On Worst-Case Regret of Linear Thompson Sampling

Nima Hamidi

Stanford University

Collaborator: Mohsen Bayati

Preprint: arXiv 2006.06790
Overview

1. Problem Definition

2. Confidence-based Policies

3. Failure of LinTS 😞

4. Positive Results 😊
Stochastic Linear Bandit Problem

- Let $\Theta^* \in \mathbb{R}^d$ be fixed (and unknown).
- At time t, the action set $\mathcal{A}_t \subseteq \mathbb{R}^d$ is revealed to a policy π.
- The policy chooses $\tilde{A}_t \in \mathcal{A}_t$.
- It observes a reward $r_t = \langle \Theta^*, \tilde{A}_t \rangle + \varepsilon_t$.
- Conditional on the history, ε_t has zero mean.
Evaluation Metric

- The objective is to **improve using past experiences**.

- The **cumulative regret** is defined as

 \[
 \text{Regret}(T, \Theta^*, \pi) := \mathbb{E} \left[\sum_{t=1}^{T} \sup_{A \in A_t} \langle \Theta^*, A \rangle - \langle \Theta^*, \tilde{A}_t \rangle \bigg| \Theta^* \right].
 \]
The objective is to **improve using past experiences**.

The **cumulative regret** is defined as

\[
\text{Regret}(T, \Theta^*, \pi) := \mathbb{E} \left[\sum_{t=1}^{T} \sup_{A \in \mathcal{A}_t} \langle \Theta^*, A \rangle - \langle \Theta^*, \tilde{A}_t \rangle \right | \Theta^*].
\]
Evaluation Metric

- The objective is to **improve using past experiences**.

- The **cumulative regret** is defined as

\[
\text{Regret}(T, \Theta^*, \pi) := \mathbb{E} \left[\sum_{t=1}^{T} \sup_{A \in \mathcal{A}_t} \langle \Theta^*, A \rangle - \langle \Theta^*, \tilde{A}_t \rangle \middle| \Theta^* \right].
\]

- In the Bayesian setting, the **Bayesian regret** is given by

\[
\text{BayesRegret}(T, \pi) := \mathbb{E}_{\Theta^* \sim \mathcal{P}}[\text{Regret}(T, \Theta^*, \pi)].
\]
Algorithms
Greedy

At time $t = 1, 2, \cdots, T$:

- Using the set of observations
 \[\mathcal{H}_{t-1} := \{ (\tilde{A}_1, r_1), \cdots, (\tilde{A}_{t-1}, r_{t-1}) \}, \]
- Construct an estimate $\hat{\Theta}_{t-1}$ for Θ^*,
- Choose the action $A \in \mathcal{A}_t$ with largest $\langle A, \hat{\Theta}_{t-1} \rangle$.
The **ridge estimator** is used to obtain $\hat{\Theta}_t$ (for a fixed λ):

$$V_t := \lambda \mathbb{I} + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top \in \mathbb{R}^{d \times d},$$ \hspace{1cm} (1)$$

and

$$\hat{\Theta}_t := V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right) \in \mathbb{R}^d. \hspace{1cm} (2)$$
Greedy

Algorithm 1 Greedy algorithm

1: \textbf{for } \(t = 1 \) to \(T \) \textbf{do}
2: \hspace{5mm} Pull \(\tilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \hat{\Theta}_{t-1} \rangle \)
3: \hspace{5mm} Observe the reward \(r_t \)
4: \hspace{5mm} Compute \(\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top \)
5: \hspace{5mm} Compute \(\hat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right) \)
6: \hspace{5mm} \textbf{end for}

Greedy makes wrong decisions due to over- or under-estimating the true rewards. The over-estimation is automatically corrected. The under-estimation can cause linear regret.
Algorithm 1 Greedy algorithm

1: for $t = 1$ to T do
2: Pull $\tilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \hat{\Theta}_{t-1} \rangle$
3: Observe the reward r_t
4: Compute $V_t = \lambda \mathbb{I} + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top$
5: Compute $\hat{\Theta}_t = V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right)$
6: end for

Greedy makes wrong decisions due to over- or under-estimating the true rewards.

- The over-estimation is automatically corrected.
- The under-estimation can cause linear regret.
Greedy

A_1 A_2 A_3 A_4 A_5
Greedy

A_1 A_2 A_3 A_4 A_5
Optimism in Face of Uncertainty (OFU) Algorithm

- Key idea: **be optimistic** when estimating the reward of actions.
Optimism in Face of Uncertainty (OFU) Algorithm

- Key idea: be optimistic when estimating the reward of actions.

