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Abstract

The paper considers the communication complexity (measured in bits or real num-

bers) of Nash implementation of social choice rules. A key distinction is whether we

restrict attention to the traditional one-stage mechanisms or allow multi-stage mech-

anisms. For one-stage mechanisms, the paper shows that for a large and important

subclass of monotonic choice rules �called �Intersection Monotonic��that also sat-

isfy �the no veto power� condition and have N � 3 agents, the total message space

size required for one-stage Nash implementation only slightly exceeds that needed for

�veri�cation�(with honest agents who are privately informed about their preferences).

According to Segal (2007), the latter is the size of the space of minimally informa-

tive budget equilibria verifying the choice rule. However, multi-stage mechanisms can

yield a drastic reduction in communication costs. Namely, for an important subclass of

intersection-monotonic choice rules (which includes rules described by coalitional block-

ing such as exact or approximate Pareto e¢ ciency, stability, or envy-free allocations)

we construct a three-stage Nash implementation mechanism whose communication is

bounded by describing �ve alternatives plus sending 4N log2N bits. This mechanism
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brings about an exponential reduction in the communication complexity of Nash imple-

mentation for discrete communication, or a reduction from in�nite- to low-dimensional

continuous communication.

1 Introduction

This paper considers the problem of Nash implementation of social choice rules �i.e., de-

signing a mechanism whose set of Nash equilibria equals the set of socially desirable alter-

natives. As shown by Maskin [14], any Nash implementable choice rule must satisfy the

property of �monotonicity,� which, together with the �No Veto Power� (NVP) property,

also proves su¢ cient for Nash implementation with N � 3 agents. The su¢ ciency part is

shown by constructing a �canonical�mechanism to implement the choice rule. The canonical

mechanism has been criticized for its enormous communication burden: Indeed, it requires

each agent to describe the preferences of all the agents (along with an integer), which is

impractical in most settings. A number of papers have demonstrated that Nash implemen-

tation can be achieved with simpler mechanisms, even much simpler in some special settings.

[9, 13, 15, 20, 17, 3, 23, 25, 24, 5, 21, 4]. However, these papers have not considered the prob-

lem of minimizing the communication cost of Nash implementation, except in several special

settings (such as Pareto, Walrasian, or Lindahl correspondences in classical economies with

convex preferences).1 ;2

The present paper o¤ers two contributions to this literature: (1) a mechanism for one-

stage Nash implementation at a close to minimal possible communication cost, and (2) a

three-stage mechanism for Nash implementation with a drastically lower communication

cost. The construction works not for all implementable choice rules, but for a large class of

them (which includes all speci�c monotonic choice rules examined previously). Our approach

follows the program suggested by Williams [26], which relates the message space needed for

1Note that if the agents were honest, then under symmetric information we could simply ask one agent

to report a socially desirable outcome, which would entail a low communication cost. Any additional com-

munication cost of Nash implementation can thus be interpreted as the �communication cost of sel�shness.�

Fadel and Segal [7] examine the communication cost of sel�shness for (partial) Bayesian-Nash and ex post

implementation.
2The canonical mechanism has also been criticized for its use of integer or modulo games to eliminate

undesirable equilibrium outcomes. (see, e.g., [12]). While in a number of settings such tricks can be avoided,

in this paper we do not examine this issue, for the communication cost of modulo games is fairly low.
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Nash implementation to that needed for verifying the desirability of an alternative when

agents know their preferences privately but can be trusted to report honestly. At �rst

glance, the two problems appear quite di¤erent: under Nash implementation, sel�sh agents

with symmetric information send messages, while under veri�cation, honest agents with

private information respond to a message announced by a hypothetical omniscient oracle.

Yet, as observed in [16] and [26], Nash implementation can be viewed a special case of

veri�cation, since each agent�s acceptance of (lack of pro�table deviations from) a candidate

Nash equilibrium depends only on his own preferences. This observation implies that the

communication cost of Nash implementation is bounded below by that of veri�cation.3

This paper further exploits the relation between Nash implementation and veri�cation,

using concepts and results developed in Segal [22]. The latter paper focuses on a large and

important subclass of monotonic choice rules, called �Intersection Monotonic� (IM), and

shows that such rules are veri�ed with minimal communication by announcing a �minimally

informative verifying budget equilibrium.�Such an equilibrium describes a proposed alter-

native and o¤ers each agent a budget set �an appropriately restricted subset of alternatives.

The fact that the proposed equilibrium is indeed an equilibrium in a given state �i.e., that

each agent cannot improve upon the proposed alternative within his budget set �must ver-

ify the social desirability of the proposed alternative in this state. The budget sets must

be chosen carefully: on the one hand, they must be large enough for the equilibrium to

achieve veri�cation; on the other hand, they must not be too large so that the equilibrium

does not reveal more than necessary about the agents�preferences. [22] gives an algorithm

for constructing such �minimally informative verifying budget equilibria�for any given IM

choice rule.

To apply these ideas to Nash implementation, observe that a Nash equilibrium of a

mechanism describes for each agent a �budget set� consisting of the alternatives he could

achieve by unilateral deviations, and that the described budget equilibrium must verify that

the alternative is socially desirable. The only di¤erence from the veri�cation scenario is that

an agent�s budget set must be described by the other agents rather than by the hypothetical

3Williams [26] does not attempt a reverse comparison of the communication costs of implementation

and veri�cation: while he �embeds�a veri�cation protocol into an implementation mechanism under some

conditions, he admits that �the strategy space in our construction is rather large, relative to the size of the

message space [used for veri�cation]. Clearly, if the goal is to devise games with small strategy spaces, then

the embedding itself is a key step [...] Within the context of economic theory, this issue has not yet been

studied.�Such an embedding is constructed in our Mechanism 1 below.
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omniscient oracle. This observation leads us to construct a Nash implementation mechanism

with small strategy spaces, in which exactly two agents - say, agents 1 and 2 - describe a

minimally informative budget equilibrium verifying a choice rule. In addition, each agent

announces an alternative and an integer between 1 and N . When all agents the agree on

an alternative and agents 1 and 2 also agree on a budget equilibrium supporting it, the

alternative is implemented. When one agent deviates from such unanimous agreement and

proposes another alternative, his proposal is implemented if and only if it lies in his budget

set as described by another agent. Thus, unanimous agreement is a Nash equilibrium in a

given state if and only if agents 1 and 2 announce a budget equilibrium in this state, and since

only budget equilibria that verify the choice rule can be announced, unanimous-agreement

