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On the spectral radius and stiffness of Markov jump
process rate matrices

Peter Glynn and Alex Infanger

Stanford University, Stanford, CA, USA

ABSTRACT
It is well known that the numerical stability of many finite dif-
ference time-stepping algorithms for solving the Kolmogorov
differential equations for Markov jump processes depends on
the magnitude of the spectral radius of the rate matrix. In this
paper, we develop bounds on the spectral radius that rigor-
ously establish that the spectral radius typically scales in pro-
portion to the maximal jump rate. Our analysis also provides
rigorous bounds on the stiffness of the rate matrix, when the
process is reversible.
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1. Introduction

Let X ¼ ðXðtÞ : t � 0Þ be an irreducible Markov jump process with finite state
space S and rate matrix Q ¼ ðQðx, yÞ : x, y 2 SÞ: It is well known that 0 is an
eigenvalue of Q, and that the remaining eigenvalues cannot have positive real
parts; see the proof of Proposition 2.9, Anderson[2], for example. A great deal
of effort has been expended in the literature on obtaining bounds on the spec-
tral gap, defined informally as the distance between 0 and the next largest
eigenvalue. A more careful discussion will be provided in Section 2.
In this paper, our main concern will be the study of the spectral radius q

of Q, namely the largest modulus amongst the eigenvalues of Q. This quan-
tity plays a key role in studying numerical methods for solving the
Kolmogorov forwards and backwards equations for X. In particular, sup-
pose we wish to solve the forwards equations

l0ðtÞ ¼ lðtÞQ (1.1)

subject to lð0Þ ¼ l0, for the unknown (row vector) probability solution
ðlðtÞ : t � 0Þ, given an initial (row vector) distribution l0. If we implement
the forwards Euler time-stepping algorithm to compute ðlðtÞ : t � 0Þ, then
l0ðtÞ is replaced by a forward finite difference, namely

lhððkþ 1ÞhÞ�lhðkhÞ
h

¼ lhðkhÞQ,
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for k � 0, where h is the time-increment. Consequently,

lhððkþ 1ÞhÞ ¼ lhðkhÞðI þ hQÞ
for k � 0, so that

lhðnhÞ ¼ l0ðI þ hQÞn (1.2)

for n � 0: We note that the discretized solution ðlhðnhÞ : n � 0Þ blows up
if I þ hQ has eigenvalues with a complex modulus greater than 1. In par-
ticular, if there exists an eigenvalue k of Q for which jkj>2=h, (1.2) will
blow up as n ! 1: So, the magnitude of the spectral radius of Q plays a
key role in the numerical stability of the forwards Euler method for solving
(1.1). Furthermore, the stability of the widely used explicit Runge-Kutta
methods depends upon whether jf ðkiÞj<1 for each eigenvalue ki of hQ,
where f ð�Þ is a polynomial that can be associated to the specific method.
Having bounds on the magnitude of the eigenvalues of hQ is therefore of
significant interest in assessing the stability of such schemes. The location
of the eigenvalues also plays a role in explicit linear multistep methods; see
Theorem 1.2 on p. 241 in Hairer and Wanner[9] and also Jeltsch and
Nevanlinna[11].
We note, therefore, that for many methods, a large value of q necessi-

tates taking small time steps, thereby increasing the computational time
needed to solve the Kolmogorov equations over a given time horizon. This
is closely connected to the notion of stiffness for the corresponding differ-
ential equation (1.1). A “folk result” in the literature on numerical solvers
for the Kolmogorov equations is that stiffness tends to arise when jump
processes have widely varying jump rates; see, for example, Section 3,
Clarotti[5], p. 21, Reibman and Trivedi[16], and Section 3.2,
Malhotra et al.[14].
As far as we are aware, this paper is the first to develop bounds on q,

with the goal of relating q, and the closely related real spectral spread (to
be defined in Section 2), to jump rates and other problem-specific data of
the underlying stochastic model. Section 2 is concerned with developing
upper and lower bounds on q that hold for general jump processes,
whereas Section 3 develops bounds for reversible jump processes, specific-
ally for birth-death models. We also establish there that the rate matrices
for many-server queues are provably stiff when the number of servers
is large.

