CATS regression – a model-based approach to studying trait-based community assembly

David I. Warton¹, Bill Shipley² and Trevor Hastie³

¹School of Mathematics and Statistics and Evolution & Ecology Research Centre, The University of New South Wales, NSW 2052, Australia
²Département de Biologie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
³Department of Statistics, Stanford University, Stanford, CA 94305, The United States of America

Running Header - GLMs for trait-based community assembly

Word count: 6965 words

Summary
1. Shipley et al. (2006) proposed a maximum entropy approach to studying how species relative abundance is mediated by their traits, “community assembly via trait selection” (CATS).
2. In this paper we build on recent equivalences between the maximum entropy formalism and Poisson regression to show that CATS is equivalent to a generalised linear model for abundance, with species traits as predictor variables.
3. Main advantages gained by access to the machinery of generalised linear models can be summarised as advantages in interpretation, model-checking, extensions and inference.
4. A more difficult issue however is the development of valid methods of inference for single-site data, as species correlation in abundance is not accounted for in CATS (whether specified as a regression or via maximum entropy). This issue can be circumvented for multi-site data using design-based inference.
5. These points are illustrated by example – our plant abundances were found to violate the implicit Poisson assumption of CATS, but a negative binomial regression had much-improved fit, and our model was extended to multi-site data in order to directly model the environment-trait interaction. Keywords: community composition, community-level models, fourth corner model, generalised linear models, maximum entropy, Poisson regression
Much of the recent multivariate literature in ecology has focussed on describing the response to environmental conditions of different species (Wang et al., 2012) or of aggregate quantities computed from species, such as diversity measures (Anderson et al., 2011) or pair-wise dissimilarities (Anderson, 2001; Ferrier & Guisan, 2006). But a key challenge is describing not just how species differ, but why, a question which can only be answered by looking at the traits of different species (McGill et al., 2006) and how traits mediate differences in abundance across species and environments.

Community assembly by trait selection (Shipley et al., 2006, “CATS”) is a means of studying how traits drive differences in relative abundance of different species at a site. The method was originally developed for analysis of data from a single site, where we have recorded a quantitative measure of relative abundance of each species (e.g. count, biomass), and a set of traits of each species (e.g. plant height, leaf mass per area) that might be considered to be drivers of relative abundance. More recently the method has been used in a multi-site context via a two-stage approach – analysing trait data separately at each site, then analysing summary statistics across sites to relate results to environmental variables (Sonnier et al., 2012). In this paper we will extend the functionality of CATS in various ways, including allowing multi-site analysis to be approached directly within a single model. This is achieved by exploiting an equivalence between maximum entropy and Poisson regression.

Equivalences between maximum entropy methods and maximum likelihood have a long history. Maximum entropy was related to maximum likelihood for exponential families by Kullback (1959) and for contingency table analysis (Good, 1963). More recently, maximum entropy was linked to maximum likelihood of a Gibbs distribution (Della Pietra et al., 1997) and the multinomial distribution (Shipley et al., 2012, Appendix A). In the species distribution modelling literature, an equivalence result recently connected maximum entropy methods to generalised linear models – it has been shown in the context of presence-only analysis that estimating probabilities of species occurrence via a maximum entropy approach (Phillips et al., 2006, “MAXENT”) is equivalent to Poisson regression and Poisson point process regression (Renner & Warton, 2013; Fithian & Hastie, in press). This equivalence made possible a number of extensions to MAXENT – including the use of diagnostic tools standard in the regression literature for model-checking, extensions of the model when assumptions are not satisfied, and inference tools to account for uncertainty in fitted models. In this paper, it will be shown that a similar equivalence result extends to CATS models and offers some of these same advantages.
1 Main result

Consider observations of the abundance of \(S \) different species in a site, \(y = (y_1, \ldots, y_S) \), with total abundance \(n = \sum_{i=1}^{S} y_i \). For each species, \(K \) traits are measured, and for the \(i \)th species these are stored in \(x_i = (x_{i1}, \ldots, x_{iK}) \). Our goal is to study how relative abundances \((\frac{y_i}{n}) \) across species are associated with traits \((x_i) \).

