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Abstract

This paper describes the limiting asymptotic behaviour of a long cascade of linear
reservoirs fed by stationary inflows into the first reservoir. We show that the storage
in the nth reservoir becomes asymptotically deterministic as n → ∞, and establish a
central limit theorem for the random fluctuations about the deterministic approximation.
In addition, we prove a large deviations theorem that provides precise logarithmic
asymptotics for the tail probabilities associated with the storage in the nth reservoir
when n is large.
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1. Introduction

Consider an infinite cascade of reservoirs, in which the reservoirs are placed in ‘series’ and
the output from reservoir n flows (exclusively) into reservoir n + 1. We assume that at time
t = 0, each of the reservoirs in the infinite cascade is empty and that we then begin releasing
inflow into the first reservoir according to a stochastic process � = ( � (t) : t ≥ 0) in which
� (t) describes the cumulative inflow to reservoir 1 over [0, t ]. We further require that the
reservoirs obey linear release rules, so that the rate at which content is released from reservoir
n into reservoir n + 1 is equal to αn Sn(t), where Sn(t) is the content stored in reservoir n at
time t . In this paper, our interest focuses on the asymptotic behaviour of the steady-state of the
nth reservoir as n → +∞.

The linear release rule assumption is widely used within the hydrological community; see,
for example Nash [9] for a single reservoir, Klemeš and Boruvka [7] and Klemeš et al. [8] for
a cascade of reservoirs. A diffusion approximation for a more general network of reservoirs
with power law release (a generalization of linear release) has been investigated by Glynn and
Glynn [5]. Some properties of a cascade of nonlinear reservoirs (subject to certain restrictions)
have also been studied recently by Glynn and Glynn [6]. The asymptotics established in
this paper can be used to develop both approximations and insight into the temporal/spatial
behaviour of long cascades of such reservoirs.
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Historically, there has been a tight connection between the theory of storage systems and
that of queueing systems. This paper continues that tradition, by extending to the storage-
theoretic setting several results that have been obtained for queueing systems in which a large
number of stations are placed in series. An early example of this type was the paper by
Vere-Jones [11] in which a long series of infinite-server queues was studied. An infinite-
server queue is basically the queueing analogue to our linear reservoir, since the departure
rate for such a queue is roughly proportional to the number of customers present. It was
shown that if each queue is an infinite-server station with common processing time distribution
F (with processing times at individual stations independent), with an arrival process to the
first queue that is renewal, then the steady-state queue-length distribution at the nth queue
becomes Poisson in the limit. As indicated above, we shall establish analogous results for the
linear cascade. In particular, we shall show that the steady-state storage at the nth reservoir
becomes asymptotically constant, and that the corresponding release rate is therefore also
asymptotically constant. However, we are also able to obtain much ‘finer’ results that show, for
example, that when αn ≡ α the stochastic fluctuation of the nth reservoir about its steady-state
mean, when renormalized by a factor of n1/4, converges to a Gaussian r.v. (see Theorem 2).
So, regardless of the probabilistic structure of the initial inflow � to the cascade, the steady-
state storage at the nth reservoir looks roughly Gaussian, with a standard deviation of order
n−1/4. In addition, Theorem 3 provides an accompanying large deviations result, that yields
logarithmic asymptotics for the tail probabilities associated with the nth reservoir.

2. Model formulation and basic properties

Let Sn(t) be the (storage) content of the nth reservoir at time t , and let Rn (t) be the total
amount of fluid released from the nth reservoir over [0, t ]. Suppose that � (t) is the cumulative
inflow into the first reservoir over [0, t ]. Then, the cascade structure of the reservoir system
implies that

Sn+1(t) = Sn+1(0)+ Rn (t)− Rn+1(t) (2.1)

for n ≥ 1, with the ‘boundary condition’

S1(t) = S1(0)+ � (t)− R1(t). (2.2)

The linearity of the release rule means that

Rn(t) = αn

∫ t

0
Sn(u) du (2.3)

for some positive constant αn (n ≥ 1). From Equations (2.1) and (2.3), it follows that

