frac{1}{2}} \right\}.
\]

The convergence guarantee (3.1.1) reposes on Euclidean measures of scale—the diameter of \(C \) and norm of the subgradients \(g \) are both measured in \(\ell_2 \)-norm. It is thus natural to ask if we can develop methods whose convergence rates depend on other measures of scale of \(f \) and \(C \), obtaining better problem-dependent behavior and geometry. With that in mind, in this lecture we derive a number of methods that use either non-Euclidean or adaptive updates to better reflect the geometry of the underlying optimization problem.
3.2. Mirror Descent Methods Our first set of results focuses on mirror descent methods, which modify the basic subgradient update to use a different distance-measuring function rather than the squared ℓ_2-term. Before presenting these methods, we give a few definitions. Let h be a differentiable convex function, differentiable on C. The Bregman divergence associated with h is defined as

$$D_h(x, y) = h(x) - h(y) - \langle \nabla h(y), x - y \rangle.$$

The divergence D_h is always nonnegative, by the standard first-order inequality for convex functions, and measures the gap between the linear approximation $h(y) + \langle \nabla h(y), x - y \rangle$ for $h(x)$ taken from the point y and the value $h(x)$ at x. See Figure 3.2.1. As one standard example, if we take $h(x) = \frac{1}{2} \|x\|_2^2$, then $D_h(x, y) = \frac{1}{2} \|x - y\|_2^2$.

Because the quantity (3.2.2) is always non-negative and convex in its first argument, it is natural to treat it as a distance-like function in the development of optimization procedures. Indeed, by recalling the updates (2.2.3) and (2.3.2), by analogy we consider the method

i. Compute subgradient $g_k \in \partial f(x_k)$

ii. Perform update

$$x_{k+1} = \arg\min_{x \in C} \left\{ \langle g_k, x \rangle + \frac{1}{\alpha_k} D_h(x, x_k) \right\}.$$

This scheme is the mirror descent method. Thus, each differentiable convex function h gives a new optimization scheme, where we often attempt to choose h to better match the geometry of the underlying constraint set C.

To this point, we have been vague about the “geometry” of the constraint set, so we attempt to be somewhat more concrete. We say that h is λ-strongly convex...
over C with respect to the norm $\|\cdot\|$ if
\[
h(y) \geq h(x) + \langle \nabla h(x), y - x \rangle + \frac{\lambda}{2} \|x - y\|^2
\]
for all $x, y \in C$.

Then our goal is, roughly, to choose a strongly convex function h so that the diameter of C is small in the norm $\|\cdot\|$ with respect to which h is strongly convex (as we see presently, an analogue of the bound (3.1.1) holds). In the standard updates (2.2.3) and (2.3.2), we use the squared Euclidean norm to trade between making progress on the linear approximation $x \mapsto f(x_k) + \langle g_k, x - x_k \rangle$ and making sure the approximation is reasonable—we regularize progress. Thus it is natural to ask that the function h we use provide a similar type of regularization, and consequently, we will require that the function h be 1-strongly convex (usually shortened to the unqualified strongly convex) with respect to some norm $\|\cdot\|$ over the constraint set C in the mirror descent method (3.2.3).4

Note that strong convexity of h is equivalent to
\[
D_h(x, y) \geq \frac{1}{2} \|x - y\|^2
\]
for all $x, y \in C$.

Examples of mirror descent Before analyzing the method (3.2.3), we present a few examples, showing the updates that are possible as well as verifying that the associated divergence is appropriately strongly convex. One of the nice consequences of allowing different divergence measures D_h, as opposed to only the Euclidean divergence, is that they often yield cleaner or simpler updates.

Example 3.1 (Gradient descent is mirror descent): Let $h(x) = \frac{1}{2} \|x\|^2$. Then $\nabla h(y) = y$, and
\[
D_h(x, y) = \frac{1}{2} \|x\|^2 - \frac{1}{2} \|y\|^2 - \langle y, x - y \rangle = \frac{1}{2} \|x\|^2 + \frac{1}{2} \|y\|^2 - \langle x, y \rangle = \frac{1}{2} \|x - y\|^2.
\]
Thus, substituting into the update (3.2.3), we see the choice $h(x) = \frac{1}{2} \|x\|^2$ recovers the standard (stochastic sub)gradient method
\[
x_{k+1} = \arg\min_{x \in C} \left\{ \langle g_k, x \rangle + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}.
\]
It is evident that h is strongly convex with respect to the ℓ_2-norm.

Example 3.2 (Solving problems on the simplex with exponentiated gradient methods): Suppose that our constraint set $C = \{x \in \mathbb{R}^n_+ : \langle 1, x \rangle = 1\}$ is the probability simplex in \mathbb{R}^n. Then updates with the standard Euclidean distance are somewhat challenging—though there are efficient implementations [12, 21]—and it is natural to ask for a simpler method.

With that in mind, let $h(x) = \sum_{j=1}^n x_j \log x_j$ be the negative entropy, which is convex because it is the sum of convex functions. (The derivatives of $f(t) = t \log t$ are...
are \(f'(t) = \log t + 1 \) and \(f''(t) = 1/t > 0 \) for \(t \geq 0 \). Then we have

\[
D_h(x, y) = \sum_{j=1}^{n} \left[x_j \log x_j - y_j \log y_j - (\log y_j + 1)(x_j - y_j) \right] = \sum_{j=1}^{n} x_j \log x_j + (1, y - x) = D_{kl}(x|y),
\]

the KL-divergence between \(x \) and \(y \) (when extended to \(\mathbb{R}^n_+ \), though over \(C \) we have \(\langle 1, x - y \rangle = 0 \)). This gives us the form of the update (3.2.3).

Later, after stating and proving our main convergence theorems, we will show that the negative entropy is strongly convex with respect to the \(\ell_1 \)-norm, meaning that our coming convergence guarantees apply. Instead of doing this here, however, we provide a (simulation-based) example of the convergence behavior for a natural optimization problem. We consider a robust regression problem of the following form: we let \(A \in \mathbb{R}^{m \times n} \) have entries drawn i.i.d. \(\mathcal{N}(0, 1) \) with rows \(a_1^\top, \ldots, a_m^\top \). We let \(b_i = \frac{1}{2}(a_{i,1} + a_{i,2}) + \varepsilon_i \) where \(\varepsilon_i \overset{\text{iid}}{\sim} \mathcal{N}(0, 10^{-2}) \), and \(m = 20 \).
and the dimension $n = 3000$. Then we define

$$f(x) := \|Ax - b\|_1 = \sum_{i=1}^{m} |\langle a_i, x \rangle - b_i|,$$

which has subgradients $A^\top \text{sign}(Ax - b)$. We minimize f over the simplex $C = \{x \in \mathbb{R}^n_+ : \langle 1, x \rangle = 1\}$.

We compare stochastic gradient descent to exponentiated gradient descent for this problem, noting that the Euclidean projection of a vector $v \in \mathbb{R}^n$ to the set C has coordinates $x_j = [v_j - t]_+$, where $t \in \mathbb{R}$ is chosen so that

$$\sum_{j=1}^{n} x_j = \sum_{j=1}^{n} [v_j - t]_+ = 1.$$

(See the papers [12,21] for a full derivation of this expression.) We use stepsizes $\alpha_k = \alpha_0/\sqrt{k}$, where the initial stepsize α_0 is chosen to optimize the convergence guarantee for each of the methods (see the coming section). In Figure 3.2.5, we plot the results of performing projected gradient descent versus the exponentiated gradient (entropic mirror decent) method and a method using distance generating functions $h(x) = \frac{1}{2} \|x\|^2_p$ for $p = 1 + 1/\log(2n)$, which can also be shown to be optimal, showing the optimality gap versus iteration count. All three methods are sensitive to initial stepsize, the mirror descent method (3.2.4) enjoys much faster convergence than the standard gradient-based method.

Figure 3.2.5. Convergence of mirror descent (entropic gradient method) versus projected gradient method.

Example 3.3 (Using ℓ_p-norms): As a final example, we consider using squared ℓ_p-norms for our distance-generating function h. These have nice robustness properties, and are also finite on any compact set (unlike the KL-divergence of Example 3.2). Indeed, let $p \in (1,2]$, and define $h(x) = \frac{1}{2(p-1)} \|x\|^2_p$. We claim
without proof that h is strongly convex with respect to the ℓ_p-norm, that is,

$$D_h(x, y) \geq \frac{1}{2} \|x - y\|_p^2.$$

(See, for example, the thesis of Shalev-Shwartz [47] and Question 9 in the exercises.)

We do not address the constrained case here, assuming instead that $C = \mathbb{R}^n$. In this case, we have

$$\nabla h(x) = \frac{1}{p-1} \|x\|_{p^{-1}}^{p-1} \left[\text{sign}(x_1)|x_1|^{p-1} \cdots \text{sign}(x_n)|x_n|^{p-1} \right]^\top.$$

Now, if we define the function $\phi(x) = (p-1)\nabla h(x)$, then a calculation verifies that the function $\phi : \mathbb{R}^n \to \mathbb{R}^n$ defined coordinate-wise by

$$\phi_j(x) = \|x\|_{p^{-1}}^{p-1} \cdot \text{sign}(x_j)|x_j|^{p-1} \quad \text{and} \quad \varphi_j(y) = \|y\|_{q^{-1}}^{q-1} \cdot \text{sign}(y_j)|y_j|^{q-1},$$

where $\frac{1}{p} + \frac{1}{q} = 1$, satisfies $\varphi(\phi(x)) = x$, that is, $\varphi = \phi^{-1}$ (and similarly $\phi = \varphi^{-1}$). Thus, the mirror descent update (3.2.3) when $C = \mathbb{R}^n$ becomes the somewhat more complex

$$x_{k+1} = \varphi(\phi(x_k) - \alpha_k (p-1)g_k) = (\nabla h)^{-1}(\nabla h(x_k) - \alpha_k g_k).$$

The second form of the update (3.2.6), that is, that involving the inverse of the gradient mapping $(\nabla h)^{-1}$, holds more generally, that is, for any strictly convex and differentiable h. This is the original form of the mirror descent update (3.2.3), and it justifies the name *mirror* descent, as the gradient is “mirrored” through the distance-generating function h and back again. Nonetheless, we find the modeling perspective of (3.2.3) somewhat easier to explain.

We remark in passing that while constrained updates are somewhat more challenging for this case, a few are efficiently solvable. For example, suppose that $C = \{x \in \mathbb{R}^n : \langle 1, x \rangle = 1\}$, the probability simplex. In this case, the update with ℓ_p-norms becomes a problem of solving

$$\min_x \langle v, x \rangle + \frac{1}{2} \|x\|_p^2 \quad \text{subject to} \quad \langle 1, x \rangle = 1, \; x \succeq 0,$$

where $v = \alpha_k (p-1)g_k - \phi(x_k)$, and φ and ϕ are defined as above. An analysis of the Karush-Kuhn-Tucker conditions for this problem (omitted) yields that the solution to the problem is given by finding the $t^* \in \mathbb{R}$ such that

$$\sum_{j=1}^n \varphi_j([-v_j + t^*]_+) = 1 \quad \text{and setting} \quad x_j = \varphi([-v_j + t^*]_+).$$

Because φ is increasing in its argument with $\varphi(0) = 0$, this t^* can be found to accuracy ϵ in time $O(n \log \frac{1}{\epsilon})$ by binary search. ♣

Convergence guarantees With the mirror descent method described, we now provide an analysis of its convergence behavior. In this case, the analysis is somewhat more complex than that for the subgradient, projected subgradient, and stochastic subgradient methods, as we cannot simply expand the distance
∥x_{k+1} − x^*∥^2_2. Thus, we give a variant proof that relies on the optimality conditions for convex optimization problems, as well as a few tricks involving norms and their dual norms. Recall that we assume that the function \(h \) is strongly convex with respect to some norm \(\|\cdot\| \), and that the associated dual norm \(\|\cdot\|_* \) is defined by

\[
\|y\|_* := \sup_{x: \|x\| \leq 1} \langle y, x \rangle.
\]

Theorem 3.2.7. Let \(\alpha_k > 0 \) be any sequence of non-increasing stepsizes and the above assumptions hold. Let \(x_k \) be generated by the mirror descent iteration (3.2.3). If \(D_h(x, x^*) \leq R^2 \) for all \(x \in C \), then for all \(K \in \mathbb{N} \)

\[
\sum_{k=1}^{K} (f(x_k) - f(x^*)) \leq \frac{1}{\alpha_k} R^2 + \alpha_k^2 \sum_{k=1}^{K} g_k^2.
\]

If \(\alpha_k \equiv \alpha \) is constant, then for all \(K \in \mathbb{N} \)

\[
\sum_{k=1}^{K} (f(x_k) - f(x^*)) \leq \frac{1}{\alpha} D_h(x^*, x_1) + \frac{\alpha}{2} \sum_{k=1}^{K} g_k^2.
\]

As an immediate consequence of this theorem, we see that if \(\tau_K = \frac{1}{K} \sum_{k=1}^{K} x_k \) or \(\tau_K = \arg \min_{x_k} f(x_k) \) and we have the gradient bound \(\|g\|_* \leq M \) for all \(g \in \partial f(x) \) for \(x \in C \), then (say, in the second case) convexity implies

\[
f(\tau_K) - f(x^*) \leq \frac{1}{K\alpha} D_h(x^*, x_1) + \frac{\alpha}{2} M^2.
\]

By comparing with the bound (2.2.9), we see that the mirror descent (non-Euclidean gradient descent) method gives roughly the same type of convergence guarantees as standard subgradient descent. Roughly we expect the following type of behavior with a fixed stepsize: a rate of convergence of roughly \(1/\alpha K \) until we are within a radius \(\alpha \) of the optimum, after which mirror descent and subgradient descent essentially jam—they just jump back and forth near the optimum.

Proof. We begin by considering the progress made in a single update of \(x_k \), but using the function values instead of the distance to optimality. Using the first order convexity inequality—i.e. the definition of a subgradient—we have

\[
f(x_k) - f(x^*) \leq \langle g_k, x_k - x^* \rangle.
\]

The idea is to show that replacing \(x_k \) with \(x_{k+1} \) makes the preceding term quite small because of the definition of \(x_{k+1} \), but \(x_k \) and \(x_{k+1} \) are close together so that this is not much of a difference.

