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The standard profit-maximizing multiunit auction intersects the submitted demand
curve with a preset reservation supply curve, which is determined using the
distribution from which the buyers’ valuations are drawn. However, when this
distribution is unknown, a preset supply curve cannot maximize monopoly profits.
The optimal pricing mechanism in this situation sets a price for each buyer on the
basis of the demand distribution inferred statistically from other buyers’ bids. The
resulting profit converges to the optimal monopoly profit with known demand as the
number of buyers goes to infinity, and convergence can be substantially faster than
with sequential price experimentation. (JEL D42, D44, D82, D83)

Recent advances in information technology—
most notably the Internet—have enabled the use
of economic allocation mechanisms that had been
impractical before. Many goods traditionally sold
at posted prices are now sold using auction-like
mechanisms, in which buyers express their pref-
erences by making bids. Some Internet web sites,
such as eBay.com, use traditional auction mecha-
nisms, such as the English auction. Other web
sites have developed new mechanisms. For exam-
ple, so-called “demand aggregation” sites, such as
Mercata.com, LetsBuyIt.com, and eWinWin.com,
obtain the price by intersecting the demand curve
formed by the buyers’ bids with a downward-
sloping “price curve.”

What is the profit-maximizing pricing mech-
anism, and does it improve upon posted pricing?1

The present paper examines this question in the
context of selling multiple homogeneous units
to buyers with unit demands. First the paper
adopts the standard assumption of auction the-
ory that the seller knows the distribution from
which the buyers’ valuations are drawn. Under
this and other standard assumptions, the optimal
auction can be represented by intersecting a
supply curve submitted by the seller with the
demand curve revealed by the buyers’ bids, and
selling to those buyers whose bids are above the
intersection. The seller’s profit-maximizing
supply curve depends on her cost function as
well as on the distribution of buyers’ valuations.
Furthermore, in two important special cases the
seller cannot improve upon a posted price. One
such case is when the seller’s marginal cost is
constant, and so her optimal supply curve is
perfectly elastic. The other case is when the
number of buyers is large, and by the Law of
Large Numbers the seller can predict the aggre-
gate demand curve and the price at which it
intersects the optimal supply curve.

The problem ignored by this standard analy-
sis is that in reality, the seller may not know the
distribution from which buyers’ valuations are
drawn, and thus may be unable to calculate the
optimal reservation supply curve. A typical ex-
ample is the sale of tickets or subscriptions to a
one-of-a-kind concert or sporting event. Even
though there are many identical units for sale,
such units have not been sold before and so the
seller does not know the potential demand. As
emphasized in microeconomic textbooks, in this
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situation “a monopolistic market does not have
a supply curve” (Robert S. Pindyck and Daniel L.
Rubinfeld, 1995), because the profit-maximizing
price depends on the overall shape, and in partic-
ular the elasticity, of the demand curve.2

This paper proposes a new pricing mechanism
that maximizes the seller’s profit without requir-
ing prior knowledge of demand. The mechanism
is based on the idea that buyers’ bids reveal infor-
mation about the distribution of their valuations.
While standard auctions ignore this information,
the optimal mechanism uses it for pricing.
When the number of buyers is large, the seller
learns the distribution precisely, and can price
optimally given the revealed distribution.

To ensure that a buyer cannot obtain a better
price by misreporting his valuation, he should
face a price that depends only on other buyers’
bids, and not on his own. Formally, such mech-
anisms are the only ones satisfying dominant-
strategy incentive compatibility and ex post
individual rationality. This paper characterizes
the expected profit-maximizing mechanism sat-
isfying these requirements. In the simple case in
which the seller’ s marginal cost is constant, the
optimal mechanism offers each buyer the opti-
mal monopoly price against the demand curve
inferred from other buyers’ bids.

The proposed mechanism improves substan-
tially upon posted pricing, but is qualitatively
different from standard auctions. The key dif-
ference is that each buyer’ s bid has an informa-
tional effect: it affects other buyers’ allocations
directly, rather than through his own allocation.
In particular, such a mechanism cannot be rep-
resented with a supply curve.3

With a small number of buyers, the seller’ s
Bayesian prior affects her posterior beliefs
about the distribution of valuations, and thereby

optimal pricing. The optimal mechanism is thus
still not completely “detail-free” in the sense of
Robert B. Wilson (1987)—the dependence on
the seller’ s prior is simply pushed to a higher
level. However, as the number n of buyers
grows, the information revealed by buyers’ bids
overwhelms the seller’ s prior. The paper shows
that for any consistent estimation of demand
and its elasticity, as n 3 �, the seller’ s ex-
pected profit converges to the maximum profit
achievable with the knowledge of the true de-
mand distribution. In particular, this holds for
Bayesian estimation provided that the prior’ s
support includes the true distribution. This also
holds for classical statistical estimation, both
parametric and nonparametric. For example, the
seller can use the reported empirical distribution
of the valuations of all buyers other than i as an
estimate of the distribution of buyer i’ s valua-
tion, and offer buyer i the optimal monopoly
price against this distribution.4

With a large number of buyers, there are
many alternative ways to learn demand and
attain the optimal monopoly profit asymptoti-
cally. For example, the seller can survey a small
proportion of buyers and use their reported val-
uations to set the optimal price to the remaining
buyers. Alternatively, the seller can experiment
by pricing to different buyers sequentially and
updating the price using purchase history (see,
e.g., Philippe Aghion et al., 1991; Leonard J.
Mirman et al., 1993; Yongmin Chen and Ruqu
Wang, 1999; and Godfrey Keller and Sven
Rady, 1999). However, both these strategies set
a price to each buyer utilizing less information
than the optimal mechanism derived in this pa-
per. In particular, the price offered to a buyer
depends only on the information received from
the preceding buyers, but not from the subse-
quent buyers. This “ informational inefficiency”
may slow down convergence to the optimal
monopoly profit, sometimes quite dramatically.

It should be noted that relaxing the “ex post”
constraints of dominant-strategy incentive com-
patibility and ex post individual rationality to
the corresponding “ interim” constraints of

2 A similar motivation underlies the analysis of Andrew
V. Goldberg et al. (2001). A key difference is that they
assume complete ignorance of the buyers’ valuations, while
in this paper these valuations are drawn from the same,
although unknown, distribution. Also, they maximize the
worst-case revenue (relative to that from the optimal posted
price), for which purpose randomized mechanisms strictly
dominate deterministic ones.

3 Multiunit auctions that cannot be represented with a
supply curve have also been considered by Yvan Lengwiler
(1999) and David McAdams (2002), though with a different
motivation.

4 This mechanism is also suggested by Sandeep Baliga
and Rakesh Vohra (2002), in independent and contempora-
neous work.
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Bayesian incentive compatibility and interim
individual rationality would allow the seller to
extract buyer surplus using mechanisms sug-
gested by Jacques Cremer and Richard P.
McLean (1985, 1988). However, such mecha-
nisms are not “detail-free”—they are sensitive
to the buyers’ knowledge about the distribution
and each other’ s valuations, and a seller who is
ignorant of the extent of such knowledge may
not want to use them.

The paper is organized as follows: Section I
describes the model and the class of mecha-
nisms being considered. Section II characterizes
the optimal auction with a known demand dis-
tribution, and shows that it can normally be
represented as the Vickrey-Groves-Clarke
mechanism in which the seller manipulates her
supply curve in a way that depends on the
demand distribution. The section also examines
circumstances under which the seller can do just
as well with a posted price. Section III derives
the optimal pricing mechanism when the seller
does not know the distribution of demand but
has a Bayesian prior over it, and so the buyers’
valuations are correlated from her viewpoint.
Section IV shows that the seller’ s expected
profit converges to the maximum monopoly
profit achievable with known demand as the
number of buyers goes to infinity. Section V
examines the rate of convergence and compares
it to that achieved by sequential experimenta-
tion mechanisms. Section VI motivates the
restriction to ex post mechanisms. Section
VII concludes and discusses several potential
extensions.

I. Setup

A monopolistic seller faces n buyers, each of
whom has unit demand.5 Each buyer i � 1, ... ,
n privately observes his own valuation vi; this
valuation is not observed by the seller or by the
other buyers. Buyers’ valuations are indepen-
dently drawn from a distribution F on [0, v�)
(where v� � � is allowed), with a positive con-
tinuous density function f(v) � F�(v) and a

finite expectation E[v]. Section II will consider
the standard case in which the distribution F is
common knowledge, while subsequent sections
will suppose that F is not known. Section III, in
particular, will suppose that the seller has a
Bayesian prior over possible distributions,
which makes the buyers’ valuations correlated
from her viewpoint.

An outcome is described by the allocation of
the good and the buyers’ payments to the seller.
An allocation of the good is a vector x �
( x1, ... , xn) � �n , where � � {0, 1} is the set
of a buyer’ s possible purchases from the seller.
The buyers’ payments to the seller constitute a
vector t � (t1, ... , tn) � �n. All buyers’
utilities as well as the seller’ s profit are quasi-
linear in the payments. The seller’ s cost of
producing X units is C(X).