Sn+1(t) = e−αn+1t Sn+1(0)+
∫

[0,t ]
e−αn+1(t−s)Rn(ds). (2.4)

where the integral is to be interpreted in a Lebesgue–Stieltjes sense.
Set

βn(t) = Sn(0)(1 − exp(−αn t)) and Fn(du) = αn exp(−αnu)1(u ≥ 0) du.
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Substituting (2.4) into (2.1) yields a recursive relationship for the release processes as a func-
tion of n:

Rn+1(t) = βn+1(t)+ Rn(t)−
∫

[0,t ]
e−αn+1(t−s)Rn (ds)

= βn+1(t)+ Rn(t)−
∫

[0,t ]

(
1 − αn+1

∫ t−s

0
e−αn+1u du

)
Rn(ds)

= βn+1(t)+
∫

[0,t ]
αn+1

∫ t−s

0
e−αn+1u duRn(ds)

= βn+1(t)+
∫ t

0

∫
[0,t−u]

Rn(ds)αn+1e−αn+1u du

= βn+1(t)+
∫ t

0
Rn (t − u)αn+1e−αn+1u du

= βn+1(t)+ (Fn+1 	 Rn)(t), (2.5)

where 	 denotes the convolution operation. Put Gn,k = Fn 	 Fn−1 	 Fn−1 	 . . . 	 Fk+1 and
Gn = Gn,0 .

Successively back-substituting in (2.5) and taking advantage of (2.2) leads one to the con-
clusion that

Rn = βn + Gn,n−1 	 βn−1 + . . . + Gn,1 	 β1 + Gn 	 � .

In particular, if all reservoirs start empty so that Sn(0) = 0 for n ≥ 1, we find that Rn =
Gn 	 � . Consequently, under the empty reservoir initial condition, (2.1) implies that

Sn = Hn 	 � (2.6)

with Hn = Gn−1 − Gn (and G0(t)
�= 1(t ≥ 0)). It should be noted that (2.6) proves that the

storage at the nth reservoir, in the initial empty condition, is independent of the order of the
first n − 1 reservoirs; this is a storage process analogue to the fact that the departure process
from the nth queue in a serial infinite-server system has a distribution that is independent of
the order of the first n servers. (This queueing-theoretic result relies on the observation that
the departures epochs from the nth queue are the arrival epochs to the first queue randomly
translated by an independent sequence of convolutions of the first n processing times.)

A reasonable assumption for our inflow process � is the requirement that � have stationary
increments. Specifically, we will require that:

(A1) ( � (t) : −∞ < t < ∞) is a non-decreasing process possessing stationary increments,
with � (0) = 0 and E � (1) < ∞.

Under (A1), (2.6) establishes that

Sn(t) =
∫

[0,t ]
� (t − s)Hn(ds)

D=
∫

[0,t ]
� (−s)Hn(ds) − � (−t)Hn(t) ,
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where
D= denotes ‘equality in distribution’. Since Hn(t) → 0 exponentially fast and � (t)/t =

O(1) a.s. (as is evident from the finiteness of E � (1) and the ergodic theorem), it follows that
� (−t)Hn(t) ⇒ 0 as t → ∞, yielding

Sn(t) ⇒
∫

[0,∞)

� (−s)Hn (ds) (2.7)

as t → ∞. The limit r.v. appearing in (2.7) can be expected to correspond to a stationary
regime for the nth storage process. More precisely, we can prove the following:

Theorem 1. Assume (A1) and let S∗
n(t) = ∫

[0,∞)
� (t − s)Hn(ds) for n ≥ 1 and t ≥ 0, Then,

for each n ≥ 1,

((S∗
1 (t), . . . , S∗

n(t)) : t ≥ 0)

is a (strictly) stationary process satisfying S∗
n(t) = S∗

n(0) + R∗
n−1(t) − R∗

n (t) for n ≥ 1 and

t ≥ 0, with R∗
0 (t) = � (t) and R∗

n (t) = αn
∫ t

0 S∗
n(u) du.

Proof. Recall that Hn(∞) = 0. Consequently, the stationary increments structure of �
implies that for each t ≥ 0,

S∗
n (t + ·) =

∫
[0,∞)

