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Abstract

We present a model where agents care about their neighbors’ actions
and can pressure them to take certain actions. Exerting pressure is costly
for the exerting agent and it can impact the pressured agents by either
lowering the cost of taking the action (which we call “positive pressure”)
or else by raising the cost of not taking the action (which we call “negative
pressure”). We show that when actions are strategic complements, agents
with lower costs for taking an action pressure agents with higher costs, and
that positive pressure can improve societal welfare. More generally, we detail
who gains and who loses from peer pressure, and identify some circumstances
under which pressure results in fully (Pareto) optimal outcomes as well as
circumstances where it does not. We also point out differences between
positive and negative pressure.
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1 Introduction

The catalog of settings where peers influence our decisions is large and varied,
including our choices to engage in criminal behavior, smoke, perform charitable
acts, follow styles and trends, educate ourselves, select a certain profession, adopt
a new technology or buy a given product.1 In understanding how peer influence
operates it is useful to distinguish between two different ways in which peers
affect decisions: passively and actively. Most of the literature has focused on the
passive case, where an agent’s behavior is influenced by others’ behaviors, but not
necessarily because of explicit lobbying by others. This includes learning effects,
where information about the benefits of taking an action are communicated from
one agent to another, as well as externalities where an agent’s relative payoffs
from different actions are affected by the behavior of others. Beyond such passive
peer effects, there are also active peer effects where an agent takes a deliberate
action at a cost to him or herself in order to influence other agents’ choices
of action. This includes behavior such as helping to subsidize another agent’s
action, actively lobbying another agent or even bullying or daring another agent
in order to influence his or her behavior. Such active peer influence, although
quite prevalent, is less studied from both an empirical and theoretical perspective
than passive peer effects.2 Since such “peer pressure” is important in determining
the behavior and welfare of a given individual and, through its external effects,
of a whole society, it is important to model and understand it. In this paper, we
provide a simple model of peer pressure and investigate its properties.

A central question that we investigate here is whether or not peer pressure
can lead to higher welfare relative to settings without any peer pressure. The
idea is that in settings with externalities, the ability for one agent to pressure
a second agent could get the second agent to internalize the impact that his or
her actions have on the first agent. For instance, if one agent would like to have
a second one join him or her in attending some event, then offering to pay for
some of the second agent’s expenses could lead to a welfare improving outcome.
Thus, even though the term “pressure” embodies some negative connotations,
the presence of externalities suggests that the ability of agents to influence each
other’s decisions could be welfare improving.3

1For surveys on various aspects of peer effects see the Handbook of Social Economics (forth-

coming).
2There are, of course, exceptions and some of the empirical studies cited below measure

active forms of peer pressure. For example, Brown, Clasen, and Eicher (1986, p. 523) measure

peer pressure through surveys that identify pressure as “when people your own age encourage

or urge you to do something or to keep from doing something else, no matter if you personally

want to or not.”
3Some of the empirical work on peer pressure among teens finds some aspects of welfare

improving in that there is more perceived pressure for peer involvement than for misconduct
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To investigate this question about the properties and potential welfare im-
provements of peer pressure, we build a model of active peer pressure where
agents, at a cost, may change other agents’ costs or benefits from various ac-
tions. We distinguish between two types of peer pressure: positive and negative.
In both cases, one agent chooses an amount of pressure to exert on another agent
and incurs a cost for such pressure. In the case of positive pressure, the pres-
sure exerted by one agent reduces the cost that other agents face for taking a
particular action, thus encouraging other agents to take the action. Essentially,
this is like subsidizing other agents’ activity. In the case of negative pressure,
the pressure exerted by one agent increases other agents’ costs of not taking an
action. That is, one way to encourage an agent to take an action is to make it
more costly for him or her not to take the action. There is empirical evidence
that both sorts of peer pressures are observed (e.g., see Brown (1982), Brown,
Clasen, and Eicher (1986), and Santor, Messervey, and Kusumakar (2000)), and
so it is important to understand both types of peer pressure. While one might be
tempted to conclude that positive peer pressure will be beneficial and negative
peer pressure will be harmful, the picture is more nuanced. In particular, conclu-
sions of whether or not peer pressure is welfare enhancing or inhibiting depends
on the setting and the type of pressure. We find that positive peer pressure will
generally lead to Pareto improvements relative to an absence of any pressure,
but can fall short of leading to fully Pareto efficient outcomes. Negative peer
pressure can lead to Pareto efficient outcomes, but differentially impacts agents,
benefiting some and hurting others. Moreover, there are not necessarily clear
Pareto rankings between positive and negative pressure.

To fix ideas, consider an example of smoking. Agents can either smoke or
not. There are externalities and so generally agents prefer to have other agents
not smoke. There are two ways in which agents can promote this outcome: they
can either make it costly for other agents to smoke by harassing them if they
do, advertizing the negative affects of smoking, fining individuals for smoking in
public places and so forth; or else they can help agents not to smoke by subsidiz-
ing programs to help others quit smoking and generally rewarding nonsmoking
behavior.4 In the case of negative pressure where smoking is penalized, agents
who quit smoking due to pressure end up with a lower expected utility than in
the world where they are not pressured, while the pressuring agents are weakly
better off (as otherwise they could choose not to exert the pressure).5 Under

(e.g., see Brendt (1979) and Brown, Clasen, and Eicher (1986)).
4The analysis in the paper concentrates on the case of positive externalities. However, this

application can be remapped into one with positive externalities by thinking of smoking as a

default action and noting the improved welfare of others if an agent stops smoking.
5Clearly, this assumes rational agents who are choosing to quit or not to quit. The analysis

would change if one presumes that agents are not rational in their decision making and do not
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positive pressure all agents would be (weakly) better off and so there would be
a Pareto improvement due to the pressure. Thus, we see a different pattern
between positive and negative peer pressure. This does not necessarily imply
that positive pressure is always an unambiguously better instrument, as it may
be that there are different impacts on the pressuree per unit of money or utility
spent by the pressurer when one compares positive versus negative peer pressure.
That is, the technology for harassing, policing, fining, etc., might be more cost
effective than the technology for subsidization of good behavior. This example
is just meant to be suggestive, but provides an idea of the type of questions that
the model provides insight into.

The most closely related predecessor to our analysis is a paper by Kandel
and Lazear (1992), who studied peer pressure in agency problems. Kandel and
Lazear point out the advantages of peer pressure in improving performance of
groups of agents who can observe each other’s actions, and they show that var-
ious psychological pressures such as guilt and shame, as well as other sorts of
monitoring, can lead partnerships to have higher productivities than other sorts
of organizational structures. We provide a model of peer pressure in a wider
setting, model pressure differently, and investigate its equilibrium and welfare
properties, as well as distinguishing between positive and negative pressure, and
so our results do not overlap with those of Kandel and Lazear (1992).

Our paper is also related to a broader class of common agency models where
some players can try to influence others’ actions by offering them payments to
take certain actions. This includes analyses by Prat and Rustichini (2004) who
document the efficiency of transfers in set of common agency problems; as well as
the role of transfers in more general game theoretic settings as analyzed by Jack-
son and Wilkie (2005). Although those papers are related in that some agents
can make payments to influence other agents’ actions, the models and analyses
are quite different to that developed here, both in structure and intended appli-
cation. Most importantly, the ways in which transfers can be made, distinctions
between positive and negative pressure, as well as how the conclusions depend on
complementarities, are special to our paper. For example, in Jackson and Wilkie
(2005) an agent can make transfers that are fully contingent on all actions, and
not just another agent’s action. The interpretation of such contingencies is quite
different than pressuring another agent and allows agents to do things like com-
mit not to play certain actions by promising to pay large amounts if they take
those actions. Thus, one cannot apply the Jackson and Wilkie results to conclude
things about peer pressure. In addition, our focus here is primarily on games of
strategic complements, and the more structured setting will allow for more direct

properly account for their own utility.
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conclusions.

2 A Model of Peer Pressure

2.1 Actions and Base Payoffs

A community of n ≥ 2 agents each choose whether or not to undertake a
given action.