2. The spectrum of a general rate matrix

A rate matrix Q ¼ ðQðx, yÞ : x, y 2 SÞ has non-negative off-diagonal entries,
with row sums that are zero. The quantity gðxÞ¼D�Qðx, xÞ has the
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interpretation as the jump rate out of state x 2 S: We set g� ¼ maxfgðxÞ :
x 2 Sg, so that g� is the maximum jump rate for Q.
For any function v : S ! C, we can encode v ¼ ðvðxÞ : x 2 SÞ as a col-

umn vector. Similarly, given a probability mass function � ¼ ð�ðxÞ : x 2 SÞ,
we may encode � as a row vector. Given a function v, let kvkp be the
p-norm defined by kvkp ¼ ðPx2S jvðxÞjpÞ1=p for 1 � p<1 and kvkp ¼
maxfjvðxÞj : x 2 Sg for p ¼ 1: For a square matrix A, we can then define
the induced matrix norm kAkj jp via

kAkj jp ¼ sup
kAvkp
kvkp

: kvkp 6¼ 0

( )
(2.1)

for p � 1: Note that if k is an eigenvalue of A with associated eigenvector
v, it follows from the definition (2.1) that

jkjkvkp ¼ kAvkp � kAkj jpkvkp, (2.2)

so that jkj � kAkj jp for p � 1: Finally, for p ¼ 1, it is well-known that
kAkj j1 can be computed explicitly, namely

kAkj j1 ¼ max
x

X
y2S

jAðx, yÞj; (2.3)

see p. 72, Golub and Van Loan[8], for example.
Let S ¼ fk 2 C : k is an eigenvalue of Qg be the spectrum of Q. As a

consequence of (2.3),

kg�I þ Qkj j1 ¼ sup
x2S

�
jg��gðxÞj þ

X
y6¼x

jQðx, yÞj
�

¼ sup
x2S

�
g��gðxÞ þ

X
y 6¼x

Qðx, yÞ
�

¼ sup
x2S

fg��gðxÞ þ gðxÞg ¼ g�,

so that the eigenvalues of g�I þ Q are contained in fw 2 C : jwj �
kg�I þ Qkj j1g ¼ fw 2 C : jwj � g�g: Hence S�fw2C:jwþg�j �g�g¼DD:

Recall that 0 2 S and e ¼ ð1, 1, :::1ÞT is a column eigenvector associated
with eigenvalue 0, while p ¼ ðpðxÞ : x 2 SÞ is its associated row eigenvector,
where p is an equilibrium distribution of X; see p. 343, Br�emaud[4].
Because D \ fw 2 C : ReðwÞ � 0g¼ {0}, it follows that ReðkÞ<0 for 0 6¼
k 2 S: Furthermore, jwj � 2g� for w 2 D: We summarize our discussion
with the following result.

Theorem 2.1. If Q is a rate matrix, then:
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a) S � fw 2 C : jwþ g�j � g�g
b) jkj � 2g� for k 2 S

c) 0 2 S

d) ReðkÞ<0 for 0 6¼ k 2 S:

Remark 1. Let q ¼ maxfjkj : k 2 Sg be the spectral radius of Q and let
r ¼ maxfjReðkÞj : k 2 Sg be the (real) spectral spread of Q. Note that
r � q: Theorem 2.1 establishes an upper bound on r, namely 2g�: This
upper bound can be attained. In particular if

Q ¼ �l l
l �l

� �
,

then S ¼ f�2l, 0g so that q ¼ r ¼ 2l:

Remark 2. The inclusion S � D is precisely the same inclusion as would
be obtained by applying the Gershgorin circle theorem to the rows of Q;
see Section 7.2.1 of Golub and Van Loan[8] for a discussion of Gershgorin’s
circle theorem.

Remark 3. Note that Q and QT have the same spectrum. So, (2.2) implies
that jkg�I þ QTkj1 is another easily computable upper bound on r.