By the Revelation Principle, the seller can
restrict attention to direct revelation mecha-
nisms, which ask each buyer to bid his valua-
tion, and which ensure that all buyers
participate and bid truthfully in equilibrium. To
simplify exposition, we focus on deterministic
mechanisms, which specify an allocation rule x:
[0, v� )n 3 �n and a payment rule t: [0, v� )n 3
�n. While the seller may sometimes gain by
conditioning the outcome on a public random-
ization, this will prove not to be the case in the
settings considered in this paper.

It is customary to impose the Bayesian Incen-
tive Compatibility (BIC) and Interim Individual
Rationality (IIR) constraints on the mechanism.
Formally, the constraints say that for any buyer
i and any vi , v̂i � [0, v� ),

�BIC� Ev�i�vi
�vi xi �v� � ti�v��

� Ev�i�vi
�vi xi �v̂i , v�i � � ti �v̂i , v�i ��,

�IIR� Ev�i�vi
�vi xi �v� � ti �v�� � 0.

Mechanisms satisfying these constraints will be
called interim mechanisms.

This paper, however, will focus on mecha-
nisms satisfying the stronger requirements of
Dominant-strategy Incentive Compatibility
(DIC) and Ex post Individual Rationality (EIR).
Formally, for any buyer i, any valuation profile
v � [0, v� )n, and any v̂i � [0, v� ),

5 With obvious alterations the analysis could be applied
to the problem of procuring from n sellers, each of whom
has unit supply.
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�DIC� vi xi �v� � ti �v�

� vi xi �v̂i , v�i � � ti �v̂i , v�i �,

�EIR� vi xi �v� � ti �v� � 0.

These constraints require that each buyer’ s in-
centives to participate and bid truthfully are
satisfied ex post (for any possible realization of
other buyers’ valuations), rather than just in-
terim (on expectation over these valuations).
Mechanisms satisfying (DIC) and (EIR) will be
called ex post mechanisms. Ex post mechanisms
are also studied by Kim-Sau Chung and Jeffrey
C. Ely (2001), in the more general case of
interdependent valuations.

In the standard auction theory setup in which
buyers’ valuations are independently drawn
from a known distribution F, the restriction to
ex post mechanisms typically does not reduce
the seller’ s expected profit, as explained in Sec-
tion II below. However, when the distribution F
is unknown, and so the valuations are correlated
from the seller’ s viewpoint, the restriction does
reduce the expected profit. Yet, ex post mecha-
nisms have the important advantage of being
robust to the buyers’ beliefs about each other’ s
valuations. A motivation for ex post mecha-
nisms along these lines is offered in Section VI.

Ex post mechanisms have a very simple
characterization:

LEMMA 1: A deterministic mechanism 	x(�),
t(�)
 is an ex post mechanism if and only if for
each buyer i there exist functions pi , si : [0,
v� )n � 1 3 �� such that for every valuation
profile6 v � [0, v� )n ,

xi �v� � �1 if vi � pi �v�i �
0 if vi � pi �v�i �, and

ti �v� � pi �v�i � xi �v� � si �v�i �.

PROOF:
The “ if” part is easy to verify. The “only if”

part follows from the Taxation Principle (see,

e.g., Bernard Salanie, 1997), which under (DIC)
allows us to represent the mechanism faced by
buyer i for any given profile v�i of other buy-
ers’ bids as a nondecreasing tariff Ti(�, v�i) :
� 3 �. Let si(v�i) � �Ti(0, v�i) and
pi(v�i) � Ti(1, v�i) � Ti(0, v�i). (EIR) for
vi � 0 requires that si(v�i) � 0.

The mechanism described in Lemma 1 offers
each buyer i a lump-sum subsidy si(v�i) � 0
and a price pi(v�i) � 0 that depend on other
buyers’ reports. Buyer i receives a unit at this
price if and only if the price is below his re-
ported valuation. Such mechanisms will be
called pricing mechanisms, and the functions
pi(�) and si(�) will be called the pricing and
subsidy rule, respectively.

Lemma 1 implies that any allocation rule that
is implemented in a deterministic ex post mech-
anism satisfies the following monotonicity con-
dition:

�M� xi �vi , v�i � is nondecreasing in vi

for all i, all v�i � �0, v� �n � 1.

In the unique pricing rule implementing such an
allocation rule, the price to each buyer equals
the minimum bid procuring him a unit:

(1) pi �v�i �

� inf �vi � �0, v� � : xi �vi , v�i � � 1
.

As for the subsidies, a profit-maximizing seller
will set them identically to zero.

One example of a pricing mechanism is the
Vickrey-Groves-Clarke mechanism, in which
pi(v�i) equals the externality that giving buyer
i a unit imposes on the others. Another example
is a posted-price mechanism, in which
pi(v�i) � p* for all i, i.e., buyers face a single
price that does not depend on any bids.

Observe that any pricing mechanism could in
principle be implemented with a two-stage pro-
cedure, in which (1) buyers report their valua-
tions (v1, ... , vn), and (2) each buyer i decides
whether to purchase at price pi(v�i). Since a
buyer’ s stage 1 report has no effect on the price
he faces in stage 2, truthtelling is a weak equi-
librium at stage 1. However, there are several

6 The consumption xi(v) for vi � pi(v�i) is left inde-
terminate, which is not important because the probability of
this occurrence is zero.
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concerns with such implementation. One con-
cern is that a buyer who has an (arbitrarily
small) cost of learning his valuation would not
expend the cost at stage 1, expecting to avoid it
when offered a very high or very low price at
stage 2. Another concern is that arbitrarily small
bribes could induce collusion at stage 1. For
these (unmodeled) reasons, it is preferable to
eliminate the buyers’ discretion at stage 2, in-
stead determining their purchases on the basis
of their reported valuations. This makes truth-
telling uniquely optimal for a buyer who faces
sufficient uncertainty about other buyers’ reports.

II. The Optimal Mechanism with a Known
Distribution

This section describes the optimal mecha-
nism when the distribution F is known by the
seller. This problem was first analyzed by Roger
B. Myerson (1981) for a single-unit setting,
and the analysis was extended to the multiunit
case by Jeremy I. Bulow and John Roberts
(1989). Here we offer new characterizations of
the optimal mechanism for important special
cases, and provide a useful benchmark for the
subsequent analysis of the case in which F is
unknown.

A. The Virtual Surplus Representation

By the Revenue Equivalence Theorem, the
allocation rule x(�) fully determines the infor-
mation rents of buyers in any Bayesian incen-
tive-compatible mechanism in which the
participation constraints of zero-valuation buy-
ers bind. The seller’ s expected profit can be
expressed as the difference between the ex-
pected social surplus and the sum of buyers’
expected information rents. Upon integration by
parts, this difference can be written as the ex-
pectation of the virtual surplus:

J�x, v� � �
i

m�vi �xi � C� �
i

xi� ,

where m�vi � � vi �
1 � F�vi �

f�vi �
.

The difference between m(vi), called buyer i’ s

virtual valuation, and his true valuation vi ac-
counts for the buyer’ s information rent that is
not captured by the seller. The function m(�) is
called the marginal revenue function.7

If the seller can use an interim mechanism,
she chooses an allocation rule to maximize the
expected virtual surplus EvJ(x(v), v) subject to
Ev�i

xi(v) being nondecreasing in vi for all i,
which is the monotonicity constraint stemming
from Bayesian incentive compatibility. If the
solution turns out to satisfy the stronger mono-
tonicity condition (M), then, according to
Lemma 1, it can be implemented with a pricing
mechanism, which yields the same expected
revenue by the Revenue Equivalence Theorem.
Therefore, the restriction to ex post mechanisms
can hurt the seller only by strengthening the
monotonicity constraint to (M).8 In the cases
considered below, this restriction does not re-
duce the seller’ s expected profit.

B. When a Reservation Supply Curve Is
Optimal

We begin by considering the case in which
the marginal revenue function m(�) is increas-
ing9 and the cost function C(�) is convex. For
this case, we describe the allocation rule that
maximizes the virtual surplus in each state v.
Since this allocation rule turns out to satisfy
(M), it solves the seller’ s problem.10 Since the
cost function C(�) is convex, the virtual surplus
is maximized by allocating units to buyers in
descending order of their virtual valuations

7 This name, suggested by Bulow and Roberts (1989),
comes from the following parallel to the monopoly pricing
problem. Thinking of D( p) � 1 � F( p) as the expected
demand curve for a given buyer, R(X) � D�1(X) � X is the
revenue function, and m( p) � R�(D( p))—i.e., the mar-
ginal revenue expressed as a function of price.

8 A more general version of this argument is given by
Dilip Mookherjee and Stefan Reichelstein (1992).

9 A sufficient condition for this is the monotonicity of the
hazard rate f(v)/[1 � F(v)], which holds for many impor-
tant distributions (see Mark Bagnoli and Ted Bergstrom,
1989).