First, we add and subtract \(\langle g_k, x_k+1 \rangle \) to obtain

\[
f(x_k) - f(x^*) \leq \langle g_k, x_{k+1} - x^* \rangle + \langle g_k, x_k - x_{k+1} \rangle.
\]

Now, we use the the first-order necessary and sufficient conditions for optimality of convex optimization problems given by Theorem 1.4.11. Because \(x_{k+1} \) solves
problem (3.2.3), we have
\[\langle g_k + \alpha_k^{-1} (\nabla h(x_{k+1}) - \nabla h(x_k)), x - x_{k+1} \rangle \geq 0 \text{ for all } x \in C. \]

In particular, this inequality holds for \(x = x^* \), and substituting into expression (3.2.9) yields
\[f(x_k) - f(x^*) \leq \frac{1}{\alpha_k} \langle \nabla h(x_{k+1}) - \nabla h(x_k), x^* - x_{k+1} \rangle + \langle g_k, x_k - x_{k+1} \rangle. \]

We now use two tricks: an algebraic identity involving \(D_h \) and the Fenchel-Young inequality. By algebraic manipulations, we have that
\[\langle \nabla h(x_{k+1}) - \nabla h(x_k), x^* - x_{k+1} \rangle = D_h(x^*, x_k) - D_h(x^*, x_{k+1}) - D_h(x_{k+1}, x_k). \]

Substituting into the preceding display, we have
\[f(x_k) - f(x^*) \leq \frac{1}{\alpha_k} \left[D_h(x^*, x_k) - D_h(x^*, x_{k+1}) - D_h(x_{k+1}, x_k) \right] + \langle g_k, x_k - x_{k+1} \rangle. \]

The second insight is that the subtraction of \(D_h(x_{k+1}, x_k) \) allows us to cancel some of \(\langle g_k, x_k - x_{k+1} \rangle \). To see this, recall the Fenchel-Young inequality, which states that
\[\langle x, y \rangle \leq \frac{\eta}{2} \| x \|^2 + \frac{1}{2\eta} \| y \|^2 \]
for any pair of dual norms \((\| \cdot \|, \| \cdot \|^*)\) and any \(\eta > 0 \). To see this, note that by definition of the dual norm, we have \(\langle x, y \rangle \leq \| x \| \| y \| \), and for any constants \(a, b \in \mathbb{R} \) and \(\eta > 0 \), we have
\[0 \leq \frac{1}{\eta} \left(\frac{1}{2} a^2 - \frac{1}{2} b^2 \right) = \frac{1}{2} a^2 + \frac{1}{2} b^2 - ab, \]
so that \(\| x \| \| y \| \leq \frac{\eta}{2} \| x \|^2 + \frac{1}{2\eta} \| y \|^2 \). In particular, we have
\[\langle g_k, x_k - x_{k+1} \rangle \leq \frac{\alpha_k}{2} \| g_k \|^2 + \frac{1}{2\alpha_k} \| x_k - x_{k+1} \|^2. \]

The strong convexity assumption on \(h \) guarantees that \(D_h(x_k, x_{k+1}) \geq \frac{1}{2} \| x_k - x_{k+1} \|^2 \), or that
\[-\frac{1}{\alpha_k} D_h(x_{k+1}, x_k) + \langle g_k, x_k - x_{k+1} \rangle \leq \frac{\alpha_k}{2} \| g_k \|^2. \]

Substituting this into inequality (3.2.10), we have
\[f(x_k) - f(x^*) \leq \frac{1}{\alpha_k} \left[D_h(x^*, x_k) - D_h(x^*, x_{k+1}) \right] + \frac{\alpha_k}{2} \| g_k \|^2. \]

This inequality should look familiar to inequality (2.3.5) in the proof of Theorem 2.3.4 on the projected subgradient method in Lecture 2. Indeed, using that \(D_h(x^*, x_k) \leq \mathbb{R}^2 \) by assumption, an identical derivation to that in Theorem 2.3.4 gives the first result of this theorem. For the second when the stepsize is fixed, note that
\[\sum_{k=1}^K [f(x_k) - f(x^*)] \leq \sum_{k=1}^K \frac{1}{\alpha_k} \left[D_h(x^*, x_k) - D_h(x^*, x_{k+1}) \right] + \sum_{k=1}^K \frac{\alpha_k}{2} \| g_k \|^2 \]
\[= \frac{1}{\alpha} [D_h(x^*, x_1) - D_h(x^*, x_{K+1})] + \sum_{k=1}^K \frac{\alpha_k}{2} \| g_k \|^2, \]
which is the second result.

We briefly provide a few remarks before moving on. As a first remark, all of the preceding analysis carries through in an almost completely identical fashion in the stochastic case. We state the most basic result, as the extension from Section 2.4 is essentially straightforward.

Corollary 3.2.12. Let the conditions of Theorem 3.2.7 hold, except that instead of receiving a vector $g_k \in \partial f(x_k)$ at iteration k, the vector g_k is a stochastic subgradient satisfying $\mathbb{E}[g_k \mid x_k] \in \partial f(x_k)$. Then for any non-increasing stepsize sequence α_k (where α_k may be chosen dependent on g_1, \ldots, g_k),

$$\mathbb{E} \left[\sum_{k=1}^{K} (f(x_k) - f(x^{\star})) \right] \leq \mathbb{E} \left[\frac{R^2}{\alpha_k} + \sum_{k=1}^{K} \alpha_k \|g_k\|^2 \right].$$

Proof. We sketch the result. The proof is identical to that for Theorem 3.2.7, except that we replace g_k with the particular vector $f'(x_k)$ satisfying $\mathbb{E}[g_k \mid x_k] = f'(x_k) \in \partial f(x_k)$. Then

$$f(x_k) - f(x^{\star}) \leq \langle f'(x_k), x_k - x^{\star} \rangle = \langle g_k, x_k - x^{\star} \rangle + \langle f'(x_k) - g_k, x_k - x^{\star} \rangle,$$

and an identical derivation yields the following analogue of inequality (3.2.11):

$$f(x_k) - f(x^{\star}) \leq \frac{1}{\alpha_k} [D_h(x^*,x_k) - D_h(x^*,x_{k+1})] + \frac{\alpha_k}{2} \|g_k\|^2 + \langle f'(x_k) - g_k, x_k - x^{\star} \rangle.$$

This inequality holds regardless of how we choose α_k. Moreover, by iterating expectations, we have

$$\mathbb{E}[\langle f'(x_k) - g_k, x_k - x^{\star} \rangle] = \mathbb{E}[\langle f'(x_k) - \mathbb{E}[g_k \mid x_k], x_k - x^{\star} \rangle] = 0,$$

which gives the corollary once we follow an identical derivation to Theorem 3.2.7.

Thus, if we have the bound $\mathbb{E}[\|g\|^2] \leq M^2$ for all stochastic subgradients, then taking $\bar{x}_K = \frac{1}{K} \sum_{k=1}^{K} x_k$ and $\alpha_k = \frac{R}{M \sqrt{K}}$, then

$$\mathbb{E}[f(\bar{x}_K) - f(x^{\star})] \leq \frac{RM}{\sqrt{K}} + \frac{R \max_k \mathbb{E}[\|g_k\|^2]}{M} \sum_{k=1}^{K} \frac{1}{2\sqrt{k}} \leq \frac{3RM}{\sqrt{K}}$$

where we have used that $\mathbb{E}[\|g\|^2] \leq M^2$ and $\sum_{k=1}^{K} k^{-\frac{1}{2}} \leq 2\sqrt{K}$.

In addition, we can provide concrete convergence guarantees for a few methods, revisiting our earlier examples. We begin with Example 3.2, exponentiated gradient descent.

Corollary 3.2.14. Let $C = \{x \in \mathbb{R}^n_+ : \langle 1, x \rangle = 1\}$, and take $h(x) = \sum_{j=1}^{n} x_j \log x_j$, the negative entropy. Let $x_1 = \frac{1}{K} \mathbf{1}$, the vector whose entries are each $1/n$. Then if $\bar{x}_K = \frac{1}{K} \sum_{k=1}^{K} x_k$, the exponentiated gradient method (3.2.4) with fixed stepsize α guarantees

$$f(\bar{x}_K) - f(x^{\star}) \leq \frac{\log n}{K\alpha} + \frac{\alpha}{2K} \sum_{k=1}^{K} \|g_k\|^2 .$$
That is, we have $D_{\text{kl}}(x^*|x_1) = D_h(x, y) = \frac{1}{2}(x-y)^T \text{diag} \left(\frac{1}{x_1}, \ldots, \frac{1}{x_n} \right) (x-y)$

Using the Cauchy-Schwarz inequality and the fact that $x \in C$, we have

$$||x-y||_1 = \sum_{j=1}^n |x_j - y_j| = \sum_{j=1}^n \frac{|x_j - y_j|}{\sqrt{x_j}} \leq \left(\sum_{j=1}^n \sqrt{x_j} \right)^{-1} \left(\sum_{j=1}^n \frac{(x_j - y_j)^2}{x_j} \right)^{1/2}.$$

That is, we have $D_{\text{kl}}(x|y) = D_h(x, y) \geq \frac{1}{2} ||x-y||_1^2$, and h is strongly convex with respect to the ℓ_1-norm over C.

With this strong convexity result in hand, we may apply second result of Theorem 3.2.7, achieving

$$\sum_{k=1}^K [f(x_k) - f(x^*)] \leq \frac{D_{\text{kl}}(x^*|x_1)}{\alpha} + \frac{\alpha}{2} \sum_{k=1}^K ||g_k||^2_{\infty}.$$

If $x_1 = \frac{1}{n} 1$, then $D_{\text{kl}}(x|x_1) = h(x) + \log n \leq \log n$, as $h(x) \leq 0$ for $x \in C$. Thus, dividing by K and using that $f(x_K) \leq \frac{1}{K} \sum_{k=1}^K f(x_k)$ gives the corollary. □

Inspecting the guarantee Corollary 3.2.14 provides versus that guaranteed by standard projected subgradient descent (i.e. using $h(x) = \frac{1}{2} ||x||_2^2$) is instructive. In the case of projected subgradient descent, we have $D_h(x^*, x) = \frac{1}{2} ||x^* - x||_2^2 \leq 1$ for all $x, x^* \in C = \{x \in \mathbb{R}^n_+ : (1, x) = 1\}$ (and this distance is achieved). However, the dual norm to the ℓ_2-norm is ℓ_2, meaning we measure the size of the gradient terms $||g_k||$ in ℓ_2-norm. As $||g_k||_{\infty} \leq ||g_k||_2 \leq \sqrt{n} ||g_k||_{\infty}$, supposing that $||g_k||_{\infty} \leq 1$ for all k, the convergence guarantee

$O(1) \sqrt{\frac{\log n}{K}}$

may be up to $\sqrt{n}/\log n$-times better than that guaranteed by the standard (Euclidean) projected gradient method.

Lastly, we provide a final convergence guarantee for the mirror descent method using ℓ_p-norms, where $p \in (1,2]$. Using such norms has the benefit that D_h is bounded whenever the set C is compact—distinct from the relative entropy $D_h(x, y) = \sum_j x_j \log \frac{x_j}{y_j}$—and thus providing a nicer guarantee of convergence.
Indeed, for \(h(x) = \frac{1}{2} \|x\|_p^2 \), we always have that

\[
D_h(x, y) = \frac{1}{2} \|x\|_p^2 - \frac{1}{2} \|y\|_p^2 - \sum_{j=1}^n \|y\|_p^{-2} \|y\|_p^2 \text{sign}(y_j) |y_j|^{p-1} (x_j - y_j) \]

(3.2.15) \[= \frac{1}{2} \|x\|_p^2 + \frac{1}{2} \|y\|_p^2 - \|y\|_p^{-2} \sum_{j=1}^n |y_j|^{p-1} \text{sign}(y_j)x_j \leq \|x\|_p^2 + \|y\|_p^2, \]

where the inequality uses that \(q(p - 1) = p \) and

\[
\sum_{j=1}^n \|y\|_p^{-2} |y_j|^{p-1} |x_j| \leq \|y\|_p^{-2} \left(\sum_{j=1}^n |y_j|^{p-1} \right)^{\frac{1}{p}} \left(\sum_{j=1}^n |x_j|^p \right)^{\frac{1}{p}}
\]

\[= \|y\|_p^{-2} \|y\|_p^p \|x\|_p = \|y\|_p \|x\|_p \leq \frac{1}{2} \|y\|_p^2 + \frac{1}{2} \|x\|_p^2.\]

More generally, with \(h(x) = \frac{1}{2} \|x - x_0\|_p^2 \), we have \(D_h(x, y) \leq \|x - x_0\|_p^2 + \|y - x_0\|_p^2 \).

As one example, we obtain the following corollary.

Corollary 3.2.16. Let \(h(x) = \frac{1}{2(p-1)} \|x\|_p^2 \), where \(p = 1 + \frac{1}{\log(2n)} \), and assume that \(C \subseteq \{x \in \mathbb{R}^n : \|x\|_1 \leq R_1\} \). Then

\[
\sum_{k=1}^K [f(x_k) - f(x^*)] \leq \frac{2R_1^2 \log(2n)}{\alpha_k} + \frac{e^2}{2} \sum_{k=1}^K \alpha_k \|g_k\|_\infty^2.
\]

In particular, taking \(\alpha_k = R_1 \sqrt{\log(2n)}/e \) and \(x_k = \frac{1}{k} \sum_{k=1}^K x_k \) gives

\[f(x_k) - f(x^*) \leq 3e \frac{R_1 \sqrt{\log(2n)}}{\sqrt{k}}.\]

Proof. First, we note that \(h(x) = \frac{1}{2(p-1)} \|x\|_p^2 \) is strongly convex with respect to the \(\ell_p \)-norm, where \(1 < p \leq 2 \). (Recall Example 3.3 and see Exercise 9.) Moreover, we know that the dual to the \(\ell_p \)-norm is the conjugate \(\ell_q \)-norm with \(1/p + 1/q = 1 \), and thus Theorem 3.2.7 implies that

\[
\sum_{k=1}^K [f(x_k) - f(x^*)] \leq \frac{1}{\alpha_k} \sup_{x \in C} D_h(x, x^*) + \frac{1}{2} \sum_{k=1}^K \alpha_k \|g_k\|_q^2.
\]

Now, we use that if \(C \) is contained in the \(\ell_1 \)-ball of radius \(R_1 \), then \((p-1)D_h(x, y) \leq \|x\|_p^2 + \|y\|_p^2 \leq \|x\|_1^2 + \|y\|_1^2 \leq 2R_1^2 \). Moreover, because \(p = 1 + \frac{1}{\log(2n)} \), we have \(q = 1 + \log(2n) \), and

\[\|v\|_q \leq \|1\|_q \|v\|_\infty = n^{\frac{1}{q}} \|v\|_\infty = n^{\frac{1}{\log(2n)}} \|v\|_\infty \leq e \|v\|_\infty.\]

Substituting this into the previous display and noting that \(1/(p - 1) = \log(2n) \) gives the first result. Integrating \(\sum_{k=1}^K k^{-\frac{1}{2}} \) and using convexity gives the second. \(\Box \)

So we see that, in more general cases than the simple simplex constraint afforded by the entropic mirror descent (exponentiated gradient) updates, we have
convergence guarantees of order $\sqrt{\log n}/\sqrt{K}$, which may be substantially faster than that guaranteed by the standard projected gradient methods.

3.3. Adaptive stepsizes and metrics

In our discussion of mirror descent methods, we assumed we knew enough about the geometry of the problem at hand—or at least the constraint set—to choose an appropriate metric and associated distance-generating function h. In other situations, however, it may be advantageous to adapt the metric being used, or at least the stepsizes, to achieve faster convergence guarantees. We begin by describing a simple scheme for choosing stepsizes to optimize bounds on convergence, which means one does not need to know the Lipschitz constants of gradients ahead of time, and then move on to somewhat more involved schemes that use a distance-generating function of the type $h(x) = \frac{1}{2}x^\top Ax$ for some matrix A, which may change depending on information observed during solution of the problem. We leave proofs of the major results in these sections to exercises at the end of the lectures.

