Synthetic logic characterizations of meanings extracted from large corpora

Alex Djalali and Christopher Potts
Stanford Linguistics

Workshop on Natural Logic, Proof Theory, and Computational Semantics Stanford, April 8-9, 2011

Overview

Goals

- Establish robust connections between MacCartney's NatLog and linguistic theory
- Understand Natlog's logical underpinnings

Plan

- Rethinking NatLog as a logical system (a sequent calculus)
- 2 Completeness via representation (answering the question, What models does the logic characterize?)
- 3 Redefining the semantics using large corpora, focusing on
 - Sentiment
 - Veridicality

- Meaning as model-theoretic denotation
- Meaning as relations between forms

David Lewis, 'General semantics': Meaning as denotation

"Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese.

David Lewis, 'General semantics': Meaning as denotation

"Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese. But we can know the Markerese translation of an English sentence without knowing the first thing about the meaning of the English sentence: namely, the conditions under which it would be true.

David Lewis, 'General semantics': Meaning as denotation

"Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese. But we can know the Markerese translation of an English sentence without knowing the first thing about the meaning of the English sentence: namely, the conditions under which it would be true. Semantics with no treatment of truth conditions is not semantics. [...]

Two conceptions of semantic theory

David Lewis, 'General semantics': Meaning as denotation

"Semantic interpretation by means of them [semantic markers] amounts merely to a translation algorithm from the object language to the auxiliary language Markerese. But we can know the Markerese translation of an English sentence without knowing the first thing about the meaning of the English sentence: namely, the conditions under which it would be true. Semantics with no treatment of truth conditions is not semantics. [...] My proposals are in the tradition of *referential*, or *model-theoretic*, semantics descended from Frege, Tarski, Carnap (in his later works), and recent work of Kripke and others on semantic foundations in intensional logic."

0000

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

0000

Two conceptions of semantic theory

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

 "The arbitrariness of the distinction between form and matter reveals itself [...]"

0000

Two conceptions of semantic theory

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

- "The arbitrariness of the distinction between form and matter reveals itself [...]"
- "makes no distinction between what is logical and what is not"

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

- "The arbitrariness of the distinction between form and matter reveals itself [...]"
- "makes no distinction between what is logical and what is not"
- What is meaning? broken down:
 - What is synonymy?
 - · What is antonymy?
 - What is superordination?
 - What is semantic ambiguity?
 - What is semantic truth (analyticity, metalinguistic truth, etc.)?
 - What is a possible answer to a question?
 - •

0000

Bill MacCartney's natural logic

- Bill MacCartney and Christopher D. Manning. 2007. Natural logic for textual inference. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing.
- Bill MacCartney and Christopher D. Manning. 2008. Modeling semantic containment and exclusion in natural language inference. Proceedings COLING 2008.
- Bill MacCartney. 2009. *Natural Language Inference*. PhD thesis, Stanford University.
- Bill MacCartney and Christopher D. Manning. 2009. An extended model of natural logic. In Proceedings of ACL.

Bill MacCartney's natural logic

1 Ask not what a phrase means, but how it relates to others.

dog

. . .

is entailed by *poodle*excludes *tree*is consistent with *hungry*

dance without pants

entails move without jeans excludes tango in chinos is consistent with tango

- Seamless blending of logical and non-logical operators: everything appears synthetic (as opposed to analytic).
- 3 Following Popper: "synthetic statements in general are placed, by the entailment relation, in the open interval between self-contradiction and tautology".

IBM's Watson

Vision

000

"so you're associating words with other words, and then you can associate those with other words . . . "

1 Rethinking NatLog as a logical system (a sequent calculus)

Natural language 'proofs'

 $\Gamma \vdash \text{John is short} \mid \text{John is tall} \qquad \overline{\Gamma \vdash \text{John is tall} \wedge \text{John is tall}} \stackrel{\wedge}{\downarrow}$

 Γ + John is short \Box John is tall

Looking ahead

Syntax

Definition (Syntax of \mathcal{L})

Let Φ be a countable set of proposition letters, which I will refer to as the set of proper terms. Then,

- **1** If φ is a proper term, then so is $\overline{\varphi}$;
- 2 If φ and ψ are proper terms, then

$$\varphi \equiv \psi, \quad \varphi \sqsubset \psi, \quad \varphi \sqsupset \psi, \\ \varphi \land \psi, \quad \varphi \mid \psi, \quad \varphi \smile \psi$$

are synthetic terms. Nothing else is a term of \mathcal{L} .

