
On Module-Based Abstraction and Repair of
Behavioral Programs

Supplementary Material

Guy Katz

Dept. of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

guy.katz@weizmann.ac.il

Appendix

I Two Equivalent Semantics for BP

In this section we prove an equivalence between the BP semantics used in this
work, and that previously used by, e.g., [1]. This proposition allows us to use both
semantics interchangeably — and consequently, results proven for one apply for
the other.

Proposition 1. Let BT 1, . . . , BTn be a set of threads. Let P = [BT 1 ‖ . . . ‖
BTn], and let P ′ be the behavioral program consisting of BT 1, . . . , BTn as defined
by [1]; then L(P) = L(P ′). Further, an execution ε is a valid execution of P if
and only if it is also a valid execution of P ′, and it has the same trace under
both semantics.

Both semantics use the b-threads in order to construct an LTS, the runs of
which constitute the runs of the behavioral program. Thus, it suffices to show
that both semantics generate the same LTS. For completeness, we bring the
alternative set of definitions from [1]:

Alternative definition: Behavioral Threads. A behavior thread (abbr.
b-thread) is a tuple 〈Q,Σ,→, init, AP,L,R,B〉, where 〈Q,Σ,→, init, AP,L〉 forms
a total labeled transition system, R : Q → 2Σ associates a state with the set of
events requested by the b-thread when in it, and B : Q→ 2Σ associates a state
with the set of events blocked by the b-thread when in it.

Alternative definition: Behavioral Programs. The runs of a behavioral
program {〈Qi, Σi,→i, initi, APi, Li, Ri, Bi〉}ni=1 are the runs of the labeled tran-
sition system 〈Q,Σ,→, init, AP,L〉, where Q = Q1 × . . . × Qn, Σ =

⋃n
i=1Σi,

init = 〈init1, . . . , initn〉, and → includes a transition 〈s1, . . . , sn〉
e−→ 〈s′1, . . . , s′n〉

if and only if

e ∈
n⋃
i=1

Ri(qi)︸ ︷︷ ︸
e is requested

∧
e /∈

n⋃
i=1

Bi(qi)︸ ︷︷ ︸
e is not blocked

and
n∧
i=1

(
(e ∈ Σi =⇒ qi

e−→i s
′
i)︸ ︷︷ ︸

affected b-threads
move

∧ (e /∈ Σi =⇒ qi = s′i)︸ ︷︷ ︸
unaffected b-threads

don’t move

)
.

The atomic propositions are AP =
⋃n
i=1APi and, for (q1, . . . , qn) ∈ Q1×. . .×Qn,

the labeling function is: L(s1, . . . , sn) = L1(s1) ∪ . . . ∪ Ln(sn).
Begin by observing the events and atomic propositions. In our version, Σ

and AP are traits of the program, and all threads use these global definitions.
In the alternative version, these are properties of threads — but eventually, the
events and atomic propositions of the resulting program are the union of those
of its threads. Thus, we can assume that in the alternative definition all threads
have Σi = Σ and APi = AP without loss of generality.

Next, we observe the state sets of the two transition systems. In our definition,
each composition entails a cartesian product between the states of two threads —
whereas in the alternative definition, the state set is the cartesian product of all
threads in the program. Clearly, as ((Q1×Q2)×Q3 . . .)×Qn = Q1×Q2×. . .×Qn,
we get that both transition systems have the exact same state set. Using similar
arguments, we get that in both transition systems the labeling function assigns
the same labels to each state.

Finally, we only need show that the edges are the same. Using the alterna-
tive definition, an edge 〈q1, q2, . . . , qn〉

e→ 〈q′1, q′2, . . . , q′n〉 will exist in the LTS if

and only if ∀i, qi
e→ q′i, and e is enabled (i.e. requested and not blocked). Us-

ing our definitions, the parallel composition operator guarantees that in state
〈q1, q2, . . . , qn〉 of the composed (and not yet finalized) thread BT1 ‖ . . . ‖ BTn,
event e will be requested (recall that using our definitions, a requested event
cannot be blocked). Further, it is straightforward to prove inductively that the

edge 〈q1, q2, . . . , qn〉
e→ 〈q′1, q′2, . . . , q′n〉 exists in the thread. Hence, it will survive

the finalization operator and appear in the finalized LTS.
Having shown that the same LTS is produced using either semantics, Propo-

sition 1 immediately follows. ut

II Abstract Threads Yield Over-Approximations

This section is dedicated to proving Lemma 1, which reads:

Lemma 1. Let P = [BT 1 ‖ . . . ‖ BTn] be a behavioral program. Let π be an AP -
preserving partition of the states of BT 1, and let BT 1 be the abstraction of BT 1

induced by π. Finally, let P = [BT 1 ‖ BT 2 ‖ . . . ‖ BTn]. Then Tr(P) ⊆ Tr(P).

Observe that, without loss of generality, we may assume that n = 2; otherwise,
we would first calculate the composition BT ′ = BT2 ‖ . . . ‖ BTn, and then deal
with P = [BT 1 ‖ BT ′].

In order to prove the lemma, we look at an execution ε of P , and prove
that there exists an execution ε of P such that Tr(ε) = Tr(ε) — and hence,
Tr(P) ⊆ Tr(P).

Let ε = q0
e1→ q1

e2→ . . . be an execution of P . Each state qi is comprised of two
components, q1

i and q2
i , denoted qi = 〈q1

i , q
2
i 〉, such that qji is a state of thread

BT j . We look at an execution ε = q0
e1→ q1

e2→ . . ., with same events as ε. The
states are set to qi = 〈ηπ(q1

i), q2
i 〉, where ηπ is the abstraction function mapping

each state to its equivalence class under partition π. We next show that this ε
is a valid execution of P , and that it has the same trace as ε.

By definition, every state qi is indeed a state of P . Further, L(qi) = L(ηπ(q1
i))∪

L(q2
i) = L(q1

i) ∪ L(q2
i) = L(qi), and consequently Tr(ε) = Tr(ε). It only remains

to prove that for each qi, the transition to qi+1 is legal — namely, that event

ei+1 is enabled at state qi and that the transition qi
ei+1→ qi+1 exists in P .

To see why event ei+1 is enabled, recall that by definition R(ηπ(q1
i)) ⊆ R(q1

i).
Hence:

ei+1 ∈ R(q1
i) ∪R(q2

i) =⇒ ei+1 ∈ R(ηπ(q1
i)) ∪R(q2

i)

And so, if ei+1 is enabled in state 〈q1
i , q

2
i 〉 then it is also enabled in state

〈ηπ(q1
i), q2

i 〉. Finally, by the abstraction’s definition, the transition q1
i

ei+1→ q1
i+1

in BT 1 implies the transition ηπ(q1
i)

ei+1→ ηπ(q1
i+1) in BT 1; and, in turn, the

transition 〈ηπ(q1
i), q2

i 〉
ei+1→ 〈ηπ(q1

i+1), q2
i+1〉 in P . Thus, ε is a valid execution of

P ; the claim follows. ut

III Correctness of the Check If Spurious Algorithm

We prove Lemma 2, stating that the Check If Spurious is correct:

Lemma 2. Let ε be a execution of P . Then ε is spurious, i.e. is not a valid
execution of P , if and only if the Check If Spurious algorithm returns True.

We show that the algorithm answers False if and only if the run is genuine.

First Direction: A Genuine Run. Suppose that ε = q0
e1→ q1

e2→ . . .
en→ qn is

a genuine execution of P ; i.e., there exists an execution ε = q0
e1→ q1

e2→ . . .
en→ qn

of P , such that for every qi = 〈q1
i , q

2
i , . . . , q

m
i 〉 and qi = 〈qi1, qi2, . . . , qim〉 it holds

that ηj(q
j
i) = qi

j for every j. Further, in every concrete state qi (for 0 ≤ i < n),
event ei+1 is enabled.