Each agent i chooses an action xi ∈ {0, 1}. Agents’ payoffs depend on other
agents’ actions. The base payoff (ignoring peer pressure) to agent i is

vi(xi, x−i)− cixi

where ci is a cost parameter that is specific to the agent and the function vi

captures other aspects of the payoffs of taking action xi.
We restrict attention to situations where vi is nondecreasing in x−i for each

xi. This embodies situations with positive externalities, which captures many
important applications. 6

In addition to externalities, incentives for agents to pressure each other arise
from the interaction of their payoffs. If one agent’s action has no impact on any
other agent’s payoff, then that agent would not be pressured. Thus, in order
to understand peer pressure, we need to keep track of how one agent’s action
impacts another agent’s payoff.

In particular, we focus on the case where vi(1, x−i)−vi(0, x−i) is nondecreas-
ing in x−i for all i. This is the well-known situation of strategic complements.

We comment on the extension to the case strategic substitutes in the conclu-
sion.

In showing some of the results below, it will be useful to define a class of
games where the payoff to agents taking action 0 is independent of x−i.

A game is a participation game if v(0, x−i) is independent of x−i.
In a participation game, if an agent takes action 1, like attending a social

event, then he or she cares about how many other agents take that action; but in
contrast, if the agent takes action 0, such as staying home, then he or she does
not care about how many other agents take action 1 or 0.

Another useful definition is that of benefit symmetry. Payoffs exhibit benefit

symmetry if all agents have the same payoff function vi = v which depends on
x−i only via

∑
j 6=i xj , so that vi(xi, x−i) = v(xi,

∑
j 6=i x−i).

6One cannot simply relabel actions to accommodate negative externalities, as for instance,

strategic incentives might still exhibit complementarities while externalities are negative. Thus,

such cases need to be investigated independently, and are left for future research.
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Under benefit symmetry, the benefits from actions are similar across agents,
and the heterogeneity enters only in terms of the cost of the action for different
agents.

2.1.1 Examples

The following examples provide a glimpse of some applications covered by the
model.

Example 1 Symmetric Games and Thresholds

Caring about other players symmetrically implies that

vi(1, x−i)− ci ≥ vi(0, x−i) if and only if
∑
j 6=i

xj ≥ ti(ci)

where ti(ci) is a threshold. In particular, if more than ti(ci) other players choose
action 1, then it is best for player i to choose 1, and if fewer than ti(ci) other
players choose action 1 then it is better for player i to choose action 0. A special
case is where vi(1, x−i) = ai

(∑
j 6=i xj

)
and vi(0, x−i) = 0; and then the threshold

is ti = ci/ai.

Example 2 A Two-Person Coordination Game

A special case is such that there are two agents (n = 2), and then payoffs are
represented as

Agent 2′s Action
1 0

Agent 1′s 1 a1 − c1, a2 − c2 −c1, 0
Action 0 0,−c2 0, 0

This is a standard coordination game whenever ai > ci.

Example 3 Graphical Games.

In the case of a graphical game7 there is a network such that each agent only
cares about the choices of his or her direct neighbors in the network. That is, for
each agent i there is a set of other agents Ni ⊂ N \ {i} who are i’s neighbors in
the network, such that vi(xi, x−i) depends only on xi and xNi .

7Graphical games were first defined by Kearns, Littman, and Singh (2001). For more dis-

cussion of such games see Jackson (2008).
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2.2 Positive and Negative Peer Pressure

In addition to choosing an action, agents can choose to “pressure” other agents,
which is modeled as follows. Agent i exerts an amount of pressure pij ∈ [0,M ]
on agent j. Exerting pressure is a costly activity for agent i who incurs a cost
pij .

The effect of pressure by an agent i on agent j is that it changes the incentives
for j to take a higher action. In terms of strategic considerations, it is irrelevant as
to whether we think of pressure as making it less costly to take a higher action or
more costly to take a lower action. However, when we do welfare calculations this
is an important distinction. Thus, we distinguish between positive and negative
peer pressure.

Under positive peer pressure, the pressure from other agents lowers the cost
for a given agent of taking action 1. Under positive peer pressure the overall
payoff to an agent is

vi(xi, x−i)−

ci −
∑

j

pji

 xi −
∑

j

pij . (1)

An example of positive peer pressure is where one agent wants to attend a
concert and would prefer to be accompanied by a second agent who prefers not
to attend the concert. The first agent offers to pay for the second agent’s ticket
in order to encourage the second agent to attend the concert. More generally,
the applications covered by this sort of peer pressure include any offers by agents
to subsidize the activities of others, including, for instance, countries offering aid
to other countries to help influence their actions.8

Under negative peer pressure the pressure from other agents raises the cost
for a given agent taking action 0. Under negative peer pressure the overall payoff
to an agent is written as

vi(xi, x−i)− cixi −

∑
j

pji

 (1− xi)−
∑

j

pij . (2)

Such negative peer pressure appears in a variety of collective action problems.
A classic example is of “burning bridges,” with stories of Roman generals burning
their boats upon an invasion so as to eliminate the option of retreat (which can
be viewed as making the action of retreat prohibitively expensive) and thus to
encourage the soldiers to fight to the death. Burning boats is clearly a costly
act for the generals and it does not lower the cost of fighting for the soldiers,
but instead raises the cost of not fighting: encouraging the soldiers to fight when

8For an example where charities expend resources to influence agents’ utility from donating

to the charity, see Weinberg (2006).
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they might otherwise have fled. A well-known example of the destruction of ships
is by Cortés in 1519 in Mexico. While the full story is more nuanced than the
legend (e.g., see Reynolds (1959)), the accounts indicate that Cortés disabled his
ships with the intent of affecting his soldiers’ behavior. Often such examples are
discussed as evidence of the value of commitment. The more general approach
here entails not committing to a given action by removing other options (often
by a player him or herself and sometimes with “motivational” reasons in mind),
but on having some players try to influence others’ behaviors by making some
actions costly and thus making them relatively unattractive and other actions
more attractive. More generally, other examples include various sorts of bullying
and threats that sometimes are exhibited in various social interactions.9,10

Under either positive or negative peer pressure the difference between taking
action 1 and action 0 is

di(x−i, p) = vi(1, x−i)− vi(0, x−i)− ci +
∑

j

pji. (3)

It is clear that under either form of peer pressure, increased pressure from other
agents makes action 1 more attractive to a given agent.11

Finally, note that the cost of pressuring here is incurred regardless of whether
it has an impact. That is, under positive pressure an agent pays to subsidize
another agent’s action 1 regardless of whether that other agent takes that action.
If we allowed an agent to save the cost of positive peer pressure if another agent
did not end up taking action 1, then that would not substantively affect the
actions supported in equilibrium or the payoffs.12 In terms of negative peer
pressure, allowing for payment only in the event that the action is taken can
change the conclusions. First, part of the inefficiency associated with negative
peer pressure is that an agent incurs a cost (like the Cortés example above, where

9For an interesting example where firms try to pressure undesired workers to quit by making

their work unpleasant, see Wasmer (2008).
10Note that we allow agents to pressure themselves. While one might want to rule this out

in some settings, there are others where it makes sense. For instance, burning boats or bridges

affects the general’s ability to leave and not just the soldiers. Generally, “pressure” encompasses

a broad array of activities that might be costly up front and change incentives later on, including

forms of costly self-commitment.
11Note that although we allow agents to pressure others to take action 1 or not to take action

0, we do not consider the reverse. For instance, if 0 and 1 represent two different technologies,

and some agents have naturally strong preferences for technology 1 and others for technology

0, then it is conceivable that these strongly predisposed agents would compete in pressuring

the remaining agents to try to get them to adopt a given technology and not the other. Such

competition is outside of the scope of this paper, but such an extension is worth considering.
12There are some new equilibria that arise where an agent promises to subsidize actions that

he or she knows will never be taken, but that does not have any consequence for the conclusions

of the paper.
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ships were lost). If Cortés could somehow have committed to destroying the ships
only in the case where some soldiers tried to use them for escape, that would have
saved the cost of losing the ships. Beyond this, allowing for threats that never
have to be paid for can change the nature of the game:, an agent could commit
to making some action outrageously costly for another agent, knowing that this
cost will never have to be paid. Having to pay the cost up front puts a sort of
credibility check on the pressuring agent, making sure that the cost incurred is
something that the pressuring agent is willing to pay in order to achieve a given
outcome.

