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LIKELIHOOD RATIO GRADIENT ESTIMATION FOR 
STOCHASTIC RECURSIONS 

PETER W. GLYNN,* Stanford University 
PIERRE L'ECUYER,** Universite de Montreal 

Abstract 

In this paper, we develop mathematical machinery for verifying that a broad class 
of general state space Markov chains reacts smoothly to certain types of perturba- 
tions in the underlying transition structure. Our main result provides conditions 
under which the stationary probability measure of an ergodic Harris-recurrent 
Markov chain is differentiable in a certain strong sense. The approach is based on 
likelihood ratio 'change-of-measure' arguments, and leads directly to a 'likelihood 
ratio gradient estimator' that can be computed numerically. 
HARRIS-RECURRENT MARKOV CHAIN; REGENERATION 

AMS 1991 SUBJECI CLASSIFICATION: PRIMARY 60K05, 60J27, 65C05 
SECONDARY 60J10, 60G30, 60G40 

1. Introduction 

In this paper, we will study the class of Markov chains that arise as solutions to 
stochastic recursions. Specifically, we shall consider sequences X = (X,:n : 0) that 
can be represented in the form 

(1.1) Xn+ = h(Xn, Zn+l), 

where the sequence Z =(Zn:n _1) is assumed to be i.i.d. (independent and 
identically distributed). In the case that h is additive, Z is often termed the 
innovations sequence; we shall adopt this terminology for the more general case 
considered here. 

The class of chains that take the form (1.1) is very rich from an applications 
viewpoint. In fact, Markov chains modeled in discrete time are often formulated as 

Received 18 November 1993; revision received 18 May 1994. 
* Postal address: Department of Operations Research, Stanford University, Stanford, CA 94305-4022, 

USA. 
The research of this author was supported by the U.S. Army Research Office under Contract No. 

DAAL03-91-G-0101 and by the National Science Foundation under Contract No. DDM-9101580. 
** Postal address: D6partement d'IRO, Universit6 de Montreal, C.P. 6128, Succ. .Centre Ville, 

Montr6al, H3C 3J7, Canada. 
This author's research was supported by NSERC-Canada grant No. OGP0110050 and FCAR-Qu6bec 

Grant No. 93ER-1654. 

1019 



PETER W. GLYNN AND PIERRE L'ECUYER 

solutions to stochastic recursions; see Meyn and Tweedie (1993) for examples. Our 
motivation to study solutions X to (1.1) stems largely from our interest in 
discrete-event simulation, which is perhaps the most widely used numerical tool for 
studying stochastic models of production systems, telecommunication networks, and 
computer systems. Such simulations are typically implemented computationally by 
recursively updating a certain internal state descriptor that includes information on 
both the 'physical state' and 'clocks' that govern the behavior of the process. These 
updates occur at state transition epochs, and take the form (1.1). Consequently, the 
analysis that we shall pursue in this paper is, at least in principle, applicable to the 
class of stochastic processes that correspond to discrete-event simulations. (This 
class can basically be identified with the class of generalized semi-Markov processes 
studied by Konig et al. (1967), and by others.) 

Our primary goal here is to study the behavior of the Markov chain X under 
perturbations of the distribution that governs the innovations sequence Z. In 
particular, suppose that 0 is a real-valued parameter under which the Zn's have 
common distribution Ko (say). In this paper, we will use likelihood ratio 'change-of- 
measure' arguments to establish conditions under which: 
(i) the expectation of a random variable defined over a randomized time-horizon is 

differentiable in 0; 
(ii) the stationary probability measure of X is differentiable in 0 (in a sense to be 

made more precise in Section 4). 
We shall also discuss and illustrate how our conditions can be verified by using 

stochastic Lyapunov functions. These methods permit one, for example, to establish 
differentiability of the stationary distribution by verifying certain conditions that can 
be expressed in terms of the distribution K6 and the one-step transition function of 
X. These methods are illustrated via applications to the waiting time sequence of the 
single-server queue and a general class of non-linear storage models. For the 
single-server queue, our techniques are sharp enough to establish that essentially 
any functional of the steady-state distribution of the waiting time sequence, having 
finite mean, is differentiable (see Proposition 6). 

The differentiability results that we obtain can be viewed as strengthening the 
continuity theory for stochastic models studied by, for example, Kennedy (1972), 
and Whitt (1974), (1980). Of course, it must be added that our theory typically 
demands more of the underlying perturbation of the process than is the case in 
existing 'continuity' literature (for example, we basically require some form of 
differentiability). Derivatives of stationary distributions have also been studied for 
finite Markov chains. Schweitzer (1968) gives 'close form' expressions (which can be 
computed by matrix operations) for such derivatives with respect to the transition 
probabilities of the chain. Golub and Meyer (1986) show how to differentiate the 
stationary distribution with respect to a parameter 0, assuming that the entries of 
the transition matrix are differentiable with respect to 0. 