A straightforward inductive argument on i = 1. . . . , n shows that for the
i’th step of ε, set Si contains the concrete state 〈q1

i , q
2
i , . . . , q

m
i 〉, and is thus non-

empty. As this state requests and does not block the next event of the execution,
it follows that qi+1 ∈ Sji+1. Hence, for all i we get Si 6= ∅, which in turn implies
that the algorithm returns False, as needed. ut

Second Direction: Algorithm returns False. Suppose that on execution
ε = q0

e1→ q1
e2→ . . .

en→ qn, the algorithm answers False. We show that this implies
the existence of a genuine run ε that corresponds to ε.

By the algorithm’s answer, we know that the computed sets Si are not empty
for all 0 ≤ i ≤ n and. We use these sets, backtracking from i = n to i = 0,
reconstructing the genuine run as we go.

For i = n, we pick an arbitrary qn = 〈q1
n, . . . , q

m
n 〉 ∈ Sn. Then, for state qn−1,

we pick a state q ∈ Sn−1 such that en ∈ R(q) and qn ∈ Post(q, en); such a state
exists by the way the Si sets are defined. This process continues iteratively, until
ε = q0

e1→ q1
e2→ . . .

en→ qn is constructed. It is straightforward to see that it
constitutes a valid run of P . The claim follows. ut

IV Correctness and Soundness of the Repair Algorithm

This section is dedicated to proving Theorem 1, which reads:

Theorem 1. For a behavioral program P and a violated safety property Φ,

1. A patch returned by the Abstract Safety Patching algorithm eliminates all
bad executions of the program, does not eliminate good executions, and does
not create deadlocks.

2. If there exists a wait-block patch that corrects P with respect to Φ, such a
patch will be found by the algorithm. Otherwise, the algorithm will issue a
Failure notice.

We begin with a side note about the meaning of a patch eliminating execu-
tions. As the patch is intended to be integrated into the program as a thread,
it will change the program’s underlying state graph. Hence, it is not immediate
that executions of the original system have any meaning in the context of the
patched program.

We resolve this issue by making the following observation. Due to the special
structure of the patch — namely, that it follows the program’s state graph and
only blocks events, without requesting events or assigning atomic propositions
— the program graph of the patched program is isomorphic to that of the
original program, except for the edges being removed. Hence, any execution of
the original program corresponds to a unique execution of the patched program,
and it makes sense to discuss such executions being eliminated. For simplicity,
for the rest of the proof we ignore this issue, regarding patches as eliminating
transitions in the original state graph without modifying its states.

The theorem’s proof relies mainly of the following invariant of the algorithm,
which we prove as a separate proposition:

Proposition 2. Let q denote an abstract state that the algorithm puts in set
BAD. Then for any concrete state abstracted into q, i.e. for every q ∈ η−1(q),
any execution ε of P that visits q must violate Φ.

Proof. We prove the proposition using induction on the algorithm’s iteration
index. Observe iteration i, the first iteration in which some state q is about
to enter set BAD. At the beginning of this iteration, set BAD contains only
the abstract state qb. Since q is about to enter set BAD, it must be that q ∈
PRE. Further, the NeedToRefine subroutine returned False on q — meaning
that any event that is not blocked in q leads to qb. If there existed a concrete
state q ∈ η−1

i1
(q) and an event e ∈ R(q) such that Post(q, e) 6= {qb}, a matching

transition would also appear in the abstract graph, and q would not be put in
BAD. Hence, Post(q) = {qb}. In other words, any concrete execution passing
through any concrete state associated with q is bound to visit qb and cause a
violation.

Now, suppose that the claim holds for the first i iterations, and observe
iteration i+1. Suppose a new state q joins BAD in this iteration. The reasoning
is the same as before: q is put in BAD only if for every q ∈ η−1(q) and every

event e ∈ R(q), q
e→ q′ implies that η(q′) ∈ BAD. By the inductive hypothesis,

an execution that visits q′ is thus bound to cause a violation. Since this applies
to every successor of every concrete state q ∈ η−1(q), the claim follows. ut

A second observation that we prove separately is that the algorithm always
halts:

Proposition 3. The Abstract Safety Patching algorithm always halts.