10 This also implies that a randomized mechanism would
not provide an improvement, since the seller’ s expected
profit in such a mechanism can still be written as the
expected virtual surplus, while the proposed deterministic
mechanism maximizes the virtual surplus for any given
valuation profile v.
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m(vi), proceeding while these virtual valuations
exceed the incremental cost C(X) � C(X � 1).
Since the marginal revenue function m(�) is
increasing, the buyers receive units in descend-
ing order of their true valuations while the val-
uations exceed m�1(C(X) � C(X � 1)) �
S(X). The function S(X), obtained by trans-
forming the seller’ s incremental cost curve
C(X) � C(X � 1) upward with the inverse
marginal revenue function m�1(�), can be in-
terpreted as the seller’ s inverse reservation sup-
ply curve. Intersecting this curve with the
inverse demand curve reported by the buyers
yields the optimal quantity X*. Formally, X* is
described by

(2) v �X*� � S�X*� if X* � 0, and

v �X* � 1� � S�X* � 1� if X* � n,

where v(X) denotes the Xth-highest order statis-
tic of vector v. Note that a buyer is more likely
to receive a unit when he has a higher valuation,
therefore the described allocation rule indeed
satisfies (M).

By Lemma 1, the ex post mechanism imple-
menting the described allocation rule is a pric-
ing mechanism, whose pricing rule is uniquely
determined by formula (1).11 This implies that
each buyer receiving a unit pays the price equal
to his highest bid that would entail either not
producing his unit or giving it to the first runner-
up, buyer X* � 1:

(3) p � max�S�X*�, v�X* � 1�
.

These conclusions are summarized as follows:

PROPOSITION 1: Suppose that the buyers’
valuations are independently drawn from a
known distribution F, the marginal revenue
function m(�) is increasing, and the cost func-
tion C(�) is convex. Then any optimal mechanism
(under either ex post or interim constraints)
allocates units to buyers in descending order of
their valuations while the valuations exceed
S(X) � m�1(C(X) � C(X � 1)). The optimal

quantity X* is thus described by (2). In the
optimal ex post mechanism, losers do not pay,
and all winners pay price (3).

The optimal mechanism is thus equivalent to
the Vickrey-Groves-Clarke mechanism in
which each buyer pays the externality he im-
poses on others, except that the seller misrepre-
sents his incremental cost to be S(X) � C(X) �
C(X � 1). The mechanism is depicted in Fig-
ure 1.

Many features of this characterization extend
to the case in which the cost function C(�) is not
convex. Namely, the virtual surplus-maximizing
allocation rule still satisfies (M),12 and it still
allocates units to buyers in descending order of
their valuations. The optimal quantity X* must
still satisfy the seller’ s “discrete first-order con-
ditions” (2), for otherwise she would prefer to
sell either one more or one less unit. Thus, the
optimal quantity still lies at an intersection of
the reservation supply curve S(�) and the de-
mand curve revealed by the buyers. Observe
that when the seller’ s cost function is not con-
vex, her optimal supply curve is not upward
sloping. Auctions with downward-sloping sup-
ply curves have been implemented by “demand
aggregation” web sites such as Mercata.com,
LetsBuyIt.com, and eWinWin.com, presumably
reflecting sellers’ economies of scale.13

11 The same allocation rule can be implemented by many
interim mechanisms.

12 This can be seen using the Monotone Selection The-
orem of Paul R. Milgrom and Chris Shannon (1994).

13 Complications arise when the revealed demand curve
intersects the reservation supply curve more than once, in
which case the reservation supply curve alone cannot de-

FIGURE 1. STANDARD OPTIMAL AUCTION
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C. When a Posted Price Is Optimal

When the seller’ s marginal cost is a constant
c, her inverse reservation supply curve S(X) �
m�1(c) is horizontal. Then the optimal mecha-
nism derived in Proposition 1 reduces to a
posted price p* � m�1(c), which maximizes
the expected per capita profit:

(4) p* � arg max
p � �0,v� �

�� p�, �* � �� p*�,

where �� p� � � p � c��1 � F� p��

� �
p

v�

�m�v� � c�f�v� dv.

While the above argument relies on the as-
sumption of increasing marginal revenue, the
optimality of posted pricing is more general:

PROPOSITION 2: If the buyers’ valuations are
independently drawn from a known distribution F,
and C(X) � cX, the posted price p* is an optimal
mechanism among all interim mechanisms.

PROOF:
Since the seller’ s program is additively sep-

arable across buyers, she can restrict attention to
mechanisms in which each buyer i’ s allocation
xi(v) depends only on his own valuation vi. In
particular, in this case the interim constraints
are equivalent to the ex post constraints. Ran-
domized mechanisms are not useful because the
seller’ s problem of choosing a nondecreasing
randomized allocation rule xi : [0, v� ) 3 [0, 1]
to maximize the expected virtual surplus on
buyer i is a linear program, whose solution is

attained at an extreme point, all of which are
deterministic allocation rules. By Lemma 1, the
seller can then use a pricing mechanism, with a
price pi to each buyer independent of others’
announcements. Finally, by (4), p* is an opti-
mal price offer to each buyer.

Even if the marginal cost is not constant, a
posted price becomes optimal asymptotically as
the number n of buyers goes to infinity. For nor-
malization across n, consider the asymptotic set-
ting in which the set of each buyer’s possible
purchases is � � {0, 1/n}. This ensures that the
expected demand at any posted price p is 1 � F(p)
for any n. As n3 �, by the Strong Law of Large
Numbers the empirical demand at price p con-
verges to 1 � F(p) almost surely, and the resulting
profit converges almost surely to p(1 � F(p)) �
C(1 � F(p)) [provided that the cost function C(�)
is continuous]. The asymptotically optimal
posted price can then be defined as

(5) p* � arg max
p � �0,v� �

�� p�, �* � �� p*�,

where �� p� � p�1 � F� p�� � C�1 � F� p��.

The asymptotic optimality of posted pricing
is again the easiest to see in the case of increas-
ing marginal revenue and nondecreasing mar-
ginal cost, the optimal mechanism for which is
described in Proposition 1. Intuitively, as n 3
�, the reported demand curve converges to 1 �
F( p) and the reservation supply curve con-
verges to m�1(C�(X)); therefore the price at
which they intersect converges to p* (see Fig-
ure 2). Thus, the optimal mechanism asymptot-
ically reduces to posting price p*. This
conclusion carries over to a more general setting:

PROPOSITION 3: Suppose that the buyers’
valuations are independently drawn from a
known distribution F, and let D( p) � 1 �
F( p) and R(X) � D�1(X) � X (the revenue
function). Suppose that the cost function C : [0,
1] 3 � is continuous, and that for X* �
D( p*), there exists 	 � �� such that14

termine the optimal quantity. (This does not happen at
demand aggregation web sites, because their dynamic bid-
ding procedures stop once the first intersection is achieved.)
Furthermore, in this case some buyers may be “pivotal,”
meaning that without them it would be optimal to drop some
other buyers so as to switch to a lower intersection point
(perhaps even to shut down to save a fixed cost). In the
pricing mechanism implementing the optimal allocation
rule, pivotal buyers face prices that are different from (3).
See Francesca Cornelli (1996) for a characterization of the
optimal mechanism in the setting with a fixed cost and a
constant marginal cost.

14 Note that when X* � (0, 1), condition (6) implies that 	 �
R�(X*) � C�(X*) (provided that the latter derivative exists).
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(6) X* � arg max
X � �0,1�

�R�X� � 	X�,

X* � arg max
X � �0,1�

�	X � C�X��.

Then the seller’s expected profit in any interim
mechanism with n buyers and � � {0, 1/n}
cannot exceed �*, while her profit from post-
ing price p* converges to �* almost surely as
n 3 �.

PROOF:
Divide the seller’ s expected profit into two

terms, one being as though her marginal cost
were constant and equal to 	, and the other
being E[	X � C(X)] (where X is the quantity
sold by the mechanism). By Proposition 2, the
first term is maximized by a posted-price
mechanism, and the first line in (6) implies
that p* is an optimal posted price, yielding
the maximum value ( p* � 	) X*. As for the
second term, by the second line in (6) it
cannot exceed 	X* � C(X*). Adding up, we
see that the seller’ s expected profits cannot
exceed p*X* � C(X*) � �*. On the other
hand, as noted above, by the Strong Law of
Large Numbers the profit from posting price
p* converges to �( p*) � �* almost surely
as n 3 �.

Condition (6) says that the graphs of R(X) �
R(X*) and C(X) � C(X*) are separated with a
straight line passing through the point (X*, 0)

(see Figure 3).15 By the Separating Hyperplane
Theorem, this condition is weaker than the con-
cavity of the revenue function R(�) and the
convexity of the cost function C(�), which are
assumed in Proposition 1 [as noted in footnote
7, R�(X) � m(D�1(X))].