Synthetic terms

MacCartney Relations

- ① Equivalence (≡);
- ② Strict Forward Entailment (□);
- Strict Reverse Entailment (□);
- 4 Negation (^);
- 6 Alternation (|);
- **⑥** Cover (*∽*).
 - John is a Frenchman | John is a Dutchman

 - John is tall [^] John is tall

Definition (Synthetic Models)

Let a synthetic model M be the pair $\langle D, \llbracket \cdot \rrbracket \rangle$, where

- D is a non-empty set
- 2 $\|\cdot\|$ is an interpretation function taking proper terms φ to their denotations in D such that
 - \bigcirc $\llbracket \overline{\varphi} \rrbracket = D \llbracket \varphi \rrbracket$ such that

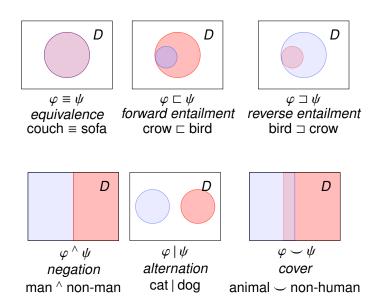
$$\llbracket \varphi \rrbracket \neq \left\{ \begin{array}{ll} \varnothing & \text{or} \\ D \end{array} \right.$$

Semantics

Definition (Tarski-Style Truth Conditions)

```
\begin{split} \mathbb{M} &\models \varphi \equiv \psi &\iff \llbracket \varphi \rrbracket = \llbracket \psi \rrbracket \\ \mathbb{M} &\models \varphi \sqsubseteq \psi &\iff \llbracket \varphi \rrbracket \subset \llbracket \psi \rrbracket \\ \mathbb{M} &\models \varphi \sqsupset \psi &\iff \llbracket \varphi \rrbracket \supset \llbracket \psi \rrbracket \\ \mathbb{M} &\models \varphi \urcorner \psi &\iff \llbracket \varphi \rrbracket \supset \llbracket \psi \rrbracket \\ \mathbb{M} &\models \varphi \urcorner \psi &\iff (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket = \varnothing) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \neq D) \\ \mathbb{M} &\models \varphi \lor \psi &\iff (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \neq \varnothing) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \neq D) \\ \mathbb{M} &\models \varphi \smile \psi &\iff (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \neq \varnothing) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket = D) \end{split}
```

Graphical representation of the MacCartney relations



Mutual Exclusivity of the MacCartney Relations

Theorem 1

If \mathbb{M} is a synthetic model then

$$\mathbb{M} \models \varphi \mathcal{R} \psi \Rightarrow \mathbb{M} \not\models \varphi \mathcal{S} \psi$$

for $\mathcal{R} \neq \mathcal{S}$.

Entailment

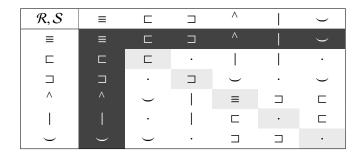
Definition (Synthetic Entailment)

Let Γ be a set of synthetic terms. Γ entails $\varphi \mathcal{R} \psi$ written, $\Gamma \models \varphi \mathcal{R} \psi$, if, and only if

$$\mathbb{M} \models \Gamma \Rightarrow \mathbb{M} \models \varphi \mathcal{R} \psi$$

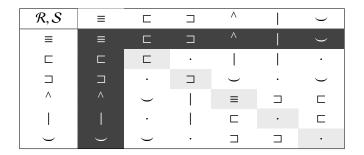
1 The synthetic proof calculus

MacCartney rules



M-rules
$$\frac{\Gamma \vdash \varphi \mathcal{R} \psi \qquad \Gamma \vdash \psi \mathcal{S} \chi}{\Gamma \vdash \varphi \mathcal{T} \chi} \,_{\mathcal{R},\mathcal{S}}$$

MacCartney Rules



M-rules:
$$\sqsubset, \sqsubset$$

$$\frac{\Gamma \vdash \varphi \sqsubseteq \psi \qquad \Gamma \vdash \psi \sqsubseteq \chi}{\Gamma \vdash \varphi \sqsubseteq \chi}$$
 \sqsubseteq, \sqsubseteq

Additional proof rules

Reflexivity

$$\frac{\varphi \mathcal{R} \psi \in \Gamma}{\Gamma \vdash \varphi \mathcal{R} \psi} \text{ Refl}$$

Proofs involving complementation

Theorem 2 (Complementation)

$$3 \Gamma \vdash \varphi \equiv \overline{\overline{\varphi}}$$

(double negation) (contraposition)

Natural language inference

Theorem 2.6

$$\Gamma \vdash \varphi \mid \psi \Rightarrow \Gamma \vdash \varphi \sqsubset \overline{\psi}$$

M-rule: |, ^

$$\frac{ \Gamma \vdash \varphi \mid \psi \qquad \Gamma \vdash \psi \land \chi}{ \Gamma \vdash \varphi \sqsubseteq \chi} \mid, \land$$

Proof.