2.3 The Timing of Actions and Equilibrium

Actions take place in two stages.

• In the first stage, agents simultaneously choose how much to pressure other
agents. So, agent i chooses pi = (pi1 . . . , pin) ∈ [0,M ]n. The pressuring
activity is publicly observed, so all agents see the pressures exerted by all
agents.

• In the second stage agents simultaneously choose actions xi.

The following notation will be useful. Let σi(p), where σi : [0,M ]n
2 → [0, 1],

denote the probability with which player i plays action 1 in a subgame following
a pressure vector p. Let ui(σ, p) denote the expected utility of player i in a
subgame following a pressure vector p when agents are following strategies σ.
Let φi ∈ ∆([0,M ]n) denote a mixed strategy for agent i in the first (pressure)
stage. Let Ui(φ, σ) denote the expected payoff to player i when the vector of
strategies φ = (φ1, . . . , φn) are played in the first stage, and σ = (σ1, . . . , σn)
describes play in the second stage as a function of the realized peer pressure.

We examine subgame perfect equilibrium of this game and the following re-
finements.

2.4 Pareto Perfect Equilibria and Maximal Equilibria

In some cases there exist multiple equilibria of the subgame and of the overall
game. In particular, the multiplicity of equilibria in the subgames following the
pressuring stage can end up producing some strange behaviors in the first stage.
Just as an example, consider a coordination game where the second stage is used
as a sort of blackmail to induce unnecessary positive peer pressure in the first
stage. That is, if one agent provides substantial positive peer pressure to another
then they coordinate on a good equilibrium in the second stage, while otherwise
they coordinate on a bad equilibrium in the second stage. This is illustrated in
the following example.
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Example 4 Multiplicity of Equilibria, Blackmail, and Equilibrium Refinements

Consider a coordination game with two agents, such that vi(1, 1) = 10 and
vi(·, ·) = 0 otherwise. Let c1 = 2 = c2. These payoffs are represented as follows.

Agent 2′s Action
1 0

Agent 1′s 1 8, 8 −2, 0
Action 0 0,−2 0, 0

Without any peer pressure there are two pure strategy Nash equilibria of this
game, one where both agents choose action 1 and the other where both agents
choose action 0. Here, the equilibrium where both players play action 1 is both
payoff and risk dominant.

Now, let us consider the game where this is augmented with the possibility
of positive peer pressure. The following is a subgame perfect equilibrium. If
p12 ≥ 1, then in the second stage the equilibrium (1,1) is played, while otherwise
(0,0) is played (unless p21 > 2 in which case (1,1) is the unique equilibrium in
the second stage). In the first stage p12 = 1 and p21 = 0.

In this equilibrium, agent 1 is “coerced” into helping to subsidize agent 2’s ac-
tion, even though the action is already part of an equilibrium. The coercion is via
a threat of playing a bad equilibrium in the second stage if agent 1 does not follow
the prescribed strategy. While there may be some interest in such equilibria, and
they are not entirely implausible, this introduces a large multiplicity of equilib-
ria in the peer pressure games that complicate the analysis. Most importantly,
the reasoning behind such equilibria are quite different from the basic incentives
of agents to try to help sustain play that would not otherwise be possible. In
order to isolate the basic incentives of agents to use peer pressure, we consider a
refinement of equilibrium that picks out a single equilibrium in the above game.
It is that of Pareto perfection, due to Bernheim, Peleg and Whinston (1987). It
requires that agents not play equilibria that are Pareto dominated in any second
stage subgame, and then that the overall equilibrium is not Pareto dominated
by another equilibrium that satisfies the same requirement. It is defined more
formally below.

In this game, Pareto perfection requires that (1,1) be played in all subgames.
Thus, there will be no peer pressure in the first stage and the unique Pareto
perfect equilibrium of this game is no pressure in the first stage and then (1,1)
played in all subgames in the second stage.

More formally, in our class of games, Pareto perfection (Bernheim, Peleg and
Whinston (1987)) is defined as follows.
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Let PE0 be the subgame perfect equilibria of the overall game such that
the continuation strategies σ(·) are (Borel) measurable functions of p. Let PE1

denote a subset of PE0 defined as follows. An equilibrium (φ, σ) ∈ PE0 is in
PE1 if there does not exist a p and another equilibrium (φ′, σ′) ∈ PE0 such that
ui(σ′, p) ≥ ui(σ, p) for all i with strict inequality for some i.

A Pareto perfect equilibrium is an equilibrium (φ, σ) ∈ PE1 such that there
is no other equilibrium (φ′, σ′) ∈ PE1 such that Ui(φ′, σ′) ≥ Ui(φ, σ) for all i

with strict inequality for some i.

There is a close relationship between Pareto efficiency and a maximality con-
dition in the second stage. In particular, for any given level of p chosen in the
first stage, there exists a pure strategy “maximal equilibrium” x(p), such that if
σi(p) > 0 for any equilibrium in the subgame, then x(p) = 1. Thus, a maximal
equilibrium is one such that the actions of all of the agents in some second stage
subgame are as high as in any equilibrium in that subgame. Given the nonneg-
ative externalities, a maximal equilibrium is Pareto undominated by any other
equilibrium (within the second stage).

A maximal equilibrium in the overall game is a subgame perfect equilibrium
where the maximal equilibrium is played in every second-stage subgame, on and
off the equilibrium path. The following lemma points out a relationship between
Pareto perfection and maximal equilibria.

Lemma 1 If vi is increasing in x−i for each i, then all Pareto perfect equilibria
are maximal equilibria.

The proof of Lemma 1 is straightforward and thus omitted. Note that the
converse is not true, so that there are maximal equilibria that are not Pareto
perfect equilibria. For example suppose that it is a dominant strategy for two
players to take action 1, but that the third faces a cost of action 1 higher than
the benefit, even when the other two take action 1. It could be that the necessary
pressure to induce the third agent to take action 1 is substantial enough that it
requires both of the first two agents to contribute and that there are multiple
equilibria of the peer pressure phase, some of which are Pareto dominated by
others.

The condition that vi be increasing rules out situations where agents are
indifferent as to others actions in which case nonmaximal equilibria could be
Pareto perfect.

2.5 Equilibrium Existence

Before proceeding to the analysis of peer pressure, we state a result concerning
existence of equilibria to ensure that the analysis that follows is not vacuous.
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There are no off-the-shelf existence theorems that apply in this setting, even to
establish existence of subgame perfect equilibrium. The game is a discontinuous
one, as when pressure reaches certain thresholds it suddenly becomes attractive
for agents to take actions. Even though equilibria in the second stage are up-
per semicontinuous as a function of first-period actions, the fact that there are
multiple agents taking simultaneous actions prevents this correspondence from
being convex and hence this precludes using standard fixed point theorems or
even results such as that of Simon and Zame (1990) (for some background on
this see Harris, Reny and Robson (1995)). While there are some theorems on ex-
istence of subgame perfect equilibria in discontinuous extensive form games, they
are specialized and none cover the class of games we examine here. Most impor-
tantly, such theorems either involve convexity or lower semicontinuity conditions,
neither of which are satisfied here. Moreover, we wish to establish existence of
Pareto perfect equilibrium and not just subgame perfect equilibrium. To that
end, we prove existence directly, and the techniques used here should be useful
more generally when the variations on lower semicontinuity conditions used in
the literature fail.

Proposition 1 There exists a Pareto perfect equilibrium of the overall game (of
either positive or negative peer pressure), and there exists such an equilibrium that
is a maximal equilibrium and is in pure strategies in the second stage.

