1. Let U be any open cover of X. We first show the following claim:

Claim: There exists $\varepsilon > 0$ such that for all $x \in X$, there exists $U \in U$ such that the open ball $B_\varepsilon(x)$ is contained in U.

Proof of claim. Assume not. Then for all $n \in \mathbb{N}$, there exists some $x_n \in X$ such that $B_{1/n}(x_n)$ is not contained in any open set U in our cover U. Then the $(x_n)_n$ form a sequence in X, so by hypothesis it has a convergent subsequence $(x_{n_k})_k$ converging to some limit $L \in X$. Since $L \in X$, it is covered by U, so there exists an open set $U_L \in U$ with $L \in U_L$. Since U_L is open, for some ε_L, $B_{\varepsilon_L}(L) \subseteq U$. Let K be large enough that $\frac{1}{n K} < \varepsilon_L/2$ and that $x_{n_k} \in B_{\varepsilon/L/2}(L)$, which is possible because $(x_{n_k})_k$ converges to L. But then by the triangle inequality, we have

$$B_{1/n_K}(x_{n_K}) \subseteq B_{\varepsilon_L/2}(x_{n_K}) \subseteq B_{\varepsilon_L}(L) \subseteq U_L,$$

which contradicts the assumption that $B_{1/n_K}(x_{n_K})$ is not contained in any open set U of U.

Thus such an $\varepsilon > 0$ exists. \qed

Let $\varepsilon > 0$ satisfy the conditions of the claim. Then we further claim the following:

Claim: There exist finitely many points $x_1, \ldots, x_n \in X$ such that $\{B_\varepsilon(x_1), \ldots, B_\varepsilon(x_n)\}$ covers X.

Proof of claim. Assume not. Define a sequence $(x_n)_n \subseteq X$ as follows:

- Let $x_1 \in X$ be any point.
- For $n \geq 2$, let x_n be any point contained in $X \setminus \bigcup_{k<n} B_\varepsilon(x_k)$.

Our assumption implies that this sequence does not terminate after finitely many steps. Also note that for all $n \neq m$, without loss of generality with $n < m$, we have $x_m \notin B_\varepsilon(x_n)$, so $d(x_n, x_m) \geq \varepsilon$. By hypothesis, $(x_n)_n$ has a convergent subsequence $(x_{n_k})_k$ converging to a limit $L \in X$. Let j and k be such that $d(x_{n_k}, L) < \varepsilon/2$ and $d(x_{n_j}, L) < \varepsilon/2$. By the triangle inequality, $d(x_{n_k}, x_{n_j}) < \varepsilon$, a contradiction. This completes the proof. \qed
Let \(x_1, \ldots, x_n \in X \) be such that \(\{B_\varepsilon(x_1), \ldots, B_\varepsilon(x_n)\} \) covers \(X \). Then for \(1 \leq k \leq n \), let \(U_k \in \mathcal{U} \) be an open set with \(B_\varepsilon(x_k) \subseteq U_k \). Since \(\{B_\varepsilon(x_1), \ldots, B_\varepsilon(x_n)\} \) covers \(X \), so does \(\{U_1, \ldots, U_n\} \). Thus \(\mathcal{U} \) has a finite subcover, so any open cover of \(X \) has a finite subcover, and thus \(X \) is compact.

2. a. The set \(\mathbb{R} \) has the same cardinality as the power set of \(\mathbb{N} \), i.e. \(|\mathbb{R}| = 2^{\aleph_0} \). Then the set of all functions \(\mathbb{R} \to \mathbb{R} \) has cardinality

\[
|\{f : \mathbb{R} \to \mathbb{R}\}| = |\mathbb{R}|^{|\mathbb{R}|} = (2^{\aleph_0})^{2^{\aleph_0}} = 2^{\aleph_0 \cdot 2^{\aleph_0}} = 2^{2^{\aleph_0}}.
\]

b. Let \(C \) be the set of continuous functions from \(\mathbb{R} \to \mathbb{R} \). By problem (2) on the midterm, any element \(f \in C \) is determined by its values on \(\mathbb{Q} \). Thus the cardinality of \(C \) is the same as the cardinality of the set of continuous functions from \(\mathbb{Q} \to \mathbb{R} \). Let \(D \) be the set of continuous functions from \(\mathbb{Q} \to \mathbb{R} \), and let \(E \) be the set of all functions from \(\mathbb{Q} \to \mathbb{R} \). Then

\[
|D| \leq |E| = |\mathbb{R}|^{|\mathbb{Q}|} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0}.
\]