Sometimes we also have estimates of \(q_i \), the relative abundance of each species in the metacommunity. Shipley (2010) referred to these as “prior” abundances. When available, these should usually be incorporated into the analysis also, in order to account for the fact that the relative abundance of a species at a site is a function of its abundance in the broader metacommunity as well as being a function of the species’ suitability to the site. This is related to the concept of community assembly via environmental filtering (Shipley, 2010).

1.1 CATS specification

In CATS we wish to predict the relative abundance of each species \((p_i) \) to maximise relative entropy or Kullback-Leibler divergence:

\[
-\sum_{i=1}^{S} p_i \ln \left(\frac{p_i}{q_i} \right)
\]

subject to the constraints:

\[
\sum_{i=1}^{S} p_i = 1, \quad \sum_{i=1}^{S} p_i x_{ij} = \frac{1}{n} \sum_{i=1}^{S} y_i x_{ij}
\]

The observed relative abundances enter into analyses through the second constraint in equation 2. The solution can be found using the Lagrangian method, and it has the form:

\[
p_i = q_i e^{\lambda - 1 + x'_i \beta}
\]

or in log-linear form:

\[
\ln p_i = \ln q_i + \lambda - 1 + x'_i \beta
\]

The key coefficient of interest is \(\beta \), a vector of \(K \) “selection coefficients”, summarising the strength of association between each of the traits and relative abundance. The parameter \(\lambda \) controls the predicted abundance of each species such that the \(p_i \) sum to one.

When no information about metacommunity abundance is available, the \(q_i \) are uniform, and Equation (1) reduces to the entropy function (Shannon & Weaver, 1949), in which case CATS can be understood as maximum entropy estimation along the lines of Phillips et al. (2006).
1.2 Equivalence with Poisson regression

Our key result is as follows:

CATS is mathematically equivalent to Poisson regression of the y_i against x_i, using q_i as an offset.

That is, CATS can be understood as fitting a log-linear model for the mean abundance of each species (μ_i):

$$\ln \mu_i = \ln q_i + \beta_0 + x_i' \beta$$

where parameters β_0 and β are estimated to maximise the Poisson likelihood:

$$\ell(\beta_0; \beta; y) = \sum_{i=1}^{s} y_i \ln \mu_i - \mu_i$$

The regression slope coefficients β are exactly the selection coefficients as in Shipley et al. (2006), and the intercept has been shifted by a constant $\beta_0 = \lambda_0 + 1 + \ln n$.

The proof of this result is relatively straightforward and can be found at the end of this article. The mathematics of the proof are very similar to that found in Renner & Warton (2013), where it was similarly shown that maximum entropy estimation of presence-only data can be understood as Poisson regression. The essential differences here are: the response variable is now abundance rather than presences of a species in grid cells (although this has no implications for the mathematics); CATS maximises relative entropy of predicted relative abundance p_i as compared to a prior q_i (which resulted in the addition of an offset, $\log(q_i)$, not found in Renner & Warton, 2013).

Thus CATS can be implemented via generalised linear modelling (GLM) functions available on most statistics software, for example, on R:

```r
 glm(rel~trait+offset(log(meta)),family="poisson")
```

where for each species the relative abundance is stored in `rel`, trait measurements in `trait`, and “prior” relative abundance from the metacommunity in `meta`. We will refer to this in the following as an example of “CATS regression”.

2 Implications

The above equivalence result has a number of implications, but the most important can be summarised as relating to interpretation, model-checking, extensions and inference.
2.1 Interpretation

It is anticipated that because most readers will be familiar with regression techniques, many will find it helpful to think of CATS as a regression of abundances of different species at a site against their species traits.

