On Worst-Case Regret of Linear Thompson Sampling

Nima Hamidi

Stanford University

Collaborator: Mohsen Bayati

Preprint: arXiv 2006.06790
Overview

1. Problem Definition

2. Confidence-based Policies

3. Failure of LinTS 😞

4. Positive Results 😊
Stochastic Linear Bandit Problem

- Let $\Theta^* \in \mathbb{R}^d$ be fixed (and unknown).
- At time t, the action set $\mathcal{A}_t \subseteq \mathbb{R}^d$ is revealed to a policy π.
- The policy chooses $\tilde{A}_t \in \mathcal{A}_t$.
- It observes a reward $r_t = \langle \Theta^*, \tilde{A}_t \rangle + \varepsilon_t$.
- Conditional on the history, ε_t has zero mean.
The objective is to **improve using past experiences**.

The **cumulative regret** is defined as

\[
\text{Regret}(T, \Theta^*, \pi) := \mathbb{E} \left[\sum_{t=1}^{T} \sup_{A \in A_t} \langle \Theta^*, A \rangle - \langle \Theta^*, \tilde{A}_t \rangle \bigg| \Theta^* \right].
\]
Evaluation Metric

- The objective is to **improve using past experiences**.

- The **cumulative regret** is defined as

\[
\text{Regret}(T, \Theta^*, \pi) := \mathbb{E} \left[\sum_{t=1}^{T} \sup_{A \in \mathcal{A}_t} \langle \Theta^*, A \rangle - \langle \Theta^*, \tilde{A}_t \rangle \right| \Theta^*].
\]
Evaluation Metric

- The objective is to **improve using past experiences**.

- The **cumulative regret** is defined as

 \[
 \text{Regret}(T, \Theta^*, \pi) := \mathbb{E} \left[\sum_{t=1}^{T} \sup_{A \in A_t} \langle \Theta^*, A \rangle - \langle \Theta^*, \tilde{A}_t \rangle \middle| \Theta^* \right].
 \]

- In the Bayesian setting, the **Bayesian regret** is given by

 \[
 \text{BayesRegret}(T, \pi) := \mathbb{E}_{\Theta^* \sim P}[\text{Regret}(T, \Theta^*, \pi)].
 \]
Algorithms
Greedy

At time $t = 1, 2, \cdots, T$:

- Using the set of observations

\[\mathcal{H}_{t-1} := \{(\tilde{A}_1, r_1), \cdots, (\tilde{A}_{t-1}, r_{t-1})\}, \]

- Construct an estimate $\hat{\Theta}_{t-1}$ for Θ^*,

- Choose the action $A \in A_t$ with largest $\langle A, \hat{\Theta}_{t-1} \rangle$.

Estimate Θ^* \quad Greedy Decision \quad Update \mathcal{H}

Reward

History
The **ridge estimator** is used to obtain $\hat{\Theta}_t$ (for a fixed λ):

$$V_t := \lambda I + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top \in \mathbb{R}^{d \times d},$$

and

$$\hat{\Theta}_t := V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right) \in \mathbb{R}^d.$$
Greedy

Algorithm 1 Greedy algorithm

1: for $t = 1$ to T do
2: \hspace{1em} Pull $\tilde{A}_t := \arg \max_{A \in A_t} \langle A, \hat{\Theta}_{t-1} \rangle$
3: \hspace{1em} Observe the reward r_t
4: \hspace{1em} Compute $V_t = \lambda \mathbb{I} + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top$
5: \hspace{1em} Compute $\hat{\Theta}_t = V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right)$
6: end for

Greedy makes wrong decisions due to over- or under-estimating the true rewards. The over-estimation is automatically corrected. The under-estimation can cause linear regret.
Greedy

Algorithm 1 Greedy algorithm

1. **for** $t = 1$ to T **do**
2. Pull $\tilde{A}_t := \operatorname{arg\ max}_{A \in \mathcal{A}_t} \langle A, \hat{\Theta}_{t-1} \rangle$
3. Observe the reward r_t
4. Compute $V_t = \lambda I + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top$
5. Compute $\hat{\Theta}_t = V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right)$
6. **end for**

Greedy makes wrong decisions due to **over-** or **under-estimating** the true rewards.

