Math 115 - Summer 2017, Schaeffer
Lecture 3

Axioms of \(\mathbb{R} \)

(NT) \(0 \neq 1 \)

(A1) Addition is associative

(A2) Addition is commutative

(A3) 0 is the identity element for +.

(A4) Every element has an additive inverse.

\(\forall x \in \mathbb{R} \exists y \in \mathbb{R} \; x + y = 0 \)

(M1) Multiplication is associative

(M2) Multiplication is commutative

(M3) 1 is the identity for .

(M4) Every nonzero element has a multiplicative inverse.

\(\forall x \in \mathbb{R} \; x \neq 0 \Rightarrow \exists y \in \mathbb{R} \; xy = 1 \)

(DL) Multiplication distributes over addition.

(O1) Dichotomy of \(\leq \): \(\forall x, y \in \mathbb{R} \; x \leq y \vee y \leq x \)

(O2) Antisymmetry of \(\leq \): \(\forall x, y \in \mathbb{R} \)

\((x \leq y) \wedge (y \leq x) \Rightarrow x = y \)

(O3) Transitivity of \(\leq \): \(\forall x, y, z \in \mathbb{R} \)

\((x \leq y) \wedge (y \leq z) \Rightarrow x \leq z \)

(04) Additive translation

\(\forall x, y, z \in \mathbb{R} \; x \leq y \Rightarrow x + z \leq y + z \)

(05) Nonzero scaling

\(\forall x, y, z \in \mathbb{R} \; x \leq y \wedge z > 0 \Rightarrow xz \leq yz \)

(C) Completeness (tomorrow)

Axioms valid in the \(\# \) systems

\(\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \)

- NT - DL are the "field axioms"
 A field is an algebraic structure
 where the arithmetic you learned
 in grade school works approx.
 like you expect. (or does it?)

- 01-03 are the axioms of a
 "total order." Relxing 01
 yields a "partial order"

- 04 + 05 are added to show that
 + and * cooperate w/ \(\leq \).

- NT-05: axioms of a totally ordered field.

Notes:

- NT - DL are the "field axioms"
 A field is an algebraic structure
 where the arithmetic you learned
 in grade school works approx.
 like you expect. (or does it?)
Proving basic arithmetic from the axioms

Theorem 3.1

(i) Addition is cancellative; (\(\Rightarrow -a \) is unique)

(ii) \(\forall a \in \mathbb{R} \quad a \cdot 0 = 0 \)

(iii) \(\forall a, b \in \mathbb{R} \quad (-a) \cdot b = -ab \)

(iv) \(\forall a, b \in \mathbb{R} \quad (-a) \cdot (-b) = ab \) \((\Rightarrow a \) is unique \)

(v) \(\forall a, b, c \in \mathbb{R} \quad c \neq 0 \land (ac = bc) \Rightarrow a = b \)

(vi) \(\forall a, b \in \mathbb{R} \quad ab = 0 \Rightarrow a = 0 \lor b = 0 \)

Theorem 3.2

(i) \(\forall a, b \in \mathbb{R} \quad a \leq b \Rightarrow -b \leq -a \)

(ii) \(\forall a, b, c \in \mathbb{R} \quad a \leq b \land c \leq 0 \Rightarrow bc \leq ac \)

(iii) \(\forall a, b \in \mathbb{R} \quad a \geq 0 \land b \geq 0 \Rightarrow ab \geq 0 \)

(iv) \(\forall a \in \mathbb{R} \quad a^2 \geq 0 \)

(v) \(\forall a \in \mathbb{R} \quad 0 < 1 \)

(vi) \(\forall a \in \mathbb{R} \quad a > 0 \Rightarrow a^{-1} > 0 \)

(vii) \(\forall a, b \in \mathbb{R} \quad 0 < a < b \Rightarrow 0 < b^{-1} < a^{-1} \)

Remarks

You may be familiar w/ \(\mathbb{C} \), the field of complex #s:

\[\mathbb{C} = \{ a + b\sqrt{-1} : a, b \in \mathbb{R} \} \]

Since \(\sqrt{-1} \in \mathbb{C} \) and \((\sqrt{-1})^2 = -1 \), there is no way to order \(\mathbb{C} \) (and have \(01\rightarrow05 \) valid)!

However, \(\mathbb{C} \) does have other nice properties, which we won't get into.

Absolute value and distance

\(\forall a \in \mathbb{R} \) define \(|a| = \begin{cases} a & \text{if } a \geq 0 \\ -a & \text{if } a < 0 \end{cases} \)

Theorem 3.5 \(\forall a, b, c \in \mathbb{R} \)

(i) \(|a| \geq 0 \)

(ii) \(|ab| = |a||b| \)

(iii) \(|a+b| \leq |a| + |b| \)

\(d(a, b) = |a - b| \). \(\text{Thm 3.6} \quad d(a, c) \leq d(a, b) + d(b, c) \)

Remark: All of these valid for \(\mathbb{Q} \), as well!