Further, thinking of CATS as a regression problem helps clarify some issues previously raised in the literature. In particular, Roxburgh & Mokany (2007) argued that there is circularity in CATS as proposed in Shipley et al. (2006), due to use of observed abundances both to fit the model and to compute an R^2 goodness-of-fit statistic. Shipley et al. (2007) responded that the circularity is no greater than that typically experienced in regression problems (and that it can be taken into account when making statistical inferences). We have verified this by showing that CATS is in fact a type of regression. Further, alternative measures of R^2 for generalised linear models have been suggested (Cameron & Windmeijer, 1997; Nakagawa & Schielzeth, 2012) which could be considered as alternatives to the proposal in Shipley et al. (2006).

Another aspect where thinking of CATS as a regression may assist interpretation is in understanding the role of the prior q_i. The term “prior” is suggestive of Bayesian priors and the incorporation of prior information, but in a regression context, q_i actually has the role of an offset term. An offset is a variable included in the model that has a known slope coefficient, usually, a variable known to have a proportionate effect on the response. Offsets are typically used to account for varying sampling effort across site, e.g. if the sampling unit is twice as large at a site then our initial expectation is that the abundance will be twice as large also. Meta-community relative abundance (q_i) can be understood as an offset for similar reasons – all else being equal, a species which is twice as abundant in the metacommunity is expected to be twice as abundant in the site.

2.2 Model-checking

Because CATS is mathematically equivalent to Poisson regression, arguably, it is subject to Poisson regression assumptions. Poisson regression assumptions are: (1) observations are independent (conditional on trait values); (2) abundances are Poisson in distribution; (3) mean abundance has a log-linear relationship with traits.

Assumption (1) is potentially problematic, as it would be violated by species interactions that are not explained by traits alone, which has implications for inference, discussed
Assumptions (2-3) can be checked using standard diagnostic tools. While not widely used in ecology and evolution, Dunn-Smyth residuals (Dunn & Smyth, 1996) are especially useful for this purpose, as they are standard normal in distribution for any parametric model, whenever the model is correct, and thus are not a function of any explanatory variables. They can be computed using the residuals.manyglm function in the mvabund package (Wang et al., 2012), which also uses Dunn-Smyth residuals by default in residual plots. Dunn-Smyth residual plots provide a helpful visual tool for assessment of the extent of violations of distributional assumptions, in the same way that ordinary residuals are often used to diagnose least squares regression. Violation of the mean-variance assumption is characterised by a fan shape on residual vs fits plots, violation of log-linearity is often expressed via a U-shape on a residual vs fits plot, and systematic departures from a straight line of slope one on a normal quantile plot can mean violation of either of these assumptions (but strong non-normality is suggestive of a violation of distributional assumptions).

2.3 Extensions

An especially exciting prospect is the extension of CATS to other contexts via the regression framework, e.g. to other data types, multi-site data, to incorporate uncertainty. Often the Poisson assumption is not reasonable for abundance data. Counts are often overdispersed compared to the Poisson, in which case negative binomial regression might be a useful alternative (O’Hara & Kotze, 2010). Abundance might be measured as biomass or percent cover rather than as a count, in which case the Tweedie distribution (as in Dunstan et al., 2013) should be considered, given that it is scale invariant but with a probability mass at zero, and its mean-variance assumption follows Taylor’s power law (Taylor, 1961). Abundance might be measured on an ordinal scale, in which case, models developed specially for an ordinal response, such as the proportional odds model (Yee, 2010), are suitable. None of these models is mathematically equivalent to CATS, however, they can each be argued to have the same goal as CATS but instead use a model which is better suited to the distributional properties of the abundance data at hand.

While CATS was originally proposed for single site data, extensions to the multi-site context are quite natural in a regression context. Let y_{ij} be the abundance of species i at site j, and let z_j be a vector of environmental variables describing site j. We can fit the
\[\ln \mu_{ij} = \ln q_i + \beta_0 + x_i'\beta_x + z_j'\beta_z + \text{vec}(x_i \otimes z_j)'\beta_{xz} \]

which predicts abundance as a function of environment, species trait, and their interaction (denoted as vec$(x_i \otimes z_j)$ – a vector containing the product of each trait variable for species i by each environmental variable at site j). The interaction is of particular interest, as this captures the way differences in environmental response across species changes are mediated by traits. Models of this form have been fitted previously (Pollock et al., 2012; Brown et al., in review), although without an offset for the influence of the metacommunity.