On the other hand, \(D \) contains the set of constant functions \(\{f_r : \mathbb{Q} \to \mathbb{R}, f_r(q) = r : r \in \mathbb{R}\} \). This set is in bijection with \(\mathbb{R} \), so the cardinality of the constant functions is \(2^{\aleph_0} \). Thus \(|D| \geq 2^{\aleph_0} \). Since we also have \(|D| \leq 2^{\aleph_0} \) above, it must be that \(|D| = 2^{\aleph_0} \).

3. Fix \(\varepsilon > 0 \). Since \(f : X \to Y \) is uniformly continuous, there exists \(\delta > 0 \) such that if \(|x - y| < \delta \), then \(|f(x) - f(y)| < \varepsilon \). Since \((x_n)_n \) is Cauchy, there exists \(N \in \mathbb{N} \) such that if \(n, m \geq N \), \(|x_n - x_m| < \delta \). But then for all \(n, m \geq N \), \(|f(x_n) - f(x_m)| < \varepsilon \), by our choice of \(\delta \). Thus \((f(x_n))_n \) is Cauchy.

4. a. Assume that \(f \) is uniformly continuous. For \(x \in S \), let \((x_n)_n \) be any sequence of points in \(S \) with \(\lim_{n \to \infty} x_n = x \). Then define \(f^* \) via

\[
f^*(x) = \lim_{n \to \infty} f(x_n).
\]

For a given choice of \((x_n)_n \), \((x_n)_n \) is Cauchy, so by problem 3, \((f(x_n))_n \) is Cauchy as well, so by completeness of \(Y \) it converges to some value, i.e. the limit is well-defined. Note that when \(x \in S \), by continuity of \(f \) on \(S \) this definition gives that \(f^*(x) = f(x) \).

Also, for any two convergent sequences \((x_n)_n \) and \((y_n)_n \) of points in \(S \), if \(\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n \), then the sequence \((z_n)_n \) given by \(z_{2n+1} = x_n \) and \(z_{2n} = y_n \) also converges to the same limit. Thus \((z_n)_n \) is Cauchy, so \((f(z_n))_n \) is as well. Since \((f(z_n))_n \) converges to a limit in \(Y \), \((f(x_n))_n \) and \((f(y_n))_n \) must converge to the same limit, i.e. we have

\[
\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n).
\]

Thus the definition of \(f^* \) is well-defined, i.e. the value of \(f^*(x) \) is independent of the Cauchy sequence chosen.
Throughout, we will use the sequential compactness definition of compactness, which is equivalent by problem 1 and the sequential compactness theorem.

Finally, let \(x \in \partial S \). Let \((x_n)_n\) be a sequence in \(S \) with \((x_n)_n \to x \). Then for all \(n, f(x_n) = f^*(x_n), \) so

\[
\lim_{n \to \infty} f^*(x_n) = \lim_{n \to \infty} f(x_n) = f^*(x_n),
\]

as desired.

b. Let \(S = (0, \infty) \), and let \(f(x) = \frac{1}{x} \). Then this is continuous on \(S \), but not uniformly continuous. To see this, let \(\epsilon = 1 \) and fix any \(\delta > 0 \), which we can assume to be less than 1/2. Let \(x = \delta \) and let \(y = \delta/2 \). Then \(|x - y| = \delta/2 < \delta \), but \(|f(x) - f(y)| = |\frac{1}{\delta} - \frac{2}{\delta}| = \frac{1}{\delta} \), which is greater than 1 since \(\delta < 1/2 \). Thus \(f \) fails uniform continuity.

