On Worst-Case Regret of Linear Thompson Sampling

Nima Hamidi

Stanford University

Collaborator: Mohsen Bayati

Preprint: arXiv 2006.06790

Overview

- Problem Definition
- 2 Confidence-based Policies
- Failure of LinTS ☺
- 4 Positive Results ©

Stochastic Linear Bandit Problem

- Let $\Theta^* \in \mathbb{R}^d$ be fixed (and unknown).
- At time t, the action set $A_t \subseteq \mathbb{R}^d$ is revealed to a policy π .
- The policy chooses $\widetilde{A}_t \in \mathcal{A}_t$.
- It observes a reward $r_t = \langle \Theta^*, \widetilde{A}_t \rangle + \varepsilon_t$.
- Conditional on the history, ε_t has zero mean.

Evaluation Metric

- The objective is to improve using past experiences.
- The cumulative regret is defined as

$$\mathsf{Regret}(T, \Theta^\star, \pi) := \mathbb{E} \Bigg[\sum_{t=1}^T \sup_{A \in \mathcal{A}_t} \langle \Theta^\star, A \rangle - \langle \Theta^\star, \widetilde{A}_t \rangle \, \Bigg| \, \Theta^\star \Bigg].$$

Evaluation Metric

- The objective is to improve using past experiences.
- The cumulative regret is defined as

$$\mathsf{Regret}(T, \Theta^\star, \pi) := \mathbb{E} \Bigg[\sum_{t=1}^T \sup_{A \in \mathcal{A}_t} \langle \Theta^\star, A \rangle - \langle \Theta^\star, \widetilde{A}_t \rangle \, \Bigg| \, \Theta^\star \Bigg].$$

Evaluation Metric

- The objective is to **improve using past experiences**.
- The cumulative regret is defined as

$$\mathsf{Regret}(T, \Theta^\star, \pi) := \mathbb{E}\Bigg[\sum_{t=1}^T \sup_{A \in \mathcal{A}_t} \langle \Theta^\star, A \rangle - \langle \Theta^\star, \widetilde{A}_t \rangle \, \Bigg| \, \Theta^\star \Bigg].$$

• In the Bayesian setting, the Bayesian regret is given by

$$\mathsf{BayesRegret}(T,\pi) := \mathbb{E}_{\Theta^{\star} \sim \mathcal{P}}[\mathsf{Regret}(T,\Theta^{\star},\pi)].$$

Algorithms

At time $t = 1, 2, \dots, T$:

Using the set of observations

$$\mathcal{H}_{t-1} := \{ (\widetilde{A}_1, r_1), \cdots, (\widetilde{A}_{t-1}, r_{t-1}) \},$$

- Construct an **estimate** $\widehat{\Theta}_{t-1}$ for Θ^{\star} ,
- Choose the action $A \in \mathcal{A}_t$ with largest $\langle A, \widehat{\Theta}_{t-1} \rangle$.

The **ridge estimator** is used to obtain $\widehat{\Theta}_t$ (for a fixed λ):

$$\mathbf{V}_t := \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^\top \in \mathbb{R}^{d \times d}, \tag{1}$$

and

$$\widehat{\Theta}_t := \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right) \in \mathbb{R}^d.$$
 (2)

Algorithm 1 Greedy algorithm

- 1: **for** t = 1 to T **do**
- 2: Pull $\widetilde{A}_t := \arg\max_{A \in \mathcal{A}_t} \langle A, \widehat{\Theta}_{t-1} \rangle$
- 3: Observe the reward r_t
- 4: Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$
- 5: Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$
- 6: end for

Algorithm 1 Greedy algorithm

- 1: **for** t = 1 to T **do**
- 2: Pull $\widetilde{A}_t := \operatorname{\mathsf{arg}} \operatorname{\mathsf{max}}_{A \in \mathcal{A}_t} \langle A, \widehat{\Theta}_{t-1}
 angle$
- 3: Observe the reward r_t
- 4: Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\mathsf{T}}$
- 5: Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$
- 6: end for

Greedy makes wrong decisions due to **over-** or **under-estimating** the true rewards.