$$\frac{\Gamma \vdash \varphi \mid \psi \qquad \overline{\Gamma \vdash \psi \wedge \overline{\psi}}^{\land_1}}{\Gamma \vdash \varphi \sqsubseteq \overline{\psi}} \downarrow, \land$$

Natural language proofs revisited

```
Theorem 2.6 (Natural Language Instantiation)
\Gamma \vdash \mathsf{John} \; \mathsf{is} \; \mathsf{short} \, | \, \mathsf{John} \; \mathsf{is} \; \mathsf{tall} \; \Rightarrow \\ \Gamma \vdash \mathsf{John} \; \mathsf{is} \; \mathsf{short} \, \Box \; \overline{\mathsf{John}} \; \mathsf{is} \; \mathsf{a} \; \mathsf{tall}
```

Γ + John is short | John is tall Γ + John is tall Λ John is tall Λ

 $\Gamma \vdash John is short \Box John is tall$

Final proof rule

Definition (Explosion)

$$\frac{\Gamma \vdash \varphi \mathcal{R} \psi \qquad \Gamma \vdash \varphi \mathcal{S} \psi \quad \text{for } \mathcal{R} \neq \mathcal{S}}{\Gamma \vdash \varphi' \mathcal{T} \psi' \text{ for all synthetic terms } \varphi' \mathcal{T} \psi'} \vdash_{\mathsf{EXP}} \mathsf{EXP}$$

Consistency

Definition (Consistency)

 Γ is consistent if, and only if $\Gamma \not\vdash \varphi \mathcal{R} \psi$ for some synthetic term $\varphi \mathcal{R} \psi$.

Inconsistency

Theorem 3 (Inconsistent Set)

$$\Gamma = \{ \varphi \sqsubset \psi, \psi \sqsupset \vartheta, \varphi \smile \vartheta \}$$
 is inconsistent

Proof.

$$\frac{\varphi \sqsubseteq \psi \in \Gamma}{\Gamma \vdash \varphi \sqsubseteq \psi} \xrightarrow{\Gamma_1} \frac{\varphi \smile \vartheta \in \Gamma}{\Gamma \vdash \varphi \smile \vartheta} \xrightarrow{Refl} \frac{\psi \sqsupset \vartheta \in \Gamma}{\Gamma \vdash \psi \sqsupset \vartheta} \xrightarrow{Refl} \frac{\Gamma \vdash \psi \smile \vartheta}{\Gamma \vdash \psi \circlearrowleft \vartheta} \xrightarrow{Exp}$$

Meta-logical results

Completeness

$$\Gamma \vdash \varphi \mathcal{R} \psi \Leftrightarrow \Gamma \models \varphi \mathcal{R} \psi$$

Soundness

$$\Gamma \vdash \varphi \mathcal{R} \psi \Rightarrow \Gamma \models \varphi \mathcal{R} \psi$$

- By induction on the height of the derivation.
- Pasic set-theoretic observations.

Soundness proof sketch (cont.)

Provability

$$\frac{\Gamma \vdash \varphi \sqsubseteq \psi \qquad \Gamma \vdash \psi \sqsubseteq \chi}{\Gamma \vdash \varphi \sqsubseteq \chi} \sqsubseteq, \sqsubseteq$$

Truth

$$\frac{\Gamma \models \varphi \sqsubseteq \psi \qquad \Gamma \models \psi \sqsubseteq \chi}{\Gamma \models \varphi \sqsubseteq \chi} \sqsubseteq, \sqsubseteq$$

- Recall that the semantics of strict forward entailment is strict set-theoretic containment.
- Strict set-theoretic containment is transitive.

Adequacy proof sketch

Adequacy of the Proof Calculus

$$\Gamma \models \varphi \mathcal{R} \psi \Rightarrow \Gamma \vdash \varphi \mathcal{R} \psi \Leftrightarrow \underbrace{\Gamma \nvdash \varphi \mathcal{R} \psi \Rightarrow \Gamma \not\models \varphi \mathcal{R} \psi}_{\text{contraposition}}$$

1 Every consistent Γ has a synthetic model:

$$\Gamma \vdash \varphi \mathcal{R} \psi \Leftrightarrow \mathbb{M} \models \varphi \mathcal{R} \psi$$

2 Given $\Gamma \not\vdash \varphi \mathcal{R} \psi$, then:

$$\mathbb{M} \not\models \varphi \mathcal{R} \psi$$

3 By (1) and (2),

$$\mathbb{M} \models \Gamma \text{ but } \mathbb{M} \not\models \varphi \mathcal{R} \psi$$

Model construction via representation

- Every consistent Γ induces an order on the set of proper terms Φ;
- That ordered set can be transformed into an orthoposet;
- Every orthoposet can be represented as a system of sets;
- The system of sets will function as a synthetic model.

