A. Derivation Rules for the TS Solver

A derivation tree consists of nodes containing sets of assertions. The root node contains an initial set of assertions and each non-leaf node is labeled by a derivation rule used to derive the children of the node from the node itself. The derivation rules used by the TS solver give rise to a sequence of derivation trees (called a derivation). The initial tree in the derivation contains only a single node with the initial set of assertions. Each subsequent tree in the sequence is obtained from its predecessor by the application of a derivation rule to one of the predecessor’s leaves. A branch terminating with a leaf consisting of the value ⊥ is called a closed branch; if all branches are closed, we say that the derivation tree is closed. A derivation culminating with a closed derivation tree indicates that the initial set of assertions is unsatisfiable. A derivation that leads to a branch terminating with a leaf consisting of the value ⊤ with a closed derivation tree indicates that the initial set is satisfiable. When such a tree is produced, the derivation terminates.

We now describe the actual derivation rules used by the theory. The first rule, used to initiate the traversal of the state space, is the Start rule:

\[
\text{Start} \quad \frac{\Gamma \models \neg \text{safe(s)}}{\Gamma, \neg \text{safe_state}(s, q_1) \ldots \Gamma, \neg \text{safe_state}(s, q_n)}
\]

where \(\Gamma \) denotes the initial set of assertions (in particular it includes \(\mathcal{P} \) and \(\Phi \)). The derivation rule contains a nondeterministic split such that each branch adds a single assertion to \(\Gamma \).

The Start rule is only applicable when the following guard conditions hold:

\[
\Gamma \models_{\text{TS}} \forall q \in Q. (I(s, q) \iff (q = q_1) \lor (q = q_2) \lor \ldots \lor (q = q_n)), \text{where } s \text{ is of sort } S_Q
\]

\[
\neg \text{safe_state}(s, q_i) \notin \Gamma \text{ for } i \in \{1 \ldots n\}.
\]

Intuitively, the Start rule translates the fact that the system is unsafe into an assertion that one of the initial states is unsafe. The first part of the guard condition ensures that all of the potential initial states are considered as possibilities, and the second part ensures that the rule is applied only once at the beginning of the derivation.

Next comes the Decide rule. This rule performs a similar function to that of Start, and applies when the traversal of the state space is already underway:

\[
\text{Decide} \quad \frac{\Gamma \models \neg \text{safe_state}(s, q)}{\Gamma, \neg \text{safe_state}(s, q_1) \ldots \Gamma, \neg \text{safe_state}(s, q_n)}
\]

The Decide rule is applicable when the following conditions hold:

\[
\neg \text{deadlock}(s, q) \notin \Gamma \tag{1}
\]

\[
\Gamma \models_{\text{TS}} \forall q' \in Q, e \in E. ((\text{Tr}(s, q, e, q')) \land R(s, q, e) \land \neg B(s, q, e)) \iff (q' = q_1) \lor (q' = q_2) \lor \ldots \lor (q' = q_n) \tag{2}
\]

where \(s \) is of sort \(S_Q \) and \(n \geq 1 \).

Intuitively, if a state \(q \) has not already been recorded as a non-deadlock state (condition 1), the Decide rule lets the solver derive the unsafety of one of \(q \)’s successor states, as long as such successors exist (condition 2). Note in particular that the Decide rule will not apply if \(q \) is a deadlock state because condition 2 will fail.

For cases where Decide is not applicable and no deadlock state has been found, we have the Unsat rule:

\[
\text{Unsat} \quad \frac{\Gamma \models \neg \text{safe_state}(s, q)}{\bot}
\]

The Unsat rule is applicable when there are no more states to explore on this branch (and at least one state has been explored) and no deadlock has been discovered. Specifically, the guard condition is:

whenever \(\neg \text{safe_state}(s, q') \in \Gamma \),
we also have \(\neg \text{deadlock}(s, q') \in \Gamma \).

In addition to the derivation rules, we use the theory lemma feature of the DPLL(T) framework to periodically generate a deadlock lemma:

\[
\mathcal{P} \land \Phi \implies \neg \text{deadlock}(s, q)
\]
Of course, as a theory lemma must be valid in the theory, this lemma can only be generated if \(q \) is not a deadlock state in \(s \), or, formally,

\[
\exists q' \in Q, e \in E. \\
\top \land R(s, q, e) \land \neg B(s, q, e),
\]

where \(s \) has the sort \(S_Q \) and \(q \) has the sort \(Q \).