- The over-estimation is **automatically** corrected.
- The under-estimation can cause linear regret.

• Key idea: **be optimistic** when estimating the reward of actions.

- Key idea: be optimistic when estimating the reward of actions.
- For $\rho > 0$, define the **confidence set** $C_t(\rho)$ to be

$$C_t(\rho) := \{\Theta \mid \|\Theta - \widehat{\Theta}_t\|_{\mathbf{V}_t} \le \rho\},\$$

where

$$\|X\|_{\mathbf{V}_t}^2 = X^{\top}\mathbf{V}_t X \in \mathbb{R}^+.$$

- Key idea: be optimistic when estimating the reward of actions.
- For $\rho > 0$, define the **confidence set** $C_t(\rho)$ to be

$$C_t(\rho) := \{\Theta \mid \|\Theta - \widehat{\Theta}_t\|_{\mathbf{V}_t} \le \rho\},\,$$

where

$$||X||_{\mathbf{V}_t}^2 = X^{\top} \mathbf{V}_t X \in \mathbb{R}^+.$$

Theorem (Informal, Abbasi-Yadkori, Pál, and Szepesvári 2011)

Letting $\rho := \widetilde{\mathcal{O}}(\sqrt{d})$, we have $\Theta^* \in \mathcal{C}_t(\rho)$ with high probability.

Algorithm 2 OFUL algorithm

- 1: for t = 1 to T do
- 2: Pull $A_t := \arg \max_{A \in \mathcal{A}_t} \sup_{\Theta \in \mathcal{C}_{t-1}(\rho)} \langle A, \Theta \rangle$
- 3: Observe the reward r_t
- 4: Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$
- 5: Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$
- 6: end for

Algorithm 2 OFUL algorithm

- 1: **for** t = 1 to T **do**
- 2: Pull $A_t := \arg \max_{A \in \mathcal{A}_t} \sup_{\Theta \in \mathcal{C}_{t-1}(\rho)} \langle A, \Theta \rangle$
- 3: Observe the reward r_t
- 4: Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$
- 5: Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$
- 6: end for

It can be shown that

$$\sup_{\Theta \in \mathcal{C}_t(\rho)} \langle A, \Theta \rangle = \langle A, \widehat{\Theta}_t \rangle + \rho \|A\|_{\mathbf{V}_{t-1}^{-1}}.$$

• Key idea: use randomization to address under-estimation.

- Key idea: use randomization to address under-estimation.
- LinTS samples from the **posterior** distribution of Θ^* .

Algorithm 3 LinTS algorithm

- 1: **for** t = 1 to T **do**
- 2: Sample $\widetilde{\Theta}_t \sim \mathbb{P}(\Theta^\star \,|\, \mathcal{H}_{t-1})$
- 3: Pull $A_t := \arg\max_{A \in \mathcal{A}_t} \langle A, \widetilde{\Theta}_t \rangle$
- 4: Observe the reward r_t
- 5: Update $\mathcal{H}_t \leftarrow \mathcal{H}_{t-1} \bigcup \{(A_t, r_t)\}$
- 6: end for

Under normality, LinTS becomes:

Algorithm 4 LinTS algorithm under normality

- 1: for t = 1 to T do
- 2: Sample $\widetilde{\Theta}_t \sim \mathcal{N}(\widehat{\Theta}_{t-1}, \mathbf{V}_{t-1}^{-1})$
- 3: Pull $A_t := \operatorname{arg\,max}_{A \in \mathcal{A}_t} \langle A, \widetilde{\Theta}_t \rangle$
- 4: Observe the reward r_t
- 5: Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\mathsf{T}}$
- 6: Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$
- 7: end for

Why Is LinTS Popular?

• Empirical superiority:

- d = 120, $\Theta^* \sim \mathcal{N}(0, \mathbb{I}_d)$,
- $k = 10, X \sim \mathcal{N}(0, \mathbb{I}_{12}),$
- Each A_t contains X as a block¹.