The proof begins by showing that there exists a pure strategy Nash equi-
librium in the second stage, regardless of the pressure vector in the first stage
(e.g., the maximal equilibrium). In fact, by standard results (e.g., Milgrom and
Shannon (1994) and Vives (1990)) the pure strategy equilibria form a complete
lattice, and so there are maximal and minimal equilibria. The proof then shows
that upper semicontinuity and Reny’s (1999) payoff security condition hold when
agents anticipate that the maximal equilibrium will be played in the second stage.

3 Peer Pressure

With existence of equilibrium established, we now examine the structure of equi-
librium.

3.1 Who Pressures Whom

Let us start by noting some properties of equilibrium, and in particular, which
agents exert pressure and which are pressured.

The following example illustrates some of the insights into the structure of
pressure in equilibrium.
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Example 5 Peer Pressure and Contagion Effects.

Consider a game where n = 3 and vi(x) = xim where m =
∑

i xi is the
number of agents choosing action 1. Let c1 = 0, c2 = 2.5, and c3 = 3.5.

In this game if an agent takes action 1 then his or her payoff is simply the
total number of people taking action 1 less the cost of taking action 1, while if
an agent takes action 0 then the agent’s payoff is 0. In the absence of any peer
pressure there is a unique equilibrium x = (1, 0, 0), where only agent 1 chooses
action 1. It is dominant for agent 1 to take action 1 and for agent 3 to take action
0, and thus the unique best response for player 2 is to choose action 0. With peer
pressure, there is a maximal equilibrium which is Pareto perfect where p13 = .5
and x = (1, 1, 1). In fact, there is a whole set of pure strategy maximal (and
Pareto perfect) equilibria where p13 + p23 = .5. Here, even though without peer
pressure agent 2 will not take action 1, agent 2 is not pressured in equilibrium,
as by pressuring agent 3 agent 1 realizes that this will be enough to lead agent 2
to also take action 1. Thus, by pressuring a higher cost agent, middle cost agents
can be led to take higher actions due to the complementarities. This means
that generally it will not be the marginal non-participating agents (from the
no-pressure game) who will be pressured, but sometimes infra-marginal players.

This example also points out the role of maximal equilibria and Pareto per-
fection. With peer pressure there are other subgame perfect equilibria that are
not Pareto perfect and not maximal. For example there is an equilibrium where
agent 1 pressures both agents 2 and 3 so that p12 = p13 = .5. This is supported
with the off-equilibrium-path behavior of minimal equilibria. In that case, if
agent 1 pressures agent 2 by less than .5 and agent 3 by less than 1.5, then it
is an equilibrium for neither agent 2 or 3 to take action 1. This is not Pareto
perfect, as in any subgame where p13 ≥ .5 the equilibrium continuation is Pareto
dominated by the maximal equilibrium.

Proposition 2 Consider a pure strategy maximal and/or Pareto perfect equi-
librium.

(I) If an agent i is pressured (so that
∑

j pji > 0), then in the second stage
agent i takes action 1 and is indifferent between action 1 and 0.

(II) If the game is a participation game, then an agent i who exerts pressure
chooses action 1 (so pij > 0 for some j implies xi(p) = 1) and an agent j

who is pressured does not exert any pressure (so pij > 0 for some j implies∑
i pji = 0).

(III) If the game is a participation game with positive peer pressure and benefit
symmetry, and the equilibrium is both Pareto perfect and maximal, then
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there exist cost thresholds c1 ≤ c2 such that agents can be partitioned as
follows. Agents with costs above c2 take action 0 and agents with cost below
c2 take action 1. All agents with costs in (c1, c2) are pressured and take
action 1, and all agents exerting pressure have costs no higher than c1.13

Moreover, if any agents take action 1 on the equilibrium path, then there
exist some agents with costs no higher than c1.

Proposition 2 shows that we can nicely order the agents into those with low
costs who are not pressured and some of whom exert pressure, those with a
middle range of costs who are pressured, and those with very high costs who are
too costly to pressure.

The ideas behind the proposition are as follows. First, if an agent is pressured,
then the agent must be indifferent. If the agent were pressured to the point
of strictly preferring an action, then some other agent could save pressuring
cost by slightly reducing the pressure exerted. Second, in participation games,
only agents choosing action 1 would ever exert pressure because only they are
affected by others’ actions. Moreover, it must be unpressred agents who do the
pressuring. To see that, note that given our first conclusion that pressured agents
are indifferent between choosing an action or not, their ending utility is the same
if they choose action 1 or 0 in the second stage. If they were exerting pressure,
they could simply not exert the pressure and choose 0 in the second stage and end
up getting the same second-stage utility but save on the cost of pressure. Thus,
all the pressuring is done by agents who are choosing action 1 and who are not
pressured themselves. With symmetry, we can then order the agents as in (III),
as pressuring agents (those with costs below c1 who choose action 1 without any
pressure) should then choose to pressure the “cheapest” agents (those between
c1 and c2) by Pareto perfection.14

The proposition does not hold for non-maximal equilibria, as there are exam-
ples where equilibrium selection in the second stage depends on the first stage
actions, such as Example 4. The equilibrium noted in that example fails to satisfy
(I), and slight variations on the equilibrium constructed there violate (II).

To see the role of the participation game requirement in parts (II) and
(III) of Proposition 2, consider the following example which shows that in non-

13It is possible that some agents with costs exactly equal to c2 are pressured while others are

not. This happens only when the return to pressuring an agent is exactly equal to the costs for

those exerting the pressure, and generically in the specification of costs this would not occur.
14This is the point at which positive peer pressure is essential. It could be that agents need to

coordinate to pressure some agent to take action 1. Which agent they coordinate upon leaves

the pressured agent indifferent under positive pressure, and thus the cheapest one is the best

for the pressuring agents. However, under negative pressure a change in the pressured agents is

not Pareto comparable when those agents are negatively affected and thus is not clearly ordered

by Pareto perfection.
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participation games it is possible to have agents pressuring each other at the
same time.

Example 6 Mutual Peer Pressure.

Consider a game where n = 2; vi(·, 0) = 0, vi(0, 1) = 1, vi(1, 1) = 1.5 for
both i where the first entry in vi is own action and the second entry is the other
agent’s action, and c1 = c2 = .6.

Here, each agent benefits from the other agent taking the action. In the
absence of peer pressure, the game is essentially a prisoner’s dilemma and it
is a dominant strategy for each agent to take action 0. With peer pressure, the
(unique) pure strategy maximal equilibrium outcome is for each agent to pressure
the other at a level of .1 and to take action 1.

3.2 The Efficiency of Equilibria

We now examine the question of the efficiency properties of peer pressure.

Proposition 3 (i) Under positive peer pressure, a pure strategy maximal and/or
Pareto perfect equilibrium leads to weakly higher payoffs for all agents than
any equilibrium in the game without peer pressure.

(ii) Under negative peer pressure, there are examples of pure strategy maximal
and/or Pareto perfect equilibria where some agents are better off and others
are worse off than without peer pressure, and such that the sum of utilities
of agents are either higher or lower than in games without peer pressure.
There are examples where a pure strategy maximal equilibrium15 of the game
with negative peer pressure is Pareto dominated by the maximal equilibrium
in the game without peer pressure.

(iii) In a pure strategy maximal and/or Pareto perfect equilibrium of a participa-
tion game with negative peer pressure, relative to the maximum equilibrium
without pressure:

– pressured agents are worse off,

– agents taking action 0 are indifferent

– agents who are not pressured and take action 1 are weakly better off.

So, we find that positive peer pressure offers improvements relative to the
world without pressure while negative peer pressure will generally be Pareto

15This equilibrium is the limit of Pareto perfect equilibria, but is itself not Pareto perfect.

Thus, even under Pareto perfection one can come arbitrarily close to having an equilibrium that

is Pareto dominated by an equilibrium of the game without any peer pressure.
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noncomparable to the world without pressure and can in some extreme cases
even be worse (if the pressuring agents are just indifferent to pressuring). The
intuition behind Proposition 3 is as follows. First, (i) follows from the fact that
pressured agents are weakly better off (due to positive externalities) from positive
peer pressure and those exerting pressure are better off as otherwise they would
choose not to exert the pressure. In contrast, under negative peer pressure the
pressurees are worse off than under no pressure since they would naturally have
strictly chosen action 0 and only choose 1 because other agents have made their
other option worse. The pressurers are still (weakly) better off, but this leads
to a more ambiguous comparison. The following example illustrates some of the
points of the Proposition.

