Minimax Regret Bounds for Stochastic Linear Bandit Algorithms

Nima Hamidi

Stanford University

Advisor: Mohsen Bayati

Overview

- 2 Confidence-based Policies
- 3 Failure of LinTS ☺
- Positive Results ©

Summary of Results

- Low-rank matrix estimation
 - On Low-rank Trace Regression under General Sampling Distribution (Submitted)
- Multi-armed bandits with many arms
 - Personalizing Many Decisions with High-dimensional Covariates (Neurips 2019)
 - The Unreasonable Effectiveness of Greedy Algorithms in Multi-Armed Bandit with Many Arms (Neurips 2020)

Summary of Results

- Low-rank matrix estimation
 - On Low-rank Trace Regression under General Sampling Distribution (Submitted)
- Multi-armed bandits with many arms
 - Personalizing Many Decisions with High-dimensional Covariates (Neurips 2019)
 - The Unreasonable Effectiveness of Greedy Algorithms in Multi-Armed Bandit with Many Arms (Neurips 2020)
- Stochastic linear bandits
 - A General Framework to Analyze Stochastic Linear Bandit (Submitted)
 - On Worst-case Regret of Linear Thompson Sampling (Submitted)
 - The Randomized Elliptical Potential Lemma with an Application to Linear Thompson Sampling (Submitted)

Stochastic Linear Bandit Problem

- Let $\Theta^{\star} \in \mathbb{R}^d$ be fixed (and unknown).
- At time t, the action set $\mathcal{A}_t \subseteq \mathbb{R}^d$ is revealed to a policy π .
- The policy chooses $\widetilde{A}_t \in \mathcal{A}_t$.
- It observes a reward $r_t = \langle \Theta^{\star}, \widetilde{A}_t \rangle + \varepsilon_t$.
- Conditional on the history, ε_t has zero mean.

Stochastic Linear Bandit Problem

• Let $\Theta^{\star} \in \mathbb{R}^d$ be fixed (and unknown).

- At time t, the action set $\mathcal{A}_t \subseteq \mathbb{R}^d$ is revealed to a policy π .
- The policy chooses $\widetilde{A}_t \in \mathcal{A}_t$.
- It observes a reward $r_t = \langle \Theta^{\star}, \widetilde{A}_t \rangle + \varepsilon_t$.
- Conditional on the history, ε_t has zero mean.

This model includes the following important special cases:

- Multi-armed bandits (MAB)
- Contextual bandits

Evaluation Metric

- The objective is to improve using past experiences.
- The cumulative regret is defined as

$$\mathsf{Regret}(T,\Theta^{\star},\pi) := \mathbb{E} \Biggl[\sum_{t=1}^{T} \sup_{A \in \mathcal{A}_{t}} \langle \Theta^{\star}, A \rangle - \langle \Theta^{\star}, \widetilde{A}_{t} \rangle \ \Bigg| \ \Theta^{\star} \Biggr].$$

Evaluation Metric

- The objective is to improve using past experiences.
- The cumulative regret is defined as

$$\mathsf{Regret}(\mathcal{T},\Theta^{\star},\pi) := \mathbb{E}\bigg[\sum_{t=1}^{\mathcal{T}}\sup_{A\in\mathcal{A}_{t}}\langle\Theta^{\star},A\rangle - \langle\Theta^{\star},\widetilde{A}_{t}\rangle \ \Bigg| \ \Theta^{\star}\bigg].$$

• In the Bayesian setting, the Bayesian regret is given by

$$\mathsf{BayesRegret}(\mathcal{T}, \mathcal{P}, \pi) := \mathbb{E}_{\Theta^{\star} \sim \mathcal{P}}[\mathsf{Regret}(\mathcal{T}, \Theta^{\star}, \pi)].$$

Evaluation Metric

- The objective is to improve using past experiences.
- The cumulative regret is defined as

$$\mathsf{Regret}(\mathcal{T},\Theta^{\star},\pi) := \mathbb{E}\bigg[\sum_{t=1}^{\mathcal{T}}\sup_{A\in\mathcal{A}_{t}}\langle\Theta^{\star},A\rangle - \langle\Theta^{\star},\widetilde{A}_{t}\rangle \ \bigg| \ \Theta^{\star}\bigg].$$

• In the Bayesian setting, the **Bayesian regret** is given by

$$\mathsf{BayesRegret}(\mathcal{T},\mathcal{P},\pi) := \mathbb{E}_{\Theta^{\star} \sim \mathcal{P}}[\mathsf{Regret}(\mathcal{T},\Theta^{\star},\pi)].$$

• Regret grows at most linearly in T and grows sublinearly (typically as \sqrt{T}) for well-designed algorithms.