 $^{^{}m 1}$ This is the 10-armed contextual bandit with 12 dimensional covariates.

Why is LinTS Popular?

- Computation efficiency: when A_t is a polytope \cdots
 - LinTS solves an LP problem,

OFUL becomes an NP-hard problem!

Photo credit: Russo and Van Roy 2014

Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

$$\operatorname{Regret}(T, \Theta^{\star}, \pi^{OFUL}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

$$\operatorname{Regret}(T, \Theta^{\star}, \pi^{OFUL}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

$$\mathsf{BayesRegret}(T, \pi^{\mathsf{LinTS}}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

$$\mathsf{Regret}(T, \Theta^{\star}, \pi^{\mathit{OFUL}}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

$$\mathsf{BayesRegret}(T, \pi^{\mathit{LinTS}}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Theorem (Dani, Hayes, and Kakade 2008)

There is a Bayesian linear bandit problem that satisfies

$$\inf_{\pi} \mathsf{BayesRegret}(T,\pi) \geq \Omega(d\sqrt{T}).$$

A Worst-Case Regret Bound for LinTS

- Question: can one prove a similar worst-case regret bound for LinTS?
- The only known results require inflating the posterior variance.

Algorithm 5 LinTS algorithm under normality

- 1: **for** t = 1 to T **do** Sample $\widetilde{\Theta}_t \sim \mathcal{N}(\widehat{\Theta}_{t-1}, \beta^2 \mathbf{V}_{t-1}^{-1})$ Pull $A_t := \arg \max_{A \in A_t} \langle A, \widetilde{\Theta}_t \rangle$ 4: Observe the reward r_t Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\mathsf{T}}$
- Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$ 6:

7: end for

A Worst-Case Regret Bound for LinTS

Theorem (Abeille and Lazaric 2017; Agrawal and Goyal 2013)

If $\beta \propto \sqrt{d}$, then

$$\mathsf{Regret}(T, \Theta^{\star}, \pi^{\mathsf{LinTS}}) \leq \widetilde{\mathcal{O}}(d\sqrt{dT}).$$

This result is far from optimal by a \sqrt{d} factor.

Empirical Performance of Inflated LinTS

Unfortunately, the inflated variant of LinTS performs poorly...

A General Regret Bound

Randomized OFUL

• By a **worth function**, we mean a function M_t that maps each $A \in \mathcal{A}_t$ to \mathbb{R} such that

$$|\widetilde{\mathsf{M}}_{t}(A) - \langle A, \widehat{\Theta}_{t-1} \rangle| \leq \rho \|A\|_{\mathbf{V}_{t-1}^{-1}}$$

with probability at least $1 - \frac{1}{T^2}$.

Randomized OFUL

• By a **worth function**, we mean a function M_t that maps each $A \in \mathcal{A}_t$ to \mathbb{R} such that

$$|\widetilde{\mathsf{M}}_{t}(A) - \langle A, \widehat{\Theta}_{t-1} \rangle| \leq \rho ||A||_{\mathbf{V}_{t-1}^{-1}}$$

with probability at least $1 - \frac{1}{T^2}$.

Next, define Randomized OFUL (ROFUL) to be:

Algorithm 6 ROFUL algorithm

- 1: for t = 1 to T do
- 2: Pull $\widetilde{A}_t := \arg \max_{A \in A_t} \widetilde{M}_t(A)$
- 3: Observe the reward r_t
- 4: Compute V_t and $\widehat{\Theta}_t$ via Eqs. (1) and (2)
- 5: end for

ROFUL Representations

Examples of worth functions:

- Greedy: $\widetilde{\mathsf{M}}_t(A) = \langle A, \widehat{\Theta}_{t-1} \rangle$
- OFUL: $\widetilde{\mathsf{M}}_t(A) = \langle A, \widehat{\Theta}_{t-1} \rangle + \rho \|A\|_{\mathbf{V}_{t-1}^{-1}}$
- LinTS: $\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_{t-1} \rangle$

A General Regret Bound

Definition

We say a worth function \widetilde{M}_t is **optimistic** if

$$\sup_{A \in \mathcal{A}_t} \widetilde{M}_t(A) \ge \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle \tag{3}$$

with probability at least p.

