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Stochastic Linear Bandit Problem

Let Θ? ∈ Rd be fixed (and unknown).

At time t, the action set At ⊆ Rd is revealed to a policy π.

The policy chooses Ãt ∈ At .

It observes a reward rt = 〈Θ?, Ãt〉+ εt .

Conditional on the history, εt has zero mean.

This model includes the following important special cases:

Multi-armed bandits (MAB)

Contextual bandits
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Evaluation Metric

The objective is to improve using past experiences.

The cumulative regret is defined as

Regret(T ,Θ?, π) := E

[
T∑
t=1

sup
A∈At

〈Θ?,A〉 − 〈Θ?, Ãt〉

∣∣∣∣∣Θ?

]
.

In the Bayesian setting, the Bayesian regret is given by

BayesRegret(T ,P, π) := EΘ?∼P [Regret(T ,Θ?, π)].

Regret grows at most linearly in T and grows sublinearly (typically
as
√
T ) for well-designed algorithms.
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Summary of Results on Stochastic Linear Bandits

Introducing of a meta algorithm, called Randomized OFUL
(ROFUL) with the following special cases:

OFUL (Linear variant of UCB Lai and Robbins 1985)
Linear TS
Sieved-Greedy (a new algorithm)

Introducing a notion of optimism under which near-optimal Bayesian
and frequentist regret bounds can be obtained for ROFUL.

Proving O(poly(logT )) regret bounds for ROFUL (and thus OFUL
and LinTS) under a so-called margin condition. (Similar to
Goldenshluger and Zeevi 2013)
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Summary of Results on Stochastic Linear Bandits

Proving a stochastic variant of elliptical potential which leads to an
O(d
√
T logT ) Bayesian regret bound for LinTS (with changing

action sets).

Proving that the worst-case regret of LinTS can grow linearly in T .

Presenting robust conditions under which the worst-case regret of
LinTS can be improved.
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Algorithms

Nima Hamidi Regret Bounds for Linear Bandit Algs. Stanford University 8 / 52



Overview of Algorithms

There are several algorithms proposed for linear/contextual bandits:

ε-greedy algorithms:

Greedy algorithm
ε-greedy (Goldenshluger and Zeevi 2013)
ε-greedy and studentized test statistic for arm elimination (Kim,
Lai, and Xu 2021)

UCB-based algorithms (Abbasi-Yadkori, Pál, and Szepesvári 2011;
Auer 2003; Dani, Hayes, and Kakade 2008; Li, Wang, and Zhou 2019)

Thompson sampling / randomized algorithms:

Bayesian analysis (Russo and Van Roy 2016, 2014)
Frequentist analysis (Abeille and Lazaric 2017; Agrawal and
Goyal 2013)
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Greedy

At time t = 1, 2, · · · ,T :

Using the set of observations

Ht−1 := {(Ã1, r1), · · · , (Ãt−1, rt−1)},

Construct an estimate Θ̂t−1 for Θ?,

Choose the action A ∈ At with largest 〈A, Θ̂t−1〉.

Estimate Θ? Greedy Decision Update H
Reward

History
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Greedy

The ridge estimator is used to obtain Θ̂t (for a fixed λ):

Θ̂t :=

(
λI +

t∑
i=1

Ãi Ã
>
i

)−1( t∑
i=1

Ãi ri

)
∈ Rd .

The following matrix also encodes the uncertainty about each direction:

Vt := λI +
t∑

i=1

Ãi Ã
>
i ∈ Rd×d .

The magnitude of the estimation error in the direction X is proportional to

‖X‖V−1
t

:=

√
X>V−1

t X .
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Ãi Ã
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Greedy

Algorithm 1 Greedy algorithm

1: for t = 1 to T do
2: Pull Ãt := arg maxA∈At

〈A, Θ̂t−1〉
3: Observe the reward rt
4: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

5: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)
6: end for

Greedy makes wrong decisions due to over- or under-estimating the true
rewards.

The over-estimation is automatically corrected.

The under-estimation can cause linear regret.
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Optimism in Face of Uncertainty (OFU) Algorithm

The variant of UCB (Lai and Robbins 1985) for linear bandits.