If �1, �2 are two probability vectors on S, the total variation distance
between �1 and �2, denoted, k�1 � �2ktv is given by k�1 � �2k1=2: We
write Plð�Þ ¼

P
x2S lðxÞPð�jXð0Þ ¼ xÞ and let Pðt, x, yÞ ¼ PðXðtÞ ¼

yjXð0Þ ¼ xÞ for t � 0, x, y 2 S: If P(t) is the matrix ðPðt, x, yÞ : x, y 2 SÞ, it
is well-known that

PðtÞ ¼ exp ðQtÞ (2.4)

for t � 0; see p. 339, Br�emaud[4].
The following result describes the role of the spectral gap for Markov

jump processes. We provide a quick proof for the general case, when X
need not be reversible.

Proposition 2.1. Suppose that Q is an irreducible rate matrix, and let
c ¼ maxfReðkÞ : 0 6¼ k 2 Sg. Then, for any probability vector l on S,

lim
t!1

1
t
log kPlðXðtÞ 2 �Þ � pð�Þktv
� � � c: (2.5)

Furthermore, there exists a probability vector � on S such that
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lim
t!1

1
t
log kP� XðtÞ 2 �ð Þ � pð�Þktv
� � � c: (2.6)

In view of the above result, we may refer to c as the rate of convergence of
the jump process to its equilibrium. The quantity jcj is called the spectral
gap of the process. The great majority of the literature on the eigenvalues
of a rate matrix Q focuses on bounding jcj: Many bounds on the spectral
gap have appeared in the literature on reversible processes, with some
results also extending to nonreversible processes; see, for example, Diaconis
and Stroock[6], Montenegro and Tetali[15].

Proof of Proposition 2.1. Because I þ Q=g� is an irreducible stochastic
matrix, its eigenvalue 1 has algebraic (and geometric) multiplicity 1; see
p. 64, Gantmacher[7]. Consequently, 0 has algebraic (and geometric) multi-
plicity 1 for the matrix Q. For the other eigenvalues, they may have alge-
braic and geometric multiplicity greater than 1. Using the Jordan form of
Q in (2.4) we find (see also p. 133 in Hirsch et al.[10])

Pðt, x, yÞ ¼ eðxÞpðyÞ þ
X

06¼k2S
Oðt~dðkÞektÞ (2.7)

as t ! 1, where ~dðkÞ þ 1 is the maximal degree of nilpotency associated
with k’s Jordan block(s) and OðhðtÞÞ is a function for which OðhðtÞÞ=hðtÞ
remains bounded as t ! 1: From (2.7), we see that

kPlðXðtÞ 2 �Þ � pð�Þktv ¼ Oðt~dectÞ
as t ! 1, where ~d ¼ maxf~dðkÞ : ReðkÞ ¼ cg: Hence (2.5) is immediate.
For (2.6), let f be a (possibly complex-valued) row eigenvector of Q asso-

ciated with any eigenvalue k of Q having real part c. Write f ¼ aþ ix:
Note that fe must vanish, since any row eigenvector of 0 6¼ k 2 S must be
orthogonal to the column eigenvector e associated with eigenvalue 0; see,
for example, Theorem 26 of Brauer[3]. Hence, ae ¼ 0 ¼ xe: At least one of
a and x must be non-zero. Suppose it is a. (A similar argument works if
x 6¼ 0:) Since Q is irreducible, p is strictly positive and so � ¼ pþ da must
be stochastic for d sufficiently small and positive.
Note that

P�ðXðtÞ ¼ yÞ ¼ ð�eQtÞðyÞ (2.8)

for y 2 S, and

�eQt�p ¼ daeQt:

Since f is an eigenvector of Q associated with eigenvalue k,

feQt ¼ ektf (2.9)
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for t � 0: Taking the real parts of both sides of (2.9), we find that

aeQt ¼ ect a cos ðImðkÞtÞ � x sin ðImðkÞtÞð Þ
for t � 0: If ImðkÞ ¼ 0 (so that k is real), (2.8)-(2.9) imply that

lim
t!1

1
t
log kP�ðXðtÞ 2 �Þ � pð�Þktv
� � ¼ c:

If ImðkÞ 6¼ 0, we send t ! 1 through multiples of 2p=jImðkÞj, and con-
clude from (2.8)-(2.9) that

lim
t!1

1
t

log kP� XðtÞ 2 �ð Þ � pð�Þktv
� � � c,

thereby proving (2.6). w

Because our upper bound 2g� on r is tight (without further assump-
tions), we now focus on lower bounds for r. We recall that for any square
d� d matrix A, the trace of A, denoted as tr(A), is given by trðAÞ ¼P

x2S Aðx, xÞ: An important fact regarding the trace is that trðAÞ ¼Pd
i¼1 ki

where we repeat the eigenvalue ki 2 S according to its algebraic multipli-
city; see p. 348, Golub and Van Loan[8]. Set

�g ¼ 1
d

X
x2S

gðxÞ:

Theorem 2.2. For any rate matrix Q, the spectral spread r and the spectral
radius q are lower bounded by �g:

Proof. Observe that

trðQÞ ¼ �
X
x2S

gðxÞ ¼
Xd
i¼1

ReðkiÞ,

so that there exists at least one eigenvalue ki 2 S for which

ReðkiÞ � ��g:

It follows that jReðkiÞj � �g, proving that r � �g, q � �g: w

Theorem 2.3. If Q is a rate matrix with Q 6¼ 0, then

r � trðQ2Þ
trð�QÞ :

Proof. For each eigenvalue kj, we write kj ¼ aðkjÞ þ ibðkjÞ, so that aðkjÞ
and bðkjÞ are the real and imaginary parts of the eigenvalues of kj. Then,
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trðQ2Þ ¼
Xd
j¼1

Reðk2j Þ ¼
Xd
j¼1

ða2ðkjÞ�b2ðkjÞÞ �
Xd
j¼1

a2ðkjÞ:

But Xd
j¼1

a2ðkjÞ � max
1�k�d

jaðkkÞj
Xd
j¼1

jaðkjÞj � r trð�QÞ:

w

Remark 4. We note that when Q has real eigenvalues, trðQ2Þ ¼Pd
j¼1 k

2
j

and trðQÞ ¼Pd
j¼1 kj: The Cauchy-Schwarz inequality implies that

d
Xd
j¼1

k2j �
Xd
j¼1

kj

0
@

1
A

2

with strict inequality unless the kj’s are all identical. But 0 is an eigenvalue of Q,
and at least one other eigenvalue is non-zero, since tr(Q) < 0. Hence,
trðQ2Þ=trð�QÞ>�g, so that Theorem 2.3 is then a strict improvement of
Theorem 2.2.

We now provide an improved upper bound on r for rate matrices with
real eigenvalues. Note that

1
d
ðr��gÞ2 � 1

d

Xd
i¼1

ðki��gÞ2

¼ 1
d

Xd
i¼1

k2i��g2

¼ trðQ2Þ
d

� trðQÞ
d

� �2

¼D r2:

We therefore find that r2=ðr��gÞ2 � 1
d , yielding the upper bound r �

�g þ r
ffiffiffi
d

p
: With more effort, one can improve the bound slightly to

the following.

Proposition 2.2. For any d� d rate matrix Q with real eigenvalues,

r � �g þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd�1Þr2

p
where r2 ¼ d�1trðQ2Þ�ðd�1trðQÞÞ2:
We refer to Wolkowicz and Styan[17] for the proof. The presence of the

factor d� 1 in the square root means that Proposition 2.2’s bound typically
becomes very loose when d is large.
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We now apply these bounds to some queueing-related examples.

Example 1. Let Q be the rate matrix associated with an M=M=1=m queue
with arrival rate k, service rate l, and a waiting room having capacity m.
(We note that the notation k is now serving a second role, as the arrival
rate to the queue. Previously, we have been using k to denote eigenvalues
of Q. However, we believe that the context will always make clear the
appropriate interpretation.) In this example, the state space S ¼
f0, 1, :::,mþ 1g, so d ¼ mþ 2: Here, Q is an ðmþ 2Þ � ðmþ 2Þ dimen-
sional matrix taking the form

Q ¼

�k k
l �ðkþ lÞ k

. .
. . .