[� (t + · − s) − � (t)]Hn(ds)

=
∫

[0,∞)

[� (· − s) − � (t)]Hn(ds) = S∗
n(·),

proving the stationarity of S∗
n ; the stationarity of the joint n-dimensional process may be sim-

ilarly handled. To establish that the joint process (S∗
1 , . . . , S∗

n) has the appropriate dynamics,
the key step is to show that

S∗
n+1(0)+ αn

∫ t

0
S∗

n(u) du − αn+1

∫ t

0
S∗

n+1(u) du (2.8)

defines the r.v. S∗
n+1(t). This computation is straightforward and is therefore omitted.

In the next section, we study behaviour of the stationary regime as n tends to infinity.

3. A central limit theorem for the stationary regime

In order to obtain asymptotic approximations for the behaviour of the nth reservoir, we need
to impose some additional regularity hypotheses on the inflow process � .

(A2) For some δ ∈ (0, 1
2 ) and positive constants λ, σ , there exists a probability space sup-

porting the inflow process � and a standard Brownian motion (B(t) : −∞ < t < ∞)

with B(0) = 0 such that

� (t) = λt + σ B(t)+ O(|t |δ) a.s. as |t | → ∞.

We can and will assume that the probability space used in the remainder of this paper is that
space guaranteed by (A2). The ‘strong approximation’ assumption (A2) is satisfied by many
weakly dependent stochastic processes, including martingales and additive functionals Markov
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processes and mixing processes; see Philipp and Stout [10] for details. In terms of practical
interpretation, (A2) can be viewed as one means of mathematically asserting that � satisfies
a central limit theorem (CLT). Typically, the constants λ and σ2 can be identified from the
corresponding mean and variance of � (·) as follows:

λ = lim
t→∞

1
t

E � (t) and σ 2 = lim
t→∞

1
t

var � (t).

For example, relation (3) would hold for Lévy input processes � under suitable moment
conditions on the increments. The parameter δ appearing in (A2) reflects both the degree of
autocorrelation present in � and the non-Gaussianity of its increments.

To establish a CLT for S∗
n(·), it seems clear that we need to consider the behaviour of the

convolution density hn as n → ∞. In particular, it turns that we shall need a local CLT-
type result for the ‘signed density’ hn ; such an approximation is most directly obtained if we
assume:

(A3) Assume that there exist two constants c1 and c2 such that

0 < c1
�= inf{αn : n ≥ 1} ≤ sup{αn : n ≥ 1} �= c2 < ∞.

Set mn = ∑n
i=1 1/αi , vn = ∑n

i=1 1/α2
i , sn = v

1/2
n , and let ϕ(·) be the density of an

N(0, 1) r.v.

Proposition 1. Under (A3),

αn+1vnhn+1(mn + sn x)+ xϕ(x) = o(1)

uniformly in x as n → ∞.

Proof. We show that

|αn+1vnhn+1(mn + sn x)− αn+1sn(ϕ(x) − ϕ(x − 1/(αn+1sn)))| (3.1)

converges to 0 uniformly in x as n → ∞. This will establish the result as it is easily shown
(using the boundedness of ϕ′) that

αn+1sn(ϕ(x) − ϕ(x − 1/(αn+1sn))) = −xϕ(x) + o(1)

uniformly in x as n → ∞.
To establish (3) we apply the local CLT to the probability density sngn(mn + sn·); this

latter density is the density of (χn − Eχn)/
√

varχn , where χn is sum of n independent r.v.’s,
in which the j th summand is exponential with parameter α j . The relevant local CLT can be
found on p. 194 of [1].

We are now prepared to state our main result of this section, namely a CLT (in the sense of
convergence to a stationary Gaussian process) for the stationary regime (S∗

n (t) : t ≥ 0) when
n is large.