- The over-estimation is **automatically** corrected.

- The under-estimation can cause **linear regret**.
Greedy

\(A_1 \) \hspace{1cm} \(A_2 \) \hspace{1cm} \(A_3 \) \hspace{1cm} \(A_4 \) \hspace{1cm} \(A_5 \)
Greedy

\[A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \]
Optimism in Face of Uncertainty (OFU) Algorithm

- Key idea: be optimistic when estimating the reward of actions.
Optimism in Face of Uncertainty (OFU) Algorithm

- **Key idea:** **be optimistic** when estimating the reward of actions.

- For $\rho > 0$, define the confidence set $C_t(\rho)$ to be
 \[C_t(\rho) := \{ \Theta | \|\Theta - \hat{\Theta}_t\|_{V_t} \leq \rho \}, \]
 where
 \[\|X\|_{V_t}^2 = X^\top V_t X \in \mathbb{R}^+. \]
Optimism in Face of Uncertainty (OFU) Algorithm

- Key idea: **be optimistic** when estimating the reward of actions.
- For $\rho > 0$, define the **confidence set** $C_t(\rho)$ to be
 \[C_t(\rho) := \{ \Theta | \| \Theta - \hat{\Theta}_t \|_{\mathbf{V}_t} \leq \rho \}, \]
 where
 \[\| X \|_{\mathbf{V}_t}^2 = X^\top \mathbf{V}_t X \in \mathbb{R}^+. \]

Theorem (Informal, Abbasi-Yadkori, Pál, and Szepesvári 2011)

Letting $\rho := \tilde{O}(\sqrt{d})$, we have $\Theta^* \in C_t(\rho)$ with high probability.
Algorithm 2 OFUL algorithm

1: for $t = 1$ to T do
2: Pull $\tilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \sup_{\Theta \in C_{t-1}(\rho)} \langle A, \Theta \rangle$
3: Observe the reward r_t
4: Compute $V_t = \lambda I + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^T$
5: Compute $\hat{\Theta}_t = V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right)$
6: end for
Optimism in Face of Uncertainty (OFU) Algorithm

Algorithm 2 OFUL algorithm

1: for $t = 1$ to T do
2: Pull $\tilde{A}_t := \arg \max_{A \in A_t} \sup_{\Theta \in C_{t-1}(\rho)} \langle A, \Theta \rangle$
3: Observe the reward r_t
4: Compute $V_t = \lambda \mathbb{I} + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top$
5: Compute $\hat{\Theta}_t = V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right)$
6: end for

It can be shown that

$$\sup_{\Theta \in C_t(\rho)} \langle A, \Theta \rangle = \langle A, \hat{\Theta}_t \rangle + \rho \| A \|_{V_t^{-1}}.$$
Optimism in Face of Uncertainty (OFU) Algorithm

A_1 \hspace{1cm} A_2 \hspace{1cm} A_3 \hspace{1cm} A_4 \hspace{1cm} A_5

Greedy
Optimism in Face of Uncertainty (OFU) Algorithm

A1 \quad A2 \quad A3 \quad A4 \quad A5

OFUL

Greedy
Linear Thompson Sampling (LinTS) Algorithm

- Key idea: use \textit{randomization} to address under-estimation.

Algorithm 2

\begin{algorithm}
\begin{algorithmic}[1]
\For{\textbf{t} = 1 \text{ to } T}
\State \textbf{Sample } \tilde{\Theta}_t \sim P(\Theta^{\star}|H_{t-1})
\State \textbf{Pull } A_t := \arg\max_{A \in A_t} \langle A, \tilde{\Theta}_t \rangle
\State \textbf{Observe the reward } r_t
\State \textbf{Update } H_t \leftarrow H_{t-1} \cup \{ (A_t, r_t) \}
\EndFor
\end{algorithmic}
\end{algorithm}
Linear Thompson Sampling (LinTS) Algorithm

- Key idea: use **randomization** to address under-estimation.
- LinTS samples from the **posterior** distribution of Θ^*.