Summary of Results on Stochastic Linear Bandits

- Introducing of a meta algorithm, called **Randomized OFUL** (**ROFUL**) with the following special cases:
 - OFUL (Linear variant of UCB Lai and Robbins 1985)
 - Linear TS
 - Sieved-Greedy (a new algorithm)
- Introducing a notion of **optimism** under which near-optimal Bayesian and frequentist regret bounds can be obtained for ROFUL.
- Proving O(poly(log T)) regret bounds for ROFUL (and thus OFUL and LinTS) under a so-called margin condition. (Similar to Goldenshluger and Zeevi 2013)

Summary of Results on Stochastic Linear Bandits

- Proving a **stochastic variant** of elliptical potential which leads to an $O(d\sqrt{T \log T})$ Bayesian regret bound for LinTS (with changing action sets).
- Proving that the worst-case regret of LinTS can grow linearly in T.
- Presenting robust conditions under which the worst-case regret of LinTS can be improved.

Algorithms

Overview of Algorithms

There are several algorithms proposed for linear/contextual bandits:

- *e*-greedy algorithms:
 - Greedy algorithm
 - ϵ -greedy (Goldenshluger and Zeevi 2013)
 - ϵ -greedy and studentized test statistic for arm elimination (Kim, Lai, and Xu 2021)
- UCB-based algorithms (Abbasi-Yadkori, Pál, and Szepesvári 2011; Auer 2003; Dani, Hayes, and Kakade 2008; Li, Wang, and Zhou 2019)
- Thompson sampling / randomized algorithms:
 - Bayesian analysis (Russo and Van Roy 2016, 2014)
 - Frequentist analysis (Abeille and Lazaric 2017; Agrawal and Goyal 2013)

At time $t = 1, 2, \cdots, T$:

• Using the set of observations

$$\mathcal{H}_{t-1} := \{ (\widetilde{A}_1, r_1), \cdots, (\widetilde{A}_{t-1}, r_{t-1}) \},$$

- Construct an **estimate** $\widehat{\Theta}_{t-1}$ for Θ^* ,
- Choose the action $A \in \mathcal{A}_t$ with largest $\langle A, \widehat{\Theta}_{t-1} \rangle$.

The **ridge estimator** is used to obtain $\widehat{\Theta}_t$ (for a fixed λ):

$$\widehat{\Theta}_t := \left(\lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}\right)^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i\right) \in \mathbb{R}^d.$$

The **ridge estimator** is used to obtain $\widehat{\Theta}_t$ (for a fixed λ):

$$\widehat{\Theta}_t := \left(\lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}\right)^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i\right) \in \mathbb{R}^d.$$

The following matrix also encodes the uncertainty about each direction:

$$\mathbf{V}_t := \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^\top \in \mathbb{R}^{d \times d}.$$

The **ridge estimator** is used to obtain $\widehat{\Theta}_t$ (for a fixed λ):

$$\widehat{\Theta}_t := \left(\lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}\right)^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i\right) \in \mathbb{R}^d.$$

The following matrix also encodes the uncertainty about each direction:

$$\mathbf{V}_t := \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^\top \in \mathbb{R}^{d \times d}.$$

The magnitude of the estimation error in the direction X is proportional to

$$\|X\|_{\mathbf{V}_t^{-1}} := \sqrt{X^\top \mathbf{V}_t^{-1} X}.$$

Algorithm 1 Greedy algorithm

1: for t = 1 to T do

2: Pull
$$\widetilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \widehat{\Theta}_{t-1} \rangle$$

3: Observe the reward r_t

4: Compute
$$\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$$

5: Compute
$$\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$$

6: end for

Algorithm 1 Greedy algorithm

1: for t = 1 to T do

2: Pull
$$\widetilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \widehat{\Theta}_{t-1} \rangle$$

3: Observe the reward r_t

4: Compute
$$\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$$

5: Compute
$$\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$$

6: end for

Greedy makes wrong decisions due to **over**- or **under-estimating** the true rewards.

- The over-estimation is **automatically** corrected.
- The under-estimation can cause linear regret.

Optimism in Face of Uncertainty (OFU) Algorithm

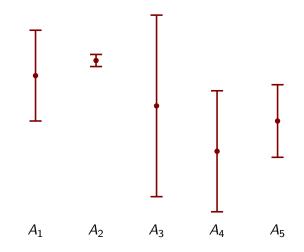
- The variant of UCB (Lai and Robbins 1985) for linear bandits.
- Key idea: **be optimistic** when estimating the reward of actions.

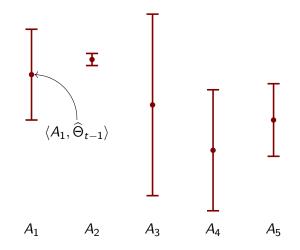
Optimism in Face of Uncertainty (OFU) Algorithm

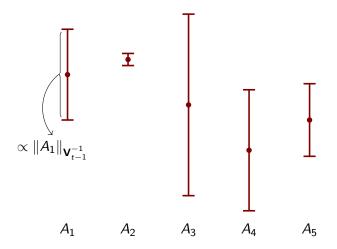
- The variant of UCB (Lai and Robbins 1985) for linear bandits.
- Key idea: **be optimistic** when estimating the reward of actions.