Example 7 Contrasting Positive and Negative Peer Pressure.

Let n = 2 and both agents have the same vi = v where v(1, 0) = 1, v(1, 1) = 2,
and v(0, ·) = 0. Thus, this is a participation game of strategic complements.

Let c1 = 0 and c2 > 0.
If c2 < 2 then (1,1) is the unique equilibrium outcome with or without pres-

sure.
If c2 > 2, then (1,0) is the unique equilibrium without pressure.
If c2 > 3, then (1,0) remains the unique equilibrium with or without pressure,

as affecting agent 2’s choice would require p12 > 1, and it cannot be in agent 1’s
interest to pressure 2, and it is clearly never in 2’s interest to pressure 1.

Consider 3 > c2 > 2. In all equilibria16 of the peer pressure game p12 = c2−2
and the actions are (1, 1). The resulting payoffs are (4 − c2, 0) in the positive
peer pressure game and (4− c2, 2− c2) in the negative peer pressure game.

In the positive peer pressure game this leads to a Pareto improvement relative
to not having peer pressure, while agent 1 is better off and agent 2 is worse off in
the negative peer pressure game. The total utility in the negative peer pressure
game is higher with pressure if c < 2.5 and lower if c > 2.5.

If c2 = 3 then there is a maximal equilibrium of either peer pressure game
where p12 = 1 and (1,1) is played. In the case of positive peer pressure this leads
to payoffs of (1,0), while in the negative peer pressure game it leads to payoffs of
(1,-1). In the first case, agents are indifferent between the games with or without
pressure, while in the second case the payoffs are Pareto dominated by those in
the game without peer pressure.

While the above results suggest that positive peer pressure can offer Pareto
improvements, one might also conjecture that it leads to full Pareto efficiency,

16The equilibria is effectively unique, except for some possible off the equilibrium path spec-

ifications for situations where players are indifferent between 1 and 0 and can mix at different

levels.
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at least within the constraints of the transfers than can be made in the peer
pressure game. The intuition is that pressure allows agents to help other agents
internalize the externalities that they impose on others. However, this conjecture
turns out to be false, as shown in the following examples.

Example 8 Constrained Pareto Inefficiency with Positive Pressure

Let n = 4 and c1 = 0, c2 = 10 and c3 = c4 = 13.8 and consider a participation
game with positive pressure and symmetric benefits such that the symmetric
benefit function v satisfies v(1, 0) = 1, v(1, 1) = 2, v(1, 2) = 10, v(1, 3) = 11, and
v(0, ·) = 0.

Here there is no maximal or Pareto perfect equilibrium where all four agents
choose action 1 in the second stage with probability one. To see this, first note
that we can restrict attention to pure strategy equilibria. To see this, note
that if there exists an equilibrium where agents mix in the first stage and all
four agents choose action 1 in the second stage, then it must be that almost all
pressure vectors of any agent have the same total pressure (or else some would
be more expensive than others but would still lead to the same actions). Thus,
there would also exist a pure strategy equilibrium where the agents each play a
pressure vector in the support of their strategies. So, without loss of generality,
consider a pure strategy equilibrium. Next, note that in any equilibrium where
all four agents choose action 1 in the second stage it must be that p13 +p23 ≥ 2.8
and p14 + p24 ≥ 2.8. Note also that agent 2 can guarantee him or herself a
nonnegative payoff by not pressuring and choosing 0 in the second stage, and so
the total pressure that agent 2 will exert on agents 3 and 4 is at most 1 in total,
and so p23 + p24 ≤ 1. Thus, in order to have all four agents choose action 1 in
the second stage, agent 1 must exert a pressure of at least 4.6 in total on agents
3 and 4, and so p13 + p14 ≥ 4.6, and so either p13 ≥ 2.3 or p14 ≥ 2.3. Suppose,
without loss of generality, that p14 ≥ 2.3. Let agent 1 deviate and offer p′14 = 0,
and p′13 = 3.8−p23. Agent 1’s payoff is then 10−(3.8−p23) in any Pareto perfect
equilibrium or maximal equilibrium (as such equilibria will have the first three
agents choose action 1), while before it was at most 11− (2.8− p23)− 2.3, which
is strictly lower.

Thus, there is no maximal or Pareto perfect equilibrium where all four agents
choose 1.17 Note that the total payoffs where all four agents choose 1 is strictly
higher than that of any other configuration of agents participating, and so any

17The maximality/Pareto perfection is important. If agents anticipate that all agents will

take action 0 if agent 1 deviates from subsidizing both agents 3 and 4, then that can sustain

agent 1’s subsidization; but that requires expectation of a nonmaximal and Pareto inefficient

equilibrium (relative to other equilibria) in the second stage.

16



maximal equilibrium is (strictly) Pareto dominated by some non-equilibrium con-
figuration of pressure and having all four agents participate in the second stage.
Therefore, all maximal equilibria and all Pareto perfect equilibria in this example
are constrained Pareto inefficient in that for any maximal equilibrium there exists
some (non-equilibrium) prescription of strategies that leads to higher payoffs for
all players.

The above example just shows that it is possible to have all maximal and or
Pareto perfect equilibria be constrained inefficient. The following example is one
where all equilibria are constrained inefficient.

Example 9 Constrained Pareto Inefficiency

Let n = 4 and c1 = 0 = c2 = 0, while c3 = c4 = 4.5 and consider a game with
positive pressure.

Let vi(0, ·) = 0, vi(1, 0) = vi(1, 1) = 1, and vi(1, 2) = vi(1, 3) = 3, for all i

with the only exception being that v2(1, 2) = 1.
Note that the unique constrained Pareto efficient outcome is to have all four

agents participate. It is clear that both 1 and 2 participate in any Pareto efficient
allocation. Next, note that then it must also be that 3 should participate as that
increases 1’s utility by 2 and only has a next cost of 1.5 for 3 and so 1 could
subsidize the action. Similarly, then it must be that 4 also participates, since
that benefits agent 2 by 2 and only has a net cost of 1.5 to agent 4.

Let us argue that there is no equilibrium (of any kind) where both 3 and 4
participate with probability one. Note that agents 1 and 2 will take action 1 in
any equilibrium. Next, note that it cannot be that p13 and p14 are both positive
(with positive probability), as if that were the case, by dropping one of them
to 0 and increasing the other by some small ε there is a unique equilibrium in
the subgame (with probability one) that is for three agents to take action 1 and
so agent 1 is strictly better off. This implies that in order to have all agents
take action 1, either p23 ≥ 1.5 or p24 ≥ 1.5 (with probability one). Without
loss of generality, suppose that p24 ≥ 1.5. In that case, if agent 1 is exerting
positive pressure, then agent 1 is better off setting p13 = 0 and p14 = ε which
still results in a unique equilibrium in the subgame where agents 1, 2, and 4
take action 1, and agent 1 saves in payment while not losing any utility from the
complementarities. So agent 1 is not exerting any peer pressure. But then agent
2 will exert a maximum total pressure of 2 (2’s maximum potential benefit from
pressuring agents 3 and 4), which is less than is needed to get both agents 3 and
4 to choose action 1.

Let us close this section with an observation about the case of two agents.
Note that the above examples involved more than two agents. With just two
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agents, we can deduce that Pareto efficient outcomes will be sustained with pos-
itive peer pressure (and not always with negative peer pressure), as the above
examples hinge on issues of how the costs of pressuring should be split. A total
payoff maximizing pair of actions can be sustained as an equilibrium with just
two agents with positive pressure, since an agent simply pays the other agent to
take an action if the positive externality induced exceeds the cost.