Cristian Calude, Peter Hertling, and Karl Svozil. 1999. Embedding quantum universes in classical ones. *Foundations of Physics* 29: 349–379.

Lawrence S. Moss. 2007. Syllogistic logic with complements. Manuscript, Indiana University.

Nel Zierler and Michael Schlessinger. 1965. Boolean embeddings of orthomodular sets and quantum and logic. *Duke Math Journal* 32: 251–262.

Algebraic machinery

Orthposets

An *orthoposet* is a tuple $(P, \leq, 0, -)$ such that

- (P, \leq) is a partial order;
- 2 0 is a minimal element, i.e., $0 \le x$ for all $x \in P$;
- 3 $x \le y$ if, and only if $\overline{y} \le \overline{x}$;
- $4 \ \overline{\overline{x}} = x$
- **5** If $x \le y$ and $x \le \overline{y}$, then x = 0.

Consider the following premise set:

$$\Gamma = \{ \varphi \sqsubseteq \psi, \vartheta \sqsubseteq \psi, \varphi \mid \vartheta \}$$

Define the relation:

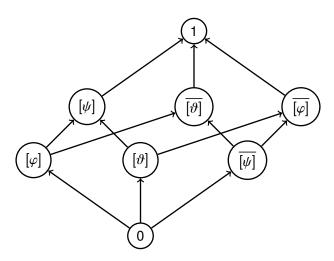
$$\varphi \leq_{\Gamma} \psi \Leftrightarrow \Gamma \vdash \varphi \equiv \psi \text{ or } \Gamma \vdash \varphi \sqsubseteq \psi$$

- \leq_{Γ} induces an equivalence relation under \equiv
- Let the elements of the orthoposet be those equivalence classes and set $[\overline{\varphi}] = \overline{[\varphi]}$



An orthoposet (cont.)

• Add elements 0, 1 to Φ , setting $\overline{0} = 1$ and 0 < x < 1:



Forming an orthoposet from a premise set

For arbitrary, consistent Γ , we can form an orthoposet:

$$(\Phi^*, \leq_{\Gamma}, 0, -)$$

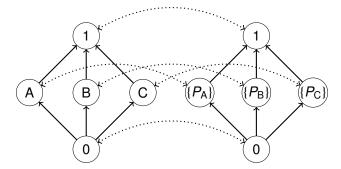
- Φ* is a set of equivalence classes under ≡;
- \leq_{Γ} is the order defined above;
- 0 is a fresh element added not in the original language;
- is the complementation operator.

Representation

Theorem

Let $P = (P, \leq, 0, -)$ be an orthoposet. There is a set S, and a strict morphism f such that

$$f: P \to S$$



Points (or a poor man's ultra-filter)

Points

A *point* of a orthoposet is a subset $S \subseteq P$ with the following properties:

- 1 If $x \in S$ and $x \le y$, then $y \in S$ (S is upward-closed);
- 2 For all x, either $x \in S$ or $\overline{x} \in S$ (S is *complete*), but not both (S is *consistent*).

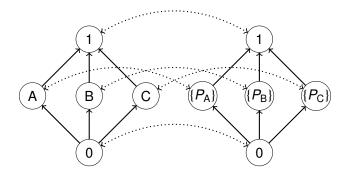
Representation

Theorem

Let $P = (P, \leq, 0, -)$ be an orthoposet. There is a set, points(P) and a strict morphism f such that

$$f: P \to \mathcal{P}(\mathsf{points}(P))$$

by setting $f(x) = \{S \in point(P) \mid x \in S\}$



Model construction

Recall, $(\Phi^*, \leq, 0, -)$ is an orthoposet. So,

1 Define $g: \Phi \to \Phi^*$ such that

$$\varphi \mapsto [\varphi]_{=_{\Gamma}}$$

2 Set $f: \Phi^* \to \mathcal{P}(points(\Phi^*))$ such that

$$f(x) = \{S \in \mathsf{points}(\Phi^*) \mid x \in S\}$$

3 Let $[\cdot]$ be defined as the *composition* of f and g ($f \cdot g$).

$$\mathbb{M} \models \varphi \mathcal{R} \psi \Leftrightarrow \Gamma \vdash \varphi \mathcal{R} \psi$$

Proof.

$$\begin{split} \Gamma \vdash \varphi &\equiv \psi \Leftrightarrow g(\varphi) = g(\psi) & \Gamma \vdash \varphi \sqsubset \psi \Leftrightarrow g(\varphi) <_{\Gamma} g(\psi) \\ &\Leftrightarrow f(g(\varphi)) = f(g(\psi)) & \Leftrightarrow f(g(\varphi)) \subset f(g(\psi)) \\ &\Leftrightarrow \llbracket \varphi \rrbracket = \llbracket \psi \rrbracket & \Leftrightarrow \llbracket \varphi \rrbracket \subset \llbracket \psi \rrbracket \\ &\Leftrightarrow \mathbb{M} \models \varphi \equiv \psi & \Leftrightarrow \mathbb{M} \models \varphi \sqsubset \psi \end{split}$$