Adaptive stepsizes Let us begin by recalling the convergence guarantees for mirror descent in the stochastic case, given by Corollary 3.2.12, which assumes the stepsize α_k used to calculate x_{k+1} is chosen based on the observe gradients g_1, \ldots, g_k (it may be specified ahead of time). In this case, taking $\xi_K = \frac{1}{K} \sum_{k=1}^K x_k$, we have by Corollary 3.2.12 that as long as $D_h(x, x^\star) \leq R^2$ for all $x \in C$, then

\begin{equation}
E[f(x_K) - f(x^\star)] \leq \frac{R^2}{K\alpha_K} + \frac{1}{K} \sum_{k=1}^K \frac{\alpha_k}{2} \|g_k\|_*^2.
\end{equation}

Now, if we were to use a fixed stepsize $\alpha_k = \alpha$ for all k, we see that the choice of stepsize minimizing

\[\frac{R^2}{K\alpha} + \frac{\alpha}{2K} \sum_{k=1}^K \|g_k\|_*^2 \]

is

\[\alpha^* = \sqrt{2R} \left(\sum_{k=1}^K \|g_k\|_*^2 \right)^{-\frac{1}{2}}, \]

which (when “substituted” if this were possible) into the bound (3.3.1) would give

\begin{equation}
E[f(x_K) - f(x^\star)] \leq \sqrt{2R} \frac{R}{K} E \left[\left(\sum_{k=1}^K \|g_k\|_*^2 \right)^{\frac{1}{2}} \right].
\end{equation}

While the stepsize choice α^* and the resulting bound are not strictly possible, in Exercise 8, we prove the following corollary, which uses the “up to now” optimal choice of stepsize α_k.
Corollary 3.3.3. Let the conditions of Corollary 3.2.12 hold. Let \(\alpha_k = R/\sqrt{\sum_{i=1}^{K} \|g_i\|_2^2} \). Then
\[
E[f(x_K) - f(x^*)] \leq \frac{3R}{K} E \left[\left(\sum_{k=1}^{K} \|g_k\|_2^2 \right)^{1/2} \right],
\]
where \(x_K = \frac{1}{K} \sum_{k=1}^{K} x_k \).

When comparing Corollary 3.3.3 to Corollary 3.2.12, we see by Jensen's inequality that, if \(E[\|g_k\|_2^2] \leq M^2 \) for all \(k \), then
\[
E \left[\left(\sum_{k=1}^{K} \|g_k\|_2^2 \right)^{1/2} \right] \leq \sqrt{M^2 K} = M\sqrt{K}.
\]
Thus, the bound of Corollary 3.3.3 is always tighter than that provided by Corollary 3.2.12 and its immediate consequence (3.2.13). We do not explore these particular stepsize choices further, but turn to more sophisticated adaptation strategies.

Variable metric methods and the adaptive gradient method In variable metric methods, the idea is to adjust the metric with which one constructs updates to better reflect local (or non-local) problem structure. The basic framework is very similar to the standard subgradient method (or the mirror descent method), and proceeds as follows.

(i) Receive subgradient \(g_k \in \partial f(x_k) \) (or stochastic subgradient \(g_k \) with \(E[g_k | x_k] \in \partial f(x_k) \))
(ii) Update positive semidefinite matrix \(H_k \in \mathbb{R}^{n \times n} \)
(iii) Compute update
\[
(3.3.4) \quad x_{k+1} = \arg\min_{x \in C} \left\{ \langle g_k, x \rangle + \frac{1}{2} \langle x, H_k x \rangle \right\}.
\]
The method (3.3.4) subsumes a number of standard and less standard optimization methods. If \(f \) is twice differentiable and \(C = \mathbb{R}^n \), then taking \(H_k = \nabla^2 f(x_k) \) to be the Hessian of \(f \) at \(x_k \) gives the (undamped) Newton method, and using \(H_k = \nabla^2 f(x_k) \) even when \(C \neq \mathbb{R}^n \) gives a constrained Newton method. More general choices of \(H_k \) can even give the ellipsoid method and other classical convex optimization methods [52].

In our case, we specialize the iterations above to focus on diagonal matrices \(H_k \), and we do not assume the function \(f \) is smooth (not even differentiable). This, of course, renders unusable standard methods using second order information in the matrix \(H_k \) (as it does not exist), but we may still develop useful algorithms. With that in mind, let us develop a general framework for algorithms and provide their analysis.

We begin with a general convergence guarantee.

Theorem 3.3.5. Let \(H_k \) be a sequence of positive definite matrices, where \(H_k \) is a function of \(g_1, \ldots, g_k \) (and potentially some additional randomness). Let \(g_k \) be (stochastic)
subgradients with $\mathbb{E}[g_k \mid x_k] \in \partial f(x_k)$. Then

$$
\mathbb{E} \left[\sum_{k=1}^{K} (f(x_k) - f(x^*)) \right] \leq \frac{1}{2} \mathbb{E} \left[\sum_{k=1}^{K} \left(\|x_k - x^*\|_{H_k}^2 - \|x_k - x^*\|^2_{H_{k-1}} \right) + \|x_1 - x^*\|^2_{H_1} \right]
+ \frac{1}{2} \mathbb{E} \left[\sum_{k=1}^{K} \|g_k\|^2_{H_{k-1}} \right].
$$

Proof. For this proof, we can move back to our classic style of proof for standard subgradient methods, looking at the distance $\|x_k - x^*\|$. Let $\|x\|^2_A = \langle x, Ax \rangle$ for any positive semidefinite matrix. We claim that

$$
\|x_{k+1} - x^*\|^2_{H_k} \leq \|x_k - H_k^{-1}g_k - x^*\|^2_{H_k},
$$

the analogue of the fact that projections are non-expansive. This is an immediate consequence of the update (3.3.4): we have that

$$
x_{k+1} = \arg\min_{x \in C} \left\{ \|x - (x_k - H_k^{-1}g_k)\|^2_{H_k} \right\},
$$

which is a Euclidean projection of $x_k - H_k^{-1}g_k$ into C (in the norm $\|\cdot\|_{H_k}$). Then the standard result that projections are non-expansive (Corollary 1.2.8) gives inequality (3.3.6).

Inequality (3.3.6) is the key to our analysis, as previously. Expanding the square on the right side of the inequality, we obtain

$$
\frac{1}{2} \|x_{k+1} - x^*\|^2_{H_k} \leq \frac{1}{2} \|x_k - H_k^{-1}g_k - x^*\|^2_{H_k} - \frac{1}{2} \|x_k - x^*\|^2_{H_k} - \langle g_k, x_k - x^* \rangle + \frac{1}{2} \|g_k\|^2_{H_k},
$$

and taking expectations we have $\mathbb{E}[(g_k, x_k - x^*) \mid x_k] \geq f(x_k) - f(x^*)$ by convexity and that $\mathbb{E}[g_k \mid x_k] \in \partial f(x_k)$. Thus

$$
\frac{1}{2} \mathbb{E} \left[\|x_{k+1} - x^*\|^2_{H_k} \right] \leq \frac{1}{2} \mathbb{E} \left[\|x_k - x^*\|^2_{H_k} - [f(x_k) - f(x^*)] + \frac{1}{2} \|g_k\|^2_{H_k} \right].
$$

Rearranging, we have

$$
\mathbb{E}[f(x_k) - f(x^*)] \leq \mathbb{E} \left[\frac{1}{2} \|x_k - x^*\|^2_{H_k} - \frac{1}{2} \|x_{k+1} - x^*\|^2_{H_k} + \frac{1}{2} \|g_k\|^2_{H_k} \right].
$$

Summing this inequality from $k = 1$ to K gives the theorem. □

We may specialize the theorem in a number of ways to develop particular algorithms. One specialization, which is convenient because the computational overhead is fairly small, is to use diagonal matrices H_k. In particular, the AdaGrad method sets

$$
H_k = \frac{1}{\alpha} \text{diag} \left(\sum_{i=1}^{k} g_i g_i^\top \right)^{\frac{1}{2}},
$$

where $\alpha > 0$ is a pre-specified constant (stepsize). In this case, the following corollary to Theorem 3.3.5 follows. Exercise 10 sketches the proof of the corollary,
which is similar to that of Corollary 3.3.3. In the corollary, recall that \(\text{tr}(A) = \sum_{j=1}^{n} A_{jj} \) is the trace of a matrix.

Corollary 3.3.8 (AdaGrad convergence). Let \(R_\infty := \sup_{x \in C} \|x - x^*\|_\infty \) be the \(\ell_\infty \) radius of the set \(C \) and let the conditions of Theorem 3.3.5 hold. Then with the choice (3.3.7) in the variable metric method, we have

\[
E \left[\sum_{k=1}^{K} (f(x_k) - f(x^*)) \right] \leq \frac{1}{2\alpha} R_\infty^2 E[\text{tr}(H_K)] + \alpha E[\text{tr}(H_K)].
\]

Inspecting Corollary 3.3.8, we see a few consequences. First, by choosing \(\alpha = R_\infty \), we obtain the expected convergence guarantee \(\frac{3}{2} R_\infty E[\text{tr}(H_K)] \). If we let \(x_K = \frac{1}{K} \sum_{k=1}^{K} x_k \) as usual, and let \(g_{k,j} \) denote the \(j \)th component of the \(k \)th gradient observed by the method, then we immediately obtain the convergence guarantee

\[
E [f(x_K) - f(x^*)] \leq \frac{3}{2K} R_\infty E[\text{tr}(H_K)] = \frac{3}{2K} R_\infty \sum_{j=1}^{n} E \left(\left(\sum_{k=1}^{K} g_{k,j}^2 \right)^{1/2} \right).
\]

In addition to proving the bound (3.3.9), Exercise 10 also shows that, if \(C = \{ x \in \mathbb{R}^n : \|x\|_\infty \leq 1 \} \), then the bound (3.3.9) is always better than the bounds (e.g. Corollary 2.4.9) guaranteed by standard stochastic gradient methods. In addition, the bound (3.3.9) is unimprovable—there are stochastic optimization problems for which no algorithm can achieve a faster convergence rate. These types of problems generally involve data in which the gradients \(g \) have highly varying components (or components that are often zero, i.e. the gradients \(g \) are sparse), as for such problems geometric aspects are quite important.

![Figure 3.3.10. A comparison of the convergence of AdaGrad and SGD on the problem (3.3.11) for the best initial stepsize \(\alpha \) for each method.](image-url)
We now give an example application of the AdaGrad method, showing its performance on a simulated example. We consider solving the problem

\[
\text{minimize } f(x) = \frac{1}{m} \sum_{i=1}^{m} [1 - b_i \langle a_i, x \rangle]_+ \text{ subject to } \|x\|_\infty \leq 1,
\]

where the vectors \(a_i \in \{-1, 0, 1\}^n\) with \(m = 5000\) and \(n = 1000\). This is the objective common to hinge loss (support vector machine) classification problems. For each coordinate \(j \in \{1, \ldots, n\}\), we set \(a_{i,j} \in \{\pm 1\}\) to have a random sign with probability \(1/j\), and \(a_{i,j} = 0\) otherwise. Letting \(u \in \{-1, 1\}^n\) uniformly at random, we set \(b_i = \text{sign}(\langle a_i, u \rangle)\) with probability \(.95\) and \(b_i = -\text{sign}(\langle a_i, u \rangle)\) otherwise. For this problem, the coordinates of \(a_i\) (and hence subgradients or stochastic subgradients of \(f\)) naturally have substantial variability, making it a natural problem for adaptation of the metric \(H_k\).

In Figure 3.3.10, we show the convergence behavior of AdaGrad versus stochastic gradient descent (SGD) on one realization of this problem, where at each iteration we choose a stochastic gradient by selecting \(i \in \{1, \ldots, m\}\) uniformly at random, then setting \(g_k \in \partial [1 - b_i \langle a_i, x_k \rangle]_+\). For SGD, we use stepizes \(\alpha_k = \alpha/\sqrt{k}\), where \(\alpha\) is the best stepsize of several choices (based on the eventual convergence of the method), while AdaGrad uses the matrix (3.3.7), with \(\alpha\) similarly chosen based on the best eventual convergence. The plot shows the typical behavior of AdaGrad with respect to stochastic gradient methods, at least for problems with appropriate geometry: with good initial stepsize choice, AdaGrad often outperforms stochastic gradient descent. Figure 3.3.12 shows this somewhat more broadly, giving plotting the convergence \(f(x_k) - f(x^*)\) versus iteration \(k\) for a number of initial stepsize choices for both stochastic gradient descent and AdaGrad on the problem (3.3.11). Roughly, we see that both methods are sensitive to initial stepsize choice, but the best choice for AdaGrad often outperforms the best choice for SGD.

Notes and further reading The mirror descent method was originally developed by Nemirovski and Yudin [38] in order to more carefully control the norms of gradients, and associated dual spaces, in first-order optimization methods. Since their original development, a number of researchers have explored variants and extensions of their methods. Beck and Teboulle [5] give an analysis of mirror descent as a non-Euclidean gradient method, which is the approach we take in this lecture. Nemirovski et al. [37] study mirror descent methods in stochastic settings, giving high-probability convergence guarantees similar to those we gave in the previous lecture. Bubeck and Cesa-Bianchi [13] explore the use of mirror descent methods in the context of bandit optimization problems, where instead of observing stochastic gradients one observes only random function values \(f(x) + \epsilon\), where \(\epsilon\) is mean-zero noise.
Figure 3.3.12. A comparison of the convergence of AdaGrad and SGD on the problem (3.3.11) for various initial stepsize choices \(\alpha \in \{10^{-i/2}, i = -2, \ldots, 2\} = \{1, \sqrt{2}, 1, 3.16, 10\} \). Both methods are sensitive to the initial stepsize choice \(\alpha \), though AdaGrad generally gives somewhat better performance.

Variable metric methods have a similarly long history. Our simple results with stepsize selection follow the more advanced techniques of Auer et al. [3] (see especially their Lemma 3.5), and the AdaGrad method (and our development) is due to Duchi, Hazan, and Singer [20] and McMahan and Streeter [35]. More general metric methods include Shor’s space dilation methods (of which the ellipsoid method is a celebrated special case), which develop matrices \(H_k \) that make new directions of descent somewhat less correlated with previous directions, allowing faster convergence in directions toward \(x^* \); see the books of Shor [51, 52] as well as the thesis of Nedić [36]. Newton methods, which we do not discuss, use scaled multiples of \(\nabla^2 f(x_k) \) for \(H_k \), while Quasi-Newton methods approximate \(\nabla^2 f(x_k) \) with \(H_k \) while using only gradient-based information; for more on these and other more advanced methods for smooth optimization problems, see the books of Nocedal and Wright [43] and Boyd and Vandenberghe [10].