Uncertainty about model inputs could be incorporated into the analysis via a hierarchical approach to regression. In particular, the relative abundance in the meta-community (q_i) might not be known exactly, but if it can be estimated, with error, the subsequent approximating distribution for q_i could be used for analysis rather than just point estimates. This could be achieved in a Bayesian framework or otherwise, the resultant model being a generalised linear mixed model with a random intercept that has (approximately) known variance component (which could be fitted, for example, using the \texttt{MCMCglmm} package, Hadfield, 2010).

The above is by no means an exhaustive list of possible extensions of CATS available via reexpressing as a regression problem – generalised linear models have been a key tool in applied statistics for decades, and they have been extended in a number of ways to handle important problems. Additional examples of relevant extensions are generalised additive models (Hastie & Tibshirani, 1990), generalised linear mixed models (Bolker et al., 2009), and regularisation methods such as the LASSO (Friedman et al., 2010). Some of the above extensions could in principle be developed within the maximum entropy framework without moving over to regression analysis, but the point is that most of them are already relatively straightforward to implement in a regression framework using existing software.

2.4 Inference

Having fitted a model to a sample of data, it is usually of interest to quantify the sampling uncertainty in estimated coefficients, to assess whether associations between traits and abundance are statistically significant, or to identify an optimal set of traits for predicting abundance (“model selection”, e.g. using BIC). The generalised linear modelling framework has extensive tools for making such statistical inferences, although these should be
used with care, because of problems with the independence assumption.

Recall that assumption (1) of Poisson regression was that observations are independent across species. In ordinary regression problems the independence assumption is often reasonable by design – for example, by randomly selecting study sites from a population of potential sites, one can argue that responses are independent. But in studies of community structure this is not true across species – typically, one records the abundance of all species at a site, rather than a small sample of them. Further, species interactions are often expected to occur, due to competition, predation, or a host of other causes (Wisz et al., 2013). Under these conditions, violations of the independence assumption are arguably the norm rather than the exception.

Violations of the independence assumption do not invalidate the estimation procedure, but they do invalidate standard methods of inference under the GLM framework. There is no simple solution to this problem in the single-site case – to make valid inferences, one would need to know \textit{a priori} the form of dependence, parameterised in a simple enough way that it could be estimated from data at a single site. Shipley et al. (2007) suggested permutation tests, where one permutes trait values across species, as a way to address the problem, but that assumes trait values (or equivalently, abundances) are exchangeable across species, an assumption that is closely related to the independence assumption across species which was problematic in the first place. Unfortunately, for data from a single site, there seems little alternative to using standard GLM software to make \textit{approximate} inferences about parameter uncertainty, or permutation tests as in Shipley (2010) for approximate hypothesis tests.

In multi-site analyses, however, there is the potential to use design-based approaches to inference (Manly, 2007), if the sites have been sampled in such a way that independence across sites can reasonably be assumed. Estimates of parameter uncertainty could be obtained by bootstrapping sites, and tests of environment-trait associations could be obtained by resampling all observations from a site jointly, in an analogous fashion to what is currently done in multivariate analysis in ecology (Anderson, 2001; Wang et al., 2012), in order to ensure inferences are valid despite potential violations of the assumption of independence across species. In the context of generalised linear modelling, suitable resampling approaches include case resampling (Davison & Hinkley, 1997) or more recently the PIT-trap (Warton & Wang, in review), both of which are available in the \texttt{mvabund} package (Wang et al., 2012).
2.5 CATS regression when species abundances are not observed

CATS as originally specified does not require knowledge of the abundance of each species \((y_i)\). Instead, the only abundance information that is required for model-fitting is the community-aggregated traits, \(\frac{1}{n} \sum_{i=1}^{S} y_i x_{ik} = x_{ik}\). In fact, software for fitting CATS models – the `maxent` function in the `FD` package (Laliberté & Shipley, 2011) – has been structured such that it can take the community-aggregated values \(x_{ik}\) as input rather than the abundances \(y_i\). This situation might be especially desirable if one wishes to estimate community-aggregated trait means without measuring abundance of each species (for example, using some empirical relationship between community-aggregated trait means and environmental variables).