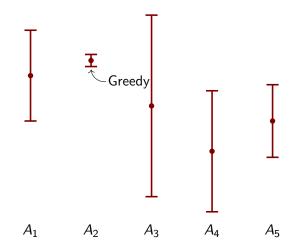
Algorithm 2 OFUL algorithm1: for t = 1 to T do2: Pull $\widetilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \widehat{\Theta}_t \rangle + \rho \|A\|_{\mathbf{V}_{t-1}^{-1}}$ 3: Observe the reward r_t 4: Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^\top$ 5: Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$ 6: end for

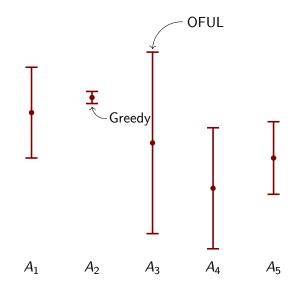
Guarantees for OFUL require ρ to be of order $\widetilde{\mathcal{O}}(\sqrt{d})$.











• Key idea: use randomization to address under-estimation.

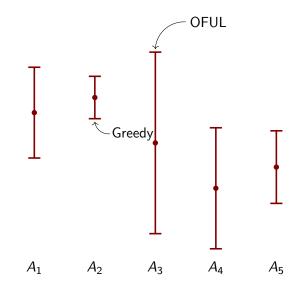
- Key idea: use randomization to address under-estimation.
- LinTS is a Bayesian heuristic and assumes Θ* is sampled from a prior distribution.
- LinTS gets the prior distribution and noise distributions as input.
- LinTS samples from the **posterior** distribution of Θ^* .

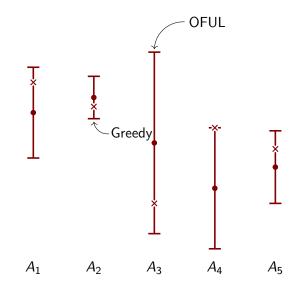
- Key idea: use randomization to address under-estimation.
- LinTS is a Bayesian heuristic and assumes Θ* is sampled from a prior distribution.
- LinTS gets the **prior distribution** and **noise distributions** as input.
- LinTS samples from the **posterior** distribution of Θ^* .

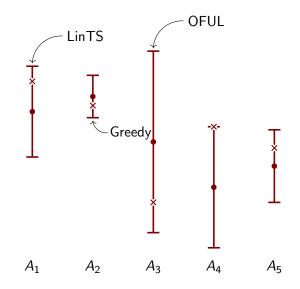
Algorithm 3 LinTS algorithm	
1:	for $t = 1$ to \overline{T} do
2:	$Sample\; \widetilde{\Theta}_t \sim \mathbb{P}(\Theta^\star \mathcal{H}_{t-1})$
3:	Pull $A_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \widetilde{\Theta}_t \rangle$
4:	Observe the reward r_t
5:	$Update\ \mathcal{H}_t \leftarrow \mathcal{H}_{t-1} \bigcup \{(A_t, r_t)\}$
6: end for	

• Under normality, LinTS becomes:

Algorithm 4 LinTS algorithm under normality1: for t = 1 to T do2: Sample $\widetilde{\Theta}_t \sim \mathcal{N}(\widehat{\Theta}_{t-1}, \mathbf{V}_{t-1}^{-1})$ 3: Pull $A_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \widetilde{\Theta}_t \rangle$ 4: Observe the reward r_t 5: Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$ 6: Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$ 7: end for

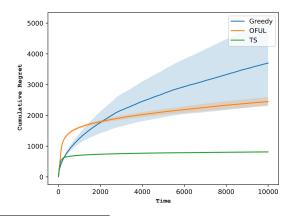






Why Is LinTS Popular?

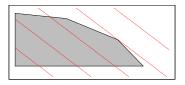
- Empirical superiority:
 - $d = 120, \ \Theta^{\star} \sim \mathcal{N}(0, \mathbb{I}_d),$
 - $k = 10, X \sim \mathcal{N}(0, \mathbb{I}_{12}),$
 - Each A_t contains X as a block¹.



¹This is the 10-armed contextual bandit with 12 dimensional covariates.

Why is LinTS Popular?

- **Computation efficiency**: when A_t is a polytope \cdots
 - LinTS solves an LP problem,



• OFUL becomes an NP-hard problem!

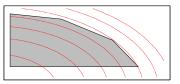


Photo credit: Russo and Van Roy 2014

Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011) Under some conditions, the regret of OFUL is bounded by Regret(T, Θ^*, π^{OFUL}) $\leq O(d\sqrt{T} \log T)$.

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011) Under some conditions, the regret of OFUL is bounded by Regret(T, Θ^*, π^{OFUL}) $\leq O(d\sqrt{T} \log T)$.