Algorithm 3 LinTS algorithm

1. for $t = 1$ to T do
2. Sample $\tilde{\Theta}_t \sim \mathbb{P}(\Theta^* | \mathcal{H}_{t-1})$
3. Pull $A_t := \arg\max_{A \in A_t} \langle A, \tilde{\Theta}_t \rangle$
4. Observe the reward r_t
5. Update $\mathcal{H}_t \leftarrow \mathcal{H}_{t-1} \cup \{(A_t, r_t)\}$
6. end for
Under **normality**, LinTS becomes:

Algorithm 4 LinTS algorithm under normality

1. **for** \(t = 1 \) to \(T \) **do**
2. Sample \(\tilde{\Theta}_t \sim \mathcal{N}(\hat{\Theta}_{t-1}, \mathbf{V}_t^{-1}) \)
3. Pull \(A_t := \arg \max_{A \in A_t} \langle A, \tilde{\Theta}_t \rangle \)
4. Observe the reward \(r_t \)
5. Compute \(\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top \)
6. Compute \(\hat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right) \)
7. **end for**
Linear Thompson Sampling (LinTS) Algorithm

A_1 A_2 A_3 A_4 A_5

OFUL

Greedy
Linear Thompson Sampling (LinTS) Algorithm

A_1

A_2

A_3

A_4

A_5

OFUL

Greedy

N. Hamidi, M. Bayati

On Worst-Case Regret of LinTS

Stanford University
Linear Thompson Sampling (LinTS) Algorithm

A_1 A_2 A_3 A_4 A_5
Why Is LinTS Popular?

- **Empirical superiority:**
 - $d = 120$, $\Theta^* \sim \mathcal{N}(0, I_d)$,
 - $k = 10$, $X \sim \mathcal{N}(0, I_{12})$,
 - Each A_t contains X as a block\(^1\).

\(^1\) This is the 10-armed contextual bandit with 12 dimensional covariates.
Why is LinTS Popular?

- **Computation efficiency**: when A_t is a polytope.

 LinTS solves an LP problem,

 - OFUL becomes an NP-hard problem!

Photo credit: Russo and Van Roy 2014
Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

\[\text{Regret}(T, \Theta^*, \pi^{OFUL}) \leq \tilde{O}(d\sqrt{T}). \]
Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

\[
\text{Regret}(T, \Theta^*, \pi^{\text{OFUL}}) \leq \tilde{O}(d\sqrt{T}).
\]

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

\[
\text{BayesRegret}(T, \pi^{\text{LinTS}}) \leq \tilde{O}(d\sqrt{T}).
\]
Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

$$\text{Regret}(T, \Theta^*, \pi^{OFUL}) \leq \tilde{O}(d\sqrt{T}).$$

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

$$\text{BayesRegret}(T, \pi^{LinTS}) \leq \tilde{O}(d\sqrt{T}).$$

Theorem (Dani, Hayes, and Kakade 2008)

There is a Bayesian linear bandit problem that satisfies

$$\inf_{\pi} \text{BayesRegret}(T, \pi) \geq \Omega(d\sqrt{T}).$$
A Worst-Case Regret Bound for LinTS

- Question: can one prove a similar worst-case regret bound for LinTS?
- The only known results require **inflating** the posterior variance.

Algorithm 5 LinTS algorithm under normality

1. for $t = 1$ to T do
2. Sample $\tilde{\Theta}_t \sim \mathcal{N}(\hat{\Theta}_{t-1}, \beta^2 V_{t-1}^{-1})$
3. Pull $A_t := \arg \max_{A \in A_t} \mathcal{A}(A, \tilde{\Theta}_t)$
4. Observe the reward r_t
5. Compute $V_t = \lambda \mathbb{I} + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top$
6. Compute $\hat{\Theta}_t = V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right)$
7. end for
A Worst-Case Regret Bound for LinTS

Theorem (Abeille and Lazaric 2017; Agrawal and Goyal 2013)