The asymptotic setting considered in Propo-
sition 3, in which the aggregate expected de-
mand is held fixed, should be distinguished
from the setting in Dov Monderer and Moshe
Tennenholtz (2001) and Zvika Neeman (2001),
in which demand grows proportionally to n
(e.g., � � {0, 1} for any n). In the latter setting,
the expected demand curve in the limit becomes
perfectly elastic at price v�. By posting a price
just slightly below v� and optimally rationing
demand at the price, the seller can extract nearly
all buyer surplus, while realizing almost all
available total surplus as the number of buyers
goes to infinity.16 Monderer and Tennenholtz
(2001) and Neeman (2001) instead propose the
Vickrey-Groves-Clarke mechanism, which the
seller can use to achieve the same profit asymp-
totically even without knowing v�. The present

15 The first line in (6) can also be interpreted as saying
that the “ ironed-out” marginal revenue curve coincides with
R�(X) at X* [since ironing corresponds to the convexifica-
tion of R(�)]. If this does not hold, then profit maximization
requires convexification, as discussed in Bulow and Roberts
(1989). With a large n, this convexification can be achieved
by posting two different prices to different groups of buyers, and
so the seller again need not resort to bidding mechanisms.

16 If v� � �, the seller’ s profits would be unbounded.

FIGURE 2. ASYMPTOTICS WITH KNOWN DISTRIBUTION

FIGURE 3. THE SEPARATION CONDITION
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model offers a better approximation of real-life
situations with many buyers in which the ag-
gregate demand is well known and is downward
sloping, while the individual buyers’ valuations
are not observed by the seller. In such situa-
tions, the Vickrey-Groves-Clarke mechanism
asymptotically reduces to posting the competi-
tive equilibrium price, which is clearly subop-
timal when demand is not perfectly elastic.

D. Extension to Asymmetric Buyers

While we have assumed that all buyers are a
priori identical, much of the analysis extends to
the case where the valuations of different buyers
are independently drawn from different (and
known) distributions. In this case, the optimal
mechanism may no longer be representable with a
supply curve, because a low-valuation buyer can
have a higher virtual valuation than another buyer
with a higher valuation, and so the units may not
be allocated in the order of the buyers’ true valu-
ations. Thus, Proposition 1 no longer holds. We
abstain from describing the optimal mechanism
for the asymmetric case, because an even more
general setting with correlated valuations is exam-
ined in Section III, subsection A, below.

On the other hand, Propositions 2 and 3 can
be generalized to the asymmetric case. With a
constant marginal cost, the optimal mechanism
may post different prices to different buyers—
i.e., engage in third-degree price discrimina-
tion—but still does not use buyers’ bids. The
same is true with a general cost function, pro-
vided that there is only a finite number of ob-
servable buyer types, and there are sufficiently
many buyers of each type with independently
and identically distributed (i.i.d.) valuations so
that their total demand is predictable by the Law
of Large Numbers. If the demand of each type
satisfies the first separability condition in (6)
and the cost function satisfies the second con-
dition in (6), then asymptotically it is again
optimal to use (discriminatory) posted pricing
rather than a bidding mechanism.

III. The Bayes Optimal Mechanism with
Unknown Distribution

Now we turn to the mechanism design prob-
lem in which the distribution F from which the

buyers’ valuations are drawn is unknown. This
section considers the case in which the seller is
endowed with a Bayesian prior over possible
distributions. For example, the seller may know
that the distribution belongs to a parametric
family {F(��
 )}
 � �, and have a prior over the
parameter 
. Note that the buyers’ valuations
(v1, ... , vn), while independent conditional on
F, are correlated from the seller’ s viewpoint.

A. The Case of a General Joint Distribution
of Valuations

We begin by deriving the optimal mechanism
for the case where the buyers’ valuations have
an arbitrary joint distribution, without regard to
the source of their correlation. We again restrict
attention to ex post mechanisms, though this is
no longer without loss (the restriction is moti-
vated in Section VI below). Just as in the inde-
pendent value case, dominant-strategy incentive
compatibility and the binding ex post participa-
tion constraints of zero-valuation buyers pin
down the information rents of each buyer i.
Upon integration by parts, the seller’ s expected
profit can be expressed as the expectation of the
virtual surplus

(7) J�x, v� � �
i

mi �v�xi � C� �
i

xi� ,

where mi �v� � vi �
1 � F̂i �vi�v�i �

f̂ i �vi�v�i �
.

The only difference from the independent value
case is that buyer i’ s virtual valuation mi(vi ,
v�i) is calculated using the conditional distri-
bution and density functions F̂i(��v�i) and
f̂i(��v�i) respectively, and so it depends on other
buyers’ valuations as well as his own. The
seller’ s problem again takes the form of maxi-
mizing the expected virtual surplus subject to
the monotonicity constraint (M).

When the marginal cost is constant, the sell-
er’ s program is additively separable across buy-
ers. With an appeal to Proposition 2, the optimal
mechanism reduces to setting the optimal price
to each buyer using the information gleaned
from other buyers’ bids:
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PROPOSITION 4: If C(X) � cX, then the
Bayes optimal ex post mechanism is a pricing
mechanism with the pricing rule

(8)

pi �v�i � � arg max
p � �0,v� �

� p � c� � �1 � F̂i � p�v�i ��.

For more general cost functions, we identify
conditions under which the monotonicity con-
straint (M) does not bind and so the optimal
allocation rule is obtained by maximizing the
virtual surplus in each state:17

PROPOSITION 5: Suppose that (i) mi(v) is
increasing in vi , (ii) mi(v) � mj(v) implies that
mi(v�i , v�i) � mj(v�i , v�i) for all v�i � vi , and
(iii) C(�) is convex. Then any Bayes optimal ex
post mechanism allocates units to buyers in
descending order of their virtual valuations
while they exceed the incremental cost. Thus,
the optimal quantity X* is described by

m�X*��v� � C�X*� � C�X* � 1� if X* � 0,

m�X*�1��v� � C�X* � 1� � C�X*� if X* � n.

The losers in the mechanism do not pay, and the
price pi paid by a winner i satisfies

(9) mi�pi , v�i �

� max�C�X̂i � � C�X̂i � 1�, m�X̂i�1��pi , v�i �
,

where X̂i is the largest optimal quantity for the
valuation profile ( pi , v�i).

PROOF:
Due to (iii), the proposed allocation rule max-

imizes the virtual surplus in every state. The
allocation rule satisfies (M), because raising a
buyer’ s valuation increases both his virtual val-
uation by (i) and its rank among all virtual

valuations by (ii), thus making him more likely
to receive a unit. (This implies that a random-
ized mechanism would not be useful, by the
same argument as in footnote 10.) According to
(1), each winner i in the mechanism pays the
price pi equal to his lowest bid that would
procure him a unit. When buyer i bids exactly
pi , the seller is indifferent between serving him
and either giving his unit to the first runner-up
or not producing it at all. This is described in
(9), with X̂i representing the optimal quantity
when buyer i is still served in this situation.

Proposition 5 generalizes Proposition 1 to the
case of a general joint distribution of valuations.
The new condition (ii) ensures that buyer i’ s
marginal revenue function crosses buyer j’ s at
most once, and from below, as buyer i’ s valu-
ation increases. With independent valuations, a
buyer’ s virtual valuation depends only on his
own valuation, and so condition (ii) is implied
by condition (i).18

The calculation of the optimal quantity is
straightforward, and in the special case of sym-
metrically and independently distributed valua-
tions studied in Proposition 1 it agrees with (2).
However, the calculation of prices is more com-
plicated than in Proposition 1. In the case of
independent valuations, a reduction in buyer i’ s
bid from vi to pi does not affect the allocations
of other buyers as long as buyer i is still served.
Thus we could take X̂i � X* in the pricing
formula (9), which yields formula (3) for the
symmetric case. In the general correlated case,
however, a reduction in buyer i’ s bid affects
other buyers’ virtual valuations and thus the
quantity sold, even if buyer i still receives a
unit. For this reason, identifying the price to
buyer i now requires solving a system of two
equations with two unknowns, X̂i and pi.

Note that in the optimal mechanism, a buy-
er’ s bid vi has an informational effect: it affects
other buyers’ allocations x�i(v) even when it
does not affect his own allocation xi(v). This

17 Giuseppe Lopomo (2001) offers a related character-
ization of the profit-maximizing ex post mechanism for
selling a single object, the buyers’ valuations for which may
be interdependent.

18 Observe also that when the joint distribution of valu-
ations is symmetric with respect to the buyers (while not
necessarily a product distribution), mi(v) � mj(v) when-
ever vi � vj , and therefore condition (ii) simply says that
the buyers’ virtual valuations are ordered in the same way as
their true valuations.
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informational effect cannot arise in auctions that
are optimal for the standard case of independent
valuations. In such auctions, as well as in most
mechanisms observed in real life (such as those
represented with a supply curve), a buyer’ s bid
can affect other buyers’ allocations only
through his own allocation.