Because \(\Gamma \) includes \(\exists q' \) and \(\Phi \), the DPLL(\(T \)) framework will ensure that whenever a deadlock lemma is added, the predicate \(\neg \text{deadlock}(s, q) \) will be included in \(\Gamma \) on all future branches. For our purposes, we can view the generation of a deadlock lemma as a derivation rule which modifies a given derivation tree by adding \(\neg \text{deadlock}(s, q) \) to every node of the tree (except those labeled with \(\perp \)).

Clearly, not every strategy for applying derivation rules and deadlock lemmas will be complete. Thus, we enforce the following strategy. A deadlock lemma for \(s \) and \(q \) is generated immediately after an invocation of \(\text{Decide} \) triggered on \(\neg \text{safe}(s, q) \); and moreover, this is the only time a deadlock lemma is generated.

This strategy guarantees that deadlock lemmas are valid and are generated only for states whose successors have been expanded, and that each state’s successors are only expanded at most once in any derivation.

Lemma 1: For each \(q \), the \(\text{Decide} \) rule is applied at most once with trigger \(\neg \text{safe}(s, q) \) in any derivation starting with \(\text{Start} \) triggered on \(\neg \text{safe}(s) \).

Proof: Observe a derivation tree \(T \) in which the \(\text{Decide} \) rule has just been applied with trigger \(\neg \text{safe}(s, q) \). The strategy used by the \(T \) solver guarantees that in this case, the invocation of the \(\text{Decide} \) rule for \(q \) will be immediately followed by the generation of a deadlock lemma for \(q \) (recall that if \(\text{Decide} \) was applied to \(q \), it cannot be a deadlock state). This transforms \(T \) into a new tree, \(T' \), in which the assertion \(\neg \text{deadlock}(s, q) \) has been added to every node.

The \(T \) solver now continues working on tree \(T' \). In order for the \(\text{Decide} \) rule to be re-applied to \(q \) in some node of \(T' \), the assertions in that node must not contain \(\neg \text{deadlock}(s, q) \). However, this is clearly not possible, as new nodes in \(T' \) are derived from existing nodes by the addition of terms (rules \(\text{Start} \), \(\text{Decide} \) and the lemma generation rule). Thus the only nodes in the tree where \(\neg \text{deadlock}(s, q) \) is not present are nodes derived using the \(\text{Unsat} \) rule, in which case the branch is closed and no further rules may be applied.

We also observe that in every derivation that starts with \(\exists q', \neg \Phi \), the \(\text{Start} \) rule is applied precisely once.

Lemma 2: In every derivation starting with \(\exists q', \neg \Phi \), the \(\text{Start} \) rule is the first rule applied and it is applied precisely once.

Proof: This holds because (i) \(\text{Start} \) is the only rule applicable at the very first step of the derivation process; and (ii) as rules only add to the set of assertions along any branch, every leaf contains all of the assertions in its parent nodes; and (iii) because of (ii), once \(\text{Start} \) has been applied once, its guard rule prevents it from being applied again to any successor derivation tree.

The described derivation rules and proof strategy also guarantee partial correctness (i.e., soundness and completeness):

Proposition 1: Let \(s \) be an input system for which the \(T \) solver terminates when started with \(\exists q', \neg \Phi \). Then \(s \) is safe iff the final derivation tree is closed.

Proof: Suppose that \(s \) is unsafe; then let \(q_0 \rightarrow q_1 \rightarrow \ldots \rightarrow q_n \) be a shortest path in \(s \) such that \(q_0 \) is an initial state, \(q_{i+1} \) is a successor of \(q_i \) for all \(0 \leq i < n \), and \(q_n \) is a deadlock state.

We now claim that for each derivation tree after the first, there is a value of \(i \) with \(0 \leq i \leq n \) such that the tree has a leaf node containing \(\neg \text{safe}(s, q_i) \) and not containing \(\neg \text{safe}(s, q_k) \) for \(i < k \leq n \) and also not containing \(\neg \text{deadlock}(s, q_k) \) for \(i \leq k \leq n \). We prove this by induction on the derivation. It is easy to see this is true for the second derivation tree as it is generated using the \(\text{Start} \) rule and so does not yet contain any assertions of the form \(\neg \text{deadlock}(s, q) \). Thus, the largest \(i \) such that \(\neg \text{safe}(s, q_i) \) appears in the tree satisfies the claim.