A General Regret Bound

Definition

We say a worth function \widetilde{M}_t is **optimistic** if

$$\sup_{A \in \mathcal{A}_t} \widetilde{\mathsf{M}}_t(A) \ge \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle \tag{3}$$

with probability at least p.

Theorem

Let $(\widetilde{\mathsf{M}}_t)_{t=1}^T$ be a sequence of optimistic worth functions. Then, the regret of ROFUL with this worth function is bounded by

$$\mathsf{Regret}(T, \pi^{\mathsf{ROFUL}}) \leq \widetilde{\mathcal{O}}\left(\rho\sqrt{\frac{dT}{\mathsf{p}}}\right).$$

• Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

$$\sup_{A \in \mathcal{A}_t} \widetilde{\mathsf{M}}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^{\star} \rangle \geq \widetilde{\mathsf{M}}_t(A_t^{\star}) - \langle A_t^{\star}, \Theta^{\star} \rangle$$

Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

$$\begin{split} \sup_{A \in \mathcal{A}_t} \widetilde{\mathsf{M}}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^{\star} \rangle &\geq \widetilde{\mathsf{M}}_t(A_t^{\star}) - \langle A_t^{\star}, \Theta^{\star} \rangle \\ &= \langle A_t^{\star}, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A_t^{\star}, \widehat{\Theta}_{t-1} - \Theta^{\star} \rangle \,. \end{split}$$

Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

$$\begin{split} \sup_{A \in \mathcal{A}_t} \widetilde{\mathsf{M}}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^\star \rangle &\geq \widetilde{\mathsf{M}}_t(A_t^\star) - \langle A_t^\star, \Theta^\star \rangle \\ &= \langle A_t^\star, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \underbrace{\langle A_t^\star, \widehat{\Theta}_{t-1} - \Theta^\star \rangle}_{\text{Error term}}. \end{split}$$

Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

$$\begin{split} \sup_{A \in \mathcal{A}_t} \widetilde{\mathbb{M}}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^\star \rangle &\geq \widetilde{\mathbb{M}}_t(A_t^\star) - \langle A_t^\star, \Theta^\star \rangle \\ &= \underbrace{\langle A_t^\star, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle}_{\text{Compensation term}} + \underbrace{\langle A_t^\star, \widehat{\Theta}_{t-1} - \Theta^\star \rangle}_{\text{Error term}}. \end{split}$$

Define

- Error vector $E := \Theta^{\star} \widehat{\Theta}_{t-1}$
- ullet Compensator vector $C:=\widetilde{\Theta}_t-\widehat{\Theta}_{t-1}$

The optimism assumption holds if, with probability p, the following holds

$$\langle A_t^{\star}, {\color{red} C} \rangle \geq \langle A_t^{\star}, {\color{red} E} \rangle.$$

- An adversary chooses A_t at time t.
- The adversary is **omniscient** if he knows $\widehat{\Theta}_{t-1}$ and Θ^{\star} .

- An adversary chooses A_t at time t.
- The adversary is **omniscient** if he knows $\widehat{\Theta}_{t-1}$ and Θ^{\star} .
- He chooses $A = -c\widehat{\Theta}_{t-1} + E$ so that

$$\langle A, \Theta^{\star} \rangle > 0 \qquad \text{and} \qquad \langle A, \widehat{\Theta}_{t-1} \rangle < -\frac{1}{2} \cdot \|A\|_{\mathbf{V}_{t-1}^{-1}} \cdot \underbrace{\|\mathbf{E}\|_{\mathbf{V}_{t-1}}}_{\approx \sqrt{d}} \ll 0.$$

- The adversary sets $A_t = \{0, A\}$.
- LinTS chooses A if and only if

$$\langle A, \widetilde{\Theta}_t \rangle = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} \rangle > 0.$$