In addition to developing theory that can be used to establish model 

1020 



Likelihood ratio gradient estimation for stochastic recursions 

'smoothness', our approach also provides expressions for the resulting derivatives 
that can be used to numerically calculate the derivatives via simulation. In 
particular, we develop a 'likelihood ratio gradient estimator' that can be used to 
numerically calculate the derivative of the steady-state expectation of a functional 
defined on a Harris-recurrent Markov chain. This estimator converges at rate t-12 in 
the amount of computational effort t, and is the only known estimator having this 
property that works at the level of generality analyzed here. (For more details on 
the likelihood ratio gradient estimators in general, see Rubinstein and Shapiro 
(1993) and the references given there. The method of infinitesimal perturbation 
analysis is often more efficient but is limited to a much smaller class of models and 
performance measures than those analysed here; see Glasserman (1991) for details.) 

We also consider enhancements to the basic estimator that can improve its 
numerical efficiency. In particular, we emphasize the fact that the likelihood ratio 
can be based either directly on the innovations sequence Z or on the chain X itself. 
We discuss the merits and disadvantages of the two approaches, and offer the results 
of some numerical computation performed on the waiting time sequence for 
comparison. 

This paper is organized as follows. In Section 2, we consider a finite horizon 
model where the horizon is a randomized stopping time and provide sufficient 
conditions under which the expected performance measure is differentiable. We also 
construct likelihood ratio (LR) derivative estimators where the LR can be based on 
either the filtration associated with the innovations process or that associated with 
the Markov chain itself. In Section 3, we construct LRs for Harris-recurrent Markov 
chains, while in Section 4, we study the derivative of such likelihood ratios and find a 
LR representation for the derivative of the stationary distribution. From that, we 
construct LR derivative estimators for the steady-state average cost. The results 
developed in Sections 3 and 4 build upon those of Section 2. In Section 5, we 
examine the single-server queue and a storage theory example. The latter is Harris 
recurrent but has no state that is visited infinitely often with probability 1. For each 
of these examples, we illustrate how to use our Lyapunov methods to establish 
smoothness of their corresponding stationary distributions. We also give numerical 
results for the M/M/1 queue that compare the LR gradient estimator based on the 
innovations process with that based on the transition probabilities. 

2. Likelihood ratios for finite-horizon stochastic recursions 

In this section, we shall focus on finite-horizon simulations. We start by formulating 
the problem more precisely. In particular, we assume that the sequences X and Z 
take values in separable metric spaces S1 and S2, respectively. Note that Rd, when 
equipped with the Euclidean norm, is such a space; see Billingsley (1968). We 
require that h be a jointly measurable function from S1 x S2 into S. We define our 
basic probability space Q as Q = (0,1) x S1 x S2 X S2 X . A typical element E e 

1021 



PETER W. GLYNN AND PIERRE L'ECUYER 

then takes the form w = (u, x0, z1, Z2,...) where u E (0, 1), Xo E Si, and zi E S2 for 
i _ 1. Then, we can define U(o) = u, Xo()) = xo, Zn()O) = Zn for n 1, and 

Xn+l()) = h(Xn((w), Z,+l(o)) 

for n _ 0. The random variable U is used to determine a randomized stopping time, 
as we will see later on. For each 0 E A = (a, b), assume that Ko is a probability 
measure on S2 that will act as the distribution of Z, under 0. We then let P,x be the 
distribution on Q under which U has the uniform distribution over (0,1), Xo =x, 
and Z = (Zn, n --0) is an i.i.d. sequence having common distribution KQ. 
Specifically, 

(2.1) P,x(du X dxo x dzl x * * . x dzn) = du * x(dxo)K9(dzl) . . Kg(dzn) 

for n -1. With the distributional assumption (2.1), the sequence X is then a 
(time-homogeneous) Markov chain under P9,, having the one-step transition 
function P(O) defined by 

P(0, x, dy) Pox[xl E dy] 

for x, y E S1. 
In a finite-horizon setting, it is natural to permit the initial distribution ,L to 

depend on 0. More precisely, for each 0 e A, let /x be a probability measure on S1. 
We can then let Po be the probability measure on Q defined by 

Pe(d ) = f ,u(dx)P,x(dw), 

under which X0 has distribution Lg, and the sequence Z is i.i.d. and independent of 
Xo, with common distribution K6. 