Key idea: be optimistic when estimating the reward of actions.

Algorithm 2 OFUL algorithm

1: for t = 1 to T do
2: Pull Ãt := arg maxA∈At

〈A, Θ̂t〉+ρ‖A‖V−1
t−1

3: Observe the reward rt
4: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

5: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)
6: end for

Guarantees for OFUL require ρ to be of order Õ(
√
d).
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>
i

5: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri
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Greedy vs OFUL

A1 A2 A3 A4 A5

〈A1, Θ̂t−1〉
∝ ‖A1‖V−1

t−1

Greedy

OFUL
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Linear Thompson Sampling (LinTS) Algorithm

Key idea: use randomization to address under-estimation.

LinTS is a Bayesian heuristic and assumes Θ? is sampled from a
prior distribution.

LinTS gets the prior distribution and noise distributions as input.

LinTS samples from the posterior distribution of Θ?.

Algorithm 3 LinTS algorithm

1: for t = 1 to T do
2: Sample Θ̃t ∼ P(Θ? | Ht−1)
3: Pull At := arg maxA∈At

〈A, Θ̃t〉
4: Observe the reward rt
5: Update Ht ← Ht−1

⋃
{(At , rt)}

6: end for
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Linear Thompson Sampling (LinTS) Algorithm

Under normality, LinTS becomes:

Algorithm 4 LinTS algorithm under normality

1: for t = 1 to T do
2: Sample Θ̃t ∼ N (Θ̂t−1,V

−1
t−1)

3: Pull At := arg maxA∈At
〈A, Θ̃t〉

4: Observe the reward rt
5: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

6: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)
7: end for
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Linear Thompson Sampling (LinTS) Algorithm

A1 A2 A3 A4 A5

LinTS

OFUL

Greedy
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Why Is LinTS Popular?
Empirical superiority:

d = 120, Θ? ∼ N (0, Id),
k = 10, X ∼ N (0, I12),
Each At contains X as a block1.

Time

C
u
m
u
l
a
t
i
v
e
 
R
e
g
r
e
t

1
This is the 10-armed contextual bandit with 12 dimensional covariates.
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Why is LinTS Popular?

Computation efficiency: when At is a polytope · · ·

LinTS solves an LP problem,

OFUL becomes an NP-hard problem!

Photo credit: Russo and Van Roy 2014
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Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

Regret(T ,Θ?, πOFUL) ≤ O(d
√
T logT ).

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

BayesRegret(T ,P, πLinTS) ≤ O(d
√
T logT ).
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Comparison of Regret Bounds

Theorem (Dani, Hayes, and Kakade 2008)

There is a Bayesian linear bandit problem with a fixed action set that
satisfies

inf
π

BayesRegret(T ,P, π) ≥ Ω(d
√
T ).

Theorem (Li, Wang, and Zhou 2019)

There is a Bayesian linear bandit problem with changing action sets that
satisfies

inf
π

BayesRegret(T ,P, π) ≥ Ω(d
√
T logT ).
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Comparison of Regret Bounds

Theorem (Dong and Van Roy 2018)

When the action set is fixed, the Bayesian regret of LinTS is bounded by

BayesRegret(T ,P, πLinTS) ≤ O(d
√
T logT ).

Theorem (Hamidi and Bayati 2021)

Under mild assumptions, the Bayesian regret of LinTS is bounded by (even
when the action sets changes)

BayesRegret(T ,P, π) ≤ O(d
√
T logT ).
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Worst-Case Regret Bounds for LinTS

Near-optimal worst-case (and Bayesian) regret bounds are known for
OFUL.

Near-optimal Bayesian regret bounds are also known for LinTS.

Question: can one prove a similar worst-case regret bound for
LinTS?

The only known results require inflating the posterior variance.
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A Worst-Case Regret Bound for LinTS

Algorithm 5 LinTS(β) algorithm under normality

1: for t = 1 to T do
2: Sample Θ̃t ∼ N (Θ̂t−1, β

2V−1
t−1)

3: Pull At := arg maxA∈At
〈A, Θ̃t〉

4: Observe the reward rt
5: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

6: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)
7: end for

Theorem (Abeille and Lazaric 2017; Agrawal and Goyal 2013)

If β ∝
√
d , then

Regret(T ,Θ?, πLinTS(β)) ≤ Õ(d
√
dT ).