- For $\rho > 0$, define the confidence set $C_t(\rho)$ to be

$$C_t(\rho) := \{\Theta | \|\Theta - \hat{\Theta}_t\|_{V_t} \leq \rho\},$$

where

$$\|X\|^2_{V_t} = X^T V_t X \in \mathbb{R}^+.$$
Optimism in Face of Uncertainty (OFU) Algorithm

- Key idea: **be optimistic** when estimating the reward of actions.
- For $\rho > 0$, define the **confidence set** $C_t(\rho)$ to be

$$
C_t(\rho) := \{ \Theta \mid \| \Theta - \hat{\Theta}_t \|_{V_t} \leq \rho \},
$$

where

$$
\| X \|_{V_t}^2 = X^\top V_t X \in \mathbb{R}^+.
$$

Theorem (Informal, Abbasi-Yadkori, Pál, and Szepesvári 2011)

Letting $\rho := \tilde{O}(\sqrt{d})$, we have $\Theta^* \in C_t(\rho)$ with high probability.
Algorithm 2 OFUL algorithm

1: for $t = 1$ to T do
2: Pull $\tilde{A}_t := \arg \max_{A \in A_t} \sup_{\Theta \in C_{t-1}(\rho)} \langle A, \Theta \rangle$
3: Observe the reward r_t
4: Compute $V_t = \lambda I + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^T$
5: Compute $\hat{\Theta}_t = V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right)$
6: end for
Optimism in Face of Uncertainty (OFU) Algorithm

Algorithm 2 OFUL algorithm

1: for \(t = 1 \) to \(T \) do
2: Pull \(\tilde{A}_t := \arg \max_{A \in A_t} \sup_{\Theta \in C_{t-1}(\rho)} \langle A, \Theta \rangle \)
3: Observe the reward \(r_t \)
4: Compute \(V_t = \lambda I + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^T \)
5: Compute \(\hat{\Theta}_t = \left(V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right) \right) \)
6: end for

It can be shown that

\[
\sup_{\Theta \in C_t(\rho)} \langle A, \Theta \rangle = \langle A, \hat{\Theta}_t \rangle + \rho \| A \| V_{t-1}^{-1} .
\]
Optimism in Face of Uncertainty (OFU) Algorithm

Greedy

A_1 A_2 A_3 A_4 A_5
Optimism in Face of Uncertainty (OFU) Algorithm

Greedy

OFUL
Linear Thompson Sampling (LinTS) Algorithm

- **Key idea:** use *randomization* to address under-estimation.
Linear Thompson Sampling (LinTS) Algorithm

- Key idea: use randomization to address under-estimation.
- LinTS samples from the posterior distribution of Θ^*.

Algorithm 3 LinTS algorithm

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>$\textbf{for } t = 1 \text{ to } T \textbf{ do}$</td>
</tr>
<tr>
<td>2:</td>
<td>Sample $\tilde{\Theta}_t \sim \mathbb{P}(\Theta^*</td>
</tr>
<tr>
<td>3:</td>
<td>Pull $A_t := \text{arg max}_{A \in A_t} \langle A, \tilde{\Theta}_t \rangle$</td>
</tr>
<tr>
<td>4:</td>
<td>Observe the reward r_t</td>
</tr>
<tr>
<td>5:</td>
<td>Update $\mathcal{H}t \leftarrow \mathcal{H}{t-1} \cup {(A_t, r_t)}$</td>
</tr>
<tr>
<td>6:</td>
<td>$\textbf{end for}$</td>
</tr>
</tbody>
</table>
Linear Thompson Sampling (LinTS) Algorithm

- Under **normality**, LinTS becomes:

```
Algorithm 4 LinTS algorithm under normality
1: for $t = 1$ to $T$ do
2: Sample $\tilde{\Theta}_t \sim \mathcal{N}(\hat{\Theta}_{t-1}, V_{t-1}^{-1})$
3: Pull $A_t := \arg \max_{A \in A_t} \langle A, \tilde{\Theta}_t \rangle$
4: Observe the reward $r_t$
5: Compute $V_t = \lambda I + \sum_{i=1}^t \tilde{A}_i \tilde{A}_i^\top$
6: Compute $\hat{\Theta}_t = V_t^{-1} \left( \sum_{i=1}^t \tilde{A}_i r_i \right)$
7: end for
```
Linear Thompson Sampling (LinTS) Algorithm

\[A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \]

OFUL

Greedy
Linear Thompson Sampling (LinTS) Algorithm
Linear Thompson Sampling (LinTS) Algorithm

\[\text{LinTS} \rightarrow \text{OFUL} \]

Greedy

\[A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \]
Why Is LinTS Popular?

