Homework 5 - Solutions

1. a. Consider the step function \(\chi = \phi - \psi \). For \(x \in [a, b] \), \(\chi(x) \neq 0 \) if and only if \(x \in S \), which is a finite set of points. We can then write \(\chi \) as some expression of the form

\[
\chi = \sum_{k=1}^{n} a_k 1_{I_k},
\]

where each \(I_k \) is a degenerate interval, i.e. \(I_k = \{x_k\} \) for some \(x_k \in [a, b] \). In this notation we have \(\chi(x) = a_k \) if \(x = x_k \), and \(\chi(x) = 0 \) otherwise. Then

\[
\int_{a}^{b} \chi = \sum_{k=1}^{n} a_k |I_k| = \sum_{k=1}^{n} a_k \cdot 0 = 0.
\]

Since \(\chi = \phi - \psi \) and the integral is linear on step functions, we have

\[
\int_{a}^{b} \chi = \int_{a}^{b} (\phi - \psi) + \int_{a}^{b} \psi = 0 + \int_{a}^{b} \psi = \int_{a}^{b} \psi,
\]

as desired.

b. Let \(\phi \leq f \) on \([a, b]\). Define the step function \(\psi \) via

\[
\psi(x) = \begin{cases}
 g(x) & \text{if } x \in S \\
 \phi(x) & \text{otherwise}.
\end{cases}
\]

If \(x \in S \), then \(\psi(x) = g(x) \), so \(\psi(x) \leq g(x) \). If \(x \notin S \), then \(\psi(x) = \phi(x) \leq f(x) = g(x) \). Thus \(\psi \leq g \). Also, \(\psi(x) = \phi(x) \) unless \(x \in S \), which is a finite set. By problem 1a, \(\int_{a}^{b} \phi = \int_{a}^{b} \psi \), so since \(\psi \leq g \) we have \(\int_{a}^{b} \phi \in \mathcal{L}(g, [a, b]) \). Thus

\[
\sup \mathcal{L}(f, [a, b]) \leq \sup \mathcal{L}(g, [a, b]),
\]

so \(\int_{a}^{b} f \leq \int_{a}^{b} g \). This argument is completely symmetric in \(f \) and \(g \), so we also have \(\int_{a}^{b} g \leq \int_{a}^{b} f \), and thus \(\int_{a}^{b} f = \int_{a}^{b} g \) as desired.

2. Let \(\phi \leq f \) be any step function. We’ll show that \(\int_{a}^{b} \phi \in \mathcal{L}(g, [a, b]) \), which (as in problem 1b) is enough to show that \(\int_{a}^{b} f \leq \int_{a}^{b} g \).
Since \(\phi \) is a step function, it is a finite linear combination of intervals. In this linear combination, we can separate the degenerate intervals from the nondegenerate intervals, giving us that

\[
\phi = \sum_{k=1}^{n} a_k 1_{I_k} + \sum_{l=1}^{m} b_l 1_{J_l},
\]

where each \(I_k \) is a nondegenerate interval (i.e. not a single point) and each \(J_l \) is a degenerate interval. We perform two simplifications. First, we assume without loss of generality that the \(I_k \)'s are disjoint intervals. Second, we consider instead the step function \(\psi \) given by

\[
\psi = \sum_{k=1}^{n} a_k 1_{I_k} + \sum_{l=1}^{m} \min\{b_l, 0\} 1_{J_l}.
\]

There are finitely many \(J_l \)'s, so \(\psi \) and \(\phi \) differ at finitely many points. Thus by problem 1a, \(\int_{a}^{b} \phi = \int_{a}^{b} \psi \). Note also that \(\psi \leq \phi \) at all \(x \).

Claim: \(\psi \leq g \).

Proof of claim. Assume not. Then there exists some \(I_k \) and some \(x \in I_k \) with \(g(x) < \psi(x) = a_k \). By continuity, there exists an open neighborhood \(U \) of \(x \) such that for all \(y \in U \), \(g(y) < \psi(y) \). Since \(D \) is dense, there exists some \(y \in D \cap U \). But for this \(y \) we have

\[
\psi(y) \leq \phi(y) \leq f(y) \leq g(y),
\]

which contradicts the fact that \(g(y) < \psi(y) \).

Thus \(\psi \leq g \).

Since \(\psi \leq g \) and \(\int_{a}^{b} \phi = \int_{a}^{b} \psi \), we must have \(\int_{a}^{b} \phi \in L(g, [a, b]) \), so \(\int_{a}^{b} f \leq \int_{a}^{b} g \).

3. Let \(g : [0, 1] \to \mathbb{R} \) be given by \(g(x) = 0 \) for all \(x \). Then \(g \) is continuous, and \(T(x) \leq g(x) \) whenever \(x \notin \mathbb{Q} \). Thus \(T(x) \leq g(x) \) for a dense subset of the interval, \(T \) is bounded, and \(g \) is continuous, so by problem (2) we have \(\int_{0}^{1} T \leq \int_{0}^{1} g = 0 \). Meanwhile \(T \geq 0 \), so \(\int_{0}^{1} T \) must in fact be equal to 0.

It remains to prove that \(\int_{0}^{1} T \leq 0 \) to show that \(\int_{0}^{1} T = \int_{0}^{1} T \). Define a step function \(\psi_n \) on \([0, 1]\) via

\[
\psi_n(x) = \max \left\{ T(x), \frac{1}{n} \right\}.
\]

For each \(n \), there are finitely many points \(x \) where \(T(x) > \frac{1}{n} \), so \(\psi_n \) is a finite linear combination of intervals (many of which are degenerate). Also, \(\psi_n(x) \neq \frac{1}{n} \) only on finitely many points, so by problem 1a, \(\int_{0}^{1} \psi_n = \int_{0}^{1} (1/n) = 1/n \). Thus as \(n \to \infty \), \(\int_{0}^{1} \psi_n \to 0 \). Thus

\[
\int_{0}^{1} T \leq \inf_n \int_{0}^{1} \psi_n = 0,
\]

so \(\int_{0}^{1} T = \int_{0}^{1} T \). Thus \(T \) is Riemann-Darboux integrable on \([0, 1]\).