The informational effect identified here also
arises in efficient mechanisms in the case where
the buyers’ valuations are interdependent, stud-
ied by Lawrence M. Ausubel (1999), Partha
Dasgupta and Eric Maskin (2000), and Motty
Perry and Philip J. Reny (2002). For example,
with interdependent valuations, the efficient al-
location of a unit between buyers i and j may
depend on the information of a losing buyer k,
and this dependence cannot be implemented
with a standard auction. Though the present model
has purely private values, a buyer’s valuation does
convey information about other buyers’ valuations
to the seller, which gives rise to the interdepen-
dence of the buyers’ virtual valuations, thus cre-
ating an informational effect of messages in the
profit-maximizing mechanism.19

B. The Case of Affiliated Valuations

The analysis is simplified when the buyers’
valuations are affiliated, as defined by Milgrom
and Robert J. Weber (1982). In this case, con-
dition (ii) of Proposition 5 can be dispensed
with. Indeed, with affiliated valuations, an in-
crease in v�i (weakly) increases the conditional
distribution F̂i(vi�v�i) in the monotone likeli-
hood ratio order, and therefore (weakly) reduces
the distribution’ s hazard rate f̂i(vi�v�i)/(1 �
F̂i(vi�v�i)) (see Louis Eeckhoudt and Christian
Gollier, 1995, Lemmas 1, 2). This implies that

buyer i’ s virtual valuation mi(v) is nonincreas-
ing in v�i , which, together with the proposi-
tion’ s condition (i), implies its condition (ii).

With affiliated valuations, we can also say
more about the pricing rule in the optimal mech-
anism described in Proposition 5. Since an in-
crease in v�i reduces buyer i’ s virtual valuation,
while raising the other buyers’ virtual valua-
tions by the proposition’ s condition (i), buyer i
becomes less likely to receive a unit for any
given vi. By (1), this implies that the pricing
rule pi(v�i) is nonincreasing in v�i. Intuitively,
an increase in v�i raises in a stochastic sense
the posterior distribution of buyer i’ s valuation,
which, coupled with the fact that the other buy-
ers are now more deserving of the good, makes
it optimal to raise the price to buyer i.

When the buyers’ valuations are drawn inde-
pendently from an unknown distribution, they
are affiliated if the family {F(��
 )}
�� of pos-
sible distributions is ordered in the monotone
likelihood ratio order. By symmetry, in this case
the pricing rule pi(�) is now the same for all
buyers. This implies that for any two buyers
with valuations vi � vj in a given valuation
profile v, buyer i faces a lower price than buyer
j because v�i � (vj , v�i � j) is lower than
v�j � (vi , v�i � j). When the valuations are
strictly affiliated, a buyer’ s virtual valuation is
strictly decreasing in the others’ valuations,
and the same chain of arguments implies that
higher-valuation buyers pay strictly lower prices.
Contrast this with the case where valuations are
drawn independently from a known distribution
F, in which, by Proposition 1, all winners pay
the same price.

C. A Parametric Example

Let the buyers’ valuations be drawn indepen-
dently from an exponential distribution:20

F(v�
 ) � 1 � e�
v, with the hazard parameter

 � 0 not known by the seller. To simplify
analysis, suppose that the seller’ s prior over 

lies in the conjugate family to exponential dis-
tributions, which, according to Morris H. De-
Groot (1970, p. 166), consists of gamma

19 To make the analogy precise, imagine that, with vi

representing buyer i’ s private signal, his valuation is given
by mi(v). Then the function J(x, v) in (7) describes the
social surplus, and so Proposition 5 gives the surplus-
maximizing allocation rule. Under the proposition’ s as-
sumptions, this allocation rule satisfies (M), and it is
implementable in an ex post mechanism (as defined by
Chung and Ely, 2001, for the interdependent value case).
However, this mechanism differs from that described in
Proposition 5: since buyer i’ s valuation is now mi(v), his
truthful reporting of vi is induced by charging him price
mi( pi , v�i), where pi is the minimum report procuring him
a unit (characterized in Proposition 5).

20 This demand model has been considered by Jeffrey M.
Perloff and Steven C. Salop (1985).
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distributions. A gamma distribution of 
 is de-
fined by a density function of the form21

��
��, 
� �

�

����

� � 1e�

,

with parameters �, 
 � 0.

More precisely, if the prior distribution of 
 is a
gamma distribution with parameters (�0 , 
0),
then its posterior conditional on a vector v�i of
n � 1 independent draws from F(��
 ) is also a
gamma distribution, with parameters (�, 
) �
(�0 � n � 1, 
0 � ¥j � i vj). The posterior
distribution of vi�v�i can then be calculated as

F̂i �v i�v�i � � �
0

�

F�vi�
���
�v�i � d


� 1 �

�

�
 � vi �
� .

It is easy to verify that the marginal revenue
of this distribution is increasing in vi , thus
condition (i) of Proposition 5 is satisfied. Its
condition (ii) is also satisfied by the argument in
subsection B, because the family of exponential
distributions is ordered in the monotone likeli-
hood ratio order. Thus, the optimal ex post
mechanism for this setting with a convex cost
function is described in Proposition 5.

When the marginal cost is a constant c, the
optimal price to each buyer i solves (8), which
yields

pi �v�i � �
�c � 


� � 1

� ��0 � n � 1

�0 � n � 2�c �

0 � ¥j � i vj

�0 � n � 2
.

In particular, if the seller lacks any prior infor-
mation about the demand parameter 
, she
could use the improper uniform prior on ��

given by parameters (�0 , 
0) � (1, 0), which
yields the pricing rule

pi(v�i) �
n

n � 1
c �

1

n � 1
¥j � i vj .

Observe that a similar pricing rule obtains if,
instead of updating a Bayes prior, the seller uses
maximum likelihood estimation of parameter 
.
The log-likelihood of a vector v�i is

�n � 1�log 
 � 
¥j � ivj ,

which is maximized by


̂�v�i � � � 1

n � 1
¥j � i vj��1

.

If the seller assumes that buyer i’ s valuation
is distributed according to the estimated pa-
rameter, i.e., takes F̂i(��v�i) � F(��
̂(v�i)),
then program (8) yields the pricing rule

pi�v�i� � c � 1/
̂ � c �
1

n � 1
¥j � i vj .

That is, each buyer is offered a price equal to the
marginal cost plus the average of other buyers’ bids.

Note that as n3 �, under both Bayesian and
maximum likelihood estimation the prices con-
ditional on a “ true” parameter value 
0 converge
to the optimal monopoly price for this parame-
ter value. Indeed, by the Strong Law of Large

Numbers,
1

n � 1
¥j� i vj converges almost surely

to E[v�
0] � 1/
0, and therefore pi(v�i) con-
verges almost surely to c � 1/
0, which is the
price solving the profit-maximization program
(4) for the true distribution F(��
0). This im-
plies that, as n 3 �, the seller’ s expected profit
converges to the maximum profit from monop-
oly pricing with known demand.

IV. Convergence

The optimal mechanism derived in Section
III depends on the seller’ s prior. However, as
the example in subsection C illustrates, for a
large n the prior is overwhelmed by the infor-
mation obtained from the buyers’ bids. As n 3
�, the seller learns the distribution F from
which the buyer’ s valuations are drawn, the
prices converge to the optimal posted price for
F, and the resulting profit converges to the
optimal monopoly profit given F. General for-21 Where �(�) � �0

� z� � 1e�z dz.
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mulations of the convergence result are given in
this section.

We adopt the “ frequentist” approach of clas-
sical statistics, assuming the existence of a
“ true” distribution to be estimated, and examin-
ing convergence conditional on this distribu-
tion.22 This approach allows us to dispense with
the prior altogether, letting F̂i(��v�i) stand for
any consistent estimator of the true distribu-
tion F, and not necessarily the Bayes poster-
ior distribution. For simplicity, from now on
we restrict attention to the symmetric case in
which the same estimating function F̂(���) is
used for all buyers. The simplest convergence
result obtains for the case of constant marginal
cost:23

PROPOSITION 6: Suppose that C(X) � cX;
that for each vi � [0, v� ), F̂�vi�v�i � ¡

p
F�vi � as

n3 �; and that vi �1 � F̂�vi�v�i �� ¡
p

0 as vi ,
n 3 �.24 Then as n 3 �, the expected per
capita profit in the pricing mechanism solving
program (8) converges to the maximum ex-
pected per capita profit �* achievable with F
known [given by (4)].

For more general cost functions, a similar
convergence result can be established for the
asymptotic setting in which each unit contains
quantity 1/n, under the assumptions of Propo-
sition 5 ensuring that the optimal mechanism
maximizes the virtual surplus state-by-state:

PROPOSITION 7: Suppose that as n 3 �,
for each v i � [0, v� ), F̂�v i�v�i � ¡

p
F�v i �,

f̂�vi�v�i � ¡
p

f�vi �, and mi(vi , v�i) � vi �
(1 � F̂(v i�v�i))/ f̂(v i�v�i) is asymptotically
uniformly integrable.25 Suppose also that condi-
tions (i)–(iii) of Proposition 5 hold and C: [0,

1] 3 � is continuous. Then as n 3 �, the
expected profit in the mechanism described in
Proposition 5 with n buyers and � � {0, 1/n}
converges to the maximum expected profit �*
achievable asymptotically with F known [given
by (5)].

When the distribution estimator F̂(��v�i) is
a posterior distribution obtained by Bayes up-
dating of a parameter 
 whose prior distribution
is �, the consistency assumptions of Proposi-
tions 6 and 7 are verified for �-almost all pa-
rameter values using Doob’s Consistency
Theorem. The Theorem states that the Bayes
posterior distribution 
�v�i converges to the
true parameter value 
0 weakly, in probability,
as n3 �. This in turn implies that the posterior
distribution and density functions, F̂(vi�v�i) �
E
�v�i

F(vi�
 ) and f̂(vi�v�i) � E
�v�i
f(vi�
 ), are

consistent estimators of the true distribution and
density functions, respectively.