Theorem 2.1

$$\Gamma \vdash \varphi \equiv \psi \Leftrightarrow \Gamma \vdash \varphi \mathbin{^\wedge} \overline{\psi}$$

Proof.

$$\Gamma \vdash \varphi \land \psi \Leftrightarrow \Gamma \vdash \varphi \equiv \overline{\psi}
\Leftrightarrow \llbracket \varphi \rrbracket = \llbracket \overline{\psi} \rrbracket
\Leftrightarrow (\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket) \land (\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket = D)
\Leftrightarrow \mathbb{M} \models \varphi \land \psi$$

- 3 Redefining the semantics using large corpora, focusing on
 - Sentiment
 - Veridicality

Answers and inferences

Jerrold Katz, *Semantic Theory*: Meaning as relations between forms

- What is meaning? broken down:
 - What is synonymy?
 - What is autonymy?
 - What is superordination?
 - What is semantic ambiguity?
 - What is semantic truth (analyticity, metalinguistic truth, etc.)?
 - What is a possible answer to a question?
 - •

Example

A: Was the vacation enjoyable?

B: It was memorable.

IMDB user-supplied reviews

User Reviews (Review this title)

294 out of 454 people found the following review useful.

WALL-E is one of the most cutest, lovable ch ******

Author: michael11391 from Augusta, Ga

See more (855 total) »

Not only it's Pixar's best film of all-time but it's the b animated films in years and surprisingly, one of the mines. It's so beautiful, moving, hilarious & sad at the E, it's certainly one of his best right behind Finding I WALL-E knocked off Ratatouille of the top spot in w ever seen with Ratatouille right behind and Finding I be remembered as one of the most lovable characte

Was the above review useful to you? Yes

IMDB user-supplied reviews

Rating	Reviews	Words	Vocabulary	Mean words/review
1	124,587 (9%)	25,395,214	172,346	203.84
2	51,390 (4%)	11,755,132	119,245	228.74
3	58,051 (4%)	13,995,838	132,002	241.10
4	59,781 (4%)	14,963,866	138,355	250.31
5	80,487 (6%)	20,390,515	164,476	253.34
6	106,145 (8%)	27,420,036	194,195	258.33
7	157,005 (12%)	40,192,077	240,876	255.99
8	195,378 (14%)	48,723,444	267,901	249.38
9	170,531 (13%)	40,277,743	236,249	236.19
10	358,441 (26%)	73,948,447	330,784	206.31
Total	1,361,796	317,062,312	800,743	232.83

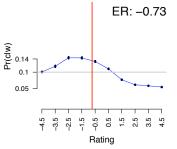
Counting and visualizing: IMDB

Α	В	С	D	Е
R	Count	Total	$\Pr(w c)$	Pr(c w)
-4.5	8,557	25,395,214	0.0003	0.10
-3.5	4,627	11,755,132	0.0004	0.12
-2.5	6,726	13,995,838	0.0005	0.14
-1.5	7,171	14,963,866	0.0008	0.14
-0.5	9,039	20,390,515	0.0004	0.13
+0.5	10,101	27,420,036	0.0004	0.11
+1.5	10,362	40,192,077	0.0003	0.08
+2.5	10,064	48,723,444	0.0002	0.06
+3.5	7,909	40,277,743	0.0002	0.06
+4.5	13,570	73,948,447	0.0002	0.05

$$\Pr(w|c) \stackrel{\text{def}}{=} \operatorname{Count}(w,c)/\operatorname{Total}(c)$$

$$\Pr(c|w) \stackrel{def}{=} \frac{\Pr(w|c)}{\sum_{x \in R} \Pr(w|x)}$$

disappoint(ed/ing) (88,126 tokens)



$$\mathsf{ER}(w) \stackrel{\mathsf{def}}{=} \sum_{c \in R} c \cdot \mathsf{Pr}(c)$$

fision Logic Proof calculus Meta-logical results Sentiment Veridicality Looking ahead

Scalars

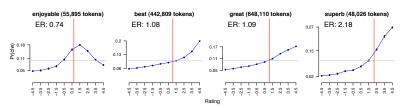


Figure: Positive

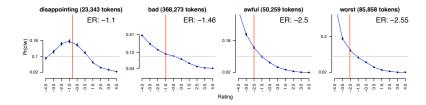


Figure: Negative

Semantics

Definition (Lexical meanings)

$$\llbracket \alpha \rrbracket = \begin{cases} [\mathsf{ER}(\alpha), +4.5] & \text{if } \mathsf{ER}(\alpha) \ge 0 \\ [-4.5, \mathsf{ER}(\alpha)] & \text{if } \mathsf{ER}(\alpha) < 0 \end{cases}$$