Strictly speaking, only community-aggregated traits are required to fit a Poisson CATS regression also, but in practice GLM software does not automatically cater for this option. The community-aggregated traits \(x_{ik}\) are examples of what is known as sufficient statistics (Gill, 2001) – \(x_{ik}\) is sufficient for \(\hat{\beta}_k\), and a Poisson regression can be fitted directly from the sufficient statistics, without knowledge of the abundance values for each species at a site. However most GLM software is not designed to take sufficient statistics as input. In supplementary material we demonstrate that when using `R` software, analysis via sufficient statistics is possible but more indirect via `glm` than via the `maxent` function.

The community aggregated traits are sufficient statistics only in the special case of Poisson regression. If data were overdispersed relative to the Poisson, such that a negative binomial regression would be desired, the \(x_{ik}\) would no longer be sufficient – essentially, because more abundant species would need to be down-weighted when averaging trait values, to account for overdispersion. Thus some of the gains made by moving away from Poisson models come at a cost to interpretability – the motivating equation for CATS (Equation 2), that predicted community-aggregated trait values should equal observed values, may no longer apply.

3 Example

To illustrate some potential advantages afforded by the regression framework we revisit an analysis of the effects of land use on plant communities in southern France (Sonnier et al., 2012). Counts of the number of individuals were recorded for each plant species in each of 32 plots, each belonging to one of four treatments, specified according to a combination...
of grazing history and soil type. Twelve traits were measured on each of the 68 most abundant species, related to different aspects of leaf properties, size, and phenology. Our analyses make use of the ten trait variables we had access to (all traits from Sonnier et al., 2012 but plant lifespan and date of seed maturation). No metacommunity abundance data \((q_i)\) were available so we did not include an offset in any analyses.

It is of interest to understand which traits tend to be related to abundance, and in particular, to differences in abundance across treatments. For illustratory purposes, data will be analysed from a single example plot, then from all sites simultaneously.

The R program (R Core Team, 2013) was used for all analyses, using the `maxent` function from the `FD` package (Laliberté & Shipley, 2011) for CATS analysis via maximum entropy, the `glm` function from the base package for Poisson regression, and the `manyglm` function from the `mvabund` package (Wang et al., 2012) for negative binomial regression. All leaf and size variables were log\(_{10}\)-transformed prior to analysis. Example R code is included in supplementary material.

3.1 Single-site analysis

For purposes of illustration we started by re-analysing abundance data from the first listed site in the dataset, sampled from fertilised pasture on limestone bedrock, using just two trait variables – leaf dry matter content (LDMC) and leaf carbon content (LCC). At this site, \(n = 167\) individuals from \(S = 14\) different species were recorded as present.

A CATS analysis via maximum entropy returned slope coefficients that were similar but not quite identical to Poisson regression results (Table 1), once the convergence tolerance was increased to a sufficiently high value (the model did not seem to have converged under default settings). On further decreasing the tolerance to \(10^{-16}\), the `maxent` function returned results that were equal to default output from a Poisson regression obtained via the `glm` function to eight decimal places. As expected, the intercepts did not agree, largely because maximum entropy modelled relative abundance \((y_i/n)\), whereas Poisson regression modelled absolute abundance \((y_i)\). Computation time was noticeably longer for the `maxent` function than when using the `glm` function. At a tolerance of \(10^{-16}\), `maxent` took 14 seconds on a laptop with a 2.8GHz processor, whereas `glm` took less than one hundredth of a second.

Model checks (Figure 1, left column) suggested data were overdispersed compared to a Poisson distribution, with Dunn-Smyth residuals “fanning out” at larger predicted values.
to a much broader range than would be plausible for a standard normal random variable (with five of the 14 residuals having an absolute value greater than 4, when we should expect none to exceed 4). Fitting a negative binomial model instead produced much more favourable residual plots (Figure 1, right column) and a substantially smaller BIC value (Table 1), suggesting the negative binomial was a much improved model for the data.