4. Optimality Guarantees

Lecture Summary: In this lecture, we provide a framework for demonstrating the optimality of a number of algorithms for solving stochastic optimization problems. In particular, we introduce minimax lower bounds, showing how techniques for reducing estimation problems to statistical testing problems allow us to prove lower bounds on optimization.
4.1. Introduction The procedures and algorithms we have presented thus far enjoy good performance on a number of statistical, machine learning, and stochastic optimization tasks, and we have provided theoretical guarantees on their performance. It is often interesting to ask whether it is possible to improve the algorithms we have developed, or in what ways it may be possible to improve them. With that in mind, in this lecture we develop a number of tools for showing optimality—according to certain metrics—of optimization methods for stochastic problems.

Minimax rates We provide optimality guarantees in the minimax framework for optimality, which proceeds roughly as follows: we have a collection of possible problems and an error measure for the performance of a procedure, and we measure a procedure’s performance by its behavior on the hardest (most difficult) member of the problem class. We then ask for the best procedure under this worst-case error measure. Let us describe this more formally in the context of our stochastic optimization problems, where the goal is to understand the difficulty of minimizing a convex function \(f \) subject to constraints \(x \in C \) while observing only stochastic gradient (or other noisy) information about \(f \). Our bounds build on three objects:

(i) A collection \(\mathcal{F} \) of convex functions \(f : \mathbb{R}^n \to \mathbb{R} \)
(ii) A closed convex set \(C \subset \mathbb{R}^n \) over which we optimize
(iii) A stochastic gradient oracle, which consists of a sample space \(S \), a gradient mapping
\[
g : \mathbb{R}^n \times S \times \mathcal{F} \to \mathbb{R}^n,
\]
and (implicitly) a probability distributions \(P \) on \(S \). The stochastic gradient oracle may be queried at a point \(x \), and when queried, draws a \(S \sim P \) has the property that
\[
E[g(x, S, f)] \in \partial f(x).
\]
Depending on the scenario of the problem, the optimization procedure may be given access either to \(S \) or simply the value of the stochastic gradient \(g = g(x, S, f) \), and the goal is to use the sequence of observations \(g(x_k, S_k, f) \), for \(k = 1, 2, \ldots \), to optimize \(f \).

A simple example of the setting (i)–(iii) is as follows. Let \(A \in \mathbb{R}^{n \times n} \) be a fixed positive definite matrix, and let \(\mathcal{F} \) be the collection of convex functions of the form
\[
f(x) = \frac{1}{2}x^T Ax - b^T x \quad \text{for all } b \in \mathbb{R}^n.
\]
Then \(C \) may be any convex set, and—for the sake of proving lower bounds, not for real applicability in solving problems—we might take the stochastic gradient
\[
g = \nabla f(x) + \xi = Ax - b + \xi \quad \text{for } \xi \sim N(0, I_{n \times n}).
\]
A somewhat more complex example, but with more fidelity to real problems, comes from the stochastic programming problem (2.4.2) from the lecture on subgradient methods. In this case, there is a known convex function \(F : \mathbb{R}^n \times S \to \mathbb{R} \),
which is the instantaneous loss function $F(x; s)$. The problem is then to optimize

$$f_p(x) := \mathbb{E}_p[F(x; S)]$$

where the distribution P on the random variable S is unknown to the method a priori; there is then a correspondence between distributions P and functions $f \in \mathcal{F}$. Generally, an optimization is given access to a sample S_1, \ldots, S_K drawn i.i.d. according to the distribution P (in this case, there is no selection of points x_i by the optimization procedure, as the sample S_1, \ldots, S_K contains even more information than the stochastic gradients). A similar variant with a natural stochastic gradient oracle is to set $g(x, s, F) \in \partial F(x; s)$ instead of providing the sample $S = s$.

We focus in this note on the case when the optimization procedure may view only the sequence of subgradients g_1, g_2, \ldots at the points it queries. We note in passing, however, that for many problems we essentially obtain all information about S from a gradient $g \in \partial F(x; S)$. For example, consider a logistic regression problem with data $s = (a, b) \in [0, 1] \times [-1, 1]$, a typical data case. Then

$$F(x; s) = \log(1 + e^{-b(a,x)}), \quad \text{and } \nabla_x F(x; s) = -\frac{1}{1 + e^{b(a,x)}} ba,$$

so that (a, b) is identifiable from any $g \in \partial F(x; s)$.

Now, given function f and stochastic gradient oracle g, an optimization procedure chooses query points x_1, x_2, \ldots, x_K and observes stochastic subgradients g_k with $\mathbb{E}[g_k] \in \partial f(x_k)$. Based on these stochastic gradients, the optimization procedure outputs \hat{x}_K, and we assess the quality of the procedure in terms of the excess loss

$$\mathbb{E} \left[f(\hat{x}_K(g_1, \ldots, g_K)) - \inf_{x^* \in C} f(x^*) \right],$$

where the expectation is taken over the subgradients $g(x_i, S_i, f)$ returned by the stochastic oracle and any randomness in the chosen iterates/query points x_1, \ldots, x_K of the optimization method. Of course, if we only consider this excess objective value for a fixed function f, then a trivial optimization procedure achieves excess risk 0: simply return some $x \in \arg\min_{x \in C} f(x)$. It is thus important to ask for a more uniform notion of risk: we would like the procedure to have good performance uniformly across all functions $f \in \mathcal{F}$, leading us to measure the performance of a procedure by its worst-case risk

$$\sup_{f \in \mathcal{F}} \mathbb{E} \left[f(\hat{x}(g_1, \ldots, g_K)) - \inf_{x^* \in C} f(x^*) \right],$$

where the supremum is taken over functions $f \in \mathcal{F}$ (the subgradient oracle g then implicitly depends on f). An optimal estimator for this metric then gives the minimax risk for optimizing the family of stochastic optimization problems $(f)_{f \in \mathcal{F}}$ over $x \in C \subset \mathbb{R}^n$, which is

$$\mathcal{M}_K(C, \mathcal{F}) := \inf_{x_K} \sup_{f \in \mathcal{F}} \mathbb{E} \left[f(\hat{x}_K(g_1, \ldots, g_K)) - \inf_{x^* \in C} f(x^*) \right].$$
We take the supremum (worst-case) over distributions $f \in \mathcal{F}$ and the infimum over all possible optimization schemes \hat{x}_K using K stochastic gradient samples.

A criticism of the framework (4.1.2) is that it is too pessimistic: by taking a worst-case over distribution functions $f \in \mathcal{F}$, one is making the family of problems too challenging. We will not address these challenges except to say that one response is to develop adaptive procedures \hat{x}, which are simultaneously optimal for a variety of collections of problems \mathcal{F}.

The basic approach There are a variety of techniques for providing lower bounds on the minimax risk (4.1.2). Each of them transforms the maximum risk by lower bounding it via a Bayesian problem (e.g. [29,31,32]), then proving a lower bound on the performance of all possible estimators for the Bayesian problem. In particular, let $\{f_v\} \subset \mathcal{F}$ be a collection of functions in \mathcal{F} indexed by some (finite or countable) set V and π be any probability mass function over V. Let $f^* = \inf_{x \in C} f(x)$. Then for any procedure \hat{x}, the maximum risk has lower bound

$$\sup_{f \in \mathcal{F}} \mathbb{E} \left[f(\hat{x}) - f^*\right] \geq \sum_v \pi(v) \mathbb{E} \left[f_v(\hat{x}) - f_v^*\right].$$

While trivial, this lower bound serves as the departure point for each of the subsequent techniques for lower bounding the minimax risk. The lower bound also allows us to assume that the procedure \hat{x} is deterministic. Indeed, assume that \hat{x} is non-deterministic, which we can represent generally as depending on some auxiliary random variable U independent of the observed subgradients. Then we certainly have

$$\mathbb{E} \left[\sum_v \pi(v) \mathbb{E} \left[f_v(\hat{x}) - f_v^* | U\right]\right] \geq \inf_u \sum_v \pi(v) \mathbb{E} \left[f_v(\hat{x}) - f_v^* | U = u\right],$$

that is, there is some realization of the auxiliary randomness that is at least as good as the average realization. We can simply incorporate this into our minimax optimal procedures \hat{x}, and thus we assume from this point onward that all our optimization procedures are deterministic when proving our lower bounds.

The second step in proving minimax bounds is to reduce the optimization problem to a type of statistical test [54, 56, 57]. To perform this reduction, we define a distance-like quantity between functions such that, if we have optimized a function f_v to better than the distance, we cannot have optimized other functions well. In particular, consider two convex functions f_0 and f_1. Let $f_v^* = \inf_{x \in C} f_v(x)$ for $v \in \{0,1\}$. We let the optimization separation between functions f_0 and f_1 over the set C be

$$d_{\text{opt}}(f_0, f_1; C) := \sup_{\delta \geq 0} \left\{ \delta > 0 : f_1(x) \leq f_1^* + \delta \implies f_0(x) \geq f_0^* + \delta, f_0(x) \leq f_0^* + \delta \implies f_1(x) \geq f_1^* + \delta \text{ for any } x \in C \right\}. \tag{4.1.4}$$

That is, if we have any point x such that $f_v(x) - f_v^* \leq d_{\text{opt}}(f_0, f_1)$, then x cannot optimize f_{1-v} well, i.e. we can only optimize one of the two functions f_0 and f_1 to
accuracy $d_{\text{opt}}(f_0, f_1)$ accurately. See Figure 4.1.3 for an illustration of this quantity. For example, if $f_1(x) = (x + c)^2$ and $f_0(x) = (x - c)^2$ for a constant $c \neq 0$, then we have $d_{\text{opt}}(f_1, f_0) = c^2$.

This separation d_{opt} allows us to give a reduction from optimization to testing via the canonical hypothesis testing problem, which is as defined as follows:

1. Nature chooses an index $V \in \mathcal{V}$ uniformly at random
2. Conditional on the choice $V = v$, the procedure observes stochastic subgradients for the function f_v according to the oracle $g(x_k, S_k, f_v)$ for i.i.d. S_k.

Then, given the observed subgradients, the goal is to test which of the random indices v nature chose. Intuitively, if we can optimize f_v well—to better than the separation $d_{\text{opt}}(f_v, f_{v'})$—then we can identify the index v. If we can show this, then we can adapt classical statistical results on optimal hypothesis testing to lower bound the probability of error in testing whether the data was generated conditional on $V = v$.

More formally, we have the following key lower bound. In the lower bound, we say that a collection of functions $\{f_v\}_{v \in \mathcal{V}}$ is δ-separated, where $\delta \geq 0$, if

$$d_{\text{opt}}(f_v, f_{v'}; C) \geq \delta$$

for each $v, v' \in \mathcal{V}$ with $v \neq v'$.

Then we have the next proposition.

Proposition 4.1.6. Let S be drawn uniformly from \mathcal{V}, where $|\mathcal{V}| < \infty$, and assume the collection $\{f_v\}_{v \in \mathcal{V}}$ is δ-separated. Then for any optimization procedure \hat{x} based on the
observed subgradients,

\[
\frac{1}{|V|} \sum_{v \in V} \mathbb{E}[f_v(\hat{x}) - f^*_v] \geq \delta \cdot \inf_{\tilde{v}} \mathbb{P}(\tilde{v} \neq V),
\]

where the distribution \(P\) is the joint distribution over the random index \(V\) and the observed gradients \(g_1, \ldots, g_K\) and the infimum is taken over all testing procedures \(\tilde{v}\) based on the observed data.

Proof. We let \(P_v\) denote the distribution of the subgradients conditional on the choice \(V = v\), meaning that \(\mathbb{E}[g_k | V = v] \in \delta f_v(x_k)\). We observe that for any \(v\), we have

\[
\mathbb{E}[f_v(\hat{x}) - f^*_v] \geq \delta \mathbb{E}[\mathbb{1}\{f_v(\hat{x}) \geq f^*_v + \delta\}] = \delta P_v(f_v(\hat{x}) \geq f^*_v + \delta).
\]

Now, define the hypothesis test \(\hat{v}\), which is a function of \(\hat{x}\), by

\[
\hat{v} = \begin{cases} v & \text{if } f_v(\hat{x}) \leq f^*_v + \delta \\ \text{arbitrary in } V & \text{otherwise.} \end{cases}
\]

This is a well-defined mapping, as by the condition that \(d\text{opt}(f_v, f_v') \geq \delta\), there can be only a single index \(v\) such that \(f_v(x) \leq f^*_v + \delta\). We then note the following implication:

\[
\hat{v} \neq v \text{ implies } f_v(\hat{x}) \geq f^*_v + \delta.
\]

Thus we have

\[
P_v(\hat{v} \neq v) \leq P_v(f_v(\hat{x}) \geq f^*_v + \delta),
\]

or, summarizing, we have

\[
\frac{1}{|V|} \sum_{v \in V} \mathbb{E}[f_v(\hat{x}) - f^*_v] \geq \delta \cdot \frac{1}{|V|} \sum_{v \in V} P_v(\hat{v} \neq v).
\]

But by definition of the distribution \(P\), we have \(\frac{1}{|V|} \sum_{v \in V} P_v(\hat{v} \neq v) = \mathbb{P}(\hat{v} \neq V)\), and taking the best possible test \(\hat{v}\) gives the result of the proposition. \(\square\)

Proposition 4.1.6 allows us to then bring in the tools of optimal testing in statistics and information theory, which we can use to prove lower bounds. To leverage Proposition 4.1.6, we follow a two phase strategy: we construct a well-separated function collection, and then we show that it is difficult to test which of the functions we observe data from. There is a natural tension in the proposition, as it is easier to distinguish functions that are far apart (i.e. large \(\delta\)), while hard-to-distinguish functions (i.e. large \(\mathbb{P}(\hat{v} \neq V)\)) often have smaller separation. Thus we trade these against one another carefully in constructing our lower bounds on the minimax risk. We also present a variant lower bound in Section 4.3 based on a similar reduction, except that we use multiple binary hypothesis tests.

4.2. Le Cam’s Method

Our first set of lower bounds is based on Le Cam’s method [31], which uses an optimality guarantees for simple binary hypothesis tests to provide lower bounds for optimization problems. That is, we let \(V = \{-1, 1\}\) and will construct only pairs of functions and distributions \(P_1, P_{-1}\)
We can connect the variation distance to binary hypothesis tests via the following formula:

\[\sqrt{\frac{\|g_k\|_2^2}{2}} \leq M^2 \]

for all \(k \). We assume that \(\mathcal{F} \) consists of \(M \)-Lipschitz continuous convex functions.

With the definition \((4.1.4)\) of the separation in terms of optimization value, we can provide a lower bound on optimization in terms of distances between distributions \(P_1 \) and \(P_{-1} \). Before we continue, we require a few definitions about distances between distributions.