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

$$\mathsf{BayesRegret}(T,\mathcal{P},\pi^{\mathsf{LinTS}}) \leq \mathcal{O}(d\sqrt{T}\log T).$$

Theorem (Dani, Hayes, and Kakade 2008)

There is a Bayesian linear bandit problem with a **fixed action set** that satisfies

$$\inf_{\pi} \mathsf{BayesRegret}(\mathcal{T},\mathcal{P},\pi) \geq \Omega(d\sqrt{\mathcal{T}}).$$

Theorem (Dani, Hayes, and Kakade 2008)

There is a Bayesian linear bandit problem with a **fixed action set** that satisfies

$$\inf_{\pi} \mathsf{BayesRegret}(\mathcal{T},\mathcal{P},\pi) \geq \Omega(d\sqrt{\mathcal{T}}).$$

Theorem (Li, Wang, and Zhou 2019)

There is a Bayesian linear bandit problem with changing action sets that satisfies

$$\inf_{\pi} \mathsf{BayesRegret}(T, \mathcal{P}, \pi) \geq \Omega(d\sqrt{T\log T}).$$

Theorem (Dong and Van Roy 2018)

When the action set is fixed, the Bayesian regret of LinTS is bounded by

BayesRegret($T, \mathcal{P}, \pi^{LinTS}$) $\leq \mathcal{O}(d\sqrt{T \log T})$.

Theorem (Dong and Van Roy 2018)

When the action set is fixed, the Bayesian regret of LinTS is bounded by

BayesRegret $(T, \mathcal{P}, \pi^{LinTS}) \leq \mathcal{O}(d\sqrt{T\log T}).$

Theorem (Hamidi and Bayati 2021)

Under mild assumptions, the Bayesian regret of LinTS is bounded by (even when **the action sets changes**)

$$\mathsf{BayesRegret}(T,\mathcal{P},\pi) \leq \mathcal{O}(d\sqrt{T\log T}).$$

Worst-Case Regret Bounds for LinTS

- Near-optimal worst-case (and Bayesian) regret bounds are known for OFUL.
- Near-optimal Bayesian regret bounds are also known for LinTS.
- Question: can one prove a similar worst-case regret bound for LinTS?

Worst-Case Regret Bounds for LinTS

- Near-optimal worst-case (and Bayesian) regret bounds are known for OFUL.
- Near-optimal Bayesian regret bounds are also known for LinTS.
- Question: can one prove a similar worst-case regret bound for LinTS?
- The only known results require **inflating** the posterior variance.

A Worst-Case Regret Bound for LinTS

Algorithm 5 LinTS(β) algorithm under normality

- 1: for t = 1 to T do
- 2: Sample $\widetilde{\Theta}_t \sim \mathcal{N}(\widehat{\Theta}_{t-1}, \frac{\beta^2 \mathbf{V}_{t-1}^{-1}}{\mathbf{V}_{t-1}})$
- 3: Pull $A_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \widetilde{\Theta}_t \rangle$
- 4: Observe the reward r_t

5: Compute
$$\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$$

6: Compute
$$\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$$

7: end for

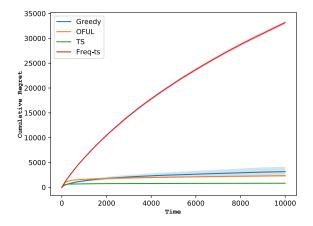
Theorem (Abeille and Lazaric 2017; Agrawal and Goyal 2013) If $\beta \propto \sqrt{d}$, then

$$\operatorname{Regret}(T, \Theta^{\star}, \pi^{\operatorname{LinTS}(\beta)}) \leq \widetilde{\mathcal{O}}(d\sqrt{dT}).$$

This result is far from optimal by a \sqrt{d} factor.

Empirical Performance of Inflated LinTS

• Unfortunately, the inflated variant of LinTS performs poorly...



When LinTS Fails!

We prove that the inflation is **necessary** for LinTS to work.

Theorem (Hamidi and Bayati 2020)

There exists a Bayesian linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

BayesRegret $(T, \mathcal{P}, \pi^{LinTS}) = \Omega(T).$

We prove that the inflation is **necessary** for LinTS to work.

Theorem (Hamidi and Bayati 2020)

There exists a Bayesian linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

$$\mathsf{BayesRegret}(T, \mathcal{P}, \pi^{\mathsf{LinTS}}) = \Omega(T).$$

The counter-example satisfies the following properties:

	Environment	What LinTS assumes
Prior	$\mathcal{N}(0,\mathbb{I}_d)$	$\mathcal{N}(0,\mathbb{I}_d)$
Noise	$\mathcal{N}(0,0)$	$\mathcal{N}(0,1)$

We prove that the inflation is **necessary** for LinTS to work.