Nash equilibria yield desirable alternatives. To ensure that non-unanimous Nash equilibria

do not yield any undesirable alternatives, we use the integers announced by the agents to

induce a �modulo game�when more than one agent disagrees with others, and make use

of the NVP property, just as it is done in the canonical mechanism. Thus we obtain the

following mechanism:4

Mechanism 1: The mechanism implements any choice rule that is IM and NVP with N �
3 agents. The total size of the agents� strategy spaces in the mechanism is twice

the minimal message space size needed for veri�cation (which consists of minimally

informative verifying budget equilibria), plus N times the size of the alternative space,

plus N � dlog2Ne bits.5

The proposed mechanism is particularly useful in conjunction with Segal�s [22] algorithm

for constructing minimally informative verifying budget equilibria. When using such budget

equilibria, Mechanism 1 gives us a �close�to-minimal� Nash implementation mechanism.

In many important settings, this mechanism proves to have a much smaller strategy space

than what full description of agents�preferences or even just their lower contour sets at a

given alternative would require. For example, this is true for the problem of implementing

interior Pareto e¢ cient allocations in the classical convex economies with private and public

goods, in which the minimally informative verifying budget equilibria take the familiar form

4This mechanism can be used both for the �weak�versions of the implementation and veri�cation prob-

lems, in which it su¢ ces to implement/verify a nonemtpy subset of desirable outcomes in any given state,

and for the �full�version, in which all desirable outcomes must be implementable/veri�able.
5dze denotes the smallest integer greater than or equal to z.
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of Walrasian and Lindahl equilibria, respectively [22].6

The second observation of the paper is that while the total size of strategy spaces describes

the communication complexity of a one-stage mechanism, it may severely overstate the

communication complexity of a multistage mechanism. This is because describing an agent�s

(complete contingent) strategy in a multi-stage game may take a lot longer than simply

playing the game. In fact, we show that multi-stage mechanisms allow a huge reduction in

the communication complexity of Nash implementation. We do this for a subclass of IM

choice rules, called �Coalitionally Unblocked� (CU) rules [22], which still includes all the

speci�c monotonic choice rules that have been considered in economics (such as the Pareto

rule, approximate Pareto, the core, stable matching, envy-free rules). We implement such

rules with a three-stage mechanism in which after an alternative is announced (by three

agents, in Stage 1) it can be challenged by any agent proposing another alternative (in Stage

2). Then (in Stage 3) other agents (at most three of them) are asked to say which agents�

budget sets allow the challenge. Thus, while the agents�complete contingent strategies in

the mechanism describe all the budget sets, any single play of the mechanism only describes

the placement of a single alternative into the budget sets.7 Formally, we construct

Mechanism 2: This three-stage mechanism implements any choice rule that is CU and

NVP with N � 3 agents. The communication in any play of this mechanism (both

on- and o¤-equilibrium) is bounded by describing no more than �ve alternatives plus

4N dlog2Ne bits.

To see the potential communication reduction allowed by multistage mechanisms, recall

from [22] that in some social choice problems, the minimally informative verifying budget

6Low-communication one-stage mechanisms for Nash implementation of general monotonic social choice

rules have also been proposed by McKelvey [15, Section 5] and Hurwicz and Reiter [10, Subsection 3.9.2].

Without the bene�t of Segal�s [22] budget-equilibrium characterization of veri�cation of IM choice rules, these

works could not tightly relate the communication requirements of Nash implementation to that of veri�cation.

[15] did not formalize the problem of minimizing communication, while [10] considered communication in

equilibrium, rather than the total size of message spaces (which must include many message pro�les that are

are never sent in equilibrium). Despite these di¤erences, the two constructions are related to our Mechanism

1, as we will point out in greater detail below.
7This is not a complete description of the mechanism - we also need to make sure that agents�reports

about budget sets are consistent with verifying the choice rule, and that in any equilibrium the strategies of

di¤erent agents describe the same budget sets. We achieve both goals without raising the communication

cost. We also use the modulo game to take care of equilibria that involve one or more challenges.
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equilibria must use all possible subsets of alternatives as budget sets. For example, for veri-

fying Pareto e¢ ciency on the universal preference domain over X alternatives, any partition

of the alternatives among the N agents must be used as a verifying budget equilibrium. De-

scribing such a partition requires sending roughly X log2N bits (to allocate each alternative

in one of the agents�budget sets).8 Any one-stage Nash implementation mechanism has

to have at least as much communication. On the other hand, Mechanism 2 uses no more

than 5 dlog2Xe + 4N � dlog2Ne bits, yielding an exponential reduction in communication
complexity from one-stage mechanisms when the number of alternatives is large.

In a model with continuous communication, multi-stage mechanisms allow even more

drastic reduction in communication. E.g., consider the problem of allocating a divisible good

among the agents, compensating them with unlimited transfers of the numeraire. Agents

have utilities that are quasilinear in the numeraire and nondecreasing in their consumption

of the good. The goal is to �nd a Pareto e¢ cient (i.e., surplus-maximizing) allocation. As

shown by Calsamiglia [2], verifying this goal requires in�nite-dimensional communication. In

[19], this result is derived from the observation that verifying e¢ ciency requires describing

a nonlinear personalized pricing function [0; 1] ! R (for divisible good consumption in

terms of numeraire) for all agents but one, which is in�nite-dimensional (even if arbitrary

smoothness is assumed). One-stage Nash implementation is at least as hard. In contrast,

Mechanism 2 achieves Nash implementation while transmitting only 10 (N � 1) real numbers
(and 4N � dlog2Ne bits).
We conclude with a philosophical discussion. While current mainstream economic think-

ing justi�es price mechanisms by the need to provide incentives to sel�sh agents, we showed

in [22] that supporting prices (more generally, budget sets, which could be described by

personalized nonlinear prices) must be communicated in order to attain many important

social goals even if agents are honest but their preference information is private and must be

aggregated to �nd a socially desirable outcome. An intuition for this, based on Hayek [8],

is that to achieve social goals that are �su¢ ciently congruent�with private goals, communi-

cation is minimized by asking individuals to maximize their own preferences within certain

�budget sets,�which must be carefully outlined to coordinate their choices and attain the

social goals.