Propositions 6 and 7 are also applicable to
non-Bayesian estimation. For example, the
maximum likelihood estimator of the parame-
ter,

(10) 
̂�v�i � � arg max

 � �

�j � i f�vj�
�,

is consistent under standard assumptions, lead-
ing to the consistent distribution and density
estimators F̂(� �v�i) � F(� �
̂(v�i)) and f̂(� �v�i) �
f(� �
̂(v�i)), respectively. Alternatively, the seller
can use nonparametric estimation, the simplest
example of which is given by the empirical
distribution of v�i:

(11) F̂�v�v�i � �
1

n � 1
��j � i : vj � v
�.

Consistency of this estimator is established by
the Glivenko-Cantelli Theorem.

Application of Proposition 7 to nonparamet-
ric estimation may be problematic because the
estimation would typically yield virtual valua-
tion estimates mi(�) that fail assumptions (i) and
(ii) of Proposition 5, in which case the proposed
allocation rule may fail (M). For example, an
increase in vj can raise the hazard rate of the
distribution estimate F̂(v�v�i), thus raising
buyer i’ s virtual valuation mi(v) to such an

22 If convergence is uniform across possible distribu-
tions, then it also implies the convergence of the uncondi-
tional expectation of profit given any Bayesian prior over
possible distributions.

23 The statistical concepts and results used below can be
found in A. W. van der Vaart (1998). The proofs of this
section’ s results are given in the Appendix.

24 The last assumption is vacuous when v� � �.
25 The last assumption holds, in particular, when for each

vi , Ev�i�F(mi(v))2 is uniformly bounded across n. This can
be easily verified in the parametric example in Section III,
subsection C.
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extent that it becomes optimal to reallocate
buyer j’ s unit to buyer i, violating (M) for buyer
j. The problem can be avoided using instead the
following mechanism, inspired by Goldberg et
al. (2001) and Baliga and Vohra (2002): parti-
tion buyers into two equal-sized subsets S1, S2,
and offer each subset S � S1, S2 an optimal
price against the distribution estimate using the
bids from the other subset:

pS �vN � S � � arg max
p � �0,v� �

�p�1 � F̂� p�vN � S ��

� C�1 � F̂� p�vN � S ���.

Provided that F̂(��vN � S) is a consistent estima-
tor of the true distribution F, and the profit-
maximizing price p* defined in (5) is unique, by
the Theorem of the Maximum the prices
pS(vN � S) to both groups S � S1, S2 converge to
p* in probability, and therefore the expected
profit converges to �*. However, this pricing
mechanism is not informationally efficient, for
in setting each price it ignores the information
received from half of the buyers.

V. Rates of Convergence

Convergence to the optimal per capita
profit �* is not the only useful asymptotic
criterion. In fact, approximating �* with a
large number n of buyers is not at all hard.
For example, the seller could experiment on
some buyers by offering them different
prices, as in Aghion et al. (1991) and Keller
and Rady (1999). Alternatively, she could ask
some buyers to report their valuations, re-
fraining from selling to them to ensure truth-
ful reporting. Either experimentation on or
surveying of a sufficiently large “ test group”
of buyers would reveal the demand curve and
enable the seller to set an approximately op-
timal price to the remaining buyers. At the
same time, when n is large, the size of the
“ test group” can be small relative to n, ensur-
ing that the per capita profit approaches �*.
This section compares the asymptotic perfor-
mance of mechanisms such as surveying and
experimentation to that of the optimal mech-
anism, using as the criterion the rate of con-

vergence to the optimal monopoly profit �*
as n 3 �.26

It is clear that no mechanism can achieve
uniformly faster profit convergence on a set of
distributions F than the Bayes optimal mecha-
nism for a prior concentrated on this set (for
otherwise it would achieve a higher expected
profit than the supposedly optimal mechanism
for n large enough). In fact, surveying and ex-
perimentation mechanisms are likely to have a
slower convergence rate than the optimal mech-
anism because they both ignore useful infor-
mation in setting prices. For example, both
mechanisms are sequential pricing mechanisms,
which set the price to a given buyer using
only information obtained from the preced-
ing buyers, rather than from all the other
buyers. In addition, while the optimal sequential
pricing mechanism would offer each buyer i
the optimal price pi (v1, ... , vi � 1) given the
preceding buyers’ reported valuations,27 both
experimentation and surveying sacrifice profits
on the first buyers (by setting a suboptimal
price to them or not selling to them at all) in
order to acquire information about their
valuations.

We examine this intuition in the simple case
in which the marginal cost is a constant c, and
so the seller’ s maximum expected profit �* is
given by (4). The expected loss on a given
buyer i when his price p(v�i) is determined
from n � 1 other buyers’ bids is

Ln � �* � Ev�i�F ��� p�v�i ���.

By Proposition 6, Ln 3 0 as n 3 �. We
examine the rate of this convergence using the

26 The same asymptotic criterion for mechanism design
with many agents is adopted by Thomas A. Gresik and
Mark A. Satterthwaite (1989) and Tymon Tatur (2001), but
their objective is efficiency rather than the designer’ s
profits.

27 For example, each buyer i could be asked to report his
valuation after deciding whether to buy at the quoted price
pi(v1, ... , vi � 1). However, recall from the discussion at the
end of Section I that for buyer i to have a strict incentive to
report truthfully, the price pi(v1, ... , vi � 1) should not be
revealed to him until after his report, and he should receive
the good at the revealed price if and only if his reported
valuation exceeds the price.
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following terminology: Two sequences {�n}n�1
�

and {
n}n�1
� have the same convergence rate if

there exist two positive numbers a� , a� such that
�n/
n � [a� , a� ] � � for n large enough. The
two sequences satisfy the stronger property of
being asymptotically proportional, written as
�n � 
n , if �n/
n 3 a � (0, ��) as n 3 �.

The convergence rate of Ln will depend on
how large the family {F(��
 )}
 � � of possible
demand distributions is. We consider three
cases in turn: (1) hypothesis testing, in which �
is a finite set of parameters (“ simple hypothe-
ses” ), (2) parametric estimation, in which � is
a Euclidean (finite-dimensional) parameter
space, and (3) nonparametric estimation, in
which � is an infinite-dimensional space (for
example, including all distribution functions of
sufficient smoothness). Suppose without loss of
generality that all distributions in the family are
distinct, and let 
0 denote the true parameter
value, so that the true distribution is F(��
0) �
F(�).

A. Hypothesis Testing

In this case, the optimal mechanism
achieves exponential convergence to the op-
timal monopoly profit as n 3 �. For exam-
ple, the maximum likelihood estimator given
by (10) selects a false hypothesis 
̂(v�i) � 
0
with an exponentially small probability (this
follows from Chernoff ’ s Theorem—see, e.g.,
Robert J. Serfling, 1980, Sec. 10.3). There-
fore, offering buyer i the optimal price
p(v�i) � p*(
̂(v�i)) against this estimator,
where

(12) p*�
� � arg max
p � �0,v� �

� p � c��1 � F� p�
��,

yields exponentially small expected loss. Since
this pricing mechanism is also available to a
Bayesian decision maker, the expected loss in
the Bayes optimal mechanism must converge to
zero at least as fast conditional on each positive-
probability parameter value 
. In fact, the ex-
pected loss in the Bayes optimal mechanism
is exponentially small because for any full-
support prior, the expected posterior probabili-
ties of false hypotheses shrink exponentially
(see, e.g., Erik N. Torgersen, 1991, Sec.

1.4).28 Thus, under both Bayesian and maxi-
mum likelihood estimation, the expected per
capita loss Ln satisfies

(13) log Ln � �n.

On the other hand, the expected per capita loss
in any sequential pricing mechanism is at least of
the order 1/n, because the mechanism sets a price
to buyer 1 without the benefit of any information.
Thus, sequential pricing mechanisms converge
exponentially slower than the optimal mechanism.
The optimal sequential pricing mechanism in fact
achieves convergence rate n�1, because setting
price p(v1, ... , vi�1) � p*(
̂(v1, ... , vi�1)) to each
buyer i yields expected loss Li on this buyer, hence
the total expected loss is bounded above by
¥i � 1

� Li � �, due to (13).
Experimentation can only perform worse

than the optimal sequential pricing mechanism
because it uses only past buyers’ purchases
rather than their reported valuations. Here, how-
ever, optimal experimentation achieves the
same convergence rate as the optimal sequential
pricing mechanism, under the generic condition
F( p*(
�)�
0) � F( p*(
�)�
 ) for all 
, 
� � �.
To see this, note that the seller can offer each
buyer the optimal price p*(
 ) given the maxi-
mum likelihood estimate of 
 that uses only the
past purchase observations at the most fre-
quently set price. Since there are only ��� pos-
sible prices, buyer i’ s price will be based on at
least  (i � 1)/��� i.i.d. purchase observations.
A Chernoff ’ s Theorem argument then again
implies that the expected loss Li on buyer i is
exponentially small in i, and therefore ¥i�1

� Li
� �, hence the per capita expected loss
1

n
¥i � 1

n Li converges to zero at rate n�1.

