Math 61DM Homework # 2
Due at TA session on Friday, October 5. Show your work.

1. Let \(V \) be the vector space of polynomials of degree at most 5, with coefficients in a field \(\mathbb{F} \). Let \(U \) be the subspace of \(V \) consisting of polynomials of the form \(az^5 + bz + c \) with \(a, b, c \in \mathbb{F} \). Find a subspace \(W \) such that every element \(v \in V \) can be written in one and only one way as the sum of an element in \(U \) and another element in \(W \).

2. Prove that there exists a quadratic polynomial \(ax^2 + bx + c \) whose graph passes through the points \((0, 1), (1, 0), (2, 3)\). Is such polynomial unique?

3. Find a single homogeneous linear equation with unknowns \(x_1, x_2, x_3 \) such that the solution set is the span of the 2 vectors \((1, 1, 1), (1, 2, 0)\).

4. Let \(V \) be a vector space and suppose \(S = \{v_1, \ldots, v_k\} \) is a finite set of linearly dependent vectors in \(V \). Prove that there is a proper subset of \(S \) whose span is equal to the span of \(S \). By a proper subset, we mean a subset \(T \subseteq S \) such that \(T \neq S \).

5. Use Gaussian elimination in \(\mathbb{R} \) to show that the solution set of the homogeneous system
\[
x_1 + 2x_2 + 3x_3 + 4x_4 = 0 \\
x_1 + 4x_2 + 3x_3 + 2x_4 = 0 \\
2x_1 + 5x_2 + 6x_3 + 7x_4 = 0 \\
x_1 + 3x_3 + 6x_4 = 0
\]
is a plane through \(\mathbf{0} \) (that is, it is the span of 2 linearly independent vectors, and find 2 linearly independent vectors whose span is the solution space.

6. In parts (a) and (b) we will show that multiplicative inverses exist in \(\mathbb{Z}/p\mathbb{Z} \) for \(p \) prime. So, you should not use this fact in your answers to (a) and (b). However, feel free to use other basic facts about arithmetic in \(\mathbb{Z}/p\mathbb{Z} \).
 (a) Suppose \(a \in \mathbb{Z}/p\mathbb{Z}, a \neq 0 \). For any \(x, y \in \mathbb{Z}/p\mathbb{Z} \) show that if \(ax = ay \) (with multiplication in \(\mathbb{Z}/p\mathbb{Z} \), i.e. modulo \(p \)) then \(x = y \). [Hint: you will need to unwrap the definition of “mod \(p \) multiplication”, and make use of the hypotheses that \(p \) is prime and \(a \neq 0 \).]
 (b) By considering the set \(\{a0, a1, \ldots, a(p - 1)\} \) over \(\mathbb{Z}/p\mathbb{Z} \), or otherwise, show that there exists \(b \in \mathbb{Z}/p\mathbb{Z} \) such that \(ab = 1 \) (again, with multiplication mod \(p \)).
 (c) In the set of integers \(\mathbb{Z} \), solve the system of equations
\[
2x + y = 2 \mod 5, \quad 3x - 2y = 0 \mod 5,
\]
by using Gaussian elimination in \(\mathbb{Z}/(5\mathbb{Z}) \).

7. If \(a, b \in \mathbb{R} \) with \(a < b \), prove:
 (a) There is a rational \(r \in (a, b) \).
 (b) There is an irrational \(c \in (a, b) \). Hint: Use part (a) and Q.2 of HW #1.
 (c) \((a, b) \) contains infinitely many rationals and infinitely many irrationals.

8. Let \(a_n \) denote the number of nonnegative integers less than \(3^n \) that do not have two consecutive ones when written in base 3. Equivalently, \(a_n \) is the number of sequences of 0, 1, 2 of length \(n \) which do not have two consecutive 1’s. Find a recurrence equation for \(a_n \) and then solve for \(a_n \) explicitly.

9. How many positive integers up to 2018 are not divisible by 2, 3, 6 or 11?