. . .
.

l �ðkþ lÞ k
l �l

0
BBBBBBBBB@

1
CCCCCCCCCA
:

We note that gðxÞ ¼ kþ l and Q2ðx, xÞ ¼ ðkþ lÞ2 þ 2kl for 1 � x � m:
We find that

�g ! kþ l

and

r2 ! 2kl

as m ! 1 so that Theorem 2.1 implies that

lim
m!1 q � 2ðkþ lÞ,

while Theorem 2.2 yields

lim
m!1

r � ðkþ lÞ: (2.10)

By applying Theorem 2.3, we obtain the improved lower bound

lim
m!1

r � ðkþ lÞ þ 2kl
kþ l

:

For the M=M=1=m queue, the spectrum is known in closed form,

S ¼ f0g [ �ðkþ lÞ þ 2
ffiffiffiffiffiffi
kl

p
cos

jp
mþ 2

� �
: j ¼ 1, 2, :::,mþ 1

� �
;

see Ledermann and Reuter[13]. Hence r ¼ kþ lþ 2
ffiffiffiffiffiffi
kl

p j cos ðpðmþ
1Þ=ðmþ 2ÞÞj ! kþ lþ 2

ffiffiffiffiffiffi
kl

p
as m ! 1: We note that when k % l (as

occurs in the “heavy traffic” regime), our upper bound is asymptotically

8 P. GLYNN AND A. GLYNN



tight (namely 4 l), while our lower bound converges to 3l, with (2.10)
converging to 2l:

Example 2. We now consider an M=M=m=0 Erlang-B loss queue, with
arrival rate k and service rate l. Here, Q is given by

Q ¼

�k k

l �ðkþ lÞ k

2l �ðkþ 2lÞ k

3l �ðkþ 3lÞ k

. .
. . .

. . .
.

ðm�1Þl �ðkþ ðm�1ÞlÞ k

ml �ml

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:

Then, gðxÞ ¼ kþ xl and Q2ðx, xÞ ¼ ðkþ xlÞ2 þ 2xklþ lk for 1 � x �
m�1: In the asymptotic regime in which m ! 1 with k ¼ /lm,

�g
m

! l /þ 1
2

� �
,

and

TrðQ2Þ
m3

! l2 /2 þ 2/þ 1
3

� �

as m ! 1: Theorems 2.1 and 2.3 then collectively yield the inequalities

l /2 þ 2/þ 1
3

	 

/þ 1

2

� lim
m!1

r
m

� lim
m!1

q
m

� 2l /þ 1
2

� �
:

Hence, in this model, the spectral radius q and the real spectral spread r
clearly scale linearly in m. Furthermore, given that

/2 þ 2/þ 1
3

	 

= /þ 1

2

� �ð/þ 1Þ is bounded away from 0 and þ1 over

½0,1Þ, it is evident that r and q are asymptotically within a constant factor
of g� (as a function of / and l).

Example 3. We now consider an M=M=m=n queue, so that the system is a
finite capacity Erlang-C model. We denote the arrival rate as k and the ser-
vice rate as l, so that
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Q ¼

�k k

l �ðkþ lÞ k

2l �ðkþ 2lÞ k

. .
. . .

. . .
.

ml �ðkþmlÞ k

ml �ðkþmlÞ k

. .
. . .

. . .
.

ml �ðkþmlÞ k

ml �ml

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

:

We consider an asymptotic regime in which k ¼ /ml, n ¼ bzmc for z> 0,
and m ! 1: In this setting,

�g
m

! l /þ 1
2

� �
1

1þ z
þ /þ 1ð Þ z

1þ z

� �
,
g�

m
! lð/þ 1Þ,

and

TrðQ2Þ
m3

! l2 /2 þ 2/þ 1
3

� �
1

1þ z
þ ð/2 þ 4/þ 1Þ z

1þ z

� �
:

Hence,

l /2 þ 2/þ 1
3

	 

1

1þz þ /2 þ 4/þ 1
� �

z
1þz

	 

/þ 1

2

� �
1

1þz þ ð/þ 1Þ z
1þz

� lim
m!1

r
m

� lim
m!1

q
m

� 2lð/þ 1Þ,

so that our analysis again establishes that the spectral radius and real spec-
tral spread of Q scale in proportion to g� (and �g).