8For other problems, the minimally informative budget equilibria may be described more succinctly. E.g.,

for Pareto e¢ ciency in smooth convex exchange economies, the budget sets are Walrasian and so can be

described with linear anonymous prices [22].
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The analysis of one-stage Nash implementation suggests another possible justi�cation for

prices: they must be used to create incentives even when information is symmetric. This

justi�cation is not valid, however, once multistage mechanisms are allowed. Multistage Nash

mechanisms with symmetric information need not reveal supporting prices in any play, and

so can have very low communication complexity. In contrast, multistage mechanisms with

private information, even when agents are honest, cannot do any better than veri�cation

mechanisms [11, Chapter 2], and therefore according to [22] must still communicate sup-

porting prices, which bounds below their communication complexity. In brief, once multi-

stage mechanisms are allowed, price revelation becomes unnecessary when information is

symmetric (even if agents are sel�sh), but is still necessary when preference information is

private (even if agents are honest). Thus, we conclude that price revelation must arise due to

the need to aggregate distributed preference information, rather than to the need to create

incentives for sel�sh agents.

2 Setup

2.1 The Social Choice Problem

Let N be a �nite set of agents, and X be a set of social alternatives. (With a slight

abuse of notation, the same letter will denote a set and its cardinality when this causes

no confusion.) Let P denote the set of all preference relations over set X. The set of

agent i�s possible preference relations is denoted by Ri � P. A state is a preference pro�le
R = (R1; : : : ; RN) 2 R1 � : : : �RN � R, where R is the state space, also called preference

domain. The goal is to realize a choice rule, which is a correspondence F : R � X. For

every state R 2 R, the rule speci�es the set F (R) of �desirable�alternatives in this state.
The following two properties of choice rules, introduced in [14], play a prominent role

in Nash implementation. (We use the standard notation L (x;Ri) = fy 2 X : xRiyg �the
lower contour set of agent i�s preference relation Ri at alternative x 2 X:)

De�nition 1 Choice rule F is monotonic if 8R 2 R, 8x 2 F (R), and 8R0 2 R such that

L (x;Ri) � L (x;R0i) 8i 2 N , we have x 2 F (R0).

De�nition 2 Choice rule F has No Veto Power if 8i 2 N ,8R 2 R;8x 2 X such that

L (x;Rj) = X 8j 2 Nn fig, we have x 2 F (R).
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The next two properties are introduced in [22]:

De�nition 3 Choice rule F is Intersection-Monotonic (IM) if 8 eR = eR1 � : : : � eRN � R,
8x 2 \R2 eRF (R), and 8R0 2 R such that \Ri2 eRi

L (x;Ri) � L (x;R0i) 8i 2 N we have

x 2 F (R0).

Note that this property implies monotonicity by taking eR to be a singleton. In addition to
monotonicity, it it requires, in particular, that if the desirability of alternative x is preserved

by making an agent strictly prefer either alternative y or alternative z to x (holding the

other preferences �xed), then it should also be preserved by making the agent strictly prefer

both y and z to x (assuming all the relevant preference pro�les are feasible). (In fact, IM is

characterized by this requirement and monotonicity when R = PN and X is �nite.)

De�nition 4 Choice rule F is a Coalitionally Unblocked (CU) choice rule if there exists a

blocking correspondence � : X � 2N � X for which

F (R) = fx 2 X : � (x; S) � [i2SL (x;Ri) 8S � Ng 8R 2 R:

Note that CU implies, in particular, that if the desirability of alternative x is preserved

by either making agent i strictly prefer either alternative y over x or making agent j strictly

prefer alternative z 6= y over x (holding the other preferences �xed), then it should also

be preserved by implementing both of these preference reversals at once (assuming all the

relevant preference pro�les are feasible.) (In fact, CU is characterized by this requirement

and monotonicity whenR = PN andX is �nite.) See [22] for further analysis, which formally
establishes that every CU rule is IM, every IM rule is monotonic, and both inclusions are

strict. The class of CU rules is still large enough to include all speci�c monotonic rules

that have been considered, such as exact or approximate Pareto e¢ ciency, the core, stable

matchings, or envy-free rules.

2.2 Nash Implementation

In the Nash implementation problem, all agents observe the state of the world, and they

play a Nash equilibrium of the mechanism o¤ered to them.

De�nition 5 A mechanism (�game form�) G = hM1; :::;MN ; hi describes a strategy space
Mi for each agent and an outcome function h :

Y
i

Mi ! X. The Nash equilibrium corre-

spondence of the mechanism is given by

�G (R) = fm 2M : g (m)Rig (m
0
i;m�i) 8i 2 N 8m0

i 2Mig :
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� (fully) implements choice rule F if h(�G(R)) = F (R) 8R 2 R.9 � weakly implements F
if ; 6= h(��(R)) � F (R) 8R 2 R.

Note that we can also allow multistage mechanisms, whose normal form can still be

described by mechanism G above. Since Nash equilibrium is de�ned on the normal form,

allowing multistage mechanisms does not a¤ect the implementability of choice rules. The

usefulness of multistage mechanisms to us will stem from their substantially lower commu-

nication costs than their normal-form representations.

2.3 Veri�cation

Now we consider the communication problem, in which each agent i observes only his own

�type� - in our case, preference relation Ri. but can be prescribed to follow an arbitrary

strategy, rather than being sel�sh. Furthermore, we focus on a special kind of communica-

tion, called �veri�cation� (or �nondeterministic communication� in computer science). In

the veri�cation problem, an omniscient oracle knows the true state R and consequently the

desirable alternatives. However, he needs to prove to an ignorant outsider that alternative

x 2 F (R) is indeed desirable. He does this by publicly announcing a message m 2M . Each
agent i either accepts or rejects the message, doing this on the basis of his own type Ri.

The acceptance of message m by all agents must prove to the outsider that alternative x is

desirable.