Now, assume the claim holds for some tree \(T \) in the derivation (whose position is second or later) with value \(i \). Let \(T' \) be its successor in the derivation. We consider each of the possible ways in which \(T' \) could have been obtained from \(T \):

- \(T' \) cannot be derived using \(\text{Start} \) as (by Lemma 2) this rule can only be applied once in the sequence.
- Suppose \(T' \) is derived from \(T \) using the \(\text{Unsat} \) rule. It cannot be the case that the \(\text{Unsat} \) rule was applied to the leaf containing \(\neg \text{safe}(s, q_i) \) as that would require \(\neg \text{deadlock}(s, q_i) \) to also be present in the leaf node and our inductive hypothesis states it is not. Thus the leaf satisfying the claim in \(T \) is still present and satisfies the claim in \(T' \).
- Suppose \(T' \) is derived using \(\text{Decide} \) followed by an application of the deadlock lemma (we lump these two rules together for simplicity and wlog). If the \(\text{Decide} \) rule uses \(\neg \text{safe}(s, q_i) \) as its trigger, then \(T' \) contains a new leaf which differs from the previous leaf by the addition of \(\neg \text{safe}(s, q_{i+1}) \) and \(\neg \text{deadlock}(s, q_i) \). By minimality of the path, there are no new leaves with \(\neg \text{safe}(s, q_k) \) with \(k > i + 1 \) and \(q_{i+1} \neq q_k \). Thus, it is clear that the value \(i + 1 \) satisfies the claim in \(T' \). If the \(\text{Decide} \) rule uses \(\neg \text{safe}(s, q) \) as its trigger with \(q \neq q_i \), there are two possibilities. The first possibility is that \(q \) contains a successor \(q_k \) with \(k > i \). In this case it is easy to see that the value \(k \) satisfies the claim in \(T' \). If \(q \) contains no such successor, then it is clear that the value \(i \) continues to satisfy the claim in \(T' \).
This shows the claim is true for every tree in the derivation, in particular the final tree which implies that the final tree is not closed.

For the other direction, suppose towards contradiction that s is safe but that the final derivation tree is not closed. Then, there is a leaf node in the tree which is not \bot and to which rules Start, Decide, and Unsat may not be applied. We denote this node by α.

Node α has at least one assertion of the form $\neg \text{safe_state}(s, q)$ (generated by the Start rule at the beginning of the derivation). Any other terms of this form were generated by the Decide rule. From this, and by the guard condition for Decide, it follows that for every state q such that $\neg \text{safe_state}(s, q)$ is a term in α, q is reachable in s.

We now distinguish between two cases. If there exists some q such that $\neg \text{safe_state}(s, q)$ is in α but $\neg \text{deadlock}(s, q)$ is not, then the Decide rule may be applied — because we know, by our assumption that s is safe, that q is not a deadlock state. If there is no such q, then Unsat may be applied. Either case contradicts our assumption that no rule may be applied in α, as needed.

Proposition 1 tells us that when the $\mathcal{T}S$ solver terminates, it gives a correct result. However, it may not always terminate. The following lemma characterizes one case in which termination is guaranteed:

Proposition 2: For an input system s with a finite set of states, the $\mathcal{T}S$ solver terminates.

Proof: Lemma 2 ensures that in every derivation, the Start rule is applied only once. Further, as Lemma 1 shows, the Decide rule may only be applied once per state in the entire derivation. Similarly, according to the proof strategy used by the solver, the lemma generation rule may only be applied once per state, as it is only invoked after an invocation of Decide. Finally, the last derivation rule, Unsat, always reduces the number of open branches in the tree, and thus may only be applied a finite number of times once no other rules are available. From all of the above, we deduce that every derivation is of finite length. ■

