1. Prove that for all integers n ≥ 1 we have
 \[\sum_{k=n}^{2n-1} (2k+1) = 3n^2 \]

2. Let x, y ∈ R. Prove (using the axioms only) the following statement:
 \((\forall \varepsilon > 0 : x < y + \varepsilon) \Rightarrow x \leq y \)

3. Let x, y ∈ R. Prove that
 \[||x| - |y|| \leq |x - y| \]

4. Let S be a bounded nonempty set and let a, b ∈ R with a > 0. Prove that
 \[\sup (aS + b) = a \cdot \sup(S) + b \]
 \[\sup \{ ax + b : x \in S \} \]

5. Let \((x_n) \) be a recursive sequence.
 \[x_0 = 1, \quad x_1 = 1 \]
 \[x_n = x_{n-1} \cdot x_{n-2} + 1 \]
 a. Prove that \((x_n) \) does not converge.
 b. Are there initial values \(x_0 = a \) and \(x_1 = b \) that would make the sequence converge?

6. Let \((s_n) \) be a sequence,
 \[A = \sup \{ s_n : n \geq 0 \} \]
 \[B = \limsup (s_n) \]
 a. What is the relationship between A and B?
 i. A = B always
 ii. A ≤ B always
 iii. A ≥ B always
 iv. None of these
 b. If you choose ii - iv, give an example where A ≠ B.

7. Let \(L = \lim (1 + \frac{1}{n})^n \) (this exists). Show that \(L \geq 2 \).