Formally, veri�cation is de�ned as follows:

De�nition 6 A veri�cation protocol is a triple � = hM;�; hi, where

� M is the message space,

� � : R�M is the message correspondence satisfying Privacy Preservation:

�(R) = \i2N�i(Ri) 8R 2 R; where �i : Ri �M 8i 2 N;

� h :M ! X is the outcome function.

� (fully) veri�es choice rule F if h(�(R)) = F (R) 8R 2 R. � weakly veri�es F if

; 6= h(�(R)) � F (R) 8R 2 R.
9We use the standard notation for the image of a set: h(A) = [m2Ah (m) [1, p.3].
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While the veri�cation scenario is patently unrealistic, it still proves quite useful. The

key reason to consider veri�cation is that it o¤ers a lower bound on the communication

requirements of any multi-stage communication protocol [11, Chapter 2]. Formally, a multi-

stage communication protocol consists of (i) an extensive-form game in which agents�moves

are their messages, (ii) agents�strategies in the game that are contingent on their types as

well as observed histories, and (iii) a function assigning alternatives to the game�s terminal

nodes. Observe that any multi-stage communication protocol can be represented as a weak

veri�cation protocol by letting all the messages be sent by the oracle instead of the agents,

and having each agent accept the message sequence if and only if all the messages the oracle

sent in his stead are consistent with his strategy given his type. The oracle�s message space

M thus consists of the protocol�s possible message sequences (terminal nodes). Therefore, the

communication cost of weak veri�cation bounds below the communication cost of computing

an alternative in the choice rule. The lower bound is tight in some cases but weak in some

other cases, where communication requires a lot more than veri�cation.

In addition, note that veri�cation gives a lower bound on the one-stage Nash implemen-

tation problem, since any Nash implementation protocol G = hM1; :::;MN ; hi can be viewed
as a veri�cation protocol � = hM1�; :::;MN ; �G:hi. Indeed, note that the Nash equilibrium
correspondence �G by construction satis�es Privacy Preservation: �G (R) = \i�iG (Ri), where

�iG (Ri) = fm 2M : g (m)Rig (m
0
i;m�i) 8m0

i 2Mig

is the best-response correspondence of agent i, which depends only on this agent�s preferences

Ri. Thus, the oracle can announce a candidate Nash equilibrium strategy pro�le, and each

agent accepts the announcement if and only if he cannot �nd a pro�table unilateral deviation

from this pro�le.

We will show in this paper that the relation between veri�cation and Nash implementation

is quite tight (unlike the relation between veri�cation and communication). Intuitively, this

is because in the implementation problem each agent has full information and so can send

the oracle�s message by himself, as long as he does not have an incentive to misrepresent it.

2.4 Measures of Communication Cost

In the case of discrete communication, the communication cost is naturally de�ned as �com-

munication complexity,� which is the (worst-case) number of bits needed to encode the
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messages [11].10 In the case of veri�cation, the oracle needs dlog2Ne bits to encode his
message from M . The minimal communication complexity of a veri�cation protocol o¤ers a

lower bound on the �communication complexity�without an oracle [11].

For continuous communication, the communication cost can be naturally de�ned as the

�total dimension�of the messages sent. However, for a meaningful concept of dimension,

we need to rule out �smuggling� a multidimensional message in a single dimension with

a 1-to-1 function such as the inverse Peano function. The economic literature on message

space dimension has suggested various topological concepts of dimension that prevent such

smuggling. In particular, [22] de�nes the topological dimension of the message space using a

topology on messages de�ned based on their �meaning,�i.e., the set of states in which their

are sent. For the sake of brevity, we do not repeat the de�nitions of [22] in this paper, and

instead use the concept of dimension in its intuitive sense.

These concepts of communication cost can be naturally applied to Nash implementation

mechanisms. First consider one-stage mechanisms. In a discrete one-stage mechanism, each

agent i needs dlog2Mie bits to encode his strategy fromMi, and so the total communication

complexity of the game can be de�ned as
X
i

dlog2Mie. For a continuous one-stage mecha-

nism �, we can de�ne the total dimension of the mechanism as the sum of the dimensions

of the individual agents�message spaces.11

Now consider multi-stage mechanisms, and note that the communication cost of a mecha-

nism whose normal form is G could be drastically lower than that of the one-stage mechanism

G. For example, consider the discrete case, in which the agents�moves in the multi-stage

extensive-form game can be represented as announcing bits. Suppose that the maximum

number of bits sent in the game is d. This game can have up to 2d � 1 decision nodes, and
describing agents�contingent strategies in it requires 1 bit per decision node, and so up to

10Using bits is merely a normalization, because an elementary message in any �nite alphabet could be coded

with a �xed number of bits. What is important for the de�nition is that the coding and the communication

protocol can be selected optimally for the problem at hand: if instead agents could only communicate using

messages with pre-existing meanings, this might raise the communication cost substantially.
11Hurwicz and Reiter [10, Subsection 3.9.2] instead consider the �in-equilibrium� communication cost,

which only counts message pro�les that can ever arise in equilibrium. Since the message pro�les that

never arise in equilibrium must still be allowed to eliminate undesirable Nash equilibria, we do count such

messages pro�les, following the spirit of �worst-case�communication cost measures (even if the worst case

has probability zero of arising in equilibrium). As we will point out, the in-equilibrium communication cost

of mechanisms proposed in this paper will be even lower than the worst-case cost that we de�ne.

11



2d�1 bits total. Thus, the communication complexity of describing strategies in a multistage
game can be exponentially higher than that of playing the game. In a continuous mechanism,

the increase can be even more drastic: even a very simple multi-stage mechanism can have an

in�nite-dimensional strategy space. For example, consider the two-stage mechanism in which

�rst agent 1 announces x1 2 [0; 1] and then agent 2 announces x2 2 [0; 1]. Agent 2�s strategy
in this mechanism is an arbitrary function [0; 1]! [0; 1], and so it is is in�nite-dimensional.

In contrast, only two numbers are communicated in any play of the mechanism. While these

examples are abstract, we will construct examples of similar reduction in the communication

complexity of Nash implementation.

2.5 Role of Budget Equilibria

A famous economic example of veri�cation is Walrasian equilibrium. The role of the oracle is

played by the �Walrasian auctioneer,�who announces the equilibrium prices and allocations.