4 Extensions and Discussion

Our analysis of peer pressure has provided basic existence results, insights into
who pressures whom, and results showing that while peer pressure can lead to
Pareto improvements in some cases, it does not always lead to full efficiency.
Moreover, there are clear differences between positive and negative peer pressure.
This model suggests further analysis of the yet largely unmodeled phenomenon
of peer pressure. With this in mind, we close the paper with a discussion of some
extensions of the model.

4.1 Strategic Substitutes

Although, games of strategic substitutes differ from games of strategic comple-
ments, the basic sorts of conclusions that are reached with complements extend
also to substitutes. One can construct analogs of Examples 8 and 9 where even
constrained Pareto efficiency is not reached. There are also settings where pos-
itive peer pressure is improving, and although negative peer pressure can lead
to Pareto efficient outcomes in some particular cases, it is not always sure to
do so. To illustrate this, we specialize to a canonical class of games of strategic
substitutes: best-shot public goods games, which are defined as follows.

Agent i either contributes to the public good (xi = 1) or not (xi = 0) and
then gets a payoff of

1− ci if xi = 1,

1 if xi = 0 and xj = 1 for some j 6= i,

0 if xj = 0 for all j.

Thus, an agent benefits if any player contributes to the public good, but does not
see any additional benefits beyond having one person contribute. For example,
this might be gathering information that is then freely communicated to other
agents, or performing a task that just needs to be done once, or buying a product
that can be shared freely among the agents. Taking the action 1 is costly and a
player would prefer that some other agent take the action.18

18See Hirshleifer (1983) for background on best-shot public goods.
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Existence is proven by construction of equilibria, which is part of the proof
of the following proposition which discusses the efficiency results.

Proposition 4 Consider a best-shot public goods game. Under either positive
or negative peer pressure there exist Pareto perfect pure strategy equilibria that
result in a total utility maximizing action choice (where a single minimum cost
agent takes action 1 if n > mini ci, and no agent takes action 1 if n < mini ci).
Under positive peer pressure, there exist such equilibria that are unconstrained
Pareto efficient, while under negative peer pressure there are cost configurations
(e.g., 2 > mini ci > 1) where no equilibrium is constrained Pareto efficient.19

The proof is relatively straightforward: if the lowest cost agent has a cost
above 1 and no higher than n, then other agents share in pressuring a lowest cost
agent to take action 1. Otherwise no pressure is exerted. On the equilibrium path,
a total utility maximizing profile of action is chosen. The off-the-equilibrium path
play is specified in the proof. The inefficiency of negative peer pressure stems
from the fact that the negative pressure is costly for all involved and needs to be
exerted in some cases to induce efficient actions in the second stage.

Note that this contrasts with the case of strategic complements. With strate-
gic complements it was low cost agents who pressured high cost agents, while in
the case of strategic substitutes it can be high cost agents who are pressuring low
cost agents to take an action. The clean split of agents into categories that we
saw in Proposition 2 no longer holds, as without an analog of participation games
(which are not so natural in the case of public goods), the externalities of one
agent taking action 1 affects all agents and so it could be a quite complicated set
of pressures that are exerted, although with some symmetry in payoffs efficiency
involves lowest cost agents taking action 1.

4.2 Endogenous Groups, Matching, and Networks

In settings where agents can choose with whom they associate, there are some
interesting differences between positive and negative peer pressure.

There are two important drivers of endogenous groups with peer pressure.
First, pressured agents benefit from positive pressure while they can suffer from
negative pressure. Thus, to avoid being pressured, agents might leave a group
when facing negative peer pressure, but not when facing positive peer pressure.

19Unconstrained Pareto efficiency refers to a utility profile that is not Pareto dominated by any

(possibly nonequilibrium) utility profile where actions can be dictated and arbitrary (balanced)

transfers across agents are possible, whereas constrained Pareto efficiency refers to a utility

profile that is not Pareto dominated by what is feasible within the (possibly nonequilibrium)

constraints of the given peer pressure game.
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Second, exerting pressure is an expensive activity, regardless of the type of pres-
sure. Thus, if agents face some limit on the number of others with whom they
can interact, then agents will prefer to be matched with agents who do not need
to be pressured, all else held equal. This leads to an assortative matching.

To get a feeling for these two main effects, consider a participation game of
strategic complements. We augment the game of peer pressure with a pre-game
stage where agents choose with whom they associate. Agents’ payoffs are only
affected by the actions of the other agents in their own group. We consider two
variations on this to illustrate the two effects discussed above.

First, consider a society where agents partition themselves into groups. Let
Π denote a partition of the set of agents {1, . . . , n}. An agent i who is in a group
S ⊂ {1, . . . , n} who takes action xi has a base payoff (not including any peer
pressure or cost of action) of vi(xS , S) where xS is the vector of actions taken
by the agents in S. Correspondingly, fixing any given group S, the previous
definitions of the peer pressure game extend, and so write Ui(φS , σS , S) to denote
i’s expected payoff when in a group S playing strategies (φS , σS) in the peer
pressure game. There are a wide variety of solutions that one might consider
for such an endogenous-group game. An obvious one is the following core-based
concept.

An endogenous-group equilibrium for a society is a partition Π of {1, . . . , n}
and a specification of a Pareto perfect equilibrium (φS , σS) for the peer pressure
game for each group of agents S ∈ Π such that there does not exist any group
of agents S′ ⊂ {1, . . . , n} and a Pareto perfect equilibrium (φS′

, σS′
) in the peer

pressure game for S′ such that

Ui(φS′
, σS′

, S′) > Ui(φSi , σSi , Si),

for each i ∈ S′ where Si ∈ Π is the element of the partition containing agent i.
In this variable group setting, a participation game is such that such that

vi(xS , S) = 0 whenever xS
i = 0, regardless of S and the actions of other agents

in S.
The following claim is straightforward and its proof is omitted.

Claim 1 Consider a participation game of strategic complements. In an endoge-
nous group equilibrium in a game with negative peer pressure, there is no peer
pressure exerted on the equilibrium path. In contrast, there are examples of en-
dogenous group equilibria in games with positive peer pressure where there is peer
pressure exerted on the equilibrium path.

The fact that there is never any negative peer pressure exerted follows easily
from the fact that in a participation game of strategic complements and negative
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peer pressure pressured agents are worse off than if they were alone and took
action 0 (e.g., see Proposition 3, (iii)). In fact this implies that any agents who
would be pressured within some group will segment themselves away. Thus, in
any case where negative peer pressure would occur among the grand coalition,
an endogenous group equilibrium must involve multiple groups. In contrast, in
the absence of congestion effects, under positive peer pressure it is possible for
the grand coalition to form.

It is clear that the above claim abstracts away from a series of other things
which might impact decisions of whom to associate with, but does capture some
aspects: a non drug user might prefer not to have drug users as roommates in
order to avoid being pressured (in a negative way) to use drugs.

In order to see the impact of the expense of exerting pressure, on group
formation, we specialize the setting a bit more. In particular, one needs some
congestion effects or limits to the numbers of others that a given agent wants to
interact with. Natural settings of this type are marriage and roommate settings,
where agents wish to be matched with at most one other agent.

In particular, consider a setting where vi(xS , S) > vi(xS′
, S′) for any xS and

xS′
when |S′| > 2 and |S| ≤ 2. In such a setting, agents prefer any group with

two or fewer agents to one with more than two. Let us call such a setting a
roommate setting.

The endogenous group equilibrium definition extends directly to such a setting
and generalizes the usual core-based stable matching definition.20

Claim 2 Consider a participation game of strategic complements in a roommate
setting, and suppose that payoffs exhibit benefit symmetry, vi(xS , S) is increasing
in xS

−i when xi = 1, and no agents have cost exactly equal to c∗ = v(1, 1, S) −
v(0, 1, S) when |S| = 2 (where the first entry is the agent’s own action). In an
endogenous group equilibrium, all agents are matched into pairs or singletons and
there is pressure exerted in at most one pair. The matching is assortative in that
pairs are such that either both agents take action 1 or both agents take action 0,
except for at most one pair.