- **Empirical superiority:**
 - \(d = 120, \Theta^* \sim \mathcal{N}(0, I_d), \)
 - \(k = 10, X \sim \mathcal{N}(0, I_{12}), \)
 - Each \(A_t \) contains \(X \) as a block\(^1\).

\(^1\)This is the 10-armed contextual bandit with 12 dimensional covariates.
Why is LinTS Popular?

- **Computation efficiency**: when A_t is a polytope \ldots

 - LinTS solves an LP problem,

 - OFUL becomes an NP-hard problem!

Photo credit: Russo and Van Roy 2014
Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

\[\text{Regret}(T, \Theta^*, \pi_{\text{OFUL}}) \leq \tilde{O}(d \sqrt{T}). \]
Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

\[
\text{Regret}(T, \Theta^*, \pi^{OFUL}) \leq \tilde{O}(d\sqrt{T}).
\]

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

\[
\text{BayesRegret}(T, \pi^{LinTS}) \leq \tilde{O}(d\sqrt{T}).
\]
Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

\[
\text{Regret}(T, \Theta^*, \pi^{OFUL}) \leq \tilde{O}(d\sqrt{T}).
\]

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

\[
\text{BayesRegret}(T, \pi^{LinTS}) \leq \tilde{O}(d\sqrt{T}).
\]

Theorem (Dani, Hayes, and Kakade 2008)

There is a Bayesian linear bandit problem that satisfies

\[
\inf_{\pi} \text{BayesRegret}(T, \pi) \geq \Omega(d\sqrt{T}).
\]
A Worst-Case Regret Bound for LinTS

- Question: can one prove a similar worst-case regret bound for LinTS?
- The only known results require **inflating** the posterior variance.

Algorithm 5 LinTS algorithm under normality

1. for $t = 1$ to T do
2. Sample $\tilde{\Theta}_t \sim \mathcal{N}(\hat{\Theta}_{t-1}, \beta^2 V_{t-1}^{-1})$
3. Pull $A_t := \arg\max_{A \in A_t} \langle A, \tilde{\Theta}_t \rangle$
4. Observe the reward r_t
5. Compute $V_t = \lambda I + \sum_{i=1}^{t} \tilde{A}_i \tilde{A}_i^\top$
6. Compute $\hat{\Theta}_t = V_t^{-1} \left(\sum_{i=1}^{t} \tilde{A}_i r_i \right)$
7. end for
A Worst-Case Regret Bound for LinTS

Theorem (Abeille and Lazaric 2017; Agrawal and Goyal 2013)

If $\beta \propto \sqrt{d}$, then

$$\text{Regret}(T, \Theta^*, \pi^{\text{LinTS}}) \leq \tilde{O}(d\sqrt{dT}).$$

This result is far from optimal by a \sqrt{d} factor.
Empirical Performance of Inflated LinTS

- Unfortunately, the inflated variant of LinTS performs poorly...
A General Regret Bound
Randomized OFUL

By a **worth function**, we mean a function \tilde{M}_t that maps each $A \in \mathcal{A}_t$ to \mathbb{R} such that

$$|\tilde{M}_t(A) - \langle A, \hat{\Theta}_{t-1} \rangle| \leq \rho \|A\|_{V_{t-1}^{-1}}$$

with probability at least $1 - \frac{1}{T^2}$.

Next, define Randomized OFUL (ROFUL) to be:

Algorithm 6

1: for $t = 1$ to T
 2: Pull $\tilde{A}_t := \text{arg max}_{A \in \mathcal{A}_t} \tilde{M}_t(A)$
 3: Observe the reward r_t
 4: Compute V_t and $\hat{\Theta}_t$ via Eqs. (1) and (2)
5: end for
Randomized OFUL

- By a **worth function**, we mean a function \tilde{M}_t that maps each $A \in A_t$ to \mathbb{R} such that

$$|\tilde{M}_t(A) - \langle A, \hat{\Theta}_{t-1} \rangle| \leq \rho \|A\|_{V_{t-1}^{-1}}$$

with probability at least $1 - \frac{1}{T^2}$.