Theorem 2. Fix d ≥ 1. Under (A1)–(A3),

s1/2
n (αn(S

∗
n (sn t)− λ/αn), . . . , αn+d (S

∗
n+d(sn t)− λ/αn+d))

⇒
(
σ

∫ ∞

−∞
B(t − y)yϕ(y) dy, . . . , σ

∫ ∞

−∞
B(t − y)yϕ(y) dy

)

in CRd [0,∞).
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Proof. Set �̂ (t) = � (t)− λt , and observe that for ε > 0, (A2) guarantees that

s1/2
n (αn+k (S

∗
n+k(sn t)− λ/αn+k))

=
(

sn

sn+k

)1/2

s−1/2
n+k

∫ ∞

−(mn+k)/(sn+k )

�̂ (sn t − mn+k − sn+k y)

× αn+kvn+k hn+k (mn+k + sn+k y) dy

D=
(

sn

sn+k

)1/2

s−1/2
n+k

∫ ∞

−(mn+k)/(sn+k )

�̂ (sn t − s1+ε
n − sn+k y)

× αn+kvn+k hn+k (mn+k + sn+k y) dy.

By (A2), �̂ (t) = O(|t |) a.s. as t → −∞. Since αnvnhn(mn + sn y) → 0 faster than any
power of y uniformly in n, it is evident that

∫
|y|>nε

�̂ (sn t − s1+ε
n − sn+k y)αn+kvn+k hn+k (mn+k + sn+k y) dy → 0 a.s.

uniformly in compact t -sets. Furthermore, by (A2) and Proposition 1,

s−1/2
n+k

∫
|y|≤nε

�̂ (sn t − s1+ε
n − sn+k y)αn+kvn+k hn+k (mn+k + sn+k y) dy

= −s−1/2
n+k

∫
|y|≤nε

(σ B(sn t − s1+ε
n − sn+k y)

+ O(|sn t − s1+ε
n − sn+k y|δ))(yϕ(y) + o(1)) dy

= −s−1/2
n+k

∫
|y|≤nε

σ B(sn t − s1+ε
n − sn+k y)yϕ(y) dy + o(1) a.s.

uniformly in compact t -sets. Because ϕ(·) decays faster than any power in its tails, it follows
that the above quantity equals

− s−1/2
n+k

∫ ∞

−∞
σ B(sn t − s1+ε

n − sn+k y)yϕ(y) dy + o(1) a.s.

= −s−1/2
n+k

∫ ∞

−∞
σ [B(sn t − s1+ε

n − sn+k y)− B(−s1+ε
n )]yϕ(y) dy + o(1) a.s.

uniformly in compact t -sets. But the above integral has the same distribution, viewed as a
process, as

σ

∫ ∞

−∞
B

(
sn

sn+k
t − y

)
yϕ(y) dy.

But this latter integral converges to

σ

∫ ∞

−∞
B(t − y)yϕ(y) dy

uniformly in t , verifying the theorem.
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This CLT shows that for n large, we have the following approximation for the process S∗
n (·):

S∗
n (t)

D≈ λ

αn
+ σ

s1/2
n αn

∫ ∞

−∞
B(t/sn − y)yϕ(y) dy,

where
D≈ denotes ‘has approximately the same distribution as’. One implication of this CLT is

that S∗
n(t), for large n, becomes more and more deterministic. Since one expects additional

reservoirs to successively smooth the inflow, this is not surprising. However, Theorem 2
identifies the precise rate of convergence to the deterministic limit as s−1/2

n (which is of order
n−1/4). Furthermore, the random fluctuations of S∗

n(·) occur on a time scale of order n1/2. In
addition, S∗

n (·) behaves asymptotically like a stationary Gaussian process having continuous
paths. Our final result of this section computes the variance of the limiting Gaussian process.

Proposition 2. ∫ ∞

−∞
B(t − y)yϕ(y) dy

D= 1√
2π1/4

N(0, 1).