This requires

$$\langle A, \mathbf{C} \rangle \sim \mathcal{N}(0, \mathbf{V}_{t-1}^{-1}) > \frac{1}{2} \cdot \|A\|_{\mathbf{V}_{t-1}^{-1}} \cdot \underbrace{\|\mathbf{E}\|_{\mathbf{V}_{t-1}}}_{\approx \sqrt{d}}.$$

Next, we have

$$\mathbb{P}(\langle A, \widetilde{\Theta}_t \rangle > 0) \leq \exp(-\Omega(d))!$$

- LinTS chooses the optimal arm A w.p. **exponentially small in** $\Omega(d)$.
- When $\widetilde{A}_t = 0$, the reward contains **no new information** about Θ^* .
- The adversary reveals the same action set in the next rounds.
- The regret will grow linearly.

Bayesian Analyses are Brittle

- The key point was the adversary's knowledge of *E*.
- This can be relaxed by **slightly modifying** the noise distribution.
- Reducing the noise variance reveals information about E.

Bayesian Analyses are Brittle

We prove that the inflation is **necessary** for LinTS to work.

Theorem

There exists a linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

BayesRegret
$$(T, \pi^{LinTS}) = \Omega(T)$$
.

Bayesian Analyses are Brittle

We prove that the inflation is **necessary** for LinTS to work.

Theorem

There exists a linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

BayesRegret
$$(T, \pi^{LinTS}) = \Omega(T)$$
.

The counter-example satisfies the following properties:

- $\Theta^* \sim \mathcal{N}(0, \mathbb{I}_d)$,
- LinTS uses the right prior,
- LinTS assumes noises are standard normal,
- $r_t = \langle \Theta^*, A_t \rangle$. (i.e., **noiseless** data!)

• Recall that a sufficient condition for optimism is that

$$\langle A_t^{\star}, C \rangle \geq \langle A_t^{\star}, E \rangle$$

with probability p > 0.

Recall that a sufficient condition for optimism is that

$$\langle A_t^{\star}, C \rangle \geq \langle A_t^{\star}, E \rangle$$

with probability p > 0.

Also, we have that

$$\langle A_t^{\star}, \mathbf{C} \rangle \sim \mathcal{N}(0, \beta^2 ||A_t^{\star}||_{\mathbf{V}_{t-1}}^2).$$

Recall that a sufficient condition for optimism is that

$$\langle A_t^{\star}, C \rangle \geq \langle A_t^{\star}, E \rangle$$

with probability p > 0.

Also, we have that

$$\langle A_t^{\star}, \mathbf{C} \rangle \sim \mathcal{N}(0, \beta^2 ||A_t^{\star}||_{\mathbf{V}_{t-1}}^2).$$

• And, in the worst-case, we have

$$\langle A_t^{\star}, \underline{E} \rangle \geq \rho \|A_t^{\star}\|_{\mathbf{V}_{t-1}}.$$

Recall that a sufficient condition for optimism is that

$$\langle A_t^{\star}, C \rangle \geq \langle A_t^{\star}, E \rangle$$

with probability p > 0.

Also, we have that

$$\langle A_t^{\star}, \mathbf{C} \rangle \sim \mathcal{N}(0, \beta^2 ||A_t^{\star}||_{\mathbf{V}_{t-1}}^2).$$

• And, in the worst-case, we have

$$\langle A_t^{\star}, \underline{E} \rangle \geq \rho \|A_t^{\star}\|_{\mathbf{V}_{t-1}}.$$

• What if we assume that A_t^* is in a **random** direction?

Diversity Assumption

Assumption (Optimal arm diversity)

Assume that for any $V \in \mathbb{R}^d$ with $\|V\|_2 = 1$, we have

$$\mathbb{P}\left(\langle A_t^{\star}, V \rangle > \frac{\nu}{\sqrt{d}} \|A_t^{\star}\|_2\right) \leq \frac{1}{t^3},$$

for some fixed $\nu \in [1, \sqrt{d}]$.