This result is far from optimal by a
√
d factor.
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Empirical Performance of Inflated LinTS

Unfortunately, the inflated variant of LinTS performs poorly...

Time

C
u
m
u
l
a
t
i
v
e
 
R
e
g
r
e
t
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When LinTS Fails!
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Construction of Counter-examples

We prove that the inflation is necessary for LinTS to work.

Theorem (Hamidi and Bayati 2020)

There exists a Bayesian linear bandit problem such that for
T ≤ exp(Ω(d)), we have

BayesRegret(T ,P, πLinTS) = Ω(T ).

The counter-example satisfies the following properties:

Environment What LinTS assumes

Prior N (0, Id) N (0, Id)
Noise N (0, 0) N (0, 1)

LinTS can fail even by just improving the data. We need more robust
guarantees.
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Construction of Counter-examples

Fact 1: Θ̃t and Θ? are identically distributed conditional on Ht−1.

Fact 2: Θ̃t and Θ? are identically distributed unconditionally.

This can break under distributional mismatch.
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Construction of Counter-examples
We let Θ? ∼ N (0, Id).

Under mismatch, there is a bandit problem with:

E[Θ̃t ] = c1 for some c = O(1) > 0,〈
Θ̃t − E[Θ̃t ],

1√
d

〉
is O(1)-sub-Gaussian.

Therefore, we have
〈
Θ̃t ,

1√
d

〉
= c
√
d +O(1) w.h.p.
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Construction of Counter-examples

Now, let At :=
{

0,A
}

where A := −1/
√
d .

A is the optimal arm with probability 1
2 .

However, LinTS will choose A only if

〈Θ̃t ,A〉 = −c
√
d +O(1)-sub-Gaussian > 0.

This happens with probability exp(−Cd) for some constant C > 0.

Also, choosing 0 will reveal no new information.

So, show the same action set for all t.
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A General Regret Bound
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Randomized OFUL

By a worth function, we mean a function M̃t that maps each
A ∈ At to R such that

|M̃t(A)− 〈A, Θ̂t−1〉| ≤ ρ‖A‖V−1
t−1

with probability at least 1− 1
T 2 .

Next, define Randomized OFUL (ROFUL) to be:

Algorithm 6 ROFUL algorithm

1: for t = 1 to T do
2: Pull Ãt := arg maxA∈At

M̃t(A)
3: Observe the reward rt
4: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

5: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)
6: end for
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ROFUL Representations

Examples of worth functions:

Greedy: M̃t(A) = 〈A, Θ̂t−1〉

OFUL: M̃t(A) = 〈A, Θ̂t−1〉+ ρ‖A‖V−1
t−1

LinTS: M̃t(A) = 〈A, Θ̃t−1〉

Nima Hamidi Regret Bounds for Linear Bandit Algs. Stanford University 33 / 52



A General Regret Bound

Definition (Optimism – Informal)

We say a worth function M̃t is optimistic if

sup
A∈At

M̃t(A) ≥ sup
A∈At

〈A,Θ?〉 (1)

with probability at least p.

Theorem

Let (M̃t)
T
t=1 be a sequence of optimistic worth functions. Then, the regret

of ROFUL with this worth function is bounded by

BayesRegret(T ,P, πROFUL) ≤ Õ

(
ρ

√
dT

p

)
.
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Improving LinTS
Define thinness of a positive definite matrix V−1 to be

ψ(V−1) :=

√
d · ‖V−1‖op

‖V−1‖∗
∈ [1,

√
d ].

Algorithm 7 Improved LinTS algorithm

1: for t = 1 to T do
2: if ψ(V−1

t ) ≤ Ψ then
3: Sample Θ̃t ∼ N (Θ̂t−1, β

2V−1
t−1)

4: else
5: Sample Θ̃t ∼ N (Θ̂t−1, ρ

2V−1
t−1)

6: end if
7: Pull At := arg maxA∈At

〈A, Θ̃t〉
8: Observe the reward rt
9: Compute Vt and Θ̂t as before.