- Next, define **Randomized OFUL (ROFUL)** to be:

```
Algorithm 6 ROFUL algorithm

1: for $t = 1$ to $T$ do
2:   Pull $\tilde{A}_t := \arg\max_{A \in A_t} \tilde{M}_t(A)$
3:   Observe the reward $r_t$
4:   Compute $V_t$ and $\hat{\Theta}_t$ via Eqs. (1) and (2)
5: end for
```
ROFUL Representations

Examples of worth functions:

- **Greedy**: $\tilde{M}_t(A) = \langle A, \hat{\Theta}_{t-1} \rangle$
- **OFUL**: $\tilde{M}_t(A) = \langle A, \hat{\Theta}_{t-1} \rangle + \rho \|A\|_V^{-1}$
- **LinTS**: $\tilde{M}_t(A) = \langle A, \tilde{\Theta}_{t-1} \rangle$
A General Regret Bound

Definition

We say a worth function \tilde{M}_t is **optimistic** if

$$\sup_{A \in \mathcal{A}_t} \tilde{M}_t(A) \geq \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle$$

with probability at least p.

Theorem

Let $(\tilde{M}_t)_{T=1}^T$ be a sequence of optimistic worth functions. Then, the regret of ROFUL with this worth function is bounded by

$$\text{Regret}(T, \pi_{\text{ROFUL}}) \leq \tilde{O}(\rho \sqrt{dT/p})$$
A General Regret Bound

Definition

We say a worth function \tilde{M}_t is **optimistic** if

$$\sup_{A \in \mathcal{A}_t} \tilde{M}_t(A) \geq \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle$$

with probability at least p.

Theorem

Let $(\tilde{M}_t)_{t=1}^T$ be a sequence of optimistic worth functions. Then, the regret of ROFUL with this worth function is bounded by

$$\text{Regret}(T, \pi^{\text{ROFUL}}) \leq \tilde{O}\left(\rho \sqrt{\frac{dT}{p}}\right).$$
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by

\[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]

- We can decompose it as
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A, \hat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle. \]
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]

- We can decompose it as
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A, \hat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle. \]

- Hence, we have
 \[\sup_{A \in A_t} \tilde{M}_t(A) - \sup_{A \in A_t} \langle A, \Theta^* \rangle \geq \tilde{M}_t(A^*_t) - \langle A^*_t, \Theta^* \rangle. \]
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by

\[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]

- We can decompose it as

\[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A, \hat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle. \]

- Hence, we have

\[
\sup_{A \in A_t} \tilde{M}_t(A) - \sup_{A \in A_t} \langle A, \Theta^* \rangle \geq \tilde{M}_t(A^*_t) - \langle A^*_t, \Theta^* \rangle \\
= \langle A^*_t, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A^*_t, \hat{\Theta}_{t-1} - \Theta^* \rangle.
\]
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]

- We can decompose it as
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A, \hat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle. \]

- Hence, we have
 \[
 \sup_{A \in \mathcal{A}_t} \tilde{M}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle \geq \tilde{M}_t(A^*_t) - \langle A^*_t, \Theta^* \rangle \\
 = \langle A^*_t, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A^*_t, \hat{\Theta}_{t-1} - \Theta^* \rangle.
 \]
 [Error term]
A Sufficient Condition for Optimism

- Recall that the worth function for LinTS is given by
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t \rangle. \]

- We can decompose it as
 \[\tilde{M}_t(A) = \langle A, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A, \hat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle. \]

- Hence, we have
 \[\sup_{A \in \mathcal{A}_t} \tilde{M}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle \geq \tilde{M}_t(A^*_t) - \langle A^*_t, \Theta^* \rangle \]
 \[= \langle A^*_t, \tilde{\Theta}_t - \hat{\Theta}_{t-1} \rangle + \langle A^*_t, \hat{\Theta}_{t-1} - \Theta^* \rangle. \]

Compensation term \[\text{Error term} \]
A Sufficient Condition for Optimism

Define

- Error vector $E := \Theta^* - \hat{\Theta}_{t-1}$
- Compensator vector $C := \tilde{\Theta}_t - \hat{\Theta}_{t-1}$

The optimism assumption holds if, with probability p, the following holds

$$\langle A_t^*, C \rangle \geq \langle A_t^*, E \rangle.$$
Omniscient Adversary and LinTS

- An adversary chooses A_t at time t.