Example 4. Finally, we consider a nonreversible single-server closed Jackson net-
workmodel, in which s � 2 stations are arranged on a circle, with a total of n cus-
tomers in the system. When a customer finishes service at station i (1 � i<s), the
customer then joins the queue at station iþ 1. Similarly, a customer finishing ser-
vice at station s joins the queue at station 1. Assume that the service rates at sta-
tions 1,2,… ,s are l1, l2, :::, ls, respectively. A typical state~x 2 S takes the form
~x ¼ ðx1, :::, xsÞ, where xi is the number of customers at station i, satisfying the
constraint

Ps
i¼1 xi ¼ n:A key property of this model is that

Qð~x,~yÞQð~y,~xÞ ¼ 0

whenever ~x 6¼~y: As a result, Q2 has the property that Q2ð~x,~xÞ ¼ gð~xÞ2 for
~x 2 S: So,
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�g !
Xs
i¼1

li,

g� !
Xs
i¼1

li,

and

1
jSjTrðQ

2Þ !
Xs
i¼1

li

 !2

as n ! 1: Our bounds then yield the inequalitiesXs
i¼1

li � lim
n!1

r � lim
n!1 q � 2

Xs
i¼1

li:

In this example, Theorem 2.3’s lower bound offers no asymptotic improve-
ment to that of Theorem 2.2. Again, r and q are within a constant factor
of �g and g�:
All the examples of this section have the property that �g and g� are

within a constant factor of one another. This seems typical of most stochas-
tic modeling applications. For rate matrices in which �g and g� are within a
constant factor of one another, our theory establishes that r and q are then
within a constant factor of both �g and g�:

3. Bounds for reversible rate matrices

An irreducible rate matrix Q with jSj ¼ d<1 is said to be reversible if its
unique equilibrium distribution p ¼ ðpðxÞ : x 2 SÞ satisfies the detailed bal-
ance relationship

pðxÞQðx, yÞ ¼ pðyÞQðy, xÞ
for all x, y 2 S: In this case, we can define R ¼ ðRðx, yÞ : x, y 2 SÞ via

Rðx, yÞ ¼
ffiffiffiffiffiffiffiffiffi
pðxÞ
pðyÞ

s
Qðx, yÞ:

A key fact is that R is a symmetric matrix for which

Q ¼ D�1=2RD1=2,

where D1=2 is the diagonal matrix in which the x’th diagonal entry is
pðxÞ1=2: Because Q and R are similar matrices, they share the same spec-
trum S: Furthermore, the spectrum of R (and hence Q) can consist only
of real eigenvalues; see Theorem 8.1.1 and its proof in Golub and Van
Loan[8], for example. This implies that
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�q ¼ �r ¼ minfk : k 2 Sg:
We now analyze the spectral radius q by using the Rayleigh characteriza-
tion of R’s eigenvalues. In particular, minfk : k 2 Sg is given by

minfk : k 2 Sg ¼ inf
v6¼0

vTRv
vTv

;

see Theorem 8.1.2 of Golub and Van Loan[8], for example. Hence, for any
choice of column vector u0 6¼ 0, we obtain the lower bound

q � uTRu
uTu

(3.1)

on q. Furthermore, we have equality in (3.1) if and only if u is an eigen-
vector with eigenvalue q (a consequence of Theorem 8.1.1 in Golub and
Van Loan[8]).
The easiest choice for u is uxðwÞ ¼ dxw for w 2 S: In this case, (3.1) takes

the form

q � gðxÞ,
yielding the lower bound

q � max
x2S

gðxÞ ¼ g�:

If Q is irreducible, then gðxÞ>0 for each x 2 S, and there exists wx 6¼ x for
each x so that Qðwx, xÞ>0: Hence, for each x 2 S, ðQuxÞðwxÞ ¼ Qðwx, xÞ 6¼
0 ¼ �gðxÞuxðwxÞ, so that ux can not be an eigenvector associated with �q:
Consequently, q> g� and we have proved the following result.