If $\beta \propto \sqrt{d}$, then

$$\text{Regret}(T, \Theta^*, \pi^{\text{LinTS}}) \leq \tilde{O}(d\sqrt{dT}).$$

This result is far from optimal by a \sqrt{d} factor.
Empirical Performance of Inflated LinTS

- Unfortunately, the inflated variant of LinTS performs poorly...
A General Regret Bound
Randomized OFUL

By a **worth function**, we mean a function \tilde{M}_t that maps each $A \in \mathcal{A}_t$ to \mathbb{R} such that

$$|\tilde{M}_t(A) - \langle A, \hat{\Theta}_{t-1} \rangle| \leq \rho \|A\|_{V_{t-1}^{-1}}$$

with probability at least $1 - \frac{1}{T^2}$.

Next, define **Randomized OFUL (ROFUL)** to be:

```
Algorithm 6
ROFUL algorithm
1: for $t = 1$ to $T$
2:  Pull $\tilde{A}_t := \text{arg max}_{A \in \mathcal{A}_t} \tilde{M}_t(A)$
3:  Observe the reward $r_t$
4:  Compute $V_t = \lambda I + \sum_{t_i=1} \tilde{A}_{t_i} \tilde{A}_{t_i}^\top$
5:  Compute $\hat{\Theta}_t = V_{t-1}^{-1} (\sum_{t_i=1} \tilde{A}_{t_i} r_{t_i})$
6: end for
```
Randomized OFUL

By a **worth function**, we mean a function \tilde{M}_t that maps each $A \in \mathcal{A}_t$ to \mathbb{R} such that

$$|\tilde{M}_t(A) - \langle A, \hat{\Theta}_{t-1} \rangle| \leq \rho \|A\|_{V_{t-1}}^{-1}$$

with probability at least $1 - \frac{1}{T^2}$.

Next, define **Randomized OFUL (ROFUL)** to be:

```
Algorithm 6 ROFUL algorithm
1:   for $t = 1$ to $T$ do
2:      Pull $\tilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \tilde{M}_t(A)$
3:      Observe the reward $r_t$
4:      Compute $V_t = \lambda I + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^T$
5:      Compute $\hat{\Theta}_t = V_t^{-1} \left( \sum_{i=1}^{t} \tilde{A}_i r_i \right)$
6:   end for
```
ROFUL Representations

Examples of worth functions:

- Greedy: $\tilde{M}_t(A) = \langle A, \hat{\Theta}_{t-1} \rangle$
- OFUL: $\tilde{M}_t(A) = \langle A, \hat{\Theta}_{t-1} \rangle + \rho \|A\|_V^{t-1}$
- LinTS: $\tilde{M}_t(A) = \langle A, \tilde{\Theta}_{t-1} \rangle$
Definition

We say a worth function \tilde{M}_t is optimistic if

$$\sup_{A \in A_t} \tilde{M}_t(A) \geq \sup_{A \in A_t} \langle A, \Theta^* \rangle$$

with probability at least p. (3)
A General Regret Bound

Definition

We say a worth function \tilde{M}_t is optimistic if

$$\sup_{A \in \mathcal{A}_t} \tilde{M}_t(A) \geq \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle$$

(3)

with probability at least p.

Theorem

Let $(\tilde{M}_t)_{t=1}^T$ be a sequence of optimistic worth functions. Then, the regret of ROFUL with this worth function is bounded by

$$\text{Regret}(T, \pi_{\text{ROFUL}}) \leq \tilde{O}\left(\rho \sqrt{\frac{dT}{p}}\right).$$
A Sufficient Condition for Optimism

Recall that the worth function for LinTS is given by

\[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by
 \[
 \tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle.
 \]

- We can decompose it as
 \[
 \tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A, \hat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.
 \]
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]

- We can decompose it as
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A, \hat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle. \]

- Hence, we have
 \[\sup_{A \in A_t} \tilde{M}_t(A) - \sup_{A \in A_t} \langle A, \Theta^* \rangle \geq \tilde{M}_t(A^*_t) - \langle A^*_t, \Theta^* \rangle. \]
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]