Each agent accepts the announcement if and only if his announced allocation constitutes his

optimal choice from the budget set given by the announced prices. This concept can be

generalized to that of a �budget equilibrium,� in which the oracle�s message consists of a

proposed alternative x 2 X and a budget set Bi � X for each agent i. Each agent i 2 N
accepts message (B1; : : : ; BN ; x) if and only if there is no alternative in his budget set Bi
that he strictly prefers to the proposed alternative x. (B1; : : : ; BN ; x) is a budget equilibrium

in state R 2 R if it is accepted by all agents in this state. Formally, the budget equilibrium

correspondence E : R� 2XN �X is described as

E (R) =
�
(B; x) 2 2XN �X : Bi � L (x;Ri) 8i 2 N

	
:

E satis�es Privacy Preservation because each agent�s acceptance depends only on his own

preferences.

The oracle�s message space M in a budget protocol is a collection of budget equilibria

that he is allowed to announce, and the outcome function simply implements the proposed

alternative:

De�nition 7 Protocol hM;�; hi is a budget protocol if M � 2XN �X, � (R) = E (R)\M
8R 2 R, and h (B; x) = x 8 (B; x) 2M .

Clearly, the space M of budget equilibria used is important for whether the protocol

veri�es F . In particular, for the protocol to verify F (either fully or weakly), it must use

only budget equilibria of the following kind:

12



De�nition 8 (B; x) 2 2XN �X is a budget equilibrium verifying F if ��1 (B1; :::; BN ; x) �
F�1 (x).

However, the message space need not include all the budget equilibria verifying F . In

fact, it turns out that for IM choice rules, the size of the message space can be reduced while

restricting attention to the following budget equilibria:

De�nition 9 For an IM choice rule F that is de�ned on all R, (B; x) 2 2XN � X is a

minimally informative budget equilibrium verifying F if for some R 2 PN ,

Bi = L (x;Ri) =
\

R0i2Ri: x2F(R0i;R�i)

L (x;R0i) 8i 2 N . (1)

In [22], this concept is not postulated but derived by constructing messages that verify F

while revealing minimal information about the state of the world. It is shown that when F

is IM, these messages can be characterized as budget equilibrium messages of the form (1).12

Furthermore, [22] o¤ers an algorithm for constructing these minimally informative budget

equilibria for a given social choice problem.

Letting EF be the space of all minimally informative budget equilibria verifying F , the
following proposition follows from [22]:

Proposition 1 The message space size for fully or weakly verifying an IM choice rule F is

minimized with a budget equilibrium protocol whose message space is a subset of EF .

3 One-Stage Mechanisms

Recall that a Nash implementation protocol can be viewed as a veri�cation protocol. (Fur-

thermore, it can be viewed as a budget protocol, with message spaceM = fB1 (m) ; :::; BN (m) ; g (m)gm2M ,
where Bi (m) = fg(m0

i;m�i) : m
0
i 2Mig:) Thus, we have the following

Lemma 1 The minimal total size of strategy spaces required for full/weak Nash implemen-

tation is at least as high as the minimal size of message space for full/weak veri�cation.

12In general, the preference pro�le R 2 PN satisfying (1) need not be a feasible state in R. When it
is, then it is an �F -minimal states�as de�ned by McKelvey [15]. McKelvey�s de�nition applies for general

monotonic choice rules. However, if F is not IM, the F -minimal states are not characterized by (1) and do

not generate minimally informative messages verifying F (indeed, such messages are no longer equivalent to

announcing a supporting budget equilibrium).
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We also provide an upper bound for the communication cost of Nash implementation

relative to that of veri�cation by starting with a budget equilibrium protocol with message

space E � 2XN �X and constructing a mechanism in which two agents announce a budget

equilibrium from E , so that each agent�s budget set is described by another agent.

Mechanism 1:

The strategy spaces are M1 = M2 = E �X �N and Mi = X �N for i � 3. When the
messages are mi = (Ei; yi; li) 2M , for i = 1; 2 and mi = (yi; li) 2Mi for i � 3, the outcome
function h speci�es:

(a) If 9E = (B1; : : : ; BN ; x) 2 E such that (yi; li) = (x; 1) 8i 2 N , and E1 = E2 = E then
h (m) = x:

(b) If not Case (a) but 9i 2 N and 9E = (B1; : : : ; BN ; x) 2 E such that Ej = E 8j 2
f1; 2g n fig and (yj; lj) = (x; 1) 8j 2 Nn fig, then

(b-i) if yi 2 Bi then h (m) = yi:

(b-ii) if yi =2 Bi then h (m) = x:

(c) Otherwise h (m) = yi for i =

 X
j

lj modN

!
+ 1:

Proposition 2 Suppose that choice rule F is NVP, and N � 3. If the budget equilibrium
protocol with equilibrium space E weakly/fully veri�es F , then Mechanism 1 weakly/fully

implements F .

Proof.

Claim 1: If E = (B1; : : : ; BN ; x) 2 E is a budget equilibrium in state R 2 R, then the
message pro�le with E1 = E2 = E and (yi; li) = (x; 1) is a Nash equilibrium of the

mechanism.

Proof: The outcome for this message pro�le is x. An agent i can unilaterally a¤ect the

outcome only by deviating to Case (b-i) and implementing an alternative yi 2 Bi, but
such a deviation would not be pro�table since (B1; : : : ; BN ; x) is a budget equilibrium

in state R.
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In the case of full/weak veri�cation, in any state R 2 R, for any/some x 2 F (R) there
exist budget sets B1; : : : ; BN � X such that (B1; : : : ; BN ; x) 2 E is a budget equilibrium
in state R, hence by Claim 1 any/some x 2 F (R) can arise in a NE of the mechanism. It
remains to show that any NE outcome of the mechanism in state R is in F (R), which is

done in the following two claims:

Claim 2: Any Case-(a) NE outcome x in a state R 2 R is in F (R).

Proof: Since each agent i can unilaterally deviate to Case (b-i) to implement any alternative

yi 2 Bi, for this to be a NE, E must be a budget equilibrium in state R. Now, by the

(full or weak) veri�cation assumption, E veri�es F , hence x 2 F (R).

Claim 3: Any Case-(b) or Case-(c) NE outcome x in a state R 2 R is in F (R).