Definition (Negation)

$$\llbracket \mathbf{neg} \ \alpha \rrbracket = \left\{ \begin{array}{ll} (\mathsf{ER}(\alpha), +4.5] & \text{if} \quad \mathsf{ER}(\alpha) < 0 \\ [-4.5, \mathsf{ER}(\alpha)) & \text{if} \quad \mathsf{ER}(\alpha) \geqslant 0 \end{array} \right.$$

Definition (Lexical relations)

$$\alpha \equiv \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \approx \llbracket \beta \rrbracket$$

$$\alpha \sqsubset \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \subset \llbracket \beta \rrbracket$$

$$\alpha \sqsupset \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \supset \llbracket \beta \rrbracket$$

$$\alpha \sqsupset \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket = \emptyset \quad \& \quad \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \neq [-4.5, +4.5]$$

$$\alpha \land \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket = \emptyset \quad \& \quad \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket = [-4.5, +4.5]$$

$$\alpha \smile \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket \neq \emptyset \quad \& \quad \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket = [-4.5, +4.5]$$

Application: Indirect question-answer pairs

Marie-Catherine de Marneffe

Scott Grimm

Chris Manning

Marie-Catherine de Marneffe, Scott Grimm & Christopher Potts. 2009. Not a simple yes or no: Uncertainty in indirect answers. Proceedings of SIGDIAL 10.

Marie-Catherine de Marneffe, Christopher D. Manning & Christopher Potts. 2010. Was it good? It was provocative. Learning the meaning of scalar adjectives. Proceedings of ACL 48.

Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which

- the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

Modification in answer	Count
Other adjective	125
Adverb - same adjective	55
Negation - same adjective	21
Omitted adjective	4
Total	205

Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which

- the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

Modification in answer	Count
Other adjective	125
Adverb - same adjective	55
Negation - same adjective	21
Omitted adjective	4
Total	205

A: Is it good?

B: It's noteworthy.

Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which

- the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

Modification in answer	Count
Other adjective	125
Adverb - same adjective	55
Negation - same adjective	21
Omitted adjective	4
Total	205

A: Is it good?

B: It's impressively good.

Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which

- the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

Modification in answer	Count
Other adjective	125
Adverb - same adjective	55
Negation - same adjective	21
Omitted adjective	4
Total	205

A: Is it good?

B: It's not good.

Data from CNN interview shows. Automatic and manual techniques to pull out at least a sample of the dialogues in which

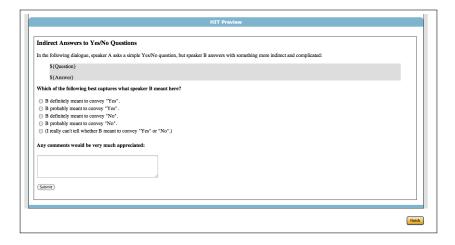
- · the question contains a scalar predicate
- the answer contains a scalar predicate or a numerical term

Modification in answer	Count
Other adjective	125
Adverb - same adjective	55
Negation - same adjective	21
Omitted adjective	4
Total	205

A: Is that a huge gap in the system?

B: It is a gap.

Annotations



Annotations

30 annotators per IQAP 120 annotators

Median items done: 28

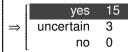
Mean items done: 56.5

Figure: The faces of Mechanical Turk.

A: Was a it a good ad?

B: It was memorable.

definite yes	12
probable yes	15
uncertain	3
probably no	0
definite no	0



Procedure

Definition (de Marneffe, Manning, Potts)

Let D be a dialogue consisting of (i) a polar question whose main predication is a based on scalar predicate P_Q and (ii) an indirect answer whose main predication is based on scalar predicate P_A .

- 1 if P_A or P_Q is missing from our data, infer 'Uncertain';
- 2 else if $ER(P_Q)$ and $ER(P_A)$ have different signs, infer 'No';
- 3 else if $abs(ER(P_Q)) \leq abs(ER(P_A))$, infer 'Yes';
- 4 else infer 'No'.
- (5) In the presence of downward monotone expressions, map 'Yes' to 'No', 'No' to 'Yes', and 'Uncertain' to 'Uncertain'.

Procedure

Definition (de Marneffe, Manning, Potts)

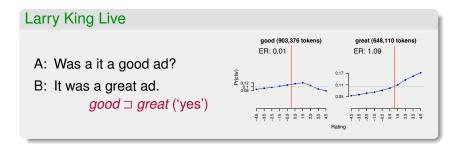
Let *D* be a dialogue consisting of (i) a polar question whose main predication is a based on scalar predicate P_Q and (ii) an indirect answer whose main predication is based on scalar predicate P_A .