Definition 4.2.1. Let \(P \) and \(Q \) be distributions on a space \(\mathcal{S} \), and assume that they are both absolutely continuous with respect to a measure \(\mu \) on \(\mathcal{S} \). The variation distance between \(P \) and \(Q \) is

\[\|P - Q\|_{TV} := \sup_{A \subseteq \mathcal{S}} |P(A) - Q(A)| = \frac{1}{2} \int_{\mathcal{S}} |p(s) - q(s)| d\mu(s). \]

The Kullback-Leibler divergence between \(P \) and \(Q \) is

\[D_{KL}(P|Q) := \int_{\mathcal{S}} p(s) \log \frac{p(s)}{q(s)} d\mu(s). \]

We can connect the variation distance to binary hypothesis tests via the following lemma, due to Le Cam. The lemma states that testing between two distributions is hard precisely when they are close in variation distance.

Lemma 4.2.2. Let \(P_1 \) and \(P_{-1} \) be any distributions. Then

\[\inf_{\tilde{v}} \{ P_1(\tilde{v} \neq 1) + P_{-1}(\tilde{v} \neq -1) \} = 1 - \|P_1 - P_{-1}\|_{TV}. \]

Proof. Any testing procedure \(\tilde{v} : \mathcal{S} \rightarrow \{-1, 1\} \) maps one region of the sample space, call it \(A \), to \(-1\) and the complement \(A^c \) to \(-1\). Thus, we have

\[P_1(\tilde{v} \neq 1) + P_{-1}(\tilde{v} \neq -1) = P_1(A^c) + P_{-1}(A) = 1 - P_1(A) + P_{-1}(A). \]

Optimizing over \(\tilde{v} \) is then equivalent to optimizing over sets \(A \), yielding

\[\inf_{\tilde{v}} \{ P_1(\tilde{v} \neq 1) + P_{-1}(\tilde{v} \neq -1) \} = \inf_A \{ 1 - P_1(A) + P_{-1}(A) \} = 1 - \sup_A \{ P_1(A) - P_{-1}(A) \} \]

\[= 1 - \|P_1 - P_{-1}\|_{TV} \]

as desired. \(\square \)

As an immediate consequence of Lemma 4.2.2, we obtain the standard min-max lower bound based on binary hypothesis testing. In particular, let \(f_1 \) and \(f_{-1} \) be \(\delta \)-separated and belong to \(\mathcal{F} \), and assume that the \(\tilde{x} \) observes data (the \(K \) subgradients) from \(P^K_{\tilde{v}} \) when \(f_{\tilde{v}} \) is the true function. Then we immediately have

\[M_K(C, \mathcal{F}) \geq \inf_{\tilde{x}_K \in \{-1, 1\}} \max_{v \in \{-1, 1\}} \{ \mathbb{E}_{P^K_{v}}[f_v(\tilde{x}_K) - f^K_{v}] \} \geq \frac{1}{2} \cdot \frac{1 - \|P^K_1 - P^K_{-1}\|_{TV}}{\delta}. \]
Inequality (4.2.3) gives a quantitative guarantee on an intuitive fact: if we observe data from one of two distributions P_1 and P_{-1} that are close, while the optimizers of the functions f_1 and f_{-1} associated with P_1 and P_{-1} differ, it is difficult to optimize well. Moreover, there is a natural tradeoff—the farther apart the functions f_1 and f_{-1} are (i.e. $\delta = d_{opt}(f_1, f_{-1})$ is large), the bigger the penalty for optimizing one well, but conversely, this usually forces the distributions P_1 and P_{-1} to be quite different, as they provide subgradient information on f_1 and f_{-1}, respectively.

It is challenging to compute quantities—especially with multiple samples—involving the variation distance, so we now convert our bounds to ones involving the KL-divergence, which is computationally easier when dealing with multiple samples. First, we use Pinsker’s inequality (see Appendix A.3, Proposition A.3.2 for a proof): for any distributions P and Q, $$\|P - Q\|_{TV}^2 \leq \frac{1}{2} D_{kl}(P||Q).$$

As we see presently, the KL-divergence tensorizes when we have multiple observations from different distributions (see Lemma 4.2.8 to come), allowing substantially easier computation of individual divergence terms. Then we have the following theorem.

Theorem 4.2.4. Let \mathcal{F} be a collection of convex functions, and let $f_1, f_{-1} \in \mathcal{F}$. Assume that when function f_v is to be optimized, we observe K subgradients according to P^K_v. Then $$\mathcal{M}_K(C, P) \geq \frac{d_{opt}(f_{-1}, f_1; C)}{2} \left[1 - \sqrt{\frac{1}{2} D_{kl}(P^K_1||P^K_{-1})} \right].$$

What remains to give a concrete lower bound, then, is (1) to construct a family of well-separated functions f_1, f_{-1}, and (2) to construct a stochastic gradient oracle for which we give a small upper bound on the KL-divergence between the distributions P_1 and P_{-1} associated with the functions, which means that testing between P_1 and P_{-1} is hard.

Constructing well-separated functions Our first goal is to construct a family of well-separated functions and an associated first-order subgradient oracle that makes the functions hard to distinguish. We parameterize our functions—of which we construct only 2—by a parameter $\delta > 0$ governing their separation. Our construction applies in dimension $n = 1$: let us assume that C contains the interval $[-R, R]$ (this is no loss of generality, as we may simply shift the interval). Then define the M-Lipschitz continuous functions

\begin{equation}
(4.2.5) \quad f_1(x) = M\delta|x - R| \quad \text{and} \quad f_{-1}(x) = M\delta|x + R|.
\end{equation}

See Figure 4.2.6 for an example of these functions, which makes clear that their separation (4.1.4) is

$$d_{opt}(f_1, f_{-1}) = \delta MR.$$
Figure 4.2.6. The function construction (4.2.5) with separation \(d_{opt}(f_1, f_{-1}) = MR\delta \).

We also consider the stochastic oracle for this problem, recalling that we must construct subgradients satisfying \(\mathbb{E}[\|g\|_2^2] \leq M^2 \). We will do slightly more: we will guarantee that \(|g| \leq M \) always. With this in mind, we assume that \(\delta \leq 1 \), and define the stochastic gradient oracle for the distribution \(P_v, v \in \{-1, 1\} \) at the point \(x \) to be

\[
g_v(x) = \begin{cases}
M \text{sign}(x - vR) & \text{with probability } \frac{1 + \delta}{2} \\
-M \text{sign}(x - vR) & \text{with probability } \frac{1 - \delta}{2}.
\end{cases}
\]

At \(x = vR \) the oracle simply returns a random sign. Then by inspection, we see that

\[
\mathbb{E}[g_v(x)] = \frac{M\delta}{2} \text{sign}(x - vR) - \frac{M\delta}{2} (-\text{sign}(x - vR)) = M\delta \text{sign}(x - vR) \in \partial f_v(x)
\]

for \(v = -1, 1 \). Thus, the combination of the functions (4.2.5) and the stochastic gradient (4.2.7) give us a valid subgradient and well-separated pair of functions.

Bounding the distance between distributions The second step in proving our minimax lower bound is to upper bound the distance between the distributions that generate the subgradients our methods observe. This means that testing which of the functions we are optimizing is challenging, giving us a strong lower bound. At a high level, building off of Theorem 4.2.4, we hope to show an upper bound of the form

\[
D_{KL} \left(p^K_1 | p^K_{-1} \right) \leq \kappa \delta^2
\]

for some \(\kappa \). This is a local condition, allowing us to scale our problems with \(\delta \) to achieve minimax bounds. If we have such a quadratic, we may simply choose
\[\delta^2 = 1/2k, \text{ giving the constant probability of error} \]

\[1 - \left\| p^K_1 - p^K_{-1} \right\|_{TV} \geq 1 - \sqrt{\frac{1}{2} \text{KL}(p^K_1 | p^K_{-1}) / 2} \geq 1 - \sqrt{\frac{k \delta^2}{2}} \geq \frac{1}{2}. \]

To this end, we begin with a standard lemma (the chain rule for KL divergence), which applies when we have K potential dependent observations from a distribution. The result is an immediate consequence of Bayes’ rule.

Lemma 4.2.8. Let \(P(\cdot | g_1, \ldots, g_{k-1}) \) denote the conditional distribution of \(g_k \) given \(g_1, \ldots, g_{k-1} \). For each \(k \in \mathbb{N} \) let \(p^K_1 \) and \(p^K_{-1} \) be distributions on the \(K \) subgradients \(g_1, \ldots, g_k \). Then

\[\text{KL}(p^K_1 | p^K_{-1}) = \sum_{k=1}^{K} \text{KL}(p_1(\cdot | g_1, \ldots, g_{k-1}) | p_{-1}(\cdot | g_1, \ldots, g_{k-1})). \]

Using Lemma 4.2.8, we have the following upper bound on the KL-divergence between \(p^K_1 \) and \(p^K_{-1} \) for the stochastic gradient (4.2.7).

Lemma 4.2.9. Let the \(K \) observations under distribution \(p_\nu \) come from the stochastic gradient oracle (4.2.7). Then for \(\delta \leq \frac{4}{5} \),

\[\text{KL}(p^K_1 | p^K_{-1}) \leq 3K \delta^2. \]

Proof. We use the chain-rule for KL-divergence, whence we must only provide an upper bound on the individual terms. We first note that \(x_k \) is a function of \(g_1, \ldots, g_{k-1} \) (because we may assume w.l.o.g. that \(x_k \) is deterministic) so that \(p_\nu(\cdot | g_1, \ldots, g_{k-1}) \) is the distribution of a Bernoulli random variable with distribution (4.2.7), i.e. with probabilities \(\frac{1+\delta}{2} \). Thus we have

\[\text{KL}(p_1(\cdot | g_1, \ldots, g_{k-1}) | p_{-1}(\cdot | g_1, \ldots, g_{k-1})) \leq \text{KL}\left(\frac{1+\delta}{2}, \frac{1-\delta}{2} \right). \]

By a Taylor expansion, we have that

\[\delta \log \frac{1+\delta}{1-\delta} = \delta \left(\frac{1}{2} \delta^2 + O(\delta^3) \right) = \delta \left(\frac{1}{2} \delta^2 + O(\delta^3) \right) = 2 \delta^2 + O(\delta^4) \leq 3 \delta^2 \]

for \(\delta \leq \frac{4}{5} \), or

\[\text{KL}(p_1(\cdot | g_1, \ldots, g_{k-1}) | p_{-1}(\cdot | g_1, \ldots, g_{k-1})) \leq 3 \delta^2 \]

for \(\delta \leq \frac{4}{5} \). Summing over \(k \) completes the proof. \(\square \)

Putting it all together: a minimax lower bound With Lemma 4.2.9 in place along with our construction (4.2.5) of well-separated functions, we can now give a theorem on the best possible convergence guarantees for a broad family of problems.
Theorem 4.2.10. Let $C \subset \mathbb{R}^n$ be a convex set containing an ℓ_2 ball of radius R, and let \mathcal{P} denote the collection of distributions generating stochastic subgradients with $\|g\|_2 \leq M$ with probability 1. Then

$$M_K(C, \mathcal{P}) \geq \frac{RM}{4\sqrt{6\sqrt{K}}}$$

for all $K \in \mathbb{N}$.

Proof. We combine Le Cam’s method, Lemma 4.2.2 (and the subsequent Theorem 4.2.4) with our construction (4.2.5) and their stochastic subgradients (4.2.7). Certainly, the class of n-dimensional optimization problems is at least as challenging as a 1-dimensional problem (we may always restrict our functions to depend only on a single coordinate), so that for any $\delta \geq 0$ we have

$$M_K(C, \mathcal{F}) \geq \frac{\delta MR}{2} \left(1 - \sqrt{1 - \frac{1}{2} D_{kl}(P_K|P_{K-1})}\right).$$

Now we use Lemma 4.2.9, which guarantees the further lower bound

$$M_K(C, \mathcal{F}) \geq \frac{\delta MR}{2} \left(1 - \sqrt{3K\delta^2}\right),$$

valid for all $\delta \leq \frac{4}{9}$. Choosing $\delta^2 = \frac{1}{6K} < \frac{4}{9}$, we have that $D_{kl}(P_K|P_{K-1}) \leq \frac{1}{2}$, and

$$M_K(C, \mathcal{F}) \geq \frac{\delta MR}{4}.$$

Substituting our choice of δ into this expression gives the theorem. \square

In short, Theorem 4.2.10 gives a guarantee that matches the upper bounds of the previous lectures to within a numerical constant factor of 10. A more careful inspection of our analysis allows us to prove a lower bound, at least as challenging as a 1-dimensional problem (we may always restrict our functions to depend only on a single coordinate), so that for any $\delta \geq 0$ we have

$$M_K(C, \mathcal{F}) \geq \frac{\delta MR}{2} \left(1 - \sqrt{1 - \frac{1}{2} D_{kl}(P_K|P_{K-1})}\right).$$

Now we use Lemma 4.2.9, which guarantees the further lower bound

$$M_K(C, \mathcal{F}) \geq \frac{\delta MR}{2} \left(1 - \sqrt{3K\delta^2}\right),$$

valid for all $\delta \leq \frac{4}{9}$. Choosing $\delta^2 = \frac{1}{6K} < \frac{4}{9}$, we have that $D_{kl}(P_K|P_{K-1}) \leq \frac{1}{2}$, and

$$M_K(C, \mathcal{F}) \geq \frac{\delta MR}{4}.$$

Substituting our choice of δ into this expression gives the theorem. \square

4.3. Multiple dimensions and Assouad’s Method

The results in Section 4.2 provide guarantees for problems where we can embed much of the difficulty of our family \mathcal{F} in optimizing a pair of only two functions—something reminiscent of problems in classical statistics on the “hardest one-dimensional subproblem” (see, for example, the work of Donoho, Liu, and MacGibbon [17]). In many stochastic optimization problems, the higher-dimension n yields increased difficulty, so that we would like to derive bounds that incorporate dimension more directly. With that in mind, we develop a family of lower bounds, based on Assouad’s method [2], that reduce optimization to a collection of binary hypothesis tests, one for each of the n dimensions of the problem.
More precisely, we let $V = \{-1, 1\}^n$ be the n-dimensional binary hypercube, and for each $v \in V$, we assume we have a function $f_v \in \mathcal{F}$ where $f_v : \mathbb{R}^n \to \mathbb{R}$. Without loss of generality, we will assume that our constraint set C has the point 0 in its interior. Let $\delta \in \mathbb{R}_+^n$ be an n-dimensional nonnegative vector. Then we say that the functions $\{f_v\}$ induce a δ-separation in the Hamming metric if for any $x \in C \subset \mathbb{R}^n$ we have

$$ f_v(x) - f_v^* \geq \sum_{j=1}^n \delta_j 1 \{ \text{sign}(x_j) \neq v_j \}, $$

where the subscript j denotes the jth coordinate. For example, if we define the function $f_v(x) = \delta \|x - v\|_1$ for each $v \in V$, then certainly $\{f_v\}$ is δ1-separated in the Hamming metric; more generally, $f_v(x) = \sum_{j=1}^n \delta_j |x_j - v_j|$ is δ-separated. With this definition, we have the following lemma, providing a lower bound for functions $f : \mathbb{R}^n \to \mathbb{R}$.