- We can decompose it as
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A, \hat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle. \]

- Hence, we have
 \[
 \sup_{A \in \mathcal{A}_t} \tilde{M}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle \geq \tilde{M}_t(A^*_t) - \langle A^*_t, \Theta^* \rangle \]
 \[= \langle A^*_t, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A^*_t, \hat{\Theta}_{t-1} - \Theta^* \rangle. \]
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by

 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]

- We can decompose it as

 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A, \hat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle. \]

- Hence, we have

 \[
 \sup_{A \in \mathcal{A}_t} \tilde{M}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle \geq \tilde{M}_t(A^*_t) - \langle A^*_t, \Theta^* \rangle \\
 = \langle A^*_t, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A^*_t, \hat{\Theta}_{t-1} - \Theta^* \rangle.
 \]

 \text{Error term}
A Sufficient Condition for Optimism

Recall that the worth function for LinTS is given by

\[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]

We can decompose it as

\[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_t - 1 \rangle + \langle A, \hat{\Theta}_t - 1 - \Theta^* \rangle + \langle A, \Theta^* \rangle. \]

Hence, we have

\[
\sup_{A \in \mathcal{A}_t} \tilde{M}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle \geq \tilde{M}_t(A^*_t) - \langle A^*_t, \Theta^* \rangle
\]

\[= \langle A^*_t, \tilde{\Theta}_t - \hat{\Theta}_t - 1 \rangle + \langle A^*_t, \hat{\Theta}_t - 1 - \Theta^* \rangle. \]

\[\text{Compensation term} \quad \text{Error term}\]
A Sufficient Condition for Optimism

Define

- **Error vector** $E := \Theta^* - \hat{\Theta}_{t-1}$
- **Compensator vector** $C := \tilde{\Theta}_t - \hat{\Theta}_{t-1}$

The optimism assumption holds if, with probability p, the following holds

$$\langle A_t^*, C \rangle \geq \langle A_t^*, E \rangle.$$
Omniscient Adversary and LinTS

- An adversary chooses A_t at time t.
- The adversary is omniscient if he knows $\hat{\Theta}_{t-1}$ and Θ^*.
Omniscient Adversary and LinTS

- An **adversary** chooses A_t at time t.
- The adversary is **omniscient** if he knows $\hat{\Theta}_{t-1}$ and Θ^*.
- The adversary sets $A_t := \{0, A\}$ where $A = -c\hat{\Theta}_{t-1} + E$.
Omniscient Adversary and LinTS

- An adversary chooses A_t at time t.
- The adversary is omniscient if he knows $\hat{\Theta}_{t-1}$ and Θ^*.
- The adversary sets $A_t := \{0, A\}$ where $A = -c\hat{\Theta}_{t-1} + E$.
- For simplicity, assume that $\|\Theta^*\|_2 = \|E\|_2 = \sqrt{d}$, and $V_{t-1} = I$.

N. Hamidi, M. Bayati
On Worst-Case Regret of LinTS
Stanford University 28 / 41
Omniscient Adversary and LinTS

- An **adversary** chooses A_t at time t.
- The adversary is **omniscient** if he knows $\hat{\Theta}_{t-1}$ and Θ^*.
- The adversary sets $A_t := \{0, A\}$ where $A = -c\hat{\Theta}_{t-1} + E$.
- For simplicity, assume that $\|\Theta^*\|_2 = \|E\|_2 = \sqrt{d}$, and $V_{t-1} = I$.
- Then $c > 0$ is chosen so that
 $$\langle A, \Theta^* \rangle > 0$$
Omniscient Adversary and LinTS