10: end for
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Main Result

The inflation parameter β can be small if the optimal arm:

is not aligned with any given direction; and

takes advantage of a small thinness parameter appropriately.

Theorem (Informal)

If the above hold and
∑T

t=1 P
(
ψ(V−1

t ) > Ψ
)
≤ C , we have

Regret(T ,Θ?, πTS) ≤ O
(
ρβ
√

dT log(T ) + C
)
.

Nima Hamidi Regret Bounds for Linear Bandit Algs. Stanford University 36 / 52



Empirical Scrutiny on Thinness

A case study – simulations in Russo and Van Roy (2014):

Θ? ∼ N (0, I100) and εt ∼ N (0, 1),

At consists of k = 50 random vectors in Unif
(
[− 1√

d
, 1√

d
]d
)
.
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Intuitions Behind Improved LinTS
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A Sufficient Condition for Optimism

Recall that the worth function for LinTS is given by

M̃t(A) = 〈A, Θ̃t〉.

We can decompose it as

M̃t(A) = 〈A, Θ̃t − Θ̂t−1〉+ 〈A, Θ̂t−1 −Θ?〉+ 〈A,Θ?〉.

Hence, letting A?t := arg maxA∈At
〈A,Θ?〉, we have

sup
A∈At

M̃t(A)− sup
A∈At

〈A,Θ?〉 ≥ M̃t(A
?
t )− 〈A?t ,Θ?〉

= 〈A?t , Θ̃t − Θ̂t−1〉︸ ︷︷ ︸
Compensation term

+ 〈A?t , Θ̂t−1 −Θ?〉︸ ︷︷ ︸
Error term

.
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A Sufficient Condition for Optimism

Define

Error vector E := Θ? − Θ̂t−1

Compensator vector C := Θ̃t − Θ̂t−1

The optimism assumption holds if, with probability p, the following holds

〈A?t ,C 〉 ≥ 〈A?t ,E 〉.
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Reducing the Inflation Parameter

We have C ∼ N (0, β2V−1
t−1) which implies that ‖C‖Vt−1

≈ β
√
d .

On the other hand, recall that ‖E‖Vt−1
≈
√
d .

Next note that with high probability

〈A?t ,C 〉 ∝ β‖A?t ‖V−1
t−1
.

Finally, in the worst case, we may get (by Cauchy-Schwartz)

〈A?t ,E 〉 ∝
√
d‖A?t ‖V−1

t−1
.

What if we assume that A?t is in a random direction?
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Diversity Assumption

Assumption (Optimal arm diversity)

Assume that for any V ∈ Rd with ‖V ‖2 = 1, we have

P
(
〈A?t ,V 〉 >

ν√
d
‖A?t ‖2

)
≤ 1

t3
,

for some fixed ν ∈ [1,
√
d ].
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Diversity is not Sufficient

O

A?

C

E
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Improved Worst-Case Regret Bound for LinTS

Define thinness of a matrix Σ to be

ψ(Σ) :=

√
d · ‖Σ‖op

‖Σ‖∗
.

Assumption

For Ψ, ω > 0, we have

P

‖A?‖V−1
t
< ω

√
‖V−1

t ‖∗
d

· ‖A?‖2

 ≤ 1

t3

for any positive definite V−1
t with ψ(V−1

t ) ≤ Ψ.
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Conclusion

Proved that LinTS without inflation can incur linear regret.

Provided a general regret bound for confidence-based policies.

Introduced sufficient conditions for reducing the inflation parameter.
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Thank you!
Any questions?
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Failure of LinTS: Example 1

Environment LinTS

Prior N (0, Id) N (0, Id)
Noise N (0, 0) N (0, 1)
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Failure of LinTS: Example 2

Environment LinTS

Prior N (0.1 · 1d , Id) N (0, Id)
Noise N (0, 1) N (0, 1)
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Failure of LinTS: Example 2

Environment LinTS

Prior N (µ · 12000, I2000) N (0, I2000)
Noise N (0, 1) N (0, 1)
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