Proof: From any Case-(b) or Case-(c) message pro�le, each agent i except possibly one

can deviate to attain any alternative yi 2 X in Case (c) by choosing li, hence for this

message pro�le to be a NE we must have L (x;Ri) = X. By NVP, this implies that

x 2 F (R).

Combining this result with Proposition 1, we see that for an IM choice rule F we can

choose the space E to be a minimal subspace of minimally informative budget equilibria
needed for weakly/fully verifying F . Thus, using Proposition 2, and examining the size of

strategy spaces in Mechanism 1 yields

Corollary 1 Suppose choice rule F is IM and NVP, and N � 3. Then for discrete commu-
nication, using Mechanism 1 we can fully/weakly Nash implement F with a one-stage mech-

anism whose communication complexity is twice the communication complexity of full/weak

veri�cation plus N � (dlog2Xe+ dlog2Ne) bits. For continuous communication, we can

fully/weakly Nash implement F with a one-stage mechanism in which the total dimension-

ality of the agents�strategy spaces is twice the minimal message space dimension needed for

full/weak veri�cation plus N times the dimension of X.

The Corollary gives an upper bound on the communication cost of one-stage Nash im-

plementation that is pretty close to the veri�cation lower bound of Lemma 1. The upper

bound can be tightened a bit more in some typical cases. For example, instead of asking
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each agent to announce the whole social outcome (which might be costly if the number of

agents is large), it su¢ ces to have each agent only announce the part of the outcome that

his preferences are concerned with (e.g., his own consumption of goods). Also, the duplica-

tion of budget set descriptions can be improved upon in some settings, as long as we still

ensure that each agent�s budget set is described by the other agents�reports. For example,

Reichelstein and Reiter [17] show that for Nash implementation of Walrasian allocations in

classical convex exchange economies with L goods, the additional cost relative to veri�cation

is roughly L=(N � 1) real numbers, which is enough to ensure price taking by each agent,
while duplicate announcement of Walrasian price vector as required by Mechanism 1 would

require L � 1 numbers. However, such additional improvements over Mechanism 1 appear

to be possible only in special settings and so we do not pursue them here.

We could alternatively consider the communication cost of only �in-equilibrium�commu-

nication, as proposed by Hurwicz and Reiter [10, Subsection 3.9.2]. For simplicity, restrict

attention to environments in which there does not exist an alternative in X that is simul-

taneously optimal for N � 1, and so the NVP property holds vacuously. (This includes any
environment with a private good that all agents desire.) In such environments, Mechanism 1

has only Case-(a) Nash equilibria, describing which is the same as describing a budget equi-

librium from E . Since the veri�cation lower bound of Lemma 1 also applies to in-equilibrium
communication (the oracle can replicate the mechanism using only the message pro�les that

are potential Nash equilibria), we see that the in-equilibrium communication cost of one-

stage Nash implementation of such choice rules exactly equals the communication cost of

veri�cation.13 In contrast, the minimal total size of the agents�message spaces required for

Nash implementation may strictly exceed the veri�cation lower bound, as demonstrated by

Reichelstein and Reiter [17].

4 Multistage Mechanisms

Considering multistage games allows substantial savings in communication. The idea is

that while the agents�complete contingent strategies in the extensive-form mechanism must

still describe supporting budget sets (as is the case in any veri�cation mechanism), these

13Note that this conclusion does not hold for monotonic choice rules that are not IM: the communication

cost of veri�cation of such rules may be minimized using messages that do not correspond to describing

supporting budget sets, while Nash implementation is always a budget equilibrium protocol.
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strategies need not be revealed in any single play of the mechanism. Thus, the communication

cost of a multistage mechanism can be substantially lower than the cost of its normal-form

representation �i.e., the cost of describing the agent�s complete contingent strategies in the

mechanism.14

Applying this idea to the revelation of budget sets, we see that a multistage mechanism

need not reveal the budget sets in any single play. Instead, it su¢ ces that whenever a candi-

date equilibrium alternative x is described and then challenged by a single agent proposing

another alternative x0, other agents are asked to �approve�the challenge (thus con�rming x0

to be in the agent�s budget set) or �disapprove�it (protest that x0 is outside his budget set).

Then, while the complete approval strategies contingent on all possible challenges x0 describe

all the budget sets, these strategies and the corresponding budget sets are not revealed in

any single play of the mechanism (either in or out of equilibrium).

The tricky part of the construction is restricting the agents to approve su¢ ciently many

challenges so that the corresponding budget sets are large enough to verify the choice rule.

(Recall that if the budget sets are too small, the budget equilibrium would not verify the

choice rule, and so it would not be implemented by the mechanism. For an extreme example,

if agents�strategies disapprove any challenge of a candidate equilibrium outcome x, this yields

budget sets Bi = fxg for all i, and x is sustained in equilibrium in any state of the world,

regardless of whether it is socially desirable.) This is not straightforward to ensure because

the whole approval strategies and the corresponding budget sets are not revealed in any play

of the mechanism (and so, in general, we cannot verify that the budget set described by the

strategies satisfy characterization (1)). We are able to accomplish this for the class of CU

choice rules de�ned in Section 2, for which the following observation holds:

Lemma 2 The CU choice rule given by a blocking rule � is fully veri�ed with the budget

protocol whose message space consists of budget equilibria (B1; :::; BN ; x) 2 2NX �X satisfy-

14Multistage implementation mechanisms have been previously considered by Moore and Repullo [18], who

used the subgame-perfection re�nement to implement choice rules that are not Nash implementable. Our

goal is quite di¤erent since we still consider Nash implementation and use multistage mechanisms to reduce

the communication complexity of implementing those choice rules that are Nash implementable. Note also

that our Mechanism 2 described below has imperfect information and no proper subgames, and so subgame

perfection has no bite in it.
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ing15

� (x; T ) � [i2TBi for all T � N: (2)

Proof. If (B1; :::; BN ; x) is a budget equilibrium in state R 2 R and satis�es (2), we must

have � (x; T ) � [i2TBi � [i2TL (x;Ri) for all T � N , and therefore x 2 F (R). Hence,
any budget equilibrium satisfying (2) veri�es F . Furthermore, in any state R 2 R for any

x 2 F (R), (L (x;R1) ; :::; L (x;RN) ; x) is a budget equilibrium satisfying (2).