Proof. Clearly,∫ ∞

−∞
B(t − y)yϕ(y) dy =

∫ ∞

−∞
[B(t − y)− B(t)]yϕ(y) dy

D=
∫ 0

−∞
B(−y)yϕ(y) dy +

∫ ∞

0
B(y)yϕ(y) dy

D= Z1 + Z2,

where Z1, Z2 are i.i.d. r.v.’s, with Z1 = ∫ ∞
0 B(t)tϕ(t) dt . Since Z1 is an integral of a Gaussian

process, it is straightforward to verify that it is normally distributed, having mean zero and

var Z1 = 2
∫ +∞

0

∫ ∞

s
sϕ(s)tϕ(t) cov(B(s), B(t)) dtds

=
∫ +∞

0

∫ ∞

s
s2ϕ(s)tϕ(t) dtds

= 2√
2π

∫ ∞

0
s2ϕ(s) exp(−s2/2) ds

= 1
π

∫ ∞

0
s2 exp(−s2) ds

= 1

2
√
π

∫ ∞

−∞
1√
π

s2 exp(−s2) ds

= 1

2
√
π

E (N(0, 1)/
√

2)2

= 1

4
√
π
.

Consequently, Z1 + Z2
D= N(0, 1/(2

√
π)).

4. Tail behaviour of the stationary regime

The CLT of the previous section describes the random fluctuations of order n−1/4 about
the mean of the nth reservoir. However, in a hydrological context, one is often interested in
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calculating the likelihood of flooding, in which event one may wish to accurately compute and
approximate the tail probabilities corresponding to S∗

n(t).
A key to this analysis is the application of large deviations ideas. In particular, our main

limit theorem of this section will depend upon the Gärtner–Ellis theorem (see, for example,
Bucklew [3]), the hypotheses of which involve the moment generating functions of the random
variables under consideration. As a result, we start by computing E exp(θS∗

n (t)).
We shall assume here that

(A4) � is a compound Poisson process, so that � (t) = ∑N(t)
i=0 Xi , with X0 = 0 and

(X1, X−1, X2, X−2, . . . ) i.i.d. and independent of the Poisson process N = (N(t) :
−∞ < t < ∞), where N(0) = 0. Furthermore, N has rate γ and

mX (θ)
�= E exp(θXi ) < ∞ for 0 ≤ θ < θ0.

We start by noting that

S∗
n(t) =

∫
[0,∞)

� (t − s)Hn(ds)

D=
∞∑

i=1

Xi Hn(Ti ),

where T1, T2, . . . are the transition epochs of the Poisson process (N(t) : t ≥ 0). Because � is
non-decreasing, Xi ≥ 0 so that

∑∞
i=1 Xi Hn(Ti ) exists almost surely. A standard computation

then reveals that

log E exp
(
θS∗

n (t)

)
= γ

∫ ∞

0
(mX (θHn(s)) − 1) ds . (4.1)

We are now ready to state our large deviations theorem for the tail probabilities of S∗
n(t) when

n is large. Set ψ(θ) = γ
∫ ∞
−∞(mX (θϕ(s)) − 1) ds.

Theorem 3. Assume (A1), (A2), and (A4) and suppose x > γ E X. If there exists a root
θ∗

x < θ0
√

2π to the equation

γ

∫ ∞

−∞
m′

X (θϕ(s))ϕ(s) ds = x, (4.2)

then

1
sn

log P(αn S∗
n (t) > x) → −θ∗

x x + ψ(θ∗
x ). (4.3)

as n → ∞.

Proof. This result follows from the Gärtner–Ellis theorem, provided that we prove that

1

sn
ψn(αnsnθ) → ψ(θ) (4.4)
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as n → ∞, and that ψ ′(θ) is given by the left-hand side of (4.2). Relation (4.1) yields

1

sn
ψn(αnsnθ) = γ

sn

∫ ∞

0
(mX (θαnsn Hn(u)) − 1) du

= γ

∫ ∞

−mn/sn

(
mX

(
θαnvn

∫ y

−∞
hn(mn + sn z) dz

)
− 1

)
dy.