Of particular interest from the fitted model is the size and direction of the slope parameters, and how large they are relative to sampling uncertainty. The coefficient of leaf carbon concentration from the negative binomial regression was clearly not significantly different from zero, whereas there is perhaps some evidence of an increasing relationship between leaf dry matter content and abundance (with an approximate Z-score of $7.252/2.736 = 2.65$, but note this is only approximate so should be interpreted conservatively). As compared to the original Poisson model, note that the negative binomial regression slope parameter for LCC was much flatter and of a different sign, and all standard errors increased three-fold or more, due to the additional overdispersion now accounted for in the model. While negative binomial regression suggested a weak, non-significant positive association between LCC and abundance, Poisson analyses suggested a marginally significant negative association. Clearly, failing to take into account overdispersion can have considerable impacts on the fitted model and its interpretation.

3.2 Multi-site analysis

An interesting extension of CATS regression is to simultaneously analyse plant abundances from all 32 sites in order to study how traits mediate inter-specific differences in response to treatment (grazing history and soil type). We fitted the mean model specified in equation 3, using a negative binomial distribution. We also considered a Poisson, but as before, data were strongly overdispersed – see supplementary material for details.

Of particular interest are interaction terms between treatment and trait variables – a significant interaction suggests that there are differences in mean abundance at different sites that are mediated by traits. We would like to use resampling to enable valid inference despite potential failure of correlation assumptions, and residual resampling (resampling by site) is a natural tool which can be used to this end (Manly, 2007). A difficulty comes in defining residuals for non-normal data, but Warton & Wang (in review) have addressed this using probability integral transform (PIT-) residuals (along the lines of Dunn & Smyth, 1996). They refer to the subsequent resampling algorithm as the PIT-trap (a
bootstrap using PIT-residuals).

The log-likelihood ratio statistic testing for a treatment × trait interaction is 166.6, which was significantly large under PIT-trap resampling of residuals across sites \((P \leq 0.001)\). Thus we conclude that across these 32 sites and ten trait variables, there is a significant interaction between (some of the) traits and treatment.

Having established that there is an interaction, the next step is to understand which traits are most strongly associated with a treatment response. One way to approach this problem is to estimate standardised interaction coefficients – traits with interaction coefficients which are larger in magnitude have greater importance (Figure 2). Note that these coefficients estimate conditional effects, \textit{i.e.} after accounting for the effects of all other terms in the model. For example, results suggest that plants with high leaf phosphorous content (large \text{LPC}), when keeping other traits constant, have higher abundance at fertilised and heavily grazed sites, but lower abundance at sites with nutrient-poor dolomite soils.

A number of alternative approaches to estimating relative importance of traits are available, many of which can be readily implemented using standard software – including a leave-one-out approach, or stepwise selection of traits (the \texttt{drop1} and \texttt{step} functions on \texttt{R}, respectively), both illustrated in supplementary material.

4 Discussion

Community assembly by trait selection (Shipley, 2010, “CATS”) is a tool for studying how traits drive interspecific differences in abundance at a site, and by reexpressing CATS in a regression framework, we have extended its functionality to handle a broader range of data types and questions. CATS regression can be applied using any measure of abundance as the response (provided that the model for the response variable is adapted to the data at hand). Further, CATS regression can be readily extended to handle data from multiple sites simultaneously, and thus get at the important question of how traits mediate differences in environmental response across species.

Reanalysis of the plant abundance data from Sonnier \textit{et al.} (2012) highlighted some of the potential advantages of reexpressing CATS in a regression framework. Comparing results to what was previously available in the maximum entropy CATS framework, it is evident that regression modelling enables: \textit{model-checking} (Figure 1), with in this case clear evidence against the Poisson assumption which underpins maximum entropy; \textit{extensions},
in this case involving use of negative binomial regression to account for overdispersion compared to the Poisson, and multi-site analyses to identify the traits important to community assembly which interact with environmental conditions (Figure 2); and inference, with standard errors for assessing uncertainty in parameter estimates and BIC for model selection (Table 1), and design-based inference in the multi-site analyses. Note however, as previously, that model-based inference tools (as used in Table 1) require the assumption of independence of observations, and given the potential violation of this assumption by species interactions, inference from this model should be treated as approximate.