Theorem (Hamidi and Bayati 2020)

There exists a Bayesian linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

$$\mathsf{BayesRegret}(T, \mathcal{P}, \pi^{\mathsf{LinTS}}) = \Omega(T).$$

The counter-example satisfies the following properties:

	Environment	What LinTS assumes
Prior	$\mathcal{N}(0,\mathbb{I}_d)$	$\mathcal{N}(0,\mathbb{I}_d)$
Noise	$\mathcal{N}(0,0)$	$\mathcal{N}(0,1)$

LinTS can fail even by just improving the data. We need more robust guarantees.

• Fact 1: $\tilde{\Theta}_t$ and Θ^* are identically distributed conditional on \mathcal{H}_{t-1} .

- Fact 1: Θ_t and Θ^* are identically distributed conditional on \mathcal{H}_{t-1} .
- Fact 2: $\widetilde{\Theta}_t$ and Θ^* are identically distributed unconditionally.

- Fact 1: Θ_t and Θ^* are identically distributed conditional on \mathcal{H}_{t-1} .
- Fact 2: $\widetilde{\Theta}_t$ and Θ^* are identically distributed unconditionally.
- This can break under distributional mismatch.

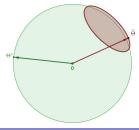
• We let $\Theta^* \sim \mathcal{N}(0, \mathbb{I}_d)$.

• Under mismatch, there is a bandit problem with:

•
$$\mathbb{E}[\widetilde{\Theta}_t] = c \mathbf{1}$$
 for some $c = \mathcal{O}(1) > 0$,

•
$$\langle \widetilde{\Theta}_t - \mathbb{E}[\widetilde{\Theta}_t], \frac{1}{\sqrt{d}} \rangle$$
 is $\mathcal{O}(1)$ -sub-Gaussian.

• Therefore, we have $ig\langle \widetilde{\Theta}_t, rac{1}{\sqrt{d}}ig
angle = c\sqrt{d} + \mathcal{O}(1)$ w.h.p.



• Now, let
$$\mathcal{A}_t := \left\{0, A\right\}$$
 where $A := -\mathbf{1}/\sqrt{d}$.

• A is the optimal arm with probability $\frac{1}{2}$.

• Now, let
$$\mathcal{A}_t := \left\{0, A\right\}$$
 where $A := -\mathbf{1}/\sqrt{d}$.

• A is the optimal arm with probability $\frac{1}{2}$.

• However, LinTS will choose A only if

$$\langle \widetilde{\Theta}_t, A
angle = -c\sqrt{d} + \mathcal{O}(1)$$
-sub-Gaussian > 0.

• This happens with probability exp(-Cd) for some constant C > 0.

• Now, let
$$\mathcal{A}_t := \left\{0, A\right\}$$
 where $A := -\mathbf{1}/\sqrt{d}$.

• A is the optimal arm with probability $\frac{1}{2}$.

• However, LinTS will choose A only if

$$\langle \widetilde{\Theta}_t, A
angle = -c\sqrt{d} + \mathcal{O}(1)$$
-sub-Gaussian > 0.

- This happens with probability exp(-Cd) for some constant C > 0.
- Also, choosing 0 will reveal no new information.
- So, show the same action set for all t.

A General Regret Bound

Randomized OFUL

• By a worth function, we mean a function \widetilde{M}_t that maps each $A \in \mathcal{A}_t$ to \mathbb{R} such that

$$|\widetilde{\mathsf{M}}_{t}(A) - \langle A, \widehat{\Theta}_{t-1} \rangle| \leq \rho ||A||_{\mathbf{V}_{t-1}^{-1}}$$

with probability at least $1 - \frac{1}{T^2}$.

Randomized OFUL

• By a worth function, we mean a function \widetilde{M}_t that maps each $A \in \mathcal{A}_t$ to \mathbb{R} such that

$$|\widetilde{\mathsf{M}}_{t}(A) - \langle A, \widehat{\Theta}_{t-1} \rangle| \leq \rho ||A||_{\mathbf{V}_{t-1}^{-1}}$$

with probability at least $1 - \frac{1}{T^2}$.

• Next, define Randomized OFUL (ROFUL) to be:

Algorithm 6 ROFUL algorithm1: for t = 1 to T do2: Pull $\widetilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \widetilde{M}_t(A)$ 3: Observe the reward r_t 4: Compute $V_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^\top$ 5: Compute $\widehat{\Theta}_t = V_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$ 6: end for

ROFUL Representations

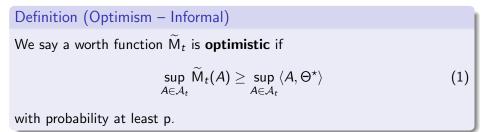
Examples of worth functions:

• Greedy:
$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widehat{\Theta}_{t-1} \rangle$$

• OFUL:
$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widehat{\Theta}_{t-1} \rangle + \rho \|A\|_{\mathbf{V}_{t-1}^{-1}}$$

• LinTS:
$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_{t-1} \rangle$$

A General Regret Bound



A General Regret Bound

Definition (Optimism – Informal) We say a worth function \widetilde{M}_t is **optimistic** if $\sup_{A \in \mathcal{A}_t} \widetilde{M}_t(A) \ge \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle$ (1) with probability at least p.