B. Backward Reachability

The derivation rules given so far — Start, Decide and Unsat — effectively perform a reachability analysis over the state space, looking for bad states. In some cases, as in the case of periodic programs (Section V in the paper), it may be useful to also perform a backward reachability search, starting at bad states and checking if they are reachable. This is performed by extending the $\mathcal{T}S$ theory with the predicate $\text{reachable}_Q : S_Q \times Q$, where $\text{reachable}(s, q)$ signifies that state q is reachable in s. The semantics are extended to include (for each $Q \in Q^+$):

$$
\forall s : S_Q, q : Q. \text{reachable}(s, q) \implies I(s, q) \lor \exists q' : S_Q, e : E. (\text{Tr}(s, q', e, q) \land R(s, q', e) \land \neg B(s, q', e) \land \text{reachable}(s, q')).
$$

Intuitively, a state is reachable if it is either initial or if it has a predecessor state that is reachable. This last condition is what makes the search "backward": we will start at bad states, and attempt to construct a legal path backwards, towards an initial state.

We will also use an alternative (but equivalent) semantics for the system safety predicate. For each $Q \in Q^+$:

$$
\forall s : S_Q. \neg \text{safe}(s) \iff \exists q : Q. (\text{deadlock}(s, q) \land \text{reachable}(s, q)),
$$

and so a system is unsafe if it has an unsafe initial state or (equivalently) a reachable deadlock state.

The derivation rules for this case are extended to include "backward" versions of the three original rules. Here, the negation of the initial state predicate plays the role of the system safety predicate, namely that of marking those states that have been visited by generating a lemma. The first derivation rule is the BStart rule:

$$
\text{BStart} \quad \Gamma[\neg \text{safe}(s)] \quad \frac{}{\Gamma, \text{reachable}(s, q_1) \ldots \Gamma, \text{reachable}(s, q_n)}
$$

The BStart rule is only applicable when the following guard conditions hold:

$$
\Gamma \vdash_{\mathcal{T}S} \forall q \in Q. (\text{deadlock}(s, q) \iff (q = q_1) \lor \ldots \lor (q = q_n)), \text{where } s \text{ is of sort } S_Q \text{ reachable}(s, q_i) \notin \Gamma \text{ for } i \in \{1 \ldots n\}.
$$

Intuitively, states q_1, \ldots, q_n are the deadlock (bad) states of the system — the states on which we want to perform the backward reachability analysis. Next comes the BDecide rule:

$$
\text{BDecide} \quad \Gamma[\text{reachable}(s, q)] \quad \frac{}{\Gamma, \text{reachable}(s, q_1) \ldots \Gamma, \text{reachable}(s, q_n)}
$$

The BDecide rule is applicable when the following conditions hold:

$$
\Gamma \vdash_{\mathcal{T}S} \neg I(s, q) \quad \neg I(s, q) \notin \Gamma \quad \Gamma \vdash_{\mathcal{T}S} \forall q' \in Q, e \in E. (((\text{Tr}(s, q', e, q) \land R(s, q', e) \land \neg B(s, q', e)) \iff (q' = q_1) \lor \ldots \lor (q' = q_n)) \text{ where } s \text{ is of sort } S_Q \text{ and } n \geq 1.
$$

We also have a special BDecide2 rule which handles the special case when a non-initial state has no predecessors:

$$
\text{BDecide2} \quad \Gamma[\text{reachable}(s, q)] \quad \frac{}{\Gamma}.
$$
The \textbf{BDecide2} rule is applicable when the following conditions hold:
\begin{align*}
\Gamma &\vdash_{TS} \neg I(s, q) \\
\neg I(s, q) &\not\in \Gamma \\
\Gamma &\vdash_{TS} \forall q' \in Q, e \in E. \\
\neg (Tr(s, q', e, q) \land R(s, q', e) \land \neg B(s, q', e)) &
\end{align*}
where s is of sort S_Q.

Finally, we have the \textbf{BUnsat} rule:
\[
\text{BUnsat} \quad \frac{\Gamma[\text{reachable}(s, q)]}{\bot}
\]

The \textbf{BUnsat} rule has the following guard condition:
whenever \text{reachable}(s, q') \in \Gamma, \text{we also have} \neg I(s, q') \in \Gamma.

In addition to the derivation rules, we again use the \textit{theory lemma} feature of the DPLL(T) framework to periodically generate an \textit{initial state lemma}:
\[
\forall \Phi \implies \neg I(s, q)
\]
As before, only valid theory lemmas are allowed, so this lemma can only be generated if we know that q is not an initial state.