In the single-site analysis, computation time was thousands of times faster for GLM software than when using maximum entropy software, to achieve a given level of accuracy. While maximum entropy software still completed analyses in a quarter of a minute, in other contexts differences in computation time may be practically important (e.g. when repeating analyses across many sites or trait combinations, when analysing larger datasets, or when permutation testing). Similarly substantial improvements in computation time were noticed when moving from MAXENT to GLM software for presence-only analysis (Renner & Warton, 2013), as well as occasional incorrect solutions in MAXENT, seen here also when using default settings. Perhaps there is potential to improve maximum entropy algorithms, and their implementation, by borrowing ideas from the GLM literature.

Strictly speaking, the maximum entropy formalism does not involve an explicit Poisson assumption – the Poisson assumption only arises “by association” due to equivalence with Poisson regression – so one could argue to progress with a CATS analysis along the lines of Shipley et al. (2006) or Phillips et al. (2006) irrespective of whether data were Poisson. But applying maximum entropy to non-Poisson data is potentially problematic for two reasons. Firstly, inference methods (as available via Poisson regression) become unreliable – this was seen in Table 1, where the Poisson assumption appeared to underestimate standard errors by a factor of three or more. Secondly, estimation methods would become less efficient, such that parameter estimates could be much less reliable under maximum entropy than they would be under the appropriate regression model. The reason for this comes from likelihood theory – specifically, generalised linear model estimators (with the correct model for the response variable) have minimum variance amongst all consistent, asymptotically normal estimators (Gill, 2001). The extent of loss of efficiency from using maximum entropy depends on the extent of the violations of the Poisson assumption. In our example data, the overdispersion was considerable and subsequent loss of efficiency had some practical implications, with the coefficient of LCC changing in sign and mag-
nitude between the Poisson and negative binomial models (Table 1). Additional multi-
site analyses (supplementary material) provide further evidence that results can change
markedly between Poisson and negative binomial regression for overdispersed data – while
Figure 2 suggests little interaction between treatment and seed mass (SM) or specific leaf
area (SLA), reanalysis using Poisson regression suggested a strong interaction, as did the
two-stage maximum entropy analyses of Sonnier et al. (2012, Figure 1). Because Pois-
son regression can attach undue influence to observations with large abundance, these
associations with SM and SLA might be spurious.

Putting CATS into a regression framework helps connect the method to a number of
other tools that are widely used in ecology, as illustrated in Figure 3. For example, in
species distribution modelling (Elith & Leathwick, 2009) one analyses data from a single
species across multiple sites as a function of the environment. CATS regression is a
related method in which we instead analyse data from a single site across multiple species
as a function of traits. The multi-site extension of CATS, analysing data from multiple
sites and multiple species as a function of environment and traits, can be understood as
addressing the “fourth corner problem” (Legendre et al., 1997), and is closely related to
recent model-based solutions to the fourth corner problem (Pollock et al., 2012; Brown
et al., in review). Finally, the multi-site CATS extension is related to multivariate analysis
approaches based on generalised linear models recently proposed for ecological data (Wang
et al., 2012), the core difference being the addition of trait variables to the model to
better understand why species differ in their environmental response. This addition of
trait variables to multi-species models is an important step which has the potential to get
at the underlying process by which species differ in their environmental response.

5 Appendix – Proof of equivalence of CATS and Poisson regression

The proof is very similar to that found in Renner & Warton (2013).