B. Parametric Estimation

Assume that p* � p*(
0) � 0 is a unique
solution to the expected profit-maximization

28 Under the second-order Taylor expansion (14) below,
the minimization of Bayesian expected loss yields a price
error p(v�i) � p*(
0) that is asymptotically proportional to
the seller’ s posteriors on false hypotheses, hence the ex-
pected loss is proportional to the square of these posteriors.
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program (4). The first-order condition for the pro-
gram can be written as m(p*) � c, and the second-
order condition as m�(p*) � 0. Assume that in fact
m�( p*) � 0, in which case the second-order
Taylor expansion of � around p* yields

(14)

�* � �� p� � A� p � p*�2 � o�� p � p*�2�,

where A � �1
2

��� p*� � m�� p*�f� p*� � 0.

This implies that the expected loss on buyer i is
asymptotically proportional to the squared price
error, E( p(v�i) � p*)2.

Suppose that the seller offers buyer i the
optimal price (12) against the maximum likeli-
hood estimator (10) of the parameter: p(v�i) �
p*(
̂(v�i)). Suppose also that the function
p*(
 ) is uniquely defined in a neighborhood of

 � 
0 , with the gradient p*
(
0) � 0.29 It is
well known that under standard regularity con-
ditions, �n(
̂(v�i) � 
0) is asymptotically
normal with zero mean and a nondegenerate
covariance matrix (see van der Vaart, 1998,
Sec. 5.5). By the “delta method” based on the
first-order Taylor expansion of p*(
 ) around 
0
(see van der Vaart, 1998, Theorem 3.1),
�n( p(v�i) � p*) is also asymptotically nor-
mal with zero mean and a positive variance. By
the Bernstein-von Mises Theorem, the same
asymptotic normality holds also for the Bayes
optimal price p(v�i), which can be viewed as
the Bayes point estimate of the optimal price p*
with the loss function (14). Therefore, in both
cases, E( p(v�i) � p*)2 is asymptotically pro-
portional to 1/n, hence by (14), the per capita
expected loss is

Ln � n�1.

The optimal sequential pricing mechanism
has a slower convergence rate. Indeed, since the
expected loss on buyer i in this mechanism is
Li , the per capita expected loss is

1

n �
i � 1

n

Li �
1

n �
i � 1

n 1

i
�

1

n �
1

n di

i
�

log n

n
.

(The first proportionality is by Cesàro’ s Theo-
rem and the second by the Integral Test for
series—see Thomas John I’Anson Bromwich,
1931.) Thus, here sequentiality slows down
convergence by the factor log n. Optimal ex-
perimentation may in fact achieve this conver-
gence rate: Intuitively, even if the seller sets the
myopically optimal price to each buyer on the
basis of past purchase observations, the price
will eventually arrive in a neighborhood of the
optimal price p* in which the partial derivative
F
( p�
 ) is bounded away from zero, and so the
amount of information about 
 received from a
purchase observation is bounded below. Then
the expected loss on buyer i is asymptotically
proportional to 1/i, yielding again the expected
per capita loss of the order of n�1log n.

C. Nonparametric Estimation

The simplest nonparametric distribution esti-
mator F̂(v�v�i) is the empirical distribution of
the other buyers’ valuations, given by (11). The
price p(v�i) solving program (8) against this
distribution is an “M-estimator” of the correct
price p* (see van der Vaart, 1998). Kislaya
Prasad (2001) shows that the distribution of
n1/3( p(v�i) � p*) converges to a distribution
with a finite positive variance. Under the as-
sumptions of the previous subsection, (14) implies
that the expected per capita loss Ln � n�2/3.

Faster convergence rates can be achieved us-
ing kernel estimation of the density function f,
provided that f is smooth. For example, Charles
J. Stone (1983) shows that if f is known to be r
times continuously differentiable, then the op-
timal uniform probabilistic convergence rate of
the kernel density estimator f̂(��v�i) to the true
density f is (n�1log n)r/(2r � 1). This implies
that the optimal price against the estimated dis-
tribution converges in probability to p* at least
as fast, and therefore by (14) the expected per
capita loss satisfies

Ln � O�� n

log n�
��� , where � �

2r

2r � 1
� 1.

29 By the Implicit Function Theorem, both assumptions
hold when m
( p*�
0) � 0, where m(v�
 ) � v � (1 �
F(v�
 ))/f(v�
 ).
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Optimal sequential pricing mechanisms may in
fact achieve the same convergence rate. For ex-
ample, suppose that Ln � (n/log n)�� or Ln � n��,
with � � (0, 1) (recall that empirical distribution
estimation yields the latter with � � 2⁄3 ). In both
cases, Cesàro’s Theorem implies that

lim
n3�

nLn

¥i � 1
n Li

� lim
n3�

�n � 1�Ln � 1 � nLn

Ln � 1

� 1 � � � 0.

Thus,
1

n
¥i � 1

n Li � Ln ; i.e., the expected per

capita loss in the optimal sequential mechanism
converges at the same rate in as in the fully
optimal mechanism.

The optimal experimentation mechanism
would be very difficult to characterize in this
setting. Intuitively, it appears that its conver-
gence rate may be slower, because the early
purchases at prices that are far from p* will
prove useless for fine-tuning the price around p*.

VI. Justifying Ex Post Mechanisms

If the ex post constraints (DIC) and (EIR) are
relaxed to the corresponding interim constraints
(BIC) and (IIR), the seller is typically able to
extract all buyer surplus, while implementing
the surplus-maximizing allocation. Cremer and
McLean (1988) show how this can be done,
even while satisfying (DIC) [but not (EIR)].
Namely, the seller can employ the Vickrey-
Groves-Clarke mechanism, but in addition
charge each buyer i a participation fee �i(v�i)
that depends on other buyers’ reports. For a
generic joint distribution of valuations, the fee
function �i(�) can be chosen so that the ex-
pected interim payoff of buyer i is zero no
matter what valuation vi he has.30

Neeman (2002) notes that the surplus extrac-

tion mechanisms of Cremer and McLean (1988)
exploit a one-to-one correspondence between a
buyer’ s own valuation and his belief about the
others’ types. In a more general information struc-
ture, two different types of buyer i with different
valuations may share the same beliefs about the
others’ types, in which case it is impossible to
fully extract the information rents of both types
of buyer i. In the extreme case in which a buyer’s
valuation does not constrain his beliefs about
others, any mechanism that is robust to the
buyers’ beliefs (as Wilson, 1987, calls it, detail-
free) must be an ex post mechanism, which is
formally shown by John O. Ledyard (1978) and
Dirk Bergemann and Stephen Morris (2001).

To be sure, if buyers’ beliefs stem from their
information about each other’ s valuations, the
“second-best” optimal mechanism, rather than
being detail-free, will elicit these beliefs. For
example, if buyer i knows the distribution F
from which other buyers’ valuations are drawn,
the mechanism can ask this buyer to set the
optimal monopoly price to the other buyers.
However, the seller may be wary of using this
mechanism if she is not sure how well-informed
buyer i is about F. For the same reason, she
might also be wary of using the Cremer-
McLean mechanism described above. More
generally, a seller who is “ ignorant” about the
buyers’ knowledge of each other’ s valuations
(while being confident that they are drawn in-
dependently from an unknown distribution)
may be concerned with the mechanism’s worst-
case performance over all information structures. I
conjecture that such worst-case performance is
maximized by an ex post mechanism that elicits
only the buyers’ valuations and not their beliefs.

VII. Conclusion

This paper has examined the profitability of
bidding mechanisms relative to posted pricing.
The advantage of bidding mechanisms is that
they create interdependence among buyers,
whereby one buyer’ s bid vi affects other buyers’
allocations x�i. In the standard auction theory
setting in which the buyers’ valuations are in-
dependently drawn from known distributions,
interdependence is desirable to the extent that
the seller’ s cost is nonseparable across buyers
(in the extreme case, the seller has a capacity

30 For example, consider the parametric setting of Sec-
tion III, subsection C, with C(X) � 0 (so that the Vickrey-
Groves-Clarke mechanism gives the good for free to all
buyers). It can be verified that in this setting, charging buyer
i the fee �i(vj) � �0vj � 
0 (which depends on the report
of another buyer j � i) ensures that his expected surplus in
the mechanism is vi � E[�i(vj)�vi] � 0 for all vi.
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constraint). Indeed, a buyer’ s bid vi affects his
allocation xi , which due to interactions in the
seller’ s cost function affects the other buyers’
optimal allocations x�i. However, this reason-
ing does not apply when the seller’ s marginal
cost is either constant or little affected by a
single buyer (e.g., when there are many small
buyers). In these practically important cases,
interdependence is not useful, hence optimal
auctions do not improve upon posted pricing in
the standard setting.