Again, the proof is straightforward and just sketched here. There cannot
exist two different agents who have costs below c∗ and who are each matched to
agents who have costs above c∗. They would benefit from deviating and matching
with each other as then they would each get v(1, 1) − ci, while in the original
matching their utility is lower than this (either having to pressure their partner,
or having their partner choose 0 and possibly taking action 0 themselves). Thus,
all pairs except for at most one are such that either both agents have costs below

20See Jackson and Watts (2005) for more discussion of endogenous matchings with the play

of games.
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c∗ and choose action 1 in any Pareto perfect equilibrium and do not exert any
pressure, or both agents have costs above c∗ and take action 0 and do not exert
any pressure in a Pareto perfect equilibrium.

Beyond the group equilibrium and matching examples considered above, it
would also be interesting to consider endogenous-network versions of graphical
games with peer pressure.

4.3 Incomplete Information and Refinements

Much of the analysis here relies on a refinement of equilibrium to Pareto perfect
and/or maximal equilibria. These make some sense in settings where agents can
communicate or coordinate. If, in contrast, agents must choose actions without
coordinating and with some uncertainty about others’ payoffs and behaviors, then
there are other considerations and refinements that might be more appropriate,
such as Carlsson and van Damme’s (1993) global games approach (and see Vives
(2005) for more discussion about the general use in refining equilibria in games
with strategic complementarities). Exactly what would happen with such an
approach could depend on the type of uncertainty introduced (e.g., see Weinstein
and Yildiz (2007) for results on how variations in the uncertainty can affect the
equilibrium selection), and is an important question for future research.

5 Appendix

Proof of Proposition 1:
Following any p, let agents play the unique (pure strategy) maximal equi-

librium. An algorithm for identifying such equilibria (e.g., see Jackson (2008))
is as follows. Start with all agents playing action 1, and denote this strategy
profile x1(p). If for some agents, playing action 0 is a strict best response to
other agents playing x1(p), then change those agents’ actions to 0. It follows
from the strategic complementarities that those agents will play action 0 in all
equilibria. Let this profile of actions be x2(p). Iterate on this procedure. More
formally, let x1(p) = (1, . . . , 1) and for k > 1 let xk

i (p) = 1 if di(xk−1
−i (p), p) ≥ 0

and xk
i (p) = 0 otherwise. This will converge in at most n steps, and so let σM (p)

to be the mixed strategy profile that places probability one on the xn(p) found
via this algorithm.21

21Note that there are only a finite set of points of discontinuity of xn(p) (as each player is

faced only with a finite configuration of potential strategies of other players’ pure strategies,

and hence has at most a finite number of cost points where indifference occurs), and so this is

a Borel measurable function.
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Note that players’ payoffs are each upper semicontinuous in p given that they
anticipate play of the unique maximal equilibrium in the second stage. That is,
ui(σM (p), p) is an upper semicontinuous function. This follows from the fact that
players’ payoffs are nondecreasing in other players’ actions and that the maximal
strategies are selected at any points of indifference (and hence at any points of
discontinuity, and also that players are indifferent at points of discontinuity in
their own action). This implies that

∑
i Ui(φ, σM ) is upper semicontinous in φ

(see Proposition 5.1 in Reny (1999)).
Fix the second period strategies σM , and consider the first period game where

the anticipation is that σM describes the continuation play. We next show that
there exists an equilibrium φ in the first stage, anticipating the σM continuation.
If we can show that Ui(φ, σM ) is payoff secure (in choices of mixed strategies
φ), then by the upper semicontinuity and Proposition 5.1 and Corollary 5.2 in
Reny (1999) it follows that there exists a Nash equilibrium φ for the first stage
anticipating σM in the second stage.

To verify payoff security, consider any φ−i and let pi be a pure strategy best
response to φ−i (which exists given that pure strategies are a compact set and
preferences are upper semicontinuous in pi). Payoff security requires us to show
that for any ε there exist p′i such that Ui(p′i, φ

′
−i, σ

M ) ≥ Ui(pi, φ−i, σ
M )−ε for φ′

−i

in a small enough neighborhood of φ−i. Let pε
i be defined by pε

ij = pij +(ε/(2n)).
It then follows that for any k and p−i, pε

ik +
∑

j pjk ≥ pik +
∑

j pjk + (ε/(2n)).
Thus, for any p′−i within a small enough neighborhood of p−i, it follows that
pε

ik +
∑

j p′jk ≥ pik +
∑

j pjk and hence x(pε
i , p

′
−i) ≥ x(p). Given that i’s utility is

nondecreasing in x−i and that any change in xi is in terms of a best response, it
follows that for φ′

−i in a small enough neighborhood of φ−i, that Ui(pε, φ′
−i, σ

M ) ≥
Ui(p, φ−i, σ

M )− ε, and so payoff security is satisfied.22

The proof is concluded by noting that the set of vectors of utilities corre-
sponding to equilibria that have Pareto efficient equilibria in all subgames (and
are Borel measurable) is closed. Thus, we can find such a vector of utilities that is
Pareto undominated among the set (which is nonempty given that the maximal
equilibrium shown to exist above is in the set), and then find an associated equi-
librium leading to that vector of utilities, resulting a Pareto perfect equilibrium.
If such an equilibrium is not a maximal equilibrium it can be altered to be one
by changing the equilibrium in any subgame to be a maximal equilibrium as the
unique maximal equilibrium results in at least as high payoffs for all agents as
any other equilibrium in the subgame, and so if the equilibrium is Pareto un-

22The transition from this holding for all p−i’s and neighborhoods of them to mixed strate-

gies is straightforward, and can be accomplished by partitioning the set of p−i’s into small

enough neighborhoods and then bounding the difference in payoff in each neighborhood and

then summing.
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dominated and not maximal, it must be result in the same payoffs for all agents
as the maximal equilibrium.
Proof of Proposition 2: Let us begin by proving (I). If some agent i is pressured
in a maximal equilibrium, but is not indifferent, then some other agent j with
pji > 0 could lower his or her pressure and still leave the maximal equilibrium
in the second stage unchanged, which would be a contradiction of equilibrium.
Next, let us show that the pressured agent must choose action 1. The same
claim for a Pareto perfect equilibrium comes from noting that a Pareto perfect
equilibrium has the same payoffs for all agents as a maximal equilibrium in all
second-stage subgames. If the agent is indifferent, then in a maximal equilibrium
the agent must take action 1. In the case of Pareto perfection, suppose that the
agent did not take action 1. Then it must be that the agent’s choice of action
does not affect the pressuring agent’s utility, or the equilibrium would be Pareto
dominated. In that case, the pressuring agent could lower his or her utility and
still end up with equivalent payoffs in a Pareto undominated equilibrium in the
resulting subgame.

Next, we verify (II). In a participation game, if an agent i chooses action 0 in
the second stage, then his or her payoff is unaffected by changes in the actions
of the other agents and so the agent maximizes his or her payoff by setting
pij = 0 for all j. Thus, a pressuring agent must choose action 1. To see that a
pressured agent does not exert any pressure, suppose that i is pressured so that∑

j pji > 0. Then by (I), the agent is indifferent between action 1 and 0 in the
second stage and so the agent’s payoff must be vi(0, x−i(p))−

∑
j pij , which in a

participation game is simply vi(0, . . . , 0) −
∑

j pij . If the agent were pressuring
so that

∑
j pij > 0, then by deviating and setting

∑
i pij = 0 and choosing 0 in

the second stage the agent’s payoff would be vi(0, , . . . , 0), and the agent would
be better off.