The constrained maximisation problem in CATS can be written using the Lagrangian
method as:

\[Q(p) = - \sum_{i=1}^{n} p_i \ln \left(\frac{p_i}{q_i} \right) + \lambda \left(\sum_{i=1}^{n} p_i - 1 \right) + \sum_{i=1}^{n} \left(p_i - \frac{y_i}{n} \right) x_i \beta \]
To maximise this function we need to find a stationary point:

\[
\frac{\partial Q(p)}{\partial p_i} = -\ln p_i + \ln q_i - 1 + \lambda + x_i'\beta
\]

and solving \(\frac{\partial Q(p)}{\partial p} = 0\) gives

\[
\ln \hat{p}_i = \ln q_i + \lambda - 1 + x_i'\beta
\]

as in Shipley (2010). Substituting back into \(Q(p)\):

\[
Q(\hat{p}) = \sum_{i=1}^{S} \left(\hat{p}_i - \frac{y_i}{n} x_i' \beta \right)
\]

\[
= \sum_{i=1}^{S} \left(\hat{p}_i - \frac{y_i}{n} (\ln \hat{p}_i - \ln q_i - \lambda + 1) \right)
\]

\[
\propto \sum_{i=1}^{S} y_i \ln \mu_i - \mu_i + C \tag{4}
\]

where \(C\) is some constant with respect to each \(\hat{p}_i\), and \(\mu_i = n\hat{p}_i\). Thus \(\mu_i\) satisfies:

\[
\ln \mu_i = \ln q_i + \beta_0 + x_i'\beta
\]

where \(\beta_0 = \lambda - 1 + \ln n\).

Note that (4) is the log-likelihood function of a set of \(S\) independent values sampled from the Poisson distribution, and convex duality arguments suggest that we need to maximise this function in order to maximise entropy. Hence the problem is exactly equivalent to Poisson regression.

6 Acknowledgements

This work was supported by an Australian Research Council Future Fellowship (FT120100501) awarded to DIW, and a Discovery grant to BS from the Natural Sciences and Engineering Research Council of Canada. For the plant abundance data, thanks to Marie-Laure Navas, Eric Garnier and Gregory Sonnier.

References

Table 1: Coefficients (and standard errors, where applicable) from single-site CATS analyses using maximum entropy, Poisson regression, and negative binomial regression using R software defaults. Note that maximum entropy and Poisson regression gave identical results for slope coefficients, to within computer error.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum entropy</th>
<th>Poisson</th>
<th>Negative binomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>10.592</td>
<td>15.718 (15.458)</td>
<td>-29.388 (54.839)</td>
</tr>
<tr>
<td>LCC</td>
<td>-11.002</td>
<td>-11.005 (6.298)</td>
<td>5.552 (21.319)</td>
</tr>
<tr>
<td>LDMC</td>
<td>6.564</td>
<td>6.564 (0.989)</td>
<td>7.252 (2.736)</td>
</tr>
<tr>
<td>BIC</td>
<td>NA</td>
<td>328.5</td>
<td>101.3</td>
</tr>
</tbody>
</table>

1Results reported at a convergence tolerance of 10^{-11}. Decreasing the tolerance to 10^{-16} led to identical results to Poisson regression to 8 decimal places.
Figure 1: Model checks for CATS regressions fitted to single site data. (a) Dunn-Smyth residual vs fits plot and (b) Normal quantile plot for Poisson regression fit (left column) and negative binomial regression (right column). Notice in the Poisson fit there is a strong fan-shape on the residual plot, and that residuals are large in magnitude relative to the standard normal distribution, both of which are indicative of overdispersion relative to the Poisson. Use of a negative binomial model instead substantially improved matters.
Figure 2: Interpreting results from multi-site analyses: treatment × trait interaction standardised coefficients estimated under the sum-to-zero constraint. Values larger in magnitude are suggestive of stronger interactions. Strongest interactions with treatment response were observed for leaf nutrient concentration (LPC and LNC), leaf area (LA) and dry matter content (LDMC).
Figure 3: Schematic diagram of the relationship of CATS and multi-site CATS to species distribution modelling, multivariate analysis, and fourth corner models. All these methods can be understood as fitting predictive models for the abundance (“Abundance” table) of one or more species at one or more sites as a function of environmental variables (“Environment” table) and/or species traits (“Traits” table). In principle any predictive modelling framework could be used to fit any of these models, but in each case an example reference has been included which used generalised linear models.