- An **adversary** chooses \mathcal{A}_t at time t.
- The adversary is **omniscient** if he knows $\hat{\Theta}_{t-1}$ and Θ^*.
- The adversary sets $\mathcal{A}_t := \{0, A\}$ where $A = -c\hat{\Theta}_{t-1} + E$.
- For simplicity, assume that $\|\Theta^*\|_2 = \|E\|_2 = \sqrt{d}$, and $\mathbf{V}_{t-1} = \mathbb{I}$.
- Then $c > 0$ is chosen so that

 \[
 \langle A, \Theta^* \rangle > 0 \quad \text{and} \quad \langle A, \hat{\Theta}_{t-1} \rangle < -\frac{1}{2} \cdot \|A\|_{\mathbf{V}_{t-1}^{-1}} \cdot \|E\|_{\mathbf{V}_{t-1}} \ll 0.
 \]

![Diagram](https://example.com/diagram.png)
Omniscient Adversary and LinTS

- The adversary sets $\mathcal{A}_t = \{0, A\}$.
- LinTS chooses A if and only if
 $$\langle A, \tilde{\Theta}_t \rangle = \langle A, \tilde{\Theta}_t - \tilde{\Theta}_{t-1} \rangle + \langle A, \tilde{\Theta}_{t-1} \rangle > 0.$$
- This requires
 $$\langle A, \mathcal{C} \rangle \sim \mathcal{N}(0, \mathbf{V}_{t-1}^{-1}) > \frac{1}{2} \cdot \|A\|_{\mathbf{V}_{t-1}^{-1}} \cdot \|E\|_{\mathbf{V}_{t-1}} \approx \sqrt{d}.$$
Omniscient Adversary and LinTS

- Next, we have

\[\mathbb{P}(\langle A, \tilde{\Theta}_t \rangle > 0) \leq \exp(-\Omega(d))! \]

- LinTS chooses the optimal arm \(A \) w.p. exponentially small in \(\Omega(d) \).

- When \(\tilde{A}_t = 0 \), the reward contains no new information about \(\Theta^* \).

- The adversary reveals the same action set in the next rounds.

- The regret will grow linearly.
Bayesian Analyses are Brittle

- The key point was the adversary’s knowledge of E.
- This can be relaxed by **slightly modifying** the noise distribution.
- In this case, we can set up a problem so that $\mathbb{E}[E] \neq 0$.
- **Reducing the noise variance** reveals information about E.
Bayesian Analyses are Brittle

We prove that the inflation is **necessary** for LinTS to work.

Theorem

There exists a linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

$$\text{BayesRegret}(T, \pi^{\text{LinTS}}) = \Omega(T).$$
Bayesian Analyses are Brittle

We prove that the inflation is **necessary** for LinTS to work.

Theorem

There exists a linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

\[
\text{BayesRegret}(T, \pi^{\text{LinTS}}) = \Omega(T).
\]

The counter-example satisfies the following properties:

- $\Theta^* \sim \mathcal{N}(0, I_d)$,
- LinTS uses the right prior,
- LinTS assumes noises are standard normal,
- $r_t = \langle \Theta^*, A_t \rangle$. (i.e., **noiseless** data!)
Reducing the Inflation Parameter
Reducing the Inflation Parameter

- Recall that a sufficient condition for optimism is that

\[\langle A_t^*, C \rangle \geq \langle A_t^*, E \rangle \]

with probability \(p > 0 \).
Reducing the Inflation Parameter

- Recall that a sufficient condition for optimism is that
 \[\langle A_t^*, C \rangle \geq \langle A_t^*, E \rangle \]
 with probability \(p > 0 \).

- Also, we have that
 \[\langle A_t^*, C \rangle \sim \mathcal{N}(0, \beta^2 \| A_t^* \|^2 V_{t-1}^{-1}) \].
Reducing the Inflation Parameter

• Recall that a sufficient condition for optimism is that

\[\langle A_t^*, C \rangle \geq \langle A_t^*, E \rangle \]

with probability \(p > 0 \).

• Also, we have that

\[\langle A_t^*, C \rangle \sim \mathcal{N}(0, \beta^2 \|A_t^*\|^2 \nu_{t-1}) . \]

• And, in the \textbf{worst-case}, we have

\[\langle A_t^*, E \rangle \geq \rho \|A_t^*\| \nu_{t-1} . \]
Reducing the Inflation Parameter

- Recall that a sufficient condition for optimism is that
 \[\langle A^*_t, C \rangle \geq \langle A^*_t, E \rangle \]
 with probability \(p > 0 \).