Meanwhile, \(\bar{S} = [0, \infty) \). Any function \(f^* : \bar{S} \to \mathbb{R} \) extending \(f \) must define a value \(f^*(0) \). But for all \(y > 0 \) with \(y < \frac{1}{f^*(0) + 1} \), we have

\[
f^*(y) = f(y) = \frac{1}{y} > f^*(0) + 1,
\]

so \(\lim_{y \to 0} f^*(y) \neq 0 \), and thus \(f^* \) cannot be continuous at 0.

5. Throughout, we will use the sequential compactness definition of compactness, which is equivalent by problem 1 and the sequential compactness theorem.

Assume first that \(f \) is continuous. Let \((x_n, f(x_n))_n \subseteq G_f \) be any sequence. Since \(E \) is compact, \((x_n)_n \subseteq E \) has a convergent subsequence \((x_{n_k})_k \), which approaches a limit \(x \). Since \(f \) is continuous, \(f(x_{n_k}) \) approaches \(f(x) \) as \(x_{n_k} \) approaches \(x \), so \((x_{n_k}, f(x_{n_k}))_k \) converges to \((x, f(x)) \). Thus any sequence of points in \(G_f \) has a convergent subsequence, so \(G_f \) is compact.

Now assume that \(f \) is discontinuous at a point \(x \in E \). Then there exists some \(\epsilon > 0 \) such that for any \(n \in \mathbb{N} \), for some \(x_n \in E \) with \(|x_n - x| < \frac{1}{n}, |f(x_n) - f(x)| \geq \epsilon \). Consider a sequence \((x_n)_n \) of such points, and the corresponding sequence of points \((x_n, f(x_n))_n \subseteq G_f \). For any subsequence \((x_{n_k}, f(x_{n_k}))_k \), the sequence of points \((x_{n_k})_k \) converges to \(x \), so any limit point would have to be the point \((x, f(x)) \in G_f \). But \((f(x_{n_k}))_k \) does not converge to \(f(x) \), since each \(f(x_{n_k}) \) is a distance more than \(\epsilon \) away from \(f(x) \). Thus the sequence \((x_n, f(x_n))_n \) has no convergent subsequence, so \(G_f \) is not sequentially compact, and thus not compact.

6. We first note that for any \(\frac{p}{q} \in \mathbb{Q} \) in lowest terms and for any \(n \in \mathbb{N}, \frac{p}{q} + n = \frac{p+nq}{q} \). The greatest common divisor of \(p + nq \) and \(q \) is the same as the greatest common divisor of \(p \) and \(q \), so \(\frac{p+nq}{q} \) is also in lowest terms. But then

\[
T\left(\frac{p}{q} \right) = \frac{1}{q} = T\left(\frac{p+nq}{q} \right).
\]
Thus T is periodic, so it suffices to show that T is continuous at x for all $x \in [0, 1]$.

Claim: For any $x \in [0, 1]$ and for any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $y \neq x$ with $|y - x| < \delta$, $|f(y)| < \varepsilon$.

Proof of claim. Let $N \in \mathbb{N}$ be large enough that $\frac{1}{N} < \varepsilon$. There are finitely many rational numbers $\frac{p}{q} \in [0, 1]$ in lowest terms with $q \leq N$; let S_N be the set of these rational numbers. Then let

$$
\delta = \min_{y \in S_N, y \neq x} |y - x|.
$$

If $y \neq x$ and $|y - x| < \delta$, then y cannot be in S_N, so either y is irrational and $f(y) = 0$, or y is rational and $0 < f(y) < \frac{1}{N} < \varepsilon$. In either case, we have that $|f(y)| < \varepsilon$ whenever $|y - x| < \delta$, as desired.

For $x \in \{0, 1\}$, the same argument works, but instead considering rationals within a shifted interval (i.e. $(1/2, 3/2)$ when $x = 1$, or $(-1/2, 1/2)$ when $x = 0$). This completes the proof of the claim. \hfill \Box

When x is irrational and $f(x) = 0$, the claim shows that f is continuous at x. When x is rational (say $x = \frac{p}{q}$), we have that

$$
f(x^-) = \lim_{y \to x^-} f(y) = 0,
$$

and similarly for $f(x^+)$. However, $f(x) = \frac{1}{q} \neq 0$, so f has a discontinuity of the first kind at x.