The advantage of condition (2) is that it can be checked one alternative x0 2 X at a time

� namely, by checking that each alternative x0 belongs to the budget sets of �su¢ ciently

many�agents so that each coalition T � N satisfying x0 2 � (x; T ) contains an agent whose
budget set contains x0. We can impose this restriction on an agent�s approval strategy

by showing him only the proposed challenge x0 but not the identity of the challenger, and

restricting him to list �su¢ ciently many�agents for whom this challenge should be approved.

Example 1 The weak Pareto e¢ cient choice rule is described by the blocking rule � (x; S) =

X if S = N , = ? otherwise. For this choice rule, condition (2) takes the form X � [iBi,
which can be checked by checking that each alternative in X belongs to some agent�s budget

set.

Just as in the previous section, we do not need the budget sets to be described by all

the agents, as long as each agent�s budget set is described by other agents. Here, it will

su¢ ce to have just three agents describe all the budget sets �i.e., to approve deviations. We

need to ensure that in equilibrium the three agents describe exactly the same budget sets �

i.e., use the same approval strategies. For this purpose, we reward an agent who deviates

to an alternative x0 on whose approval other agents disagree by letting him implement any

alternative. Similarly, it su¢ ces for just three agents to describe a candidate equilibrium

alternative, as long as any agent is allowed to challenge it. Finally, just as in the previous

section, we use the modulo game to make sure that potential equilibria involving a challenge

do not yield undesirable outcomes.

Formally, consider the following three-stage mechanism, which has imperfect information:

the only information the agents observe in about each other�s previous messages are the

15Budget equilibria of the form (2) are typically not minimally informative budget equilibria verifying

F (and so do not satisfy (1)). We are not concerned about this as we can still use them to construct a

low-communication multistage mechanism.
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public �revelations�by the mechanism.16

Mechanism 2.

Stage 1. Each agent i 2 f1; 2; 3g announces xi 2 X and li 2 N . Each agent i � 4 announces
li 2 N .

(a) If li = 1 8i 2 N and 9x 2 X such that xi = x 8i 2 f1; 2; 3g, implement x.

(b) If not Case (a) but 9i 2 N (�the challenger�) and 9x 2 X such that lj = 1

8j 2 Nn fig and xj = x 8j 2 f1; 2; 3g n fig, then reveal �b,� reveal x, and
continue:

Stage 2. Agent i (the challenger) announces x0; y 2 X. Only x0 is revealed.
Stage 3. Each agent j 2 f1; 2; 3g = fig announces Sj 2 � (x; x0), where

� (x; x0) = fS � N : 8T � N , x0 2 � (x; T )) S \ T 6= ?g :

(b-i) If Sj = S for all j 2 f1; 2; 3g = fig and i 2 S, implement x0,
(b-ii) if Sj = S for all j 2 f1; 2; 3g = fig and i =2 S, implement x,
(b-iii) otherwise implement y.

(c) Otherwise reveal �c�and continue:

Stage 2. Agent i =

 X
j

lj

!
modN+1 announces y 2 X, which is implemented.

Proposition 3 If F is a CU choice rule described by the blocking rule �, F satis�es NVP,

and N � 3, then Mechanism 2 fully Nash implements F .

Proof. We start by describing the agents�complete contingent strategies in the mechanism.

For simplicity, we restrict attention to strategies that do not condition on the agent�s own

earlier actions. (We can do it because any strategy with such conditioning is equivalent in

the normal-form representation of the game to one without it.)

The strategy of each agent i � 4 can then be described as


li; x

0
i; y

b
i ; y

c
i

�
, where li 2 N is

the integer he announces in Stage 1, x0i; y
b
i 2 X are the alternatives x0; y he announces Stage

16The mechanism can be converted into a two-stage mechanism by letting the agents in Stage 1 also

announce their contingent strategies in Stage 2, which would require describing 2N + 3 alternatives instead

of just �ve. This conversion would preserve the huge communication savings exempli�ed below, which are due

to economizing on budget set descriptions using Stage-3 strategies rather than on descriptions of alternatives.
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2 of Case (b) Stage 2 when he is the challenger, and yci 2 X is the alternative he announces

in Stage 2 of Case (c).

As for an agent i 2 f1; 2; 3g his strategy in addition describes his Stage-1 announce-

ment xi 2 X and also a function �i : X ! � (xi; x
0) giving his announcement �i (x0)

in Stage 3 of Case (b) when someone else challenged xi with an alternative x0 in Stage

1. We interpret �i (x0) as the set of agents whose challenges x0 are �approved� by agent

i. The function �i can be equivalently described by de�ning for each agent j the bud-

get set Bij = fx0 2 X : j 2 �i (x0)g � the set of agent j�s challenges that are �approved�
by agent i. The restriction �i (x0) 2 � (xi; x

0) for all x0 2 X is then equivalent to re-

quiring that (Bi1; :::; B
i
N ; x

i) satisfy (2). Thus, we describe a feasible strategy of agent

i 2 f1; 2; 3g as


li; xi; B

i
1; :::; B

i
N ; x

0
i; y

b
i ; y

c
i

�
satisfying (2) (from which we can deduce for

each x0, �i (x0) =
�
j 2 N : x0 2 Bij

	
2 � (xi; x0)).

Now the result is proved with the following three claims:

Claim 1: If x 2 F (R) in state R 2 R then x is a Case-(a) NE outcome in state R.

Proof: Consider the strategy pro�le given by

li; xi; B

i
1; :::; B

i
N ; x

0
i; y

b
i ; y

c
i

�
= h1; x; L (x;R1) ; :::; L (x;RN) ; x; x; xi for all i 2 f1; 2; 3g ;


li; x
0
i; y

b
i ; y

c
i

�
= h1; x; x; xi for all i � 4:

The strategies of agents i 2 f1; 2; 3g are feasible because the described budget sets
satisfy (2) due to the fact that x 2 F (R). These strategies result in Case (a) and
yield outcome x. To see that these strategies form a NE, note that each agent i 2 N
can unilaterally change the outcome only by challenging it and going to Case (b-i), in

which he can only attain an outcome x0 2 L (x;Ri).