Now, for all k ≥ 0,

αnvn

∫
|z|>y

hn(mn + snz) dz = O(y−k) (4.5)

uniformly in n, so it follows from Proposition 1 that

αnvn

∫ y

−∞
hn(mn + snz) dz → −

∫ y

−∞
xϕ(x) dx = ϕ(y) (4.6)

uniformly in y. Since αnvn
∫ y
−∞ hn(mn + sn z) dz = O(1) uniformly in y and n, it is evident

that ∣∣∣∣mX

(
θαnvn

∫ y

−∞
hn(mn + snz) dz

)
− 1

∣∣∣∣ ≤ kαnvn

∫ y

−∞
hn(mn + snz) dz (4.7)

for some constant k depending on the derivative of m′
X (·). Now,

∫ ∞

−mn/sn

(
mX

(
θαnvn

∫ y

−∞
hn(mn + sn z) dz

)
− 1

)
dy

=
∫ β

−β

(
mX

(
θαnvn

∫ y

−∞
hn(mn + snz) dz

)
− 1

)
dy

+
∫
|y|>β,y≥−mn/sn

(
mX

(
θαnvn

∫ y

−∞
hn(mn + snz) dz

)
− 1

)
dy.

The uniform convergence of the integrand (see (4.6)) in the first integral establishes that it
converges to

∫ β
−β(mX (θϕ(y)) − 1) dy. On the other hand, by choosing β sufficiently large and

exploiting (4.5) and (4.7), we note that we can make the second integral above arbitrarily small
uniformly in n. This gives us the desired relation (4.4). The formula for ψ ′(θ) is immediate,
upon recognizing that

h−1|mX ((θ + h)ϕ(s)) − mX (θϕ(s))| ≤ kϕ(s)

uniformly in s, providing the domination necessary to justify interchanging the integral and
derivative.

Theorem 3 suggests the tail approximation

P(S∗
n (t) > y) ≈ exp(sn(−θ∗

αn y · (αn y)+ ψ(θ∗
αn y))) (4.8)

where θ∗
αn y solves ψ ′(θ∗

αn y) = αn y. Of course, the large deviations approximation (4.8) can,
in practice, be rather poor, as the logarithm appearing in Theorem 3 can hide a variety of sins.
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In particular, any dependence of the probability that is of the order of exp(O(
√

n )) cannot
be described by Theorem 3. This makes the development of efficient numerical schemes for
computing P(S∗

n (t) > y) of interest.
Specifically, we shall describe here a Monte Carlo-based scheme for computing this tail

probability. The idea will be to use importance sampling (see, for example, Bucklew [3]) to
simulate � under a change of measure that makes the event {S∗

n (t) > y} more likely.
We start by defining

Pθ,n(·) = E exp
(
θ

∫ ∞

0
Hn(u) � (du)−ψn(θ)

)
1(·) (4.9)

and let E θ,n(·) be the expectation operator corresponding to the probability Pθ,n . It is well
known that

E θ,n

∫ ∞

0
Hn(u) � (du) = ψ ′

n(θ).

Hence, by choosing θ as the root θ̃n to the equation

ψ ′
n(θ̃n) = y, (4.10)

we are modifying the distribution of
∫ ∞

0 Hn(u) � (du) so that its mean is precisely equal to y.
Given that we are interested in computing P(S∗

n (t) > y), it seems intuitively reasonable to use
the distribution Pθ̃n ,n

to simulate the inflow process � ; a substantial body of theory supports
this choice of distribution in an asymptotic sense (as n → ∞); see Bucklew et al. [4].

This leaves us with the question of how to generate variates with distribution Pθ,n . Let
(Tn : n ≥ 1) be the jump times of the Poisson process N , and let ψX (θ) = log mX (θ).
Observe that[

dPθ,n
dP

]
= exp

(
θ

∫ ∞

0
Hn(u) � (du)− ψn(θ)

)

= exp
(

−γ
∫ ∞

0
(mX (θHn(s)) − 1) ds + θ

∞∑
j=1

Hn(Tj )X j

)

=
∞∏
j=1

exp(θHn(Tj )X j − ψX (θHn(Tj ))

× exp
( ∞∑

j=1

ψX (θHn(Tj ))− γ

∫ ∞

0
(mX (θHn(s)) − 1 ds

)
.