Lemma 4.3.2 (Generalized Assouad). Let $\delta \in \mathbb{R}_+^n$ and let $\{f_v\}$, where $v \in V = \{-1, 1\}^n$, be δ-separated in Hamming metric. Let \hat{x} be any optimization algorithm, and let P_v be the distribution of (all) the subgradients g_1, \ldots, g_K the procedure \hat{x} observes when optimizing f_v. Define

$$ P_{+v} = \frac{1}{2^{n-1}} \sum_{v : v_j = 1} P_v \quad \text{and} \quad P_{-v} = \frac{1}{2^{n-1}} \sum_{v : v_j = -1} P_v. $$

Then

$$ \frac{1}{2^n} \sum_{v \in \{-1, 1\}^n} \mathbb{E}[f_v(\hat{x}) - f_v^*] \geq \frac{1}{2} \sum_{j=1}^n \delta_j (1 - \|P_{+v} - P_{-v}\|_{TV}). $$

Proof. By using the separation condition, we immediately see that

$$ \mathbb{E}[f_v(\hat{x}) - f_v^*] \geq \sum_{j=1}^d \delta_j P_v(\text{sign}(\hat{x}_j) \neq v_j) $$

for any $v \in V$. Averaging over the vectors $v \in V$, we obtain

$$ \frac{1}{2^n} \sum_{v \in V} \mathbb{E}[f_v(\hat{x}) - f_v^*] \geq \sum_{j=1}^d \frac{1}{|V|} \sum_{v \in V} \delta_j P_v(\text{sign}(\hat{x}_j) \neq v_j) $$

$$ = \sum_{j=1}^d \frac{1}{|V|} \left[\sum_{v : v_j = 1} P_v(\text{sign}(\hat{x}_j) \neq 1) + \sum_{v : v_j = -1} P_v(\text{sign}(\hat{x}_j) \neq -1) \right] $$

$$ = \sum_{j=1}^d \frac{\delta_j}{2} \left[P_{+v}(\text{sign}(\hat{x}_j) \neq 1) + P_{-v}(\text{sign}(\hat{x}_j) \neq -1) \right]. $$

Now we use Le Cam’s lemma (Lemma 4.2.2) on optimal binary hypothesis tests to see that

$$ P_{+v}(\text{sign}(\hat{x}_j) \neq 1) + P_{-v}(\text{sign}(\hat{x}_j) \neq -1) \geq 1 - \|P_{+v} - P_{-v}\|_{TV} $$

which gives the desired result. \qed
As a nearly immediate consequence of Lemma 4.3.2, we see that if the separation is a constant $\delta > 0$ for each coordinate, we have the following lower bound on the minimax risk.

Proposition 4.3.3. Let the collection $\{f_v\}_{v \in V} \subset F$, where $V = \{-1, 1\}^n$, be δ-separated in Hamming metric for some $\delta \in \mathbb{R}_+$, and let the conditions of Lemma 4.3.2 hold. Then

$$\mathcal{M}_K(C, F) \geq \frac{n}{2} \delta \left(1 - \sqrt{\frac{1}{2n} \sum_{j=1}^n D_{\text{kl}}(P_{+j}||P_{-j})}\right).$$

Proof. Lemma 4.3.2 guarantees that

$$\mathcal{M}_K(C, F) \geq \mathcal{M}_K(C, F) \geq \frac{\delta}{2} \sum_{j=1}^n (1 - \|P_{+j} - P_{-j}\|_{\text{TV}}).$$

Applying the Cauchy-Schwarz inequality, we have

$$\sum_{j=1}^n \|P_{+j} - P_{-j}\|_{\text{TV}} \leq \sqrt{\sum_{j=1}^n \|P_{+j} - P_{-j}\|_{\text{TV}}^2} \leq \sqrt{\frac{n}{2} \sum_{j=1}^n D_{\text{kl}}(P_{+j}||P_{-j})}$$

by Pinsker’s inequality. Substituting this into the previous bound gives the desired result.

With this proposition, we can give a number of minimax lower bounds. We focus on two concrete cases, which show that the stochastic gradient procedures we have developed are optimal for a variety of problems. We give one result, deferring others to the exercises associated with the lecture notes. For our main result using Assouad’s method, we consider optimization problems for which the set $C \subset \mathbb{R}^n$ contains an ℓ_∞ ball of radius R. We also assume that the stochastic gradient oracle satisfies the ℓ_1-bound condition

$$\mathbb{E}[\|g(x, S, f)\|_1^2] \leq M^2.$$

This means that all the functions $f \in F$ are M-Lipschitz continuous with respect to the ℓ_∞-norm, that is, $|f(x) - f(y)| \leq M \|x - y\|_\infty$.

Theorem 4.3.4. Let F and the stochastic gradient oracle be as above, and assume $C \supset \{-R, R\}^n$. Then

$$\mathcal{M}_K(C, F) \geq R M \min \left\{ \frac{1}{5}, \frac{1}{\sqrt{96}}, \frac{1}{\sqrt{96}} \frac{\sqrt{\pi}}{\sqrt{R}} \right\}.$$

Proof. Our proof is similar to our construction of our earlier lower bounds, except that now we must construct functions defined on \mathbb{R}^n so that our minimax lower bound on convergence rate grows with the dimension. Let $\delta > 0$ be fixed for now. For each $v \in V = \{-1, 1\}^n$, define the function

$$f_v(x) := \frac{M\delta}{n} \|x - Rv\|_1.$$
Then by inspection, the collection \{f_v\} is \(\frac{MR\delta}{n}\)-separated in Hamming metric, as

\[
f_v(x) = \frac{M\delta}{n} \sum_{j=1}^{n} |x_j - Rv_j| \geq \frac{M\delta}{n} \sum_{j=1}^{n} R1 \{\text{sign}(x_j) \neq v_j\}.
\]

Now, we must (as before) construct a stochastic subgradient oracle. Let \(e_1, \ldots, e_n\) be the \(n\) standard basis vectors. For each \(v \in V\), we define the stochastic subgradient as

\[
(4.3.5) \quad g(x, f_v) = \begin{cases} Me_j \text{sign}(x_j - Rv_j) & \text{with probability } \frac{1+\delta}{2n} \\ -Me_j \text{sign}(x_j - Rv_j) & \text{with probability } \frac{1-\delta}{2n} \end{cases}.
\]

That is, the oracle randomly chooses a coordinate \(j \in \{1, \ldots, n\}\), then conditional on this choice, flips a biased coin and with probability \(\frac{1+\delta}{2n}\) returns the correctly signed \(j\)th coordinate of the subgradient, \(Me_j \text{sign}(x_j - Rv_j)\), and otherwise returns the negative. By inspection, we have

\[
\mathbb{E}[g(x, f_v)] = M \sum_{j=1}^{n} e_j \left[\frac{1+\delta}{n} \text{sign}(x_j - Rv_j) - \frac{1-\delta}{n} \text{sign}(x_j - Rv_j) \right] = \frac{M\delta}{n} \text{sign}(x - Rv),
\]

where \(\text{sign}(x)\) denotes the vector of signs of \(x\). That is, \(\mathbb{E}[g(x, f_v)] \in \partial f_v(x)\) as desired.

Now, we apply Proposition 4.3.3, which guarantees that

\[
(4.3.6) \quad \mathcal{M}(C, F) \geq \frac{MR\delta}{2} \left(1 - \sqrt{\frac{1}{2n} \sum_{j=1}^{n} D_{kl}(P_{+j} | P_{-j})} \right).
\]

It remains to upper bound the KL-divergence terms. Let \(P^K_v\) denote the distribution of the \(K\) subgradients the method observes for the function \(f_v\), and let \(v(\pm j)\) denote the vector \(v\) except that its \(j\)th entry is forced to be \(\pm 1\). Then, we may use the convexity of the KL-divergence to obtain that

\[
D_{kl}(P_{+j} | P_{-j}) \leq \frac{1}{2n} \sum_{v \in V} D_{kl}(P^K_{v(+)j} | P^K_{v(-)j})
\]

Let us thus bound \(D_{kl}(P^K_v | P^K_{v'})\) when \(v\) and \(v'\) differ in only a single coordinate (we let it be the first coordinate with no loss of generality). Let us assume for notational simplicity \(M = 1\) for the next calculation, as this only changes the support of the subgradient distribution (4.3.5) but not any divergences. Applying the chain rule (Lemma 4.2.8), we have

\[
D_{kl}(P^K_v | P^K_{v'}) = \sum_{k=1}^{K} \mathbb{E}_{P_v} [D_{kl}(P_v(\cdot | g_{1:k-1}) | P_{v'}(\cdot | g_{1:k-1}))].
\]

We consider one of the terms, noting that the \(k\)th query \(x_k\) is a function of \(g_1, \ldots, g_{k-1}\). We have

\[
D_{kl}(P_v(\cdot | x_k) | P_{v'}(\cdot | x_k))
\]
ward reductions from optimization to statistical testing problems, for which in-
Agarwal et al. [1] for proving lower bounds for stochastic optimization problems,
though our results appear to have slightly sharper constants. Notably missing
in our treatment is the use of Fano’s inequality for lower bounds, which is com-
monly used to prove converse statements to achievability results in information
theory. [15,57]. Recent treatments of various techniques for proving lower bounds
in statistics can be found in the book of Tsybakov [54] or the lecture notes [19].

Our focus on stochastic optimization problems allows reasonably straightfor-
ward reductions from optimization to statistical testing problems, for which in-
formation theoretic and statistical tools give elegant solutions. It is possible to

\[
\begin{align*}
\mathbb{M}_K(C, \mathcal{F}) &\geq \frac{\text{MR}\delta}{2} \left(1 - \sqrt{\frac{3K\delta^2}{2n}} \right) \\
&\geq \frac{\text{MR}\delta}{2} \left(1 - \sqrt{\frac{3K\delta^2}{2n}} \right).
\end{align*}
\]

Choosing \(\delta^2 = \min\{16/25, \frac{\text{MR}}{2n}\} \) gives the result of the theorem. \(\Box \)

A few remarks are in order about the theorem. First, we see that it recovers
the 1-dimensional result of Theorem 4.2.10, as we may simply take \(n = 1 \) in
the theorem statement. Second, we see that if we wish to optimize over a set
larger than the \(\ell_2 \)-ball, then there must necessarily be some dimension-dependent
penalty, at least in the worst case. Lastly, the result again is sharp. By using
Theorem 2.4.7, we obtain the following corollary.

Corollary 4.3.7. In addition to the conditions of Theorem 4.3.4, let \(C \subset \mathbb{R}^n \) contain an
\(\ell_\infty \) box of radius \(r \) and be contained in an \(\ell_\infty \) box of radius \(R \). Then

\[
\text{RM} \min \left\{ \frac{1}{5}, \frac{1}{\sqrt{96}}, \frac{\sqrt{n}}{\sqrt{R}} \right\} \leq \mathbb{M}_K(C, \mathcal{F}) \leq \text{RM} \min \left\{ 1, \frac{\sqrt{n}}{\sqrt{R}} \right\}.
\]

Notes and further reading The minimax criterion for measuring optimality of
optimization and estimation procedures has a long history, dating back at least
to Wald [55] in 1939. The information-theoretic approach to optimality guaran-
tees was extensively developed by Ibragimov and Has’minskii [29], and this is
our approach. Our treatment in this chapter is specifically based off of that by
Agarwal et al. [1] for proving lower bounds for stochastic optimization problems,
though our results appear to have slightly sharper constants. Notably missing
in our treatment is the use of Fano’s inequality for lower bounds, which is com-
monly used to prove converse statements to achievability results in information
theory [15,57]. Recent treatments of various techniques for proving lower bounds
in statistics can be found in the book of Tsybakov [54] or the lecture notes [19].
give lower bounds for non-stochastic problems, where the classical reference is the book of Nemirovski and Yudin [38] (who also provide optimality guarantees for stochastic problems). The basic idea is to provide lower bounds for the oracle model of convex optimization, where we consider optimality in terms of the number of queries to an oracle giving true first- or second-order information (as opposed to the stochastic oracle studied here). More recent work, including the lecture notes [39] and the book [41] provide a somewhat easier guide to such results, while the recent paper of Braun et al. [11] shows how to leverage information-theoretic tools to prove optimality guarantees even for non-stochastic optimization problems.

A. Technical Appendices

A.1. Continuity of Convex Functions

In this appendix, we provide proofs of the basic continuity results for convex functions. Our arguments are based on those of Hiriart-Urruty and Lemaréchal [25].

Proof of Lemma 1.3.1 We can write $x \in B_1$ as $x = \sum_{i=1}^{n} x_i e_i$, where e_i are the standard basis vectors and $\sum_{i=1}^{n} |x_i| \leq 1$. Thus, we have

$$f(x) = f\left(\sum_{i=1}^{n} e_i x_i\right) = f\left(\sum_{i=1}^{n} |x_i| \text{sign}(x_i) e_i + (1 - \|x\|_1)0\right)$$

$$\leq \sum_{i=1}^{n} |x_i| f(\text{sign}(x_i) e_i) + (1 - \|x\|_1)f(0)$$

$$\leq \max\{f(e_1), f(-e_1), f(e_2), f(-e_2), \ldots, f(e_n), f(-e_n), f(0)\}.$$

The first inequality uses the fact that the $|x_i|$ and $(1 - \|x\|_1)$ form a convex combination, since $x \in B_1$, as does the second.

For the lower bound, note by the fact that $x \in \text{int } B_1$ satisfies $x \in \text{int } \text{dom } f$, we have $\partial f(x) \neq \emptyset$ by Theorem 1.4.3. In particular, there is a vector g such that $f(y) \geq f(x) + \langle g, y - x \rangle$ for all y, and even more,

$$f(y) \geq f(x) + \inf_{y \in B_1} \langle g, y - x \rangle \geq f(x) - 2\|g\|_\infty$$

for all $y \in B_1$.

Proof of Theorem 1.3.2 First, let us suppose that for each point $x_0 \in C$, there exists an open ball $B \subset \text{int } \text{dom } f$ such that

$$|f(x) - f(x')| \leq L \|x - x'\|_2$$

for all $x, x' \in B$. The collection of such balls B covers C, and as C is compact, there exists a finite subcover B_1, \ldots, B_k with associated Lipschitz constants L_1, \ldots, L_k. Take $L = \max_i L_i$ to obtain the result. It thus remains to show that we can construct balls satisfying the Lipschitz condition (A.1.1) at each point $x_0 \in C$.

We make the following claim, from which the condition \((A.1.1)\) evidently follows based on the preceding display.