Proof. Observe the algorithm’s main loop. If the algorithm does not stop, it
must make infinitely many iterations of this loop. Each iteration that does not
lead to termination is devoted to either performing a single refinement of the
abstract program, or to moving an abstract state into the growing set BAD.
We show that both types of iterations can only be performed a finite number of
times, proving the proposition.

Begin with iterations dedicated to refinement. Any refinement step splits
an abstract state into at least two states; hence, each such step increases the
number of states of the abstract program by at least one. Since this number
is bound from above by the number of states of the original program, only a
finite number of refinements can be performed. Once the abstract and concrete
program coincide, the NeedToRefine subroutine will return False on every state,
and the algorithm will cease attempting to refine the program.

We now turn to iterations in which states are moved to BAD. Observe the
set of concrete states mapped to BAD in iteration i, denoted η−1

i (BAD). These
sets start with η−1

1 (BAD) = {qb}, and for each iteration i that puts a new state
in BAD we have |η−1

i (BAD)| > |η−1
i−1(BAD)|. Since the size of |η−1

i (BAD)| is
also upper bounded by the number of states in the concrete program, we get that
the number of such iterations is also finite. We thus conclude that the algorithm
always halts. ut

We now use these propositions to prove part 1 of the theorem. Consider a
patch BTP produced by the repair algorithm. This patch eliminates transitions
leading to all states in set BAD, effectively disconnecting them from the state

graph. In particular, all executions leading to state qb are eliminated. Since
the existence of a concrete execution leading to qb implies the existence of an
abstract execution leading to qb, it follows that the patch indeed eliminates all
bad executions in the concrete system.

Next, we show that no good executions are eliminated. All transitions that
were removed from the state graph lead to states in BAD. By Proposition 2,
any execution that visits these states is bound to cause a violation; hence, none
of the affected executions are good.

Finally, we show that no deadlocks are created by the algorithm. A deadlock
is created if and only if there exists a state in q ∈ η−1(PRE) for which the set
of requested events, R(q), coincides with the events to be blocked. Hence, when
the state graph is finalized, state q would have no outgoing transitions.

Observe state q = η(q). This state is in PRE, and is not moved to BAD;
hence, it has outgoing transitions that lead to good states. These transitions can-
not originate in q; hence, there is another state, q′ 6= q, such that η(q′) = q and
q′ would not become deadlocked when the patch is applied. This contradicts the
fact that q ∈ PRE at the time the algorithm halts, as subroutine NeedToRefine
would return True for state q = η(q), leading to its being refined. This refine-
ment would cause states q and q′ to be mapped into separate abstract states;
and in the algorithm’s next iteration, the abstract state of q would be put in
BAD. Hence, no deadlocks can occur as a result of patching, and the first part
of the theorem is proven. ut

We now turn to part 2 of the theorem. Here, we must show that the algorithm
does not return a Failure when a correct patch exists. Suppose, then, that a
correct patch BTP exists. This patch corresponds to a set of transitions that are
to be blocked, cutting off some of the concrete program’s states. Also, this patch
does not create deadlocks. We mark the set states to be cut off by S. Again
we observe the series of sets η−1

i (BAD) that our algorithm grows through its
iterations. By Proposition 2, for every i the set η−1

i (BAD) consists only of states
that must lead to a violation of Φ. Since BTP is correct, it follows that it, too,
cannot allow executions to reach states in η−1

i (BAD). In other words, for every
i we have η−1

i (BAD) ⊆ S.
Our algorithm only issues a Failure notice if it reaches a state where the initial

state of the concrete system, q0, is in η−1
i (BAD). However, by the correctness

of BTP , set S cannot contain q0, or else it would create deadlocks. Hence, our
algorithm will not return a Failure notice. As Proposition 3 establishes that the
algorithm must halt, we conclude that it will return some patch. Finally, by
the first part of the theorem, this patch will be correct. We conclude that our
algorithm will indeed output a correct patch if such a patch exists, as needed. ut

References

1. D. Harel, G. Katz, A. Marron, and G. Weiss. Non-Intrusive Repair of Reactive
Programs. In Proc. 17th IEEE Int. Conf. on Engineering of Complex Computer
Systems (ICECCS), pages 3–12, 2012.