Theorem 3.1. If Q is an irreducible and reversible rate matrix, then

q ¼ r> g�:

Hence, for reversible rate matrices, q and r must lie in ðg�, 2g�	:
A better bound can be obtained with a better of choice of u in (3.1). Here,

we consider vectors u supported on two states of S, so that u is of the form

ux, yðwÞ ¼ cdxw þ ddyw

for c, d 2 R and x 6¼ y: In this case,

q ¼ r � � inf
c2þd2>0

uTx, yRux, y
uTx, yux, y

¼ � inf
~u 6¼0

~uT~Rx, y~u

~uT~u
,

(3.2)
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where ~u is a 2� 1 column vector and ~Rx, y is the 2� 2 matrix

~Rx, y ¼ �gðxÞ Rðx, yÞ
Rðy, xÞ �gðyÞ

� �
:

Since ~Rx, y is symmetric, the minimum and maximum of the ratio in (3.2)
is attained at the two eigenvalues of ~Rx, y (via Rayleigh’s characterization).
The eigenvalues c1 and c2 of the matrix ~Rx, y can be explicitly computed.
We find that

c1 ¼ � gðxÞ þ gðyÞ
2

� �
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxÞ � gðyÞ� �2 þ 4ðRðx, yÞÞ2

q
,

c2 ¼ � gðxÞ þ gðyÞ
2

� �
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxÞ � gðyÞ� �2 þ 4ðRðx, yÞÞ2

q
:

We have therefore proved the following result.

Theorem 3.2. If Q is an irreducible and reversible rate matrix, then

q ¼ r � max
x, y 2 S

x 6¼ y

gðxÞ þ gðyÞ
2

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxÞ � gðyÞ� �2 þ 4

pðxÞ
pðyÞ ðQðx, yÞÞ

2

s0
@

1
A:

In particular, if Q corresponds to an irreducible birth-death process on
f0, 1, :::,mg with birth rates aið0 � i<mÞ and death rates bið0<i � mÞ, we
find that

q ¼ r � max
1�i�m�1

ai þ ai�1

2
þ bi þ biþ1

2
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai þ bi�aiþ1�biþ1Þ2 þ 4aibiþ1

q� �
:

(3.3)

We now apply these bounds to the examples from Section 2 corresponding
to birth-death processes.

Example 1 (continued). Here we find that (3.3) translates into

lim
m!1

r �
ffiffiffi
k

p
þ ffiffiffi

l
p	 
2

�
ffiffiffiffiffiffi
kl

p
:

Example 2 (continued). In the setting of our asymptotic regime, for this
example,

lim
m!1

r
m

� l /þ 1þ
ffiffiffiffi
/

p	 

: (3.4)

It is a simple exercise to establish that the right-hand side of (3.4) is larger
than the lower bound in Section 2.
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Example 3 (continued). As in Example 2, the bound

lim
m!1

r
m

� l /þ 1þ
ffiffiffiffi
/

p	 


holds in the corresponding asymptotic regime for this example.
This paper has thus far been primarily concerned with deriving upper

and lower bounds on the spectral radius q and the real spectral spread r of
Q. As discussed in the introduction, the quantity q provides valuable infor-
mation on the time step needed to guarantee that explicit time-stepping
methods will remain numerically stable.
We conclude this section with a discussion of a measure that is intended

to indicate how challenging the discretization of (1.1) is likely to be, as a
function of the problem instance Q. We note that if we re-scale time in
(1.1) (by a factor s, say) then Q is replaced by sQ, thereby increasing the
spectral radius by a factor of s. We seek a measure that is independent of
such a time-rescaling. Such a measure is given by q=jcj or r=jcj, where jcj
is the spectral gap defined in Section 2. We refer to the ratio r=jcj as the
stiffness ratio of Q; see Aiken[1] for further discussion of stiffness. Some
papers focus instead on the spectral radius in measuring stiffness, (e.g.,
using the ratio q=jcj rather than r=jcj or related measures – see for
example, Clarotti[5]). In this section, these notions coincide because all the
eigenvalues of reversible processes are real. Furthermore, our bounds of
Section 2 establish that r and q are often within a constant factor of one
another. Consequently the two stiffness ratios are often within a constant
factor of one another. We choose, in our remaining discussion of stiffness,
to frame stiffness in terms of r=jcj:
An upper bound on this stiffness ratio is given by 2g�=‘, where ‘ is a