Lemma A.1.2. Let \(\epsilon > 0\), \(f\) be convex, and \(B = \{v : \|v\|_2 \leq 1\}\). Suppose that \(f(x) \in [m, M]\) for all \(x \in x_0 + 2\epsilon B\). Then

\[
|f(x) - f(x')| \leq \frac{M - m}{\epsilon} \|x - x'\|_2 \text{ for all } x, x' \in x_0 + \epsilon B.
\]

Proof. Let \(x, x' \in x_0 + \epsilon B\). Let

\[
x'' = x' + \epsilon \frac{x' - x}{\|x' - x\|_2} \in x_0 + 2\epsilon B,
\]

as \((x - x')/\|x - x'\|_2 \in B\). By construction, we have that \(x' \in \{tx + (1 - t)x'', t \in [0, 1]\}\), the segment between \(x\) and \(x''\); explicitly,

\[
\left(1 + \frac{\epsilon}{\|x' - x\|_2}\right) x' = x'' + \frac{\epsilon}{\|x' - x\|_2} x \quad \text{or} \quad x' = \frac{\|x' - x\|_2}{\|x' - x\|_2 + \epsilon} x'' + \frac{\epsilon}{\|x' - x\|_2 + \epsilon} x.
\]

Then we find that

\[
f(x') \leq \frac{\|x - x''\|_2}{\|x - x'\|_2 + \epsilon} f(x'') + \frac{\epsilon}{\|x - x'\|_2 + \epsilon} f(x),
\]

or

\[
f(x') - f(x) \leq \frac{\|x - x''\|_2}{\|x - x'\|_2 + \epsilon} \left[f(x'') - f(x)\right] \leq \frac{\|x - x''\|_2}{\|x - x'\|_2 + \epsilon} (M - m)
\]

Swapping the roles of \(x\) and \(x'\) gives the result. \(\square\)

A.2. Probability background In this section, we very tersely review a few of the necessary definitions and results that we employ here. We provide a non-measure-theoretic treatment, as it is not essential for the basic uses we have.

Definition A.2.1. A sequence \(X_1, X_2, \ldots\) of random vectors converges in probability to a random vector \(X_\infty\) if for all \(\epsilon > 0\), we have

\[
\lim_{n \to \infty} \mathbb{P}(\|X_n - X_\infty\| > \epsilon) = 0.
\]

Definition A.2.2. A sequence \(X_1, X_2, \ldots\) of random vectors is a martingale if there is a sequence of random variables \(Z_1, Z_2, \ldots\) (which may contain all the information about \(X_1, X_2, \ldots\)) such that for each \(n\), (i) \(X_n\) is a function of \(Z_n\), (ii) \(Z_{n-1}\) is a function of \(Z_n\), and (iii) we have the conditional expectation condition

\[
\mathbb{E}[X_n | Z_{n-1}] = X_{n-1}.
\]
When condition (i) is satisfied, we say that X_n is adapted to Z. We say that a sequence X_1, X_2, \ldots is a martingale difference sequence if $S_n = \sum_{i=1}^{n} X_i$ is a martingale, or, equivalently, if $\mathbb{E}[X_n \mid Z_{n-1}] = 0$.

We now provide a self-contained proof of the Azuma-Hoeffding inequality. Our first result is an important intermediate result.

Lemma A.2.3 (Hoeffding’s Lemma [28]). Let X be a random variable with $a \leq X \leq b$. Then
\[
\mathbb{E} [\exp (\lambda (X - \mathbb{E}[X]))] \leq \exp \left(\frac{\lambda^2 (b - a)^2}{8} \right) \text{ for all } \lambda \in \mathbb{R}.
\]

Proof. First, we note that if Y is any random variable with $Y \in [c_1, c_2]$, then $\text{Var}(Y) \leq \frac{(c_2 - c_1)^2}{4}$. Indeed, we have that $\mathbb{E}[Y]$ minimizes $\mathbb{E}[(Y - t)^2]$ over $t \in \mathbb{R}$, so that
\[
\text{Var}(Y) = \mathbb{E}[(Y - \mathbb{E}[Y])^2] \leq \left(\frac{Y - c_2 + c_1}{2} \right)^2 \leq (c_2 - c_1)^2 / 4.
\]

Without loss of generality, we assume $\mathbb{E}[X] = 0$ and $0 \in [a, b]$. Let $\psi(\lambda) = \lambda$ and $\varphi(\lambda) = \lambda^2$. Define the random variable Y by
\[
f(y) = \frac{e^{\lambda y}}{\mathbb{E}[e^{\lambda X}]} p(y)
\]
for $y \in \mathbb{R}$, where $p(y) = 0$ for $y \not\in [a, b]$. Then $\mathbb{E}[Y] = \psi'(\lambda)$ and $\text{Var}(Y) = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 = \psi''(\lambda)$. But of course, we know that $Y \in [a, b]$ because the distribution P of X is supported on $[a, b]$, so that
\[
\psi''(\lambda) = \text{Var}(Y) \leq \frac{(b - a)^2}{4}
\]
by inequality (A.2.4). Using Taylor’s theorem, we have that
\[
\psi(\lambda) = \psi(0) + \psi'(0) \lambda + \frac{\lambda^2}{2} \psi''(\tilde{\lambda}) = \psi(0) + \frac{\lambda^2}{2} \psi''(\tilde{\lambda})
\]
for some $\tilde{\lambda}$ between 0 and λ. But $\psi''(\tilde{\lambda}) \leq \frac{(b - a)^2}{4}$, so that $\psi(\lambda) \leq \frac{\lambda^2}{2} \frac{(b - a)^2}{4}$ as desired. \hfill \Box

\footnote{We may assume there is a dominating base measure μ with respect to which P has a density p.}
Theorem A.2.5 (Azuma-Hoeffding Inequality [4]). Let X_1, X_2, \ldots be a martingale difference sequence with $|X_i| \leq B$ for all $i = 1, 2, \ldots$. Then

$$
P \left(\sum_{i=1}^{n} X_i \geq t \right) \leq \exp \left(-\frac{2t^2}{nB^2} \right)
$$

and

$$
P \left(\sum_{i=1}^{n} X_i \leq -t \right) \leq \exp \left(-\frac{2t^2}{nB^2} \right)
$$

for all $t \geq 0$.

Proof. We prove the upper tail, as the lower tail is similar. The proof is a nearly immediate consequence of Hoeffding’s lemma (Lemma A.2.3) and the Chernoff bound technique. Indeed, we have

$$
P \left(\sum_{i=1}^{n} X_i \geq t \right) \leq \mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{n} X_i \right) \right] \exp(-\lambda t)
$$

for all $\lambda \geq 0$. Now, letting Z_i be the sequence to which the X_i are adapted, we iterate conditional expectations. We have

$$
\mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{n} X_i \right) \right] = \mathbb{E} \left[\mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{n-1} X_i \right) \exp(\lambda X_n) \mid Z_{n-1} \right] \right]
$$

$$
= \mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{n-1} X_i \right) \mathbb{E}(\exp(\lambda X_n) \mid Z_{n-1}) \right]
$$

$$
\leq \mathbb{E} \left[\exp \left(\sum_{i=1}^{n-1} X_i \right) e^{\frac{\lambda^2 B^2}{8}} \right]
$$

because X_1, \ldots, X_{n-1} are functions of Z_{n-1}. By iteratively applying this calculation, we arrive at

$$
\mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{n} X_i \right) \right] \leq \exp \left(\frac{\lambda^2 n B^2}{8} \right).
$$

(A.2.6)

Now we optimize by choosing $\lambda \geq 0$ to minimize the upper bound that inequality (A.2.6) provides, namely

$$
P \left(\sum_{i=1}^{n} X_i \geq t \right) \leq \inf_{\lambda \geq 0} \exp \left(\frac{\lambda^2 n B^2}{8} - \lambda t \right) = \exp \left(-\frac{2t^2}{nB^2} \right)
$$

by taking $\lambda = \frac{4t}{Bn}$. \square

A.3. Auxiliary results on divergences. We present a few standard results on divergences without proof, referring to standard references (e.g. the book of Cover and Thomas [15] or the extensive paper on divergence measures by Liese and Vajda [33]). Nonetheless, we state and prove a few results. The first is known as the data processing inequality, and it says that processing a random variable (even
adding noise to it) can only make distributions closer together. See Cover and Thomas [15] or Theorem 14 of Liese and Vajda [33] for a proof.

Proposition A.3.1 (Data processing). Let P_0 and P_1 be distributions on a random variable $S \in \mathcal{S}$, and let $Q(\cdot | s)$ denote any conditional probability distribution conditioned on s, and define

$$Q_\nu(A) = \int Q(A | s)dP_\nu(s)$$

for $\nu = 0, 1$ and all sets A. Then

$$\|Q_0 - Q_1\|_{TV} \leq \|P_0 - P_1\|_{TV} \text{ and } D_{kl}(Q_0|Q_1) \leq D_{kl}(P_0|P_1).$$

This proposition is perhaps somewhat intuitive: it says that if we do any processing on a random variable $S \sim P$, then there is less “information” about the initial distribution of P than if we did no further processing.

A consequence of this result is Pinsker’s inequality.

Proposition A.3.2 (Pinsker’s inequality). Let P and Q be arbitrary distributions. Then

$$\|P - Q\|^2_{TV} \leq \frac{1}{2}D_{kl}(P|Q).$$

Proof. First, we note that if we show the result assuming that the sample space \mathcal{S} on which P and Q are defined is finite, we have the general result. Indeed, suppose that $A \subset \mathcal{S}$ achieves the supremum

$$\|P - Q\|_{TV} = \sup_{A \subset \mathcal{S}} |P(A) - Q(A)|.$$

(We may assume without loss of generality that such a set exists.) Then if we define \bar{P} and \bar{Q} to be the binary distributions with $\bar{P}(0) = P(A)$ and $\bar{P}(1) = 1 - P(A)$, and similarly for \bar{Q}, we have $\|P - Q\|_{TV} = \|\bar{P} - \bar{Q}\|_{TV}$, and Proposition A.3.1 immediately guarantees that

$$D_{kl}(\bar{P}|\bar{Q}) \leq D_{kl}(P|Q).$$

Let us assume then that $|\mathcal{S}| < \infty$.

In this case, Pinsker’s inequality is an immediate consequence of the strong convexity of the negative entropy functional $h(p) = \sum_{i=1}^{n} p_i \log p_i$ with respect to the ℓ_1-norm over the probability simplex. For completeness (and because I have not posted the notes for Mirror Descent), let us prove this. Let p and $q \in \mathbb{R}_+^n$ satisfy $\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} q_i = 1$. Then Taylor’s theorem guarantees that

$$h(q) = h(p) + \langle \nabla h(p), q - p \rangle + \frac{1}{2}(q - p)^\top \nabla^2 h(\bar{q})(q - p),$$

where $\bar{q} = \lambda p + (1 - \lambda)q$ for some $\lambda \in [0, 1]$. Now, we note that

$$\nabla^2 h(p) = \text{diag}(1/p_1, \ldots, 1/p_n),$$

and using that $\nabla h(p) = [\log p_1 + 1]_{i=1}^{n}$, we find

$$h(q) = h(p) + \sum_{i=1}^{n} (q_i - p_i) \log p_i + \frac{1}{2} \sum_{i=1}^{n} \frac{(q_i - p_i)^2}{q_i}.$$
Using the Cauchy-Schwarz inequality, we have
\[
\left(\sum_{i=1}^{n} |q_i - p_i| \right)^2 = \left(\sum_{i=1}^{n} \sqrt{q_i - p_i} \right)^2 \leq \left(\sum_{i=1}^{n} q_i \right) \left(\sum_{i=1}^{n} \frac{(q_i - p_i)^2}{q_i} \right).
\]
Of course, this gives
\[
h(q) \geq h(p) + \sum_{i=1}^{n} (q_i - p_i) \log p_i + \frac{1}{2} \| p - q \|_1^2.
\]
Rearranging this, we have
\[
h(q) - h(p) - \langle \nabla h(p), q - p \rangle = \sum_{i=1}^{n} q_i \log \frac{q_i}{p_i},
\]
or that
\[
D_{KL}(q||p) \geq \frac{1}{2} \| p - q \|_{TV}^2.
\]
This is the result. \(\square\)

B. Questions and Exercises

Exercises for Lecture 1

Question 1: Let \(\pi_C(x) := \arg\min_{y \in C} \| x - y \|_2\) denote the Euclidean projection of \(x\) onto the set \(C\), where \(C\) is closed convex. Show that the projection is a Lipschitz mapping, that is,
\[
\| \pi_C(x_0) - \pi_C(x_1) \|_2 \leq \| x_0 - x_1 \|_2
\]
for all vectors \(x_0, x_1\). Show that, even if \(C\) is compact, this inequality cannot (in general) be improved.

Question 2: Let \(S_n = \{ A \in \mathbb{R}^{n \times n} : A = A^T \}\) be the set of \(n \times n\) symmetric matrices. Let \(f(X) = \lambda_{\max}(X)\) for \(X \in S_n\). Show that \(f\) is convex and compute \(\partial f(X)\).

Question 3: A convex function \(f\) is called \(\lambda\) strongly convex with respect to the norm \(\| \cdot \|\) on the (convex) domain \(X\) if for any \(x, y \in X\), we have
\[
f(y) \geq f(x) + \langle g, y - x \rangle + \frac{\lambda}{2} \| x - y \|^2
\]
for all \(g \in \partial f(x)\). Recall that a function \(f\) is L-Lipschitz continuous with respect to the norm \(\| \cdot \|\) on the domain \(X\) if
\[
|f(x) - f(y)| \leq L \| x - y \| \quad \text{for all} \ x, y \in X.
\]
Let \(f\) be \(\lambda\)-strongly convex w.r.t. \(\| \cdot \|\) and \(h_1, h_2\) be L-Lipschitz continuous convex functions with respect to the norm \(\| \cdot \|\). For \(i = 1, 2\) define
\[
x_i = \arg\min_{x \in X} (f(x) + h_i(x)).
\]
Show that
\[
\| x_1 - x_2 \| \leq \frac{2L}{\lambda}.
\]
Hint: You may use the fact, demonstrated in the notes, that if \(h\) is L-Lipschitz and convex, then \(\| g \|_* \leq L\) for all \(g \in \partial h(x)\), where \(\| \cdot \|_*\) is the dual norm to \(\| \cdot \|\).
Question 4 (Hölder’s inequality): Let \(x \) and \(y \) be vectors in \(\mathbb{R}^n \) and \(p, q \in (1, \infty) \) be conjugate, that is, satisfy \(\frac{1}{p} + \frac{1}{q} = 1 \). In this question, we will show that \(\langle x, y \rangle \leq \|x\|_p \|y\|_q \), and moreover, that \(\|\cdot\|_p \) and \(\|\cdot\|_q \) are dual norms. (The result is essentially immediate in the case that \(p = 1 \) and \(q = \infty \).)

(a) Show that for any \(a, b \geq 0 \) and any \(\eta \geq 0 \), we have
\[
ab \leq \eta^{\frac{p}{p}} a^p + \frac{1}{\eta^q} b^q.
\]
Hint: use the concavity of the logarithm and that \(\frac{1}{p} + \frac{1}{q} = 1 \).

(b) Show that \(\langle x, y \rangle \leq \eta^{\frac{p}{p}} \|x\|_p^p + \frac{1}{\eta^q} \|y\|_q^q \) for all \(\eta > 0 \).

(c) Using the result of part (b), show that \(\langle x, y \rangle \leq \|x\|_p \|y\|_q \).

(d) Show that \(\|\cdot\|_p \) and \(\|\cdot\|_q \) are dual norms.