- The adversary is omniscient if he knows $\hat{\Theta}_{t-1}$ and Θ^*.
Omniscient Adversary and LinTS

- An adversary chooses A_t at time t.
- The adversary is omniscient if he knows $\hat{\Theta}_{t-1}$ and Θ^*.
- He chooses $A = -c\hat{\Theta}_{t-1} + E$ so that

$$\langle A, \Theta^* \rangle > 0 \quad \text{and} \quad \langle A, \hat{\Theta}_{t-1} \rangle < -\frac{1}{2} \cdot \|A\|_{\mathbf{v}_{t-1}} \cdot \|E\|_{\mathbf{v}_{t-1}} \ll 0.$$
Omniscient Adversary and LinTS

- The adversary sets $A_t = \{0, A\}$.
- LinTS chooses A if and only if
 $$\langle A, \tilde{\Theta}_t \rangle = \langle A, \tilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} \rangle > 0.$$
- This requires
 $$\langle A, C \rangle \sim \mathcal{N}(0, V_{t-1}^{-1}) > \frac{1}{2} \cdot \|A\|_{V_{t-1}^{-1}} \cdot \|E\|_{V_{t-1}^{-1}} \approx \sqrt{d}.$$
Next, we have

\[\mathbb{P}(\langle A, \tilde{\Theta}_t \rangle > 0) \leq \exp (-\Omega(d))! \]

LinTS chooses the optimal arm \(A \) w.p. exponentially small in \(\Omega(d) \).

When \(\tilde{A}_t = 0 \), the reward contains no new information about \(\Theta^* \).

The adversary reveals the same action set in the next rounds.

The regret will grow linearly.
Bayesian Analyses are Brittle

- The key point was the *adversary’s knowledge of* \(E \).
- This can be relaxed by *slightly modifying* the noise distribution.
- *Reducing the noise variance* reveals information about \(E \).
Bayesian Analyses are Brittle

We prove that the inflation is necessary for LinTS to work.

Theorem

There exists a linear bandit problem such that for \(T \leq \exp(\Omega(d)) \), we have

\[
\text{BayesRegret}(T, \pi^{\text{LinTS}}) = \Omega(T).
\]
Bayesian Analyses are Brittle

We prove that the inflation is **necessary** for LinTS to work.

Theorem

There exists a linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

$$\text{BayesRegret}(T, \pi^{LinTS}) = \Omega(T).$$

The counter-example satisfies the following properties:

- $\Theta^* \sim \mathcal{N}(0, I_d)$,
- LinTS uses the right prior,
- LinTS assumes noises are standard normal,
- $r_t = \langle \Theta^*, A_t \rangle$. (i.e., **noiseless** data!)
Reducing the Inflation Parameter
Reducing the Inflation Parameter

- Recall that a sufficient condition for optimism is that

\[\langle A^*_t, C \rangle \geq \langle A^*_t, E \rangle \]

with probability \(p > 0 \).
Reducing the Inflation Parameter

- Recall that a sufficient condition for optimism is that

\[\langle A_t^*, C \rangle \geq \langle A_t^*, E \rangle \]

with probability \(p > 0 \).

- Also, we have that

\[\langle A_t^*, C \rangle \sim \mathcal{N}(0, \beta^2 \|A_t^*\|_V^2 V_{t-1}) \].
Reducing the Inflation Parameter

- Recall that a sufficient condition for optimism is that
 \[\langle A^*_t, C \rangle \geq \langle A^*_t, E \rangle \]
 with probability \(p > 0 \).
- Also, we have that
 \[\langle A^*_t, C \rangle \sim \mathcal{N}(0, \beta^2 \| A^*_t \|^2_{\mathbf{V}_{t-1}}) \].
- And, in the worst-case, we have
 \[\langle A^*_t, E \rangle \geq \rho \| A^*_t \|_{\mathbf{V}_{t-1}}. \]
Reducing the Inflation Parameter

- Recall that a sufficient condition for optimism is that
 \[\langle A^*_t, C \rangle \geq \langle A^*_t, E \rangle \]
 with probability \(p > 0 \).

- Also, we have that
 \[\langle A^*_t, C \rangle \sim \mathcal{N}(0, \beta^2 \|A^*_t\|^2 V_{t-1}) \].