- Also, we have that
 \[\langle A^*_t, C \rangle \sim \mathcal{N}(0, \beta^2 \|A^*_t\|^2_{V_{t-1}}). \]

- And, in the worst-case, we have
 \[\langle A^*_t, E \rangle \geq \rho \|A^*_t\|_{V_{t-1}}. \]

- What if we assume that \(A^*_t \) is in a random direction?
Diversity Assumption

Assumption (Optimal arm diversity)

Assume that for any $V \in \mathbb{R}^d$ with $\|V\|_2 = 1$, we have

$$
\mathbb{P} \left(\langle A_t^*, V \rangle > \frac{\nu}{\sqrt{d}} \|A_t^*\|_2 \right) \leq \frac{1}{t^3},
$$

for some fixed $\nu \in [1, \sqrt{d}]$.
Diversity is not Sufficient
Define **thinness** of a matrix Σ to be

$$\psi(\Sigma) := \sqrt{d \cdot \|\Sigma\|_{op} / \|\Sigma\|_*}.$$
Define **thinness** of a matrix Σ to be

$$
\psi(\Sigma) := \sqrt{\frac{d \cdot \|\Sigma\|_{\text{op}}}{\|\Sigma\|_*}}.
$$

Assumption

For $\Psi, \omega > 0$, we have

$$
\mathbb{P}\left(\|A^*\|_{V_t^{-1}} < \omega \sqrt{\frac{\|V_t^{-1}\|_*}{d}} \cdot \|A^*\|_2\right) \leq \frac{1}{t^3}
$$

for any positive definite V_t^{-1} with $\psi(V_t^{-1}) \leq \Psi$.
Main Results

For $\beta := \frac{\nu \psi}{\omega} \cdot \frac{\rho}{\sqrt{d}}$, optimism holds. So, we have the following result:

Theorem

If $\sum_{t=1}^{T} P(\psi(V_t^{-1}) > \psi) \leq C$, we have

$$\text{Regret}(T, \Theta^*, \pi^{TS}) \leq O\left(\rho \beta \sqrt{dT \log(T)} + C\right).$$
Empirical Scrutiny on Thinness

Thinness in the simulations in Russo and Van Roy (2014):
Empirical Scrutiny on Thinness

Thinness in the simulations in Russo and Van Roy (2014):
Conclusion

- Proved that LinTS without inflation can incur linear regret.
- Provided a general regret bound for confidence-based policies.
- Introduced sufficient conditions for reducing the inflation parameter.
Thank you!

Any questions?
Failure of LinTS: Example 1

<table>
<thead>
<tr>
<th>Environment</th>
<th>LinTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td>$\mathcal{N}(0, \mathbb{I}_d)$</td>
</tr>
<tr>
<td>Noise</td>
<td>$\mathcal{N}(0, 0)$</td>
</tr>
</tbody>
</table>

Expected number of failures for LinTS
Failure of LinTS: Example 2

<table>
<thead>
<tr>
<th>Environment</th>
<th>LinTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td>$\mathcal{N}(0.1 \cdot 1_d, \mathbb{I}_d)$</td>
</tr>
<tr>
<td>Noise</td>
<td>$\mathcal{N}(0, 1)$</td>
</tr>
</tbody>
</table>

Expected number of failures for LinTS

N. Hamidi, M. Bayati

On Worst-Case Regret of LinTS

Stanford University
Failure of LinTS: Example 2

<table>
<thead>
<tr>
<th>Environment</th>
<th>LinTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td>$\mathcal{N}(\mu \cdot 1_{2000}, I_{2000})$</td>
</tr>
<tr>
<td>Noise</td>
<td>$\mathcal{N}(0, 1)$</td>
</tr>
</tbody>
</table>

The table shows the prior and noise distributions for the LinTS environment. The expected number of failures for LinTS is plotted against μ, with a logarithmic scale for the y-axis.

N. Hamidi, M. Bayati
On Worst-Case Regret of LinTS
Stanford University