Theorem

Let $(\widetilde{M}_t)_{t=1}^T$ be a sequence of optimistic worth functions. Then, the regret of ROFUL with this worth function is bounded by

$$\mathsf{BayesRegret}(\mathcal{T}, \mathcal{P}, \pi^{\mathsf{ROFUL}}) \leq \widetilde{\mathcal{O}}\left(\rho \sqrt{\frac{d\mathcal{T}}{\mathsf{p}}}\right)$$

Improving LinTS

Define **thinness** of a positive definite matrix \mathbf{V}^{-1} to be

$$\psi(\mathbf{V}^{-1}) := \sqrt{\frac{d \cdot \|\mathbf{V}^{-1}\|_{op}}{\|\mathbf{V}^{-1}\|_{*}}} \in [1, \sqrt{d}].$$

Algorithm 7 Improved LinTS algorithm

1: **for**
$$t = 1$$
 to T **do**

2: if
$$\psi(\mathbf{V}_t^{-1}) \leq \Psi$$
 then
3: Sample $\widetilde{\Theta}_t \sim \mathcal{N}(\widehat{\Theta}_{t-1}, \beta^2 \mathbf{V}_{t-1}^{-1})$

5: Sample
$$\widetilde{\Theta}_t \sim \mathcal{N}(\widehat{\Theta}_{t-1}, {
ho}^2 \mathbf{V}_{t-1}^{-1})$$

6: end if

7: Pull
$$A_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \Theta_t \rangle$$

- 8: Observe the reward r_t
- 9: Compute \mathbf{V}_t and $\widehat{\Theta}_t$ as before.

10: end for

Main Result

The inflation parameter β can be small if the optimal arm:

- is not aligned with any given direction; and
- takes advantage of a small thinness parameter appropriately.

Theorem (Informal)

If the above hold and
$$\sum_{t=1}^{T} \mathbb{P}(\psi(\mathbf{V}_t^{-1}) > \Psi) \leq C$$
, we have

$$\operatorname{\mathsf{Regret}}(\mathcal{T},\Theta^{\star},\pi^{\mathcal{TS}}) \leq \mathcal{O}\Big(
hoeta\sqrt{d\mathcal{T}\log(\mathcal{T})}+\mathcal{C}\Big).$$

Empirical Scrutiny on Thinness

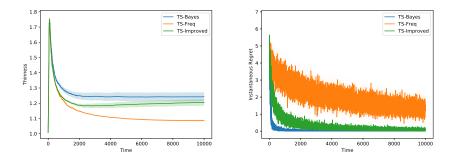
A case study - simulations in Russo and Van Roy (2014):

- $\Theta^{\star} \sim \mathcal{N}(0, \mathbb{I}_{100})$ and $\varepsilon_t \sim \mathcal{N}(0, 1)$,
- \mathcal{A}_t consists of k = 50 random vectors in $\text{Unif}\left(\left[-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right]^d\right)$.

Empirical Scrutiny on Thinness

A case study – simulations in Russo and Van Roy (2014):

- $\Theta^{\star} \sim \mathcal{N}(0, \mathbb{I}_{100})$ and $\varepsilon_t \sim \mathcal{N}(0, 1)$,
- \mathcal{A}_t consists of k = 50 random vectors in $\text{Unif}\left(\left[-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right]^d\right)$.



Intuitions Behind Improved LinTS

• Recall that the worth function for LinTS is given by

 $\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$

• Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^\star \rangle + \langle A, \Theta^\star \rangle.$$

• Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

• Hence, letting $A^{\star}_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \Theta^{\star} \rangle$, we have

$$\begin{split} \sup_{A\in\mathcal{A}_t} \widetilde{\mathsf{M}}_t(A) &- \sup_{A\in\mathcal{A}_t} \langle A, \Theta^\star \rangle \geq \widetilde{\mathsf{M}}_t(A^\star_t) - \langle A^\star_t, \Theta^\star \rangle \\ &= \langle A^\star_t, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A^\star_t, \widehat{\Theta}_{t-1} - \Theta^\star \rangle \,. \end{split}$$

• Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

• Hence, letting $A_t^\star := \arg \max_{A \in \mathcal{A}_t} \langle A, \Theta^\star \rangle$, we have

$$\sup_{A \in \mathcal{A}_t} \widetilde{\mathsf{M}}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle \geq \widetilde{\mathsf{M}}_t(A_t^*) - \langle A_t^*, \Theta^* \rangle$$
$$= \langle A_t^*, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \underbrace{\langle A_t^*, \widehat{\Theta}_{t-1} - \Theta^* \rangle}_{\mathsf{Error term}}.$$

• Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

• Hence, letting $A^{\star}_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \Theta^{\star} \rangle$, we have

$$\sup_{A \in \mathcal{A}_{t}} \widetilde{\mathsf{M}}_{t}(A) - \sup_{A \in \mathcal{A}_{t}} \langle A, \Theta^{\star} \rangle \geq \widetilde{\mathsf{M}}_{t}(A_{t}^{\star}) - \langle A_{t}^{\star}, \Theta^{\star} \rangle$$
$$= \underbrace{\langle A_{t}^{\star}, \widetilde{\Theta}_{t} - \widehat{\Theta}_{t-1} \rangle}_{\text{Compensation term}} + \underbrace{\langle A_{t}^{\star}, \widehat{\Theta}_{t-1} - \Theta^{\star} \rangle}_{\text{Error term}}.$$

A Sufficient Condition for Optimism

Define

- Error vector $E := \Theta^* \widehat{\Theta}_{t-1}$
- Compensator vector $C := \widetilde{\Theta}_t \widehat{\Theta}_{t-1}$

The optimism assumption holds if, with probability p, the following holds

 $\langle A_t^{\star}, \mathbf{C} \rangle \geq \langle A_t^{\star}, \mathbf{E} \rangle.$

Reducing the Inflation Parameter

• We have $\boldsymbol{C} \sim \mathcal{N}(0, \beta^2 \mathbf{V}_{t-1}^{-1})$ which implies that $\|\boldsymbol{C}\|_{\mathbf{V}_{t-1}} \approx \beta \sqrt{d}$.

• On the other hand, recall that $\|\mathbf{E}\|_{\mathbf{V}_{t-1}} \approx \sqrt{d}$.

Reducing the Inflation Parameter

- We have $\boldsymbol{C} \sim \mathcal{N}(0, \beta^2 \mathbf{V}_{t-1}^{-1})$ which implies that $\|\boldsymbol{C}\|_{\mathbf{V}_{t-1}} \approx \beta \sqrt{d}$.
- On the other hand, recall that $\|\boldsymbol{E}\|_{\boldsymbol{V}_{t-1}} \approx \sqrt{d}$.
- Next note that with high probability

$$\langle A_t^{\star}, \mathbf{C} \rangle \propto \beta \| A_t^{\star} \|_{\mathbf{V}_{t-1}^{-1}}.$$

• Finally, in the worst case, we may get (by Cauchy-Schwartz)

$$\langle A_t^{\star}, \boldsymbol{E} \rangle \propto \sqrt{d} \| A_t^{\star} \|_{\mathbf{V}_{t-1}^{-1}}.$$

Reducing the Inflation Parameter

- We have $\boldsymbol{C} \sim \mathcal{N}(0, \beta^2 \mathbf{V}_{t-1}^{-1})$ which implies that $\|\boldsymbol{C}\|_{\mathbf{V}_{t-1}} \approx \beta \sqrt{d}$.
- On the other hand, recall that $\|\boldsymbol{E}\|_{\boldsymbol{V}_{t-1}} \approx \sqrt{d}$.
- Next note that with high probability

$$\langle A_t^{\star}, \mathbf{C} \rangle \propto \beta \| A_t^{\star} \|_{\mathbf{V}_{t-1}^{-1}}.$$

• Finally, in the worst case, we may get (by Cauchy-Schwartz) $\langle A^\star_t, {\it E}\rangle \propto \sqrt{d} \|A^\star_t\|_{{\bf V}_{t-1}^{-1}}.$

• What if we assume that A_t^{\star} is in a **random** direction?

Diversity Assumption

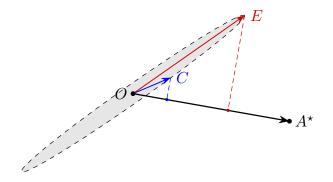
Assumption (Optimal arm diversity)

Assume that for any $V \in \mathbb{R}^d$ with $\left\| V \right\|_2 = 1$, we have

$$\mathbb{P}\Big(\langle A_t^\star, V
angle > rac{
u}{\sqrt{d}} \|A_t^\star\|_2 \Big) \leq rac{1}{t^3},$$

for some fixed $\nu \in [1, \sqrt{d}]$.

Diversity is not Sufficient



Improved Worst-Case Regret Bound for LinTS

Define thinness of a matrix $\pmb{\Sigma}$ to be

$$\psi(\mathbf{\Sigma}) := \sqrt{rac{d \cdot \|\mathbf{\Sigma}\|_{\mathsf{op}}}{\|\mathbf{\Sigma}\|_*}}.$$

Improved Worst-Case Regret Bound for LinTS

Define thinness of a matrix $\pmb{\Sigma}$ to be

$$\psi(\mathbf{\Sigma}) := \sqrt{rac{d \cdot \|\mathbf{\Sigma}\|_{\mathsf{op}}}{\|\mathbf{\Sigma}\|_*}}$$