- 1 if P_A or P_O is missing from our data, infer 'Uncertain';
- 2 else if $ER(P_Q)$ and $ER(P_A)$ have different signs, infer 'No';
- 3 else if $abs(ER(P_Q)) \leq abs(ER(P_A))$, infer 'Yes';
- 4 else infer 'No'.
- In the presence of downward monotone expressions, map 'Yes' to 'No', 'No' to 'Yes', and 'Uncertain' to 'Uncertain'.

Definition (Synthetic logic)

$$P_Q \ R \ P_A \left\{ egin{array}{ll} \mbox{Yes} & \mbox{if } R \in \{\equiv, \sqsupset\} \\ \mbox{No} & \mbox{if } R \in \{\sqsubset, |, ^ \} \\ \mbox{Uncertain} & \mbox{otherwise} \end{array}
ight.$$

Definition (Synthetic logic)
$$P_Q \ R \ P_A \left\{ \begin{array}{ll} \text{Yes} & \text{if} \ R \in \{\equiv, \sqsupset\} \\ \text{No} & \text{if} \ R \in \{\sqsubset, \rfloor, ^ \land\} \\ \text{Uncertain} & \text{otherwise} \end{array} \right.$$



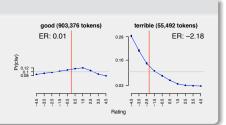
Definition (Synthetic logic)
$$P_Q \ R \ P_A \left\{ \begin{array}{ll} \text{Yes} & \text{if} \ R \in \{\equiv, \sqsupset\} \\ \text{No} & \text{if} \ R \in \{\sqsubset, \rfloor, ^ \land\} \\ \text{Uncertain} & \text{otherwise} \end{array} \right.$$

Lou Dobbs Tonight

A: Do you think that's a good idea?

B: It's a terrible idea.

good | terrible ('no')



Definition (Synthetic logic)
$$P_Q \ R \ P_A \left\{ \begin{array}{ll} \text{Yes} & \text{if} \ R \in \{\equiv, \sqsupset\} \\ \text{No} & \text{if} \ R \in \{\sqsubset, \rfloor, ^ \wedge\} \\ \text{Uncertain} & \text{otherwise} \end{array} \right.$$

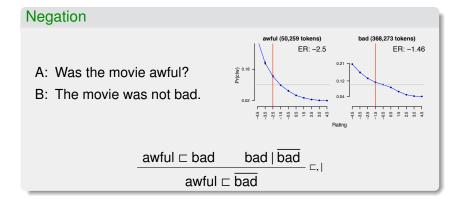
Late Edition

A: Does he have a good chance of making it?

B: The chances are fair, I'd say.

good | fair ('no')

Definition (Synthetic logic)
$$P_Q \ R \ P_A \left\{ \begin{array}{ll} \text{Yes} & \text{if} \ R \in \{\equiv, \sqsupset\} \\ \text{No} & \text{if} \ R \in \{\sqsubset, \mid, ^ \wedge\} \\ \text{Uncertain} & \text{otherwise} \end{array} \right.$$



Results

Modification in answer	Count	Precision	Recall
Other adjective	125	60	60
Adverb - same adjective	55	95	95
Negation - same adjective	21	100	100
Omitted adjective	4	100	100

Table: Summary of precision and recall (%) by type.

Response	Precision	Recall	F1
Yes	87	76	81
No	57	71	63

Table: Precision, recall, and F1 (%) per response category. There were just two examples whose dominant response from the Turkers was 'Uncertain', so we have left that category out of the results.

- 3 Redefining the semantics using large corpora, focusing on
 - Sentiment
 - Veridicality

FactBank

Freely available from the LDC. Extends TimeBank 1.2 and a fragment of the AQUAINT TimeML Corpus.

- Veridicality annotations on events relative to each participant involved in the discourse
- 208 documents from newswire and broadcast news reports
- 9,472 event descriptions

Saurí, Roser. 2008. A Factuality Profiler for Eventualities in Text. PhD thesis, Brandeis.

Saurí, Roser and James Pustejovsky. 2009. FactBank: A corpus annotated with event factuality. Language Resources and Evaluation 43.

FactBank

Example

Some experts now predict Anheuser's entry into the fray **means** near-term earnings trouble for all the industry players.

- Veridicality(means, experts) = PR+
- Veridicality(means, author) = Uu

Example

Recently, analysts have said Sun also is **vulnerable** to competition from International Business Machines Corp., which plans to introduce a group of workstations early next year, and Next Inc.