Similarly to the forward reachability case, the TS solver’s strategy dictates that the initial state lemma generation rule always be applied with trigger (s, q) immediately after an invocation of \textbf{BDecide} or \textbf{BDecide2} with trigger \text{reachable}(s, q). As before, this guarantees that one of these rules is applied at most once for each state q.

The backward reachability derivation rules are very similar to the forward reachability ones; it is straightforward to show that they do not change the solver’s soundness and completeness, and that the solver still terminates for transition systems with finite state sets and finite event sets.

\section{A Simple Schedulable Periodic Program}
Consider a periodic program with 3 tasks, T_1, T_2, T_3, each with execution time $C_1 = C_2 = C_3 = 1$. The tasks’ periods are 2, 3 and 6, respectively. As depicted in Fig. 1, every 2 consecutive time slots include a scheduling of T_1; every 3 consecutive slots include a scheduling of T_2; and every 6 consecutive slots include a scheduling of T_3. The schedule repeats after every 6 steps (the hyper-period). Hence, this program is schedulable.

\begin{figure}[h]
\centering
\begin{tabular}{cccccccc}
T_1 & T_2 & T_1 & T_2 & T_1 & T_3 & T_1 & T_2 \\
2 & 2 & 2 & 2 & 3 & 3 & 2 & 2 \\
\hline
\end{tabular}
\caption{A scheduling for a periodic program with 3 tasks, T_1, T_2, T_3, with execution time $C_1 = C_2 = C_3 = 1$ and periods $P_1 = 2, P_2 = 3$ and $P_3 = 6$.}
\end{figure}

\section{Example: Applying the Shared Array Pattern to Tic-Tac-Toe}

We demonstrate the shared array pattern on a behavioral application for playing Tic-Tac-Toe from [2]. Tic-Tac-Toe is a game played between “X” and “O” players on a 3x3 board. Each in their turn, the players mark an empty square on the board with their respective sign. A player wins by completing a row, a column or a diagonal. If neither player earns, the game is guaranteed to end in a draw.

In [2], the authors construct a behavioral application that plays “O”, where a human player plays “X”. Suppose that we wish to prove that the game application upholds the property that “X never wins by taking the upper row”; verifying this property can be useful, e.g., during incremental development [1].

The theory-aided verification of this system is as follows. In the implantation of [2], the game board is in fact a ternary array — with values empty, O and X. By analyzing the individual threads, the TS solver recognizes this array and determines that a violation can occur only when the three upper row cells (say, cells 0, 1 and 2 in the array) are set to X. The TS solver then creates a 9-cell ternary array variable arr, and asserts that target = write(write(arr, 0, X), 1, X), 2, X). Next, the solver writes fresh constants c_0, ..., c_8 to arr’s cells, and equates the result to target:
\[
\forall \Phi \implies \text{target} = \text{write}(\ldots, \text{write}(\text{write}(arr, 0, c_0), 1, c_2), \ldots, 8, c_8)
\]

The Tic-Tac-Toe application has, for every board square, a thread that waits for write events and then blocks any additional writes. Thus, every triggered write event fixes an array entry, causing the TS solver to generate a lemma that equates the corresponding c_i constant to its final value. For instance, suppose the game so far has included moves $X(0,1), O(1,1), X(2,2)$, and that it is now O’s turn to play. We denote this current state by q_1. Now, suppose the TS solver explores a new state, q_2, reachable from q_1 when O marks square $O(0,2)$. Thread analysis shows that starting in state q_2 the block thread will forever block any additional write events to square $(0,2)$, and so the TS solver generates the lemma: $\forall \Phi \land \neg \text{safe state}(s, q_2) \implies (c_2 = O)$. This causes the array theory solver to raise a conflict, which in turn causes the underlying SAT solver to deduce that state q_2 cannot be unsafe. Thus, backtracking is performed, and another successor of state q_1 is checked (effectively choosing another move, instead of $O(0,2)$). Consequently, the successor states of q_2 need not to be explored.

A Note. \textit{RWB} programs, and in particular those with shared arrays, tend to have a large number of threads. The resulting performance overhead may be mitigated via lightweight threading; see, e.g., the Erlang implementation of BP at http://www.b-prog.org.
REFERENCES