Assumption

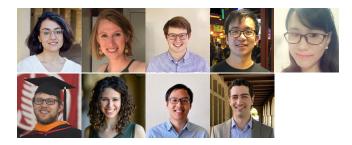
For $\Psi, \omega > 0$, we have

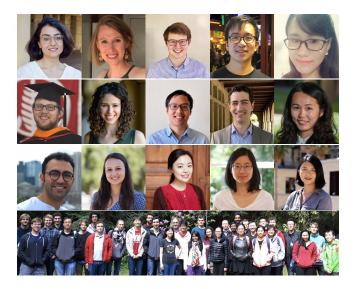
$$\mathbb{P}\left(\|\boldsymbol{A}^{\star}\|_{\boldsymbol{\mathsf{V}}_{t}^{-1}} < \omega \sqrt{\frac{\|\boldsymbol{\mathsf{V}}_{t}^{-1}\|_{*}}{d}} \cdot \|\boldsymbol{A}^{\star}\|_{2}\right) \leq \frac{1}{t^{3}}$$

for any positive definite \mathbf{V}_t^{-1} with $\psi(\mathbf{V}_t^{-1}) \leq \Psi$.

Conclusion

- Proved that LinTS without inflation can incur linear regret.
- Provided a general regret bound for confidence-based policies.
- Introduced sufficient conditions for reducing the inflation parameter.

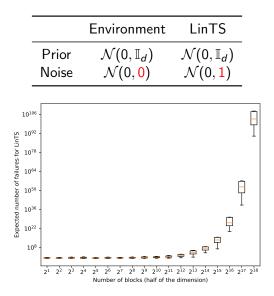




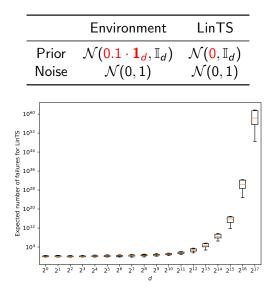
Thank you!

Any questions?

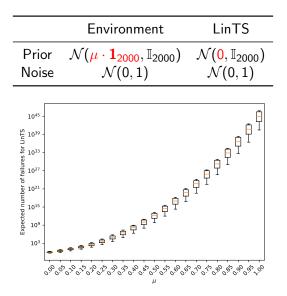
Failure of LinTS: Example 1



Failure of LinTS: Example 2



Failure of LinTS: Example 2



References I

- Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. "Improved algorithms for linear stochastic bandits". In: *Advances in Neural Information Processing Systems*. 2011, pp. 2312–2320.
- Marc Abeille, Alessandro Lazaric, et al. "Linear Thompson sampling revisited". In: *Electronic Journal of Statistics* 11.2 (2017), pp. 5165–5197.
- Shipra Agrawal and Navin Goyal. "Thompson Sampling for Contextual Bandits with Linear Payoffs.". In: *ICML (3)*. 2013, pp. 127–135.
 - Peter Auer. "Using confidence bounds for exploitation-exploration trade-offs". In: *Journal of Machine Learning Research* 3 (2003), pp. 397–422.
 - Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. "Stochastic Linear Optimization under Bandit Feedback". In: *COLT*. 2008.

References II

- Shi Dong and Benjamin Van Roy. "An information-theoretic analysis for Thompson sampling with many actions". In: *Advances in Neural Information Processing Systems*. 2018, pp. 4157–4165.
- Alexander Goldenshluger and Assaf Zeevi. "A linear response bandit problem". In: *Stochastic Systems* 3.1 (2013), pp. 230–261.
- Nima Hamidi and Mohsen Bayati. "On Worst-case Regret of Linear Thompson Sampling". In: arXiv preprint arXiv:2006.06790 (2020). URL: https://arxiv.org/pdf/2006.06790.pdf.
 - Nima Hamidi and Mohsen Bayati. "The Randomized Elliptical Potential Lemma with an Application to Linear Thompson Sampling". In: arXiv preprint arXiv:2102.07987 (2021). URL: https://arxiv.org/pdf/2102.07987.pdf.
 - Dong Woo Kim, Tze Leung Lai, and Huanzhong Xu. "Multi-Armed Bandits with Covariates: Theory and Applications". In: *Statistica Sinica* (2021).

References III

- **Tze Leung Lai and Herbert Robbins.** "Asymptotically efficient adaptive allocation rules". In: *Advances in applied mathematics* 6.1 (1985), pp. 4–22.
 - Yingkai Li, Yining Wang, and Yuan Zhou. "Nearly minimax-optimal regret for linearly parameterized bandits". In: *arXiv preprint arXiv:1904.00242* (2019).
 - Daniel Russo and Benjamin Van Roy. "An information-theoretic analysis of thompson sampling". In: *The Journal of Machine Learning Research* 17.1 (2016), pp. 2442–2471.
 - Daniel Russo and Benjamin Van Roy. "Learning to Optimize via Posterior Sampling". In: *Mathematics of Operations Research* 39.4 (2014), pp. 1221–1243. DOI: 10.1287/moor.2014.0650.