- And, in the worst-case, we have
 \[\langle A^*_t, E \rangle \geq \rho \|A^*_t\| V_{t-1} \].

- What if we assume that \(A^*_t \) is in a random direction?
Diversity Assumption

Assumption (Optimal arm diversity)

Assume that for any \(V \in \mathbb{R}^d \) with \(\|V\|_2 = 1 \), we have

\[
P \left(\langle A^*_t, V \rangle > \frac{\nu}{\sqrt{d}} \|A^*_t\|_2 \right) \leq \frac{1}{t^3},
\]

for some fixed \(\nu \in [1, \sqrt{d}] \).
Diversity is not Sufficient
Define **thinness** of a matrix Σ to be

$$
\psi(\Sigma) := \sqrt{\frac{d \cdot \| \Sigma \|_{op}}{\| \Sigma \|_*}}.
$$
Improved Worst-Case Regret Bound for LinTS

Define **thinness** of a matrix Σ to be

$$\psi(\Sigma) := \sqrt{\frac{d \cdot \|\Sigma\|_{op}}{\|\Sigma\|_*}}.$$

Assumption

For $\Psi, \omega > 0$, we have

$$\mathbb{P}\left(\|A^*\|_{V_t^{-1}} < \omega \sqrt{\frac{\|V_t^{-1}\|_*}{d}} \cdot \|A^*\|_2\right) \leq \frac{1}{t^3}$$

for any positive definite V_t^{-1} with $\psi(V_t^{-1}) \leq \Psi$.
Main Results

For $\beta := \frac{\nu \Psi}{\omega} \cdot \frac{\rho}{\sqrt{d}}$, optimism holds. So, we have the following result:

Theorem

If $\sum_{t=1}^{T} \mathbb{P}(\psi(V_t^{-1}) > \Psi) \leq C$, we have

$$\text{Regret}(T, \Theta^*, \pi^{TS}) \leq \mathcal{O}(\rho \beta \sqrt{dT \log(T)} + C).$$
Empirical Scrutiny on Thinness

Thinness in the simulations in Russo and Van Roy (2014):

<table>
<thead>
<tr>
<th>Time</th>
<th>Thinness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TS-Bayes</td>
</tr>
<tr>
<td></td>
<td>TS-Freq</td>
</tr>
<tr>
<td></td>
<td>TS-Improved</td>
</tr>
</tbody>
</table>

N. Hamidi, M. Bayati
On Worst-Case Regret of LinTS
Empirical Scrutiny on Thinness

Thinness in the simulations in Russo and Van Roy (2014):

![Graph showing the comparison of thinness across different methods over time. The x-axis represents time, and the y-axis represents thinness. The legend includes TS-Bayes, TS-Freq, and TS-Improved. The graph illustrates the performance of each method with TS-Improved consistently maintaining the lowest thinness throughout the simulation.]
Conclusion

- Proved that LinTS without inflation can incur linear regret.
- Provided a general regret bound for confidence-based policies.
- Introduced sufficient conditions for reducing the inflation parameter.
Thank you!

Any questions?
Failure of LinTS: Example 1

<table>
<thead>
<tr>
<th>Environment</th>
<th>LinTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td>(\mathcal{N}(0, \mathbb{I}_d))</td>
</tr>
<tr>
<td>Noise</td>
<td>(\mathcal{N}(0, 0))</td>
</tr>
</tbody>
</table>

![Box plot showing expected number of failures for LinTS](image-url)
Failure of LinTS: Example 2

<table>
<thead>
<tr>
<th>Environment</th>
<th>LinTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td>$\mathcal{N}(0.1 \cdot 1_d, \mathbb{I}_d)$</td>
</tr>
<tr>
<td>Noise</td>
<td>$\mathcal{N}(0, 1)$</td>
</tr>
</tbody>
</table>

![Graph showing expected number of failures for LinTS]
Failure of LinTS: Example 2

<table>
<thead>
<tr>
<th>Environment</th>
<th>LinTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td>(\mathcal{N}(\mu \cdot \mathbf{1}{2000}, \mathbb{I}{2000}))</td>
</tr>
<tr>
<td>Noise</td>
<td>(\mathcal{N}(0, 1))</td>
</tr>
</tbody>
</table>

Graph:

- **x-axis:** \(\mu\)
- **y-axis:** Expected number of failures for LinTS
- The graph shows an exponential increase in expected number of failures as \(\mu\) increases from 0.00 to 1.00.