Interdependence becomes useful, however,
when the buyers’ valuations are correlated from
the seller’ s viewpoint, and in particular when
they are drawn independently from an unknown
distribution. In this case, one buyer’ s bid vi
conveys information to the seller about other
buyers’ valuations v�i , and therefore affects
their optimal allocations x�i even when it does
not affect the buyer’ s own allocation xi. The
optimal mechanism is thus qualitatively differ-
ent from standard auctions (in particular, it can-
not be represented with a supply curve). Rather,
it resembles (but differs from) the efficient
mechanisms suggested by Ausubel (1999), Das-
gupta and Maskin (2000), and Perry and Reny
(2002) for the case of interdependent values.

The mechanisms suggested in the present paper
satisfy Wilson’s (1987) desideratum of being
“detail-free,” i.e., robust to buyers’ beliefs about
each other’s valuations. This is ensured by impos-
ing the “ex post” constraints of dominant-strategy
incentive compatibility and ex post individual ra-
tionality, which rule out the surplus extraction
schemes proposed by Cremer and McLean (1988).

Another dimension of detail-freeness is ro-
bustness to the seller’s beliefs about buyers’
valuations. The rationale for this kind of robust-
ness is not as strong: if the seller has some prior
information about the distribution of buyers’
valuations (for example, from a history of sell-
ing similar products), there is no reason not to
utilize it in designing the mechanism. At the
same time, it is useful to have mechanisms that
can be used even when the seller has “no idea”
of the distribution from which the buyers’ val-
uations are drawn. Both kinds of mechanisms
are suggested in the present paper. While the
Bayes optimal mechanism utilizes the seller’ s
prior, this prior become irrelevant with a large
number of buyers, and asymptotically the seller

does just as well using classical statistical esti-
mation of demand. Non-Bayesian knowledge
about the distribution, such as that of its
smoothness or functional form, can also be used
to accelerate convergence to optimal monopoly
profits. Thus, the paper provides a flexible
framework allowing the utilization of different
kinds of prior knowledge, Bayesian or non-
Bayesian, in designing the optimal mechanism.

An important concern for the practical imple-
mentation of any novel economic mechanism is
whether its participants can understand how the
mechanism works. However, a buyer participating
in a mechanism proposed in this paper does not
need to understand the intricacies of the pricing
formula: as long as he believes that his own bid
will not affect the price he ends up facing, he will
find it optimal to bid his valuation. Of course, it is
crucial that the seller’s commitment not to base
the price offered to a buyer on his own bid be
credible. The same commitment issue arises in
second-price auctions, and usually it is success-
fully resolved in real life. For example, eBay.com
allows buyers to submit proxy bids, effectively
converting the English auction into a second-price
auction. The web site explains to buyers that since
a buyer’s proxy bid will not be used to raise the
price above the minimum necessary for him to
win the auction, he should bid his true valuation
for the object. There is no reason for the same
explanation not to be effective for the mechanisms
proposed in this paper.

The proposed mechanisms could be made
more transparent by allowing buyers to submit
and raise their bids over time, while observing
the current price they face. Many Internet pric-
ing mechanisms are realized in this dynamic
fashion.31 An interesting distinguishing feature
of our mechanism is that in its dynamic realiza-

31 A downside of such transparency is that it facilitates tacit
collusion among buyers (the same is true of other dynamic
mechanisms, such as the English auction). For example, at a
bid profile at which each buyer receives a unit, no buyer has a
strict incentive to raise his bid, even if it is below his valuation.
He may even strictly prefer not to raise his bid to avoid
retaliation by other bidders. The rules may have to be modified
to reward buyers for breaking such collusive equilibria (see,
e.g., the suggestions in McAdams, 2002). Note that collusive
equilibria are unlikely in the one-shot mechanism, since a
buyer with sufficient uncertainty about others’ behavior will
find it strictly optimal to bid truthfully.
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tion, the price facing a buyer can either rise or
fall as demand grows. This contrasts with stan-
dard auctions, in which price can only rise as
demand grows, and with “demand aggregation”
mechanisms, in which it can only fall.

The present analysis can be extended in sev-
eral directions. One extension is to allow buyers
to demand more than one unit. The optimal
mechanism would in general involve second-
degree price discrimination, charging each
buyer different prices for different units, as in
the model of Maskin and John Riley (1984).
When the seller’ s marginal cost is constant, her
problem is again additively separable across
buyers, and she should offer each buyer the
optimal nonlinear tariff using the information
inferred from other buyers’ reported prefer-
ences. It should be kept in mind, however, that
unless the buyers’ preferences are seriously re-
stricted a priori (say, to a one-dimensional
domain with a single-crossing property), com-
puting the optimal tariff may be quite difficult.

Another possible extension is the addition of
value interdependence (i.e., a common-value
component) among buyers, which can be ana-
lyzed using Chung and Ely’ s (2001) concept of
ex post implementation. The buyers in this set-
ting may need to submit more complex bids.
For example, with unit demands, they could
report functions describing how their valuations
depend on those of others, as in the mechanism
of Dasgupta and Maskin (2000).

Finally, note that the mechanisms proposed in
this paper typically charge different buyers differ-
ent prices for identical units. This occurs because
the price to each buyer is calculated upon exclud-
ing this buyer’s bid. However, I conjecture that a
uniform-pricing mechanism in which the price is
calculated using all buyers’ bids would work just
as well when the number of buyers is large. In-
deed, each buyer will then realize that his bid’s
effect on the price is very small, and therefore will
bid close to his true valuation.

APPENDIX: PROOFS OF PROPOSITIONS 6 AND 7

PROOF OF PROPOSITION 6:
Let �i( p�v�i) denote the objective function

in (8). If the seller uses the pricing rule p(v�i)
solving (8), her expected loss relative to �* on
buyer i given v�i is bounded above as follows:

(A1) �* � ��p�v�i ��

� ��� p*� � �i �p*�v�i ��

� ��i �p*�v�i � � �i �p�v�i ��v�i ��

� ��i �p�v�i ��v�i � � �� p�v�i ���

� 2 sup
p � �0,v� �

��� p� � �i �p�v�i ��.

In words, the loss is bounded above by twice the
supremum absolute difference between the ob-
jective functions in (5) and (8). This supremum
absolute difference can in turn be bounded
above as follows:

sup
p � �0,v� �

��� p� � �i �p�v�i ��

� M sup
p � �0,v� �

�F̂� p�v�i � � F� p��

� sup
p � M

�p�1 � F̂� p�v�i ���

� sup
p � M

�p�1 � F� p���

for any M � 0. A simple extension of Lemma
2.11 in van der Vaart (1998) shows that, by the
consistency of F̂(vi�v�i), the first term above
goes to zero in probability as n 3 � for any
fixed M. The other assumption on F̂(vi�v�i)
implies that the second term goes to zero in
probability as M, n3 �. Finally, the third term
goes to zero as M 3 � due to the assumption
that E[v�F] � �. Putting together, we see that
for all �, � � 0 we can find M � M(�, �) and
a corresponding n̂(�, �) such that for all n �
n̂(�, �), each term is less than �/3 with proba-
bility at least 1 � �/3. This implies that
Pr{supp � [0,v� )��( p) � �i( p�v�i)� � �} � 1 �
� for n � n̂(�, �), which by (A1) implies that
�� p�v�i �� ¡

p
�* as n 3 �. Since �( p(v�i)) is

bounded, it follows that the expected profit
Ev�i�F[�( p(v�i))] 3 �* as n 3 �.

PROOF OF PROPOSITION 7:
Note that the proposition’ s assumptions ver-

ify those of Proposition 3, which implies that
the maximum expected profit with F known
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converges to �* as n 3 �. Therefore, it suf-
fices to show that the expected loss from not
knowing F goes to zero as n 3 �.

The allocation rule described in Proposition 5
maximizes the virtual surplus (7) in each state,
and therefore maximizes its expectation
Ev�FJ(x(v), v). The seller’ s expected profit un-
der the true distribution F is instead

Ev�F� �
i

mF �vi �xi �v� � C� �
i

xi �v��� ,

where mF(vi) � vi � (1 � F(vi))/f(vi). By an
argument similar to that in the beginning of
the proof of Proposition 6, the seller’ s expected
loss from not knowing F is bounded above by
twice the supremum absolute difference be-
tween the two expectations over all allocation
rules x(�). Using symmetry, this supremum ab-
solute difference is in turn bounded above as
follows:

sup
x:�0,v� �n3 �0,1/n
n

	Ev�F� �
i

�mi �v� � mF �vi ��xi �v��	
� Ev�F�mi �v� � mF �vi ��.

The consistency of F̂(vi�v�i) and f̂(vi�v�i) im-
plies that for each vi , mi �v� � mF �vi � ¡

p
0 as

n 3 �. Since the absolute value of the differ-
ence is asymptotically uniformly integrable by
assumption, Theorem 2.20 in van der Vaart
(1998) implies that Ev�i�F�mi(v) � mF(vi)� 3
0 as n 3 �. Take expectation Evi�F using
Lebesgue’ s Dominated Convergence Theorem
to see that the right-hand side of the above
inequality goes to zero.
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