Exercises for Lecture 2

Question 5: In this question and the next, we perform experiments with (stochastic) subgradient methods to train a handwritten digit recognition classifier (one to recognize the digits \(\{0, 1, \ldots, 9\} \)). We use optimization notation here, which may be a touch confusing, but roll with it.

We represent a multiclass classifier using a matrix
\[
X = [x_1 \ x_2 \ \cdots \ x_k] \in \mathbb{R}^{d \times k},
\]
where there are \(k \) classes, and the predicted class for a data vector \(a \in \mathbb{R}^d \) is
\[
\arg\max_{l \in [k]} \langle a, x_l \rangle = \arg\max_{l \in [k]} [X^T a]_l.
\]
We represent data as pairs \((a, b) \in \mathbb{R}^d \times \{1, \ldots, k\} \), where \(a \) is the data point (features) and \(b \) the label of the data point. We use the multiclass hinge loss function
\[
F(X; (a, b)) = \max_{l \neq b} [1 + \langle a, x_l - x_b \rangle]_+,
\]
where \([t]_+ = \max\{t, 0\}\) denotes the positive part.

(a) Show that \(F \) is convex.

(b) Show that \(F(X; (a, b)) = 0 \) if and only if the classifier represented by \(X \) has a *large margin*, meaning that
\[
\langle a, x_b \rangle \geq \langle a, x_l \rangle + 1 \text{ for all } l \neq b.
\]

We will use stochastic gradient descent to attempt to minimize
\[
f(X) := \mathbb{E}_P[F(X; (A, B))] = \int F(X; (a, b))dP(a, b),
\]
where the expectation is taken over pairs \((A, B)\).

(c) Give a way to calculate a vector \(G \in \partial F(X; (a, b)) \) (note that \(G \in \mathbb{R}^{d \times k} \)).

Question 6: In this problem, you will perform experiments to explore the performance of stochastic subgradient methods for classification problems, specifically, a handwritten digit recognition problem using zip code data from the
United States Postal Service (this data is taken from the book [22], originally due to Yann Le Cun). The data—training data zip.train, test data zip.test, and information file zip.inf—are available for download from the zipped tar file http://web.stanford.edu/~jduchi/PCMIConvex/ZIPCodes.tgz. Starter code is available for Julia and Matlab at the following urls.

i. For Julia: http://web.stanford.edu/~jduchi/PCMIConvex/sgd.jl
ii. For Matlab: http://web.stanford.edu/~jduchi/PCMIConvex/matlab.tgz

There are two methods left un-implemented in the starter code: the sgd method and the MulticlassSVMSubgradient method. Implement these methods (you may find the code for unit-testing the multiclass SVM subgradient useful to double check your implementation). For the SGD method, your stepsizes should be proportional to \(\alpha_i \propto 1/\sqrt{i} \), and you should project \(X \) to the Frobenius norm ball

\[
B_r := \{X \in \mathbb{R}^{d \times K} : \|X\|_{F} \leq r\}, \text{ where } \|X\|_{F}^2 = \sum_{ij} X_{ij}^2.
\]

We have implemented a pre-processing step that also kernelizes the data representation. Let the function \(K(a,a') = \exp(-\frac{1}{\tau^2} \|a-a'\|^2) \). Then the kernelized data representation transforms each datapoint \(a \in \mathbb{R}^d \) into a vector

\[
\phi(a) = [K(a,a_{i_1}) K(a,a_{i_2}) \cdots K(a,a_{i_m})]^{\top}
\]

where \(i_1, \ldots, i_m \) is a random subset of \(\{1, \ldots, N\} \) (see GetKernelRepresentation.)

Once you have implemented the sgd and MulticlassSVMSubgradient methods, use the method RunExperiment (Julia/Matlab). What performance do you get in classification? Which digits is your classifier most likely to confuse?

Question 7: In this problem, we give a simple bound on the rate of convergence for stochastic optimization for minimization of strongly convex functions. Let \(C \) denote a compact convex set and \(f \) denote a \(\lambda \)-strongly convex function with respect to the \(\ell^2 \)-norm on \(C \), meaning that

\[
f(y) \geq f(x) + \langle g, y-x \rangle + \frac{\lambda}{2} \|x-y\|^2_2 \text{ for all } g \in \partial f(x), \ x, y \in C.
\]

Consider the following stochastic gradient method: at iteration \(k \), we

i. receive a noisy subgradient \(g_k \) with \(\mathbb{E}[g_k | x_k] \in \partial f(x_k) \)
ii. perform the projected subgradient step

\[
x_{k+1} = \pi_C(x_k - \alpha_k g_k).
\]

Show that if \(\mathbb{E}[\|g_k\|_2^2] \leq M^2 \) for all \(k \), then with the stepsize choice \(\alpha_k = \frac{1}{\lambda K} \), we have the convergence guarantee

\[
\mathbb{E} \left[\sum_{k=1}^{K} (f(x_k) - f(x^*)) \right] \leq \frac{M^2}{2\lambda} (\log K + 1).
\]
Exercises for Lecture 3

Question 8: We saw in the lecture that if we use mirror descent,

\[x_{k+1} = \arg\min_{x \in C} \left\{ \langle g_k, x \rangle + \frac{1}{\alpha_k} D_h(x, x_k) \right\}, \]

in the stochastic setting with \(E[g_k | x_k] \in \partial f(x_k) \) then we have the regret bound

\[E \left[\sum_{k=1}^{K} (f(x_k) - f(x^*)) \right] \leq E \left[\frac{1}{\alpha_k} R^2 + \frac{1}{2} \sum_{k=1}^{K} \alpha_k \|g_k\|_*^2 \right]. \]

Here we have assumed that \(D_h(x^*, x_k) \leq R^2 \) for all \(k \). We now use this inequality to prove Corollary 3.3.3.

In particular, choose the stepsize \(\alpha_k \) adaptively at the \(k \)th step by optimizing the convergence bound up to the current iterate, that is, set

\[\alpha_k = R \left(\sum_{i=1}^{k} \|g_i\|_*^2 \right)^{-\frac{1}{2}}, \]

based on the previous subgradients. Prove that in this case one has

\[E \left[\sum_{k=1}^{K} (f(x_k) - f(x^*)) \right] \leq 3 E \left[\left(\sum_{k=1}^{K} \|g_k\|_*^2 \right)^{\frac{1}{2}} \right]. \]

Conclude Corollary 3.3.3.

Hint: An intermediate step, which may be useful, is to prove the following inequality: for any non-negative sequence \(a_1, a_2, \ldots, a_k \), one has

\[\sum_{i=1}^{k} a_i / \sqrt{\sum_{j=1}^{k} a_j} \leq 2 \sqrt{\sum_{i=1}^{k} a_i}. \]

Induction is one natural strategy.

Question 9 (Strong convexity of \(\ell_p \)-norms): Prove the claim of Example 3.3. That is, for some fixed \(p \in (1, 2] \), if \(h(x) = \frac{1}{2(p-1)} \|x\|_p^2 \), show that \(h \) is strongly convex with respect to the \(\ell_p \)-norm.

Hint: Let \(\Psi(t) = \frac{1}{2(p-1)} t^{2/p} \) and \(\phi(t) = |t|^p \), noting that \(h(x) = \Psi(\sum_{j=1}^{n} \phi(x_j)) \). Then by a Taylor expansion, this question is equivalent to showing that for any \(w, x \in \mathbb{R}^n \), we have

\[x^T \nabla^2 h(w)x \geq \|x\|_p^2, \]

where, defining the shorthand vector \(\nabla \phi(w) = [\phi'(w_1) \cdots \phi'(w_n)]^T \), we have

\[\nabla^2 h(w) = \Psi'' \left(\sum_{j=1}^{n} \phi(w_j) \right) \nabla \phi(w) \nabla \phi(w)^T \]

\[+ \Psi'' \left(\sum_{j=1}^{n} \phi(w_j) \right) \text{diag} (\phi''(w_1), \ldots, \phi''(w_n)). \]
Now apply an argument similar to that used in Example 3.2 to show the strong convexity of \(h(x) = \sum_j x_j \log x_j \), but applying Hölder’s inequality instead of Cauchy-Schwarz.

Question 10 (Variable metric methods and AdaGrad): Consider the following variable-metric method for minimizing a convex function \(f \) on a convex set \(C \subset \mathbb{R}^n \):

\[
x_{k+1} = \arg\min_{x \in C} \left\{ \langle g_k, x \rangle + \frac{1}{2} (x - x_k)^\top H_k (x - x_k) \right\},
\]

where \(\mathbb{E}[g_k] \in \partial f(x_k) \). In the lecture, we showed that

\[
\mathbb{E} \left[\sum_{k=1}^K (f(x_k) - f(x^*)) \right] \leq \frac{1}{2} \mathbb{E} \left[\sum_{k=2}^K \left(\|x_k - x^*\|^2_{H_k} - \|x_k - x^*\|^2_{H_{k-1}} \right) + \|x_1 - x^*\|^2_{H_1} \right] + \frac{1}{2} \mathbb{E} \left[\sum_{k=1}^K \|g_k\|^2_{H_k^{-1}} \right].
\]

(a) Let

\[
H_k = \text{diag} \left(\sum_{i=1}^k g_i g_i^\top \right)^{1/2}
\]

be the diagonal matrix whose entries are the square roots of the sum of the squares of the gradient coordinates. (This is the AdaGrad method.) Show that

\[
\|x_k - x^*\|^2_{H_k} - \|x_k - x^*\|^2_{H_{k-1}} \leq \|x_k - x^*\|_{\infty} \text{tr}(H_k - H_{k-1}),
\]

where \(\text{tr}(A) = \sum_{i=1}^n A_{ii} \) is the trace of the matrix

(b) Assume that \(R_{\infty} = \sup_{x \in C} \|x - x^*\|_{\infty} \) is finite. Show that with any choice of diagonal matrix \(H_k \), we obtain

\[
\mathbb{E} \left[\sum_{k=1}^K (f(x_k) - f(x^*)) \right] \leq \frac{1}{2} R_{\infty} \mathbb{E}[\text{tr}(H_K)] + \frac{1}{2} \mathbb{E} \left[\sum_{k=1}^K \|g_k\|^2_{H_k^{-1}} \right].
\]

(c) Let \(g_{k,j} \) denote the \(j \)th coordinate of the \(k \)th subgradient. Let \(H_k \) be chosen as above. Show that

\[
\mathbb{E} \left[\sum_{k=1}^K (f(x_k) - f(x^*)) \right] \leq \frac{3}{2} R_{\infty} \sum_{j=1}^n \mathbb{E} \left[\left(\sum_{k=1}^K g_{k,j}^2 \right)^{1/2} \right].
\]

(d) Suppose that the domain \(C = \{ x : \|x\|_{\infty} \leq 1 \} \). What is the expected regret of AdaGrad? Show that (to a numerical constant factor we ignore) this expected regret is always smaller than the expected regret bound for standard projected gradient descent, which is

\[
\mathbb{E} \left[\sum_{k=1}^K (f(x_k) - f(x^*)) \right] \leq O(1) \sup_{x \in C} \|x - x^*\|_2 \mathbb{E} \left[\sum_{k=1}^K \|g_k\|^2_2 \right]^{1/2}.
\]

Hint: Use Cauchy-Schwarz
(e) As in the previous sub-question, assume that $C = \{x : \|x\|_\infty \leq 1\}$. Suppose that the subgradients are such that $g_k \in \{-1, 0, 1\}^n$ for all k, and that for each coordinate j we have $P(g_{k,j} \neq 0) = p_j$. Show that AdaGrad has convergence guarantee

$$E\left[\sum_{k=1}^{K} (f(x_k) - f(x^*)) \right] \leq \frac{3\sqrt{K}}{2} \sum_{j=1}^{n} \sqrt{p_j}.$$

What is the corresponding bound for standard projected gradient descent? How much better can AdaGrad be?

Exercises for Lecture 4

Question 11: In this problem, we prove a lower bound for strongly convex optimization problems. Suppose at each iteration of the optimization procedure, we receive a noisy subgradient g_k satisfying

$$g_k = \nabla f(x_k) + \xi_k, \quad \xi_k \overset{iid}{\sim} N(0, \sigma^2).$$

To prove a lower bound for optimization procedures, we use the functions

$$f_v(x) = \frac{\lambda}{2} (x - v\delta)^2, \quad v \in \{\pm 1\}.$$

Let $f^*_v = 0$ denote the minimum function values for f_v on \mathbb{R} for $v = \pm 1$.

(a) Recall the separation between two functions f_1 and f_{-1} as defined previously (4.1.4),

$$d_{\text{opt}}(f_{-1}, f_1; C) := \sup \left\{ \delta \geq 0 : \begin{array}{l} f_1(x) \leq f_1^* + \delta \text{ implies } f_{-1}(x) \geq f_{-1}^* + \delta \text{ for any } x \in C. \\ f_{-1}(x) \leq f_{-1}^* + \delta \text{ implies } f_1(x) \geq f_1^* + \delta \end{array} \right\}.$$

When $C = \mathbb{R}$ (or, more generally, as long as $C \supset [-\delta, \delta]$), show that

$$d_{\text{opt}}(f_{-1}, f_1; C) \geq \frac{\lambda}{2} \delta^2.$$

(b) Show that the Kullback-Leibler divergence between two normal distributions $P_1 = N(\mu_1, \sigma^2)$ and $P_2 = N(\mu_2, \sigma^2)$ is

$$D_{\text{kl}}(P_1||P_{-1}) = \frac{(\mu_1 - \mu_2)^2}{2\sigma^2}.$$

(c) Use Le Cam’s method to show the following lower bound for stochastic optimization: for any optimization procedure \hat{x}_K using K noisy gradient evaluations,

$$\max_{v \in \{-1,1\}} E_{P_v}[f_v(\hat{x}_K) - f^*_v] \geq \frac{\sigma^2}{32\lambda K}.$$
Compare the result with the regret upper bound in problem 7. Hint: If P^K_v denotes the distribution of the K noisy gradients for function f_v, show that

$$D_{KL}(P^K_1|P^K_{-1}) \leq \frac{2K^2\delta^2}{\sigma^2}.$$

Question 12: Let $C = \{x \in \mathbb{R}^n : \|x\|_\infty \leq 1\}$, and consider the collection of functions \mathcal{F} where the stochastic gradient oracle $g : \mathbb{R}^n \times S \times \mathcal{F} \to \{-1, 0, 1\}^n$ satisfies

$$\mathbb{P}(g_j(x, S, f) \neq 0) \leq p_j$$

for each coordinate $j = 1, 2, \ldots, n$. Show that, for large enough $K \in \mathbb{N}$, a minimax lower bound for this class of functions and the given stochastic oracle is

$$M_K(C, \mathcal{F}) \geq c \frac{1}{\sqrt{K}} \sum_{j=1}^{n} \sqrt{p_j},$$

where $c > 0$ is a numerical constant. How does this compare to the convergence guarantee that AdaGrad gives?

References

References

Stanford University, Stanford CA 94305

E-mail address: jduchi@stanford.edu