lower bound on the spectral gap jcj: Such lower bounds have been studied
extensively; see, for example, Diaconis and Stroock[6] and Montenegro and
Tetali[15]. A lower bound on the stiffness ratio is obtained from ~r=u, where
~r is a lower bound on the real spectral spread r and u is an upper bound
on the spectral gap. As we have already discussed a number of lower
bounds ~r on r, we will focus our attention on the upper bound on jcj:
We again employ the Rayleigh quotient, this time making use of the

well-known minimax characterization of c,

c ¼ max
vTu ¼ 0
v 6¼ 0

vTRv
vTv

(3.5)

where u is the column eigenvector u ¼ ð ffiffiffiffiffiffiffiffiffi
pðxÞp

: x 2 SÞ for the matrix R
associated with eigenvalue 0. (This is a special case of Theorem 8.1.2, the
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Courant-Fisher minimax theorem, in Golub and Van Loan[8].)
Characterization (3.5) of c is sometimes called the variational characteriza-
tion of c. With model-specific choices of the “test vector” v, Landau and
Odlyzko[12] have produced a lower bound on c for the random walk on
the barbell graph, while Diaconis and Stroock[6] found a lower bound for
the random walk on the full binary tree of finite depth. We consider v of
the form v ¼ vx, y, where vx, yðwÞ ¼ cdxw þ ddyw for c, d 2 R and x 6¼ y: In
view of the fact that vTx, yu ¼ 0, we find that

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðyÞ
pðxÞ þ pðyÞ

s
, d ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞ

pðxÞ þ pðyÞ

s

if we additionally require that vTx, yvx, y ¼ 1:
The ratio (3.5) then specializes to

vTx, yRvx, y
vTx, yvx, y

¼ � pðyÞgðxÞ þ pðxÞgðyÞ þ 2pðxÞQðx, yÞ
pðxÞ þ pðyÞ

� �
:

We therefore have the following upper bound on jcj:
Theorem 3.3. Suppose that Q is an irreducible and reversible rate matrix. Then,

jcj � min
x, y 2 S
x 6¼ y

pðyÞgðxÞ þ pðxÞgðyÞ þ 2pðxÞQðx, yÞ
pðxÞ þ pðyÞ

� �
:

We now specialize this upper bound on the spectral gap to the birth-death
setting. By choosing y ¼ xþ 1, we find that

jcj � ax þ bxþ1 þ
axbx þ axþ1bxþ1

ax þ bxþ1
:

If we apply this to Examples 1 through 3 with x¼ 0, we find that

jcj � kþ lþ 2kl
kþ l

: (3.6)

Remark 5. Alternative upper bounds on jcj exist in the literature. For
example, a Cheeger-like inequality for Markov chains (see p.52, Diaconis
and Stroock[6], for example) establishes that for birth-death processes,

jcj � 2pðxÞbxP
y�xpðyÞ

(3.7)

provided that we select x so that
P

y�x pðyÞ � 1=2: To see how this bound
compares to (3.6), we consider Example 1. In that setting, (3.7) translates into
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jcj � 2lpðxÞP
y�xpðyÞ

:

When k<l, pðxÞ=Py�x pðyÞ ! 1�k=l as m ! 1, so that the Cheeger
upper bound on jcj becomes 2(l�k) in this setting. Our upper bound (3.6)
is superior when k is small, while (3.7) is better in the “heavy
traffic” setting.
Given the lower bounds on q developed earlier, we conclude that the

stiffness ratios for Examples 2 and 3 grow at rate m in the asymptotic
regimes described there. So, it follows that many-server queues are inher-
ently numerically challenging, at least in so far as solving the Kolmogorov
equations (1.1) is concerned.
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