Diversity is not Sufficient

Improved Worst-Case Regret Bound for LinTS

Define **thinness** of a matrix Σ to be

$$\psi(\mathbf{\Sigma}) := \sqrt{rac{d \cdot \|\mathbf{\Sigma}\|_{\mathsf{op}}}{\|\mathbf{\Sigma}\|_{*}}}.$$

Improved Worst-Case Regret Bound for LinTS

Define **thinness** of a matrix Σ to be

$$\psi(\mathbf{\Sigma}) := \sqrt{\frac{d \cdot \|\mathbf{\Sigma}\|_{\mathsf{op}}}{\|\mathbf{\Sigma}\|_*}}.$$

Assumption

For $\Psi, \omega > 0$, we have

$$\mathbb{P} \left(\|A^\star\|_{\mathbf{V}_t^{-1}} < \omega \sqrt{\frac{\|\mathbf{V}_t^{-1}\|_*}{d}} \cdot \|A^\star\|_2 \right) \leq \frac{1}{t^3}$$

for any positive definite \mathbf{V}_t^{-1} with $\psi(\mathbf{V}_t^{-1}) \leq \Psi$.

Main Results

For $\beta:=\frac{\nu\Psi}{\omega}\cdot\frac{\rho}{\sqrt{d}}$, optimism holds. So, we have the following result:

Theorem

If
$$\sum_{t=1}^{T} \mathbb{P} ig(\psi(\mathbf{V}_t^{-1}) > \Psi ig) \leq C$$
, we have

$$\operatorname{Regret}(T, \Theta^*, \pi^{TS}) \leq \mathcal{O}\left(\rho\beta\sqrt{dT\log(T)} + C\right).$$

Empirical Scrutiny on Thinness

Thinness in the simulations in Russo and Van Roy (2014):

Empirical Scrutiny on Thinness

Thinness in the simulations in Russo and Van Roy (2014):

Conclusion

- Proved that LinTS without inflation can incur linear regret.
- Provided a general regret bound for confidence-based policies.
- Introduced sufficient conditions for reducing the inflation parameter.

Thank you!

Any questions?

Failure of LinTS: Example 1

	Environment	LinTS
Prior	$\mathcal{N}(0,\mathbb{I}_d)$	$\mathcal{N}(0,\mathbb{I}_d)$
Noise	$\mathcal{N}(0, {\color{red}0})$	$\mathcal{N}(0, 1)$

Failure of LinTS: Example 2

	Environment	LinTS
Prior	$\mathcal{N}(0.1 \cdot 1_d, \mathbb{I}_d)$	$\mathcal{N}(0,\mathbb{I}_d)$
Noise	$\mathcal{N}(0,1)$	$\mathcal{N}(0,1)$

Failure of LinTS: Example 2

	Environment	LinTS
Prior	$\mathcal{N}(\mu \cdot 1_{2000}, \mathbb{I}_{2000})$	$\mathcal{N}(0,\mathbb{I}_{2000})$
Noise	$\mathcal{N}(0,1)$	$\mathcal{N}(0,1)$

References I

- Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. "Improved algorithms for linear stochastic bandits". In: *Advances in Neural Information Processing Systems*. 2011, pp. 2312–2320.
- Marc Abeille, Alessandro Lazaric, et al. "Linear Thompson sampling revisited". In: *Electronic Journal of Statistics* 11.2 (2017), pp. 5165–5197.
- Shipra Agrawal and Navin Goyal. "Thompson Sampling for Contextual Bandits with Linear Payoffs.". In: *ICML* (3). 2013, pp. 127–135.
- Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. "Stochastic Linear Optimization under Bandit Feedback". In: COLT. 2008.
- Tze Leung Lai and Herbert Robbins. "Asymptotically efficient adaptive allocation rules". In: Advances in applied mathematics 6.1 (1985), pp. 4–22.

References II

Daniel Russo and Benjamin Van Roy. "Learning to Optimize via Posterior Sampling". In: *Mathematics of Operations Research* 39.4 (2014), pp. 1221–1243. DOI: 10.1287/moor.2014.0650.