- Veridicality(vulnerable, analysts) = CT+
- 2 Veridicality(vulnerable, author) = Uu

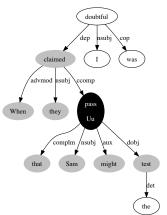
FactBank

Value	Definition	Count	
CT+	According to the source, it is certainly the case that X	7,749 (57	.6%)
PR+	According to the source, it is probably the case that X	363 (2	.7%)
PS+	According to the source, it is possibly the case that X	226 (1	.7%)
CT-	According to the source, it is certainly not the case that X	433 (3	.2%)
PR-	According to the source it is probably not the case that X	56 (0	.4%)
PS-	According to the source it is possibly not the case that X	14 (0	.1%)
CTu	The source knows whether it is the case that X or that not X	12 (0	.1%)
Uu	The source does not know what the factual status of	4,607 (34	.2%)
	the event is, or does not commit to it		
		13,460	

Table: FactBank annotation scheme.

Denotations from the corpus

How do lexical items contribute to veridicality assessment?



When they claimed that Sam might pass the test, I was doubtful.

Count $(w, t) \stackrel{def}{=}$ the number of times word w appears as clausemate to an event marked with tag t from a non-author perspective.

$$P(w|t) \stackrel{\text{def}}{=} \frac{\operatorname{Count}(w,t)}{\sum_{x} P(x|t)}$$

$$P(t|w) \stackrel{\text{def}}{=} \frac{P(w|T)}{\sum_{t \in T} P(w|t)}$$

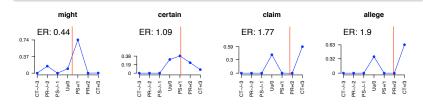
Expected veridicality

Definition (Tag structure)

$$T = \left\{ \begin{array}{cccc} & +1 & +2 & +3 \\ PS+ & \Rightarrow & PR+ & \Rightarrow & CT+ \\ 0 & & & & \\ & & PS- & \Rightarrow & PR- & \Rightarrow & CT- \\ & & & -1 & & -2 & & -3 \end{array} \right\}$$

Definition (Expected veridicality)

$$\mathsf{EV}(w) \stackrel{def}{=} \sum_{t \in T} t \cdot \mathsf{Pr}(t|w)$$



Semantics (same as for the sentiment corpus)

Definition (Lexical meanings)

$$\llbracket \alpha \rrbracket = \left\{ \begin{array}{ll} [\mathsf{EV}(\alpha), +3] & \text{if} \quad \mathsf{EV}(\alpha) \geqslant 0 \\ [-3, \mathsf{EV}(\alpha)] & \text{if} \quad \mathsf{EV}(\alpha) < 0 \end{array} \right.$$

Definition (Negation)

 $\alpha \smile \beta$

iff $[\alpha] \cap [\beta] \neq \emptyset$ & $[\alpha] \cup [\beta] = [-4.5, +4.5]$

Definition (Lexical relations)

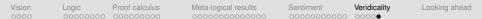
$$\alpha \equiv \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \approx \llbracket \beta \rrbracket$$

$$\alpha \sqsubset \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \subset \llbracket \beta \rrbracket$$

$$\alpha \sqsupset \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \supset \llbracket \beta \rrbracket$$

$$\alpha \thickspace \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket = \emptyset \quad \& \quad \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket \neq [-4.5, +4.5]$$

$$\alpha \land \beta \quad \text{iff} \quad \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket = \emptyset \quad \& \quad \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket = [-4.5, +4.5]$$



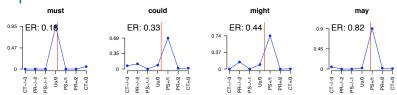


Figure: Modals ordered by □. *must* anomalous?

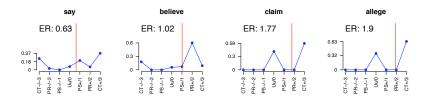


Figure: Attitude predicates ordered by □.

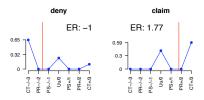


Figure: Attitude predicates in |.

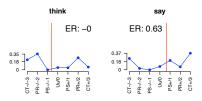


Figure: Attitude predicates in |.

Looking ahead: Semantic composition

- We concentrated on the lexicon throughout.
- MacCartney developed a full theory of semantic composition for natural language parsetrees.
- We believe that the following rule is the right one for bringing composition and projectivity into our approach:

$$\frac{\Gamma \vdash \varphi(x)R\psi(y) \qquad \Gamma \vdash xSy \qquad \Gamma \vdash aSb}{\Gamma \vdash \varphi(a)R\psi(b)} S_2$$

 Moving between types domains in this way poses worthwhile new logical and empirical challenges, especially when the semantic grounding is non-traditional.