Claim 2: Each Case-(a) NE in state R 2 R yields an outcome x 2 F (R).

Proof: (1) If B1i = B2i = B3i = Bi for each i 2 N , then each agent i 2 N can deviate

to implement any alternative x0 2 Bi by announcing li > 1 and inducing Case (b-i).

Thus, (B1; :::; BN ; x) must be a budget equilibrium in state R, and since it satis�es

(2), x 2 F (R). (2) If, on the contrary, there exists x0 2 X, an agent i 2 N , and
agents j; k 2 f1; 2; 3g such that x0 2 Bji nBki , then each agent r except possibly one (if
the other agent in f1; 2; 3g describes the same budget sets as j or k) can deviate to
attain any alternative ybr 2 X by announcing lr > 1 and x0r = x

0, inducing Case (b-iii)

. Hence, to have a NE we must have L (x;Rr) = X, thus by NVP x 2 F (R).
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Claim 3: Each Case-(b) or Case-(c) NE in state R 2 R yields an outcome x 2 F (R).

Proof: Each agent i except one possibly one (the challenger in Case (b)) can deviate to

attain any alternative yci 2 X in Case (c) by choosing li, hence, to have a NE we must

have L (x;Ri) = X, thus by NVP x 2 F (R).

Observe that in any play of Mechanism 2, agents describe at most �ve alternatives (in

Case (b)) and in addition send no more than N � dlog2Ne + 3N � 4N � dlog2Ne bits (the
longest communication takes place in Case (b)). This o¤ers a potentially huge reduction

in communication relative to one-stage implementation mechanisms, which, as we know,

have to must describe budget sets �subsets of alternatives. Below we o¤er two examples

of such reduction � for discrete and for continuous communication problems. (Note also

that if we were just interested in in-equilibrium communication, and restricted attention to

economic environments in which the NVP property holds vacuously, any Nash equilibrium

of Mechanism 2 would be a Case-(a) equilibrium, describing which amounts to describing a

single alternative.)

4.1 Discrete Communication: Exponential Reduction

It is known in the communication complexity literature that going from one-stage to two-

stage communication protocols sometimes allows an exponential reduction in the communica-

tion complexity measured in bits [11]. Using Mechanism 2, we can see that such exponential

reduction can also be achieved for the Nash implementation problem. (Note that multi-stage

mechanisms cannot generate a more than exponential reduction in communication complex-

ity, because every extensive-form game can be converted into a one-stage normal form with

at most exponential increase in communication by the argument given in Subsection 2.4)

For example, take the Pareto e¢ cient choice rule:

F (R) = fx 2 X : X = [i2NL (x;Ri)g 8R 2 R:

and consider the universal preference domain. For this domain, the minimally informative

verifying budget equilibria (1) are the partitional equilibria (B; x) supporting x, i.e., those

in which [iBi = X and Bi \ Bj = fxg for all i; j 2 N . (In words, each alternative in

Xn fxg must belong to exactly one agent�s budget set.) Furthermore, any such partitional
equilibrium must be used for full veri�cation of F . Indeed, for every partitional equilibrium
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(B; x) we can �nd a state R 2 PN in which L (x;Ri) = Bi for all i, and thus x 2 F (R).
Then (B; x) is a unique partitional equilibrium verifying the desirability of alternative x in

state R.

There are XNX�1 partitional equilibria (choose x 2 X, and allocate each of the alterna-
tives inXn fxg to a budget set). Describing such an equilibrium thus requires

�
log2

�
XNX�1�� =

dlog2X + (X � 1) log2Ne bits. As X grows large, this communication cost is asymptotically

proportional to X, which is exponentially larger than that of simply naming an alternative

(which takes dlog2Xe bits). In fact, the communication cost is comparable to that of full
revelation of an agent�s preferences, which is asymptotically equivalent to log2X! � X log2X
bits as X !1. By Lemma 1, this communication cost also bounds below the communica-
tion complexity of a one-stage mechanism fully Nash implementing F .

Compare this with the two-stage Mechanism 2, whose communication complexity is at

most 5 dlog2Xe + 4N � dlog2Ne bits �exponentially lower as the number X of alternatives

grows. Intuitively, the exponential savings arises because instead of describing budget sets,

we simply allocate a given alternative to a budget set in any play of the mechanism.

4.2 Continuous Communication: from In�nite- to Finite-Dimensional

Consider the problem of implementing Pareto e¢ ciency with quasilinear preferences in which

a unit of a divisible good is to be allocated among the agents, along with the transfers of

numeraire. Thus,

X =
�
(q; t) : q 2 RN+ , t 2 RN : �iqi = 1, �iti = 0

	
where qi � 0 is agent i�s allocation of the nonmonetary good, and ti is his consumption of
numeraire. Thus, X is a 2 (N � 1)-dimensional space.
Each agent i�s preferences are described by a quasilinear utility function of the form

ui (qi)+ ti, where ui can be an arbitrary nondecreasing function. Note that the space of such

utility functions is in�nite-dimensional (even if we impose arbitrary smoothness restrictions

on the functions, which will not change the arguments). The Pareto e¢ cient allocations

(q; t) 2 X in this setting are characterized by maximizing the total surplus
P

i ui (qi).

Calsamiglia [2] showed that the problem of verifying e¢ ciency in this setting requires

in�nite-dimensional communication. Segal [22] rederived the result using the fact that any

veri�cation protocol even with two agents must reveal an in�nite-dimensional nonlinear price

function [0; 1] ! R for consumption of the good for one agent in terms of the numeraire.
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This result implies that the one-stage Nash implementation problem also requires in�nite-

dimensional communication.

However, for multistage Nash implementation, we can use Mechanism 2, in which only 5

alternatives are described in any play, using a total of 10 (N � 1) real numbers (sending bits
is �free�relative to the real numbers). Intuitively, instead of describing numeraire prices for

all possible allocations of the divisible good, in any (o¤-equilibrium) play of Mechanism 2 the

agents�approval strategies only need to describe, for one proposed challenge, which agents

can a¤ord this challenge. Thus, we learn only about the prices of at most one nonmoneraty

allocation q instead of the prices of all possible allocations, which makes the communication

�nite- instead of in�nitely-dimensional.
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