The final exponential above is the relative likelihood of a probability under which N evolves
according to a non-homogeneous Poisson process having rate (γmX (θHn(t)) : t ≥ 0) (relative
to a probability under which N evolves according to a constant-rate Poisson process with rate
γ ); see [2] for similar calculations. The infinite product is the contribution to the relative
likelihood from the X j ’s, conditional on N . Specifically, such an infinite product requires that
the X j ’s, conditional on N , be independent under Pθ,n , with corresponding distributions

Pθ,n(X j ∈ · | N) = E [exp(θHn(Tj )X j − ψX (θHn(Tj ))1(X j ∈ ·) | N ].
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This suggests that to calculate P(S∗
n(t) > y), we should compute the root θ̃n to (4.10), simulate

N according to the rate function (γmX (θ̃n Hn(t)) : t ≥ 0), and then generate X1, X2, . . . in-
dependently from the distributions F1, F2, . . . given by

Fj (dx) = exp(θ̃n Hn(Tj )x −ψX (θ̃n Hn(Tj )))P(X j ∈ dx).

Observe that so long as |t − mn |/sn is large, |Hn(t)| is small and consequently the process
� evolves under Pθ̃n,n

in effectively the same way as under P; it is only when |t − mn |/sn is of
small to moderate size that Pθ̃n ,n

substantially modifies the distribution of � .
Before stating our algorithm, we note that

∫
|t−mn|>β Hn(t) � (dt) goes to zero rapidly as

β → ∞ under Pθ̃n ,n
, because |Hn(·)| is small over the region of integration, and � evolves

according to the ‘normal’ dynamics of P for such t -values. Consequently, we can reduce
computation time by choosing β sufficiently large, and then simulating � only over [mn −
β,mn + β].
Algorithm (for computing P(S∗

n (t) > y), y > γ E X1/αn):

1. Select a sample size n ≥ 1 and tolerances ε, δ (see (3) below).

2. Compute the root θ̃n of (4.10). (An approximation to θ̃n , valid for large n, is θ̃n ≈
θ∗

n αnsn , where ψ ′(θ∗
n ) = αn y.)

3. Select β so that Pθ̃n ,n
(| ∫|u−mn |>β Hn(u) � (du)| > ε) < δ. One can use the exponential

inequality, valid for x > 0,

Pθ̃n ,n

( ∣∣∣∣
∫

|u−mn |>β
Hn(u) � (du)

∣∣∣∣ > ε
)

≤ exp(−xε)E θ̃n,n
exp

(
x

∫
|t−mn|>β

Hn(t) � (dt)

)

= exp(−xε)E exp
(
θ̃n

∫ ∞

0
Hn(t) � (dt)+ x

∫
|t−mn|>β

Hn(t) � (dt)− ψn(θ̃n)

)

= exp(−xε) exp
(
γ

∫
|t−mn|≤β

(mX (θ̃n Hn(s)) − 1) ds

+ γ

∫
|t−mn|>β

(mX ((θ̃n + x)Hn(s)) − 1) ds − ψn(θ̃n)

)

= exp
(

−xε + γ

∫
|t−mn|>β

(mX (θ̃n + x)Hn(s)) − mX (θ̃n Hn(s)) ds

)
;

a similar inequality can be deduced for Pθ̃n,n
(
∫
|t−mn|>β Hn(t) � (dt) < −ε).

4. Simulate a non-homogeneous Poisson process N over [mn − β,mn + β] according to
the rate function (γmX (θ̃n Hn(t)) : mn − β ≤ t ≤ mn + β), with corresponding jump
times T1, T2, . . . , TL .

5. For each jump time Tj , simulated in step 4, generate X j from the distribution

exp(θ̃n Hn(Tj )x −ψX (θ̃n Hn(Tj )))P(X j ∈ dx).
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6. Compute

W = 1
( L∑

j=1

Hn(Tj )X j > y

)

× exp

(
−

L∑
j=1

θ̃n Hn(Tj )X j + γ

∫ mn+β

mn−β
(mX (θHn(s)) − 1) ds

)
.

7. Replicate steps 4–6 m independent times, thereby generating W1, . . . ,Wm and form the
estimator

α̂m = 1

m

m∑
i=1

Wi .

Then, α̂m is the desired estimator for α = P(S∗
n (t) > y). Note that if one desires bounds

on the bias of α̂m induced via the β truncation of step 4 (rather than the probabilistic bounds
computed in step 3), these can be readily obtained by integrating the exponential inequality of
step 3.
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