(III) Consider a Pareto perfect and maximal equilibrium in a participation
game of positive peer pressure such that all agents have the same vi, denoted
v which depends only on own action and the sum of actions of other players.
Let p, x be the equilibrium path play, and let m =

∑
i xi. We consider the case

where m ≥ 1 as otherwise simply set c2 = 0 and c1 < 0. First, note that if ci ≤
v(1,m−1)−v(0,m−1) then xi = 1 is a best response and played in the maximal
equilibrium even if

∑
j pji = 0. It then follows from (I) that such an agent cannot

be pressured (as if he or she were pressured then he or she would strictly prefer
xi = 1, which would contradict (I)). So, let c1 = v(1,m − 1) − v(0,m − 1). It
follows that all agents with costs no higher than this level are not pressured and
take action 1. It also follows from (II) that any agent who exerts pressure must
have cost no higher than c1 as agents with higher costs must either take action 0
or be pressured. Next, by the definitions of maximal equilibrium it follows that
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ci > v(1,m) − v(0,m) for any i such that xi = 0, and since this is a games of
strategic complements v(1,m)−v(0,m) ≥ v(1,m−1)−v(0,m−1), and the latter
is equal to c1. If there are no pressured agents, let c2 be the minimum cost among
agents taking action 0, and the remaining conclusions of the proposition hold. So
consider the case where there are some pressured agents. If there are no agents
who take action 0, then let c2 be a cost higher than any agent’s cost and the
remaining conclusions of the proposition hold. Otherwise, let c2 be the minimum
cost of any of the agents who take action 0. It follows from above that c2 > c1

and any agent with costs at or above c2 who is not pressured takes action 0. It
only remains to be shown that all agents who have costs at or above c2 are not
pressured, as then by the definition of c2 it follows all agents with costs between
c1 and c2 must be pressured (and by (I) take action 1). Suppose to the contrary
that there exist agents j and k with cj < ck such that agent k is pressured and
takes action 1 while agent j is not pressured and takes action 0. Note that by
our previous argument neither of these agents is then exerting any pressure as
only agents with costs at or below c1 exert pressure than both of these costs are
above c1. Consider a change in p to p′ such that for each i: p′ij = pikcj/ck and
p′ik = 0 and p′ih = pih for any h /∈ {j, k}. It follows that the maximal equilibrium
involves the same sum of actions m (where j and k have swapped actions), that
agents j and k are both indifferent between the resulting outcomes (each getting
the value v(0, 0)), and that all agents i exerting pressure are strictly better off
as they exert less pressure. This is still an equilibrium, which then contradicts
Pareto perfection.23

Proof of Proposition 3: Let us begin by proving (i). Consider a maximal
equilibrium of a game of strategic complements with positive peer pressure. Let x

be the maximal equilibrium in the game without peer pressure. Note that vi(x)−
cixi is higher under x than under any other equilibrium without peer pressure,
given the strategic complementarities and the fact that vi is nondecreasing in
x−i. Consider any subgame in the game with peer pressure after pressure p′ and
let x(p′) denote the corresponding maximal equilibrium. Given that costs are
now ci −

∑
j p′ji for each i, and that x(p′) is a maximal equilibrium under p′, it

follows that x(p′) ≥ x.
Next note that by equilibrium

vi(x(p))−

ci −
∑

j

pji

 xi(p)−
∑

j

pij ≥ vi(x(0, p−i))−

ci −
∑

j

pji

 xi(0, p−i)

23In the absence of Pareto perfection, there are maximal equilibria where several agents

coordinate on pressuring a single agent with a high cost, while they could pressure an agent

with a lower cost instead, but due to the coordination issue no one of the pressuring agents has

an improving deviation.
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Next, given the strategic complementarities.

vi(x(0, p−i))−

ci −
∑

j

pji

 xi(0, p−i) ≥ vi(x)−

ci −
∑

j

pji

 xi

Finally,

vi(x)−

ci −
∑

j

pji

 xi ≥ vi(x)− cixi

The last three inequalities provide the desired conclusion. The proof of the case
of Pareto perfect equilibrium is an easy variation, noting that in any subgame a
Pareto perfect equilibrium is either a maximal equilibrium or payoff equivalent
(for all agents) to a maximum equilibrium.

(ii) is shown in Example 7.
To see (iii), first note that in a maximal and/or Pareto perfect equilibrium

(see Proposition 2), a pressured agent must take action 1 and must be indifferent
between taking action 1 and 0. Such an agent’s payoff from taking action 0 in
the negative pressure game is lower than it was in the game without pressure
(given that it is a participation game so his or her payoff is independent of other
players’ actions, and he or she is pressured), and so the agent must have a lower
payoff. An agent who is pressuring some other agent is weakly better off by an
argument analogous to (i), as such an agent cannot be pressured and such an
agent could always reduce pressure to 0 and still have at least as high a payoff
as in the game without pressure. Similarly, an agent taking action 1 who does
not exert any pressure sees a weak increase in x−i due to the introduction of
pressure and is thus weakly better off. Agents who take action 0 in a maximal
and/or Pareto perfect equilibrium with negative pressure must not be pressured
(again, see Proposition 2), and are thus indifferent between the equilibria of the
two games as they must also take action 0 in a maximal equilibrium of the game
without any pressure.
Proof of Proposition 4: First, let us check that there is a Pareto perfect pure
strategy equilibrium that results in a total utility maximizing action choice.

In a subgame following some p, define x(p) as follows. Let i∗ be the lowest
indexed agent with cost equal to mini ci.

(1) If there are some agents for whom ci−
∑

j pji < 0 then have all such agents
choose action 1 and all other agents choose action 0.

(2) If not case (1), and ci∗ −
∑

j pji∗ ≤ 1 then have i∗ choose action 1 and all
other agents choose action 0.

(3) If not case (1) or (2), and there are some agents for whom ci −
∑

j pji ≤ 1
then have the agent i with the minimum ci −

∑
j pji choose action 1 (and

26



if there are several such i’s, then choose the one with the minimum i) and
all other agents choose action 0.

(4) If not case (1), (2), or (3), then have all agents take action 0.

In the case where n ≤ mini ci, have no pressure in the first stage and have
actions in the second stage as described by x(p) above. It is clear that there are
no beneficial deviations, as to change the second period actions requires pressure
of at least n− 1 ≥ 1.

In a case where n > mini ci > 1, set pji∗ = ci∗ − 1/(n− 1) for j 6= i∗, and
otherwise set pressures to 0. In any subgame, follow the prescriptions of x(p)
as defined above. To see that this is an equilibrium, note that if some agent j

deviates to lower pji∗ (and not raise another pjk), then all agents take action 0
in the following subgame and the resulting utility is at most 0 in the following
subgame which is less than the equilibrium utility to j of 1−(ci∗−1)/(n−1) > 0.
Also note that no agent j (including i∗) can gain by raising some pjk for k 6= i∗

and possibly changing other pressures, as it either results in the same outcome
with added cost, or else nobody taking 1, or else in agent k taking action 1 but
with a pressure cost to j of more than 1 (as we need to be in case (2)). In any
of these cases the resulting utility to j is either the same or negative.

Finally, consider a case where mini ci ≤ 1. Here have no pressure in the first
stage follow x(p) as described above in the second stage. In order to change the
outcome, a pressure of greater than ci∗ needs to be exerted, and that leads to a
worse outcome for any deviating agent.

Each of the above constructions involve Pareto undominated equilibria in the
second stage (in all subgames). In the case of positive peer pressure, since each
of these involve outcomes that maximize total utility, they cannot be Pareto
dominated at the first stage, and hence are Pareto perfect.

In the case where there is negative peer pressure, any equilibrium that results
in the total utility maximizing action must involve at least as much pressure on
the agent taking the action, and so cannot Pareto dominate the equilibrium, and
so the equilibrium is Pareto perfect.

To see the conclusions regarding constrained Pareto efficiency, simply note
that any exerted pressure in the case of negative peer pressure is Pareto domi-
nated by the same actions without any pressure, while any exerted pressure in the
case of positive peer pressure (provided action 1 is taken by the pressured agent)
transfers utility from one agent to another, and so the equilibria constructed
above in the case of positive peer pressure are constrained Pareto efficient (and
in fact unconstrained efficient). To see the conclusion that if 2 > mini ci > 1,
then in the case of negative peer pressure all equilibria are necessarily constrained
Pareto inefficient, note that an equilibrium must involve some pressure. If not,
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some agent would benefit by deviating and pressuring a minimum cost agent
(which leads to a unique second stage equilibrium where that agent takes action
1). Thus, equilibrium involves some pressure, and the same actions without any
pressure would offer a Pareto improvement.
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