In the most general form of a finite-horizon simulation, the time horizon T is 
determined by a randomized stopping time. More precisely, for each 0 e A, we 
assume that there exists a family of functions (rn(9):n >0) such that for each n _0, 
rn(0):S1+l-- [0, 1] is measurable, and such that 

P[T = n I X] = r,n(, Xo, , Xn). 

Demanding this is equivalent to requiring that T be a randomized stopping time with 
respect to (oa(Xo, * * , Xn):n 0 O). One can use the random variable U to determine 
the value of T as follows: 

T=inf{j: rn(, Xo, Xn) U_,}. 
n=l 

We now turn to the construction of a likelihood ratio (LR) representation of P, in 
terms of POo. We will need to make the following assumption. 

1022 



Likelihood ratio gradient estimation for stochastic recursions 

Al. There exists e > 0 such that for each 9 E A, = (o - e, 0o + E), 
(i) K0 is absolutely continuous with respect to Ko; 
(ii) g,u is absolutely continuous with respect to /go; 

(iii) rn(6, xo, , x,) > 0 implies rn(0o, ,xn) > 0 for all n 0 and 

(Xo, *,xnE S +1 

Let k(9, z) and u(O, x) be the densities of Ko and gLo with respect to K0o and /Xo, 
respectively, so that Ke(dz) = k(9, z)Ke,(dz) and ,e(dx) = u(O, x)0e,o(dx). Let p(O) 
denote rT(O, XO, * *, XT)/rT(00, XO, ..., XT) on {T < oo} and let X = 

ac(U, Xo, Z1, * , Zn) for each n. (We omit writing the dependence of p(O) on 
Xo, * *, XT to simplify the notation.) It is now straightforward to establish the 
following result, where I denotes the indicator function. 

Theorem 1. Let Y be a non-negative r-measurable random variable and let Al 
be in force. Then, there exists e > 0 such that 

(2.2) Ee[YI(T < oo)] = E,[YL(O)I(T < oc)] 

for 0 E A,, where 

T 

(2.3) L(0) = u(O, Xo)p(o0) k(O, Zj). 
i=1 

It turns out that one can obtain an alternative LR representation by conditioning 
appropriately. Observe that Al implies that P(O, x, .) is absolutely continuous with 
respect to P(0o, x, .) and let p(O, x, *) be the density of P(6, x, *) with respect to 
P(0o, x, .). Set n = o-(U, Xo, * * *, X). Starting from Theorem 1, it is straightfor- 
ward to establish that if Y is a non-negative 9T-measurable random variable, then 

(2.4) Ee[YI(T < oo)] = Eeo[YL(O)I(T < oc)] 

where 

T 

(2.5) L(0) = u(0, Xo)p(o)TH p(0, X,1, X,). 
i=1 

Since (2.4) holds for any non-negative 9T-measurable random variable and L(O) is 
itself 9T-measurable, it follows from the defining property of conditional expectation 
that 

L(9) = Eoo[L(0) I T] 

on the set {T < oo}. Furthermore, it should be noted that the above analysis 
establishes that p(O, Xi-,, Xi) = E[k(O, Z,) I Xi-,, X,]. 
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Remark 1. One can use expressions (2.2) and (2.4) to estimate functionals of the 
measure Pe, while simulating X under 00. Since L(O) is a conditional expectation of 
L(0), it is evident that estimation based on (2.4) is statistically more efficient. 
Specifically, under mild additional regularity hypotheses, the principle of conditional 
Monte Carlo asserts that this latter estimator produces smaller confidence intervals 
for any given number of transitions of X simulated; see Fox and Glynn (1986) for a 
similar argument. Generally speaking, the more information Z contains relative to 
X, the greater the gain in statistical efficiency should be. However, (2.2) could be 
much easier to implement, because the densities p(O, , ) are often rather 
complicated functions in practice. Therefore, there is typically a trade-off between 
variance reduction on the one side and ease of implementation and computational 
cost on the other. As a result, whether (2.4) is preferable to (2.2) or vice versa 
depends on the problem considered. 

Remark 2. The stopping time T is called non-randomized if each 
r(0, , , X, ) is either 0 or 1. In that case, it follows from Al (iii) that p(O) = 1 
Po0-almost surely and the likelihood ratios simplify accordingly. 

We will now derive a LR representation for the derivative of P0. For that, we shall 
require that the family of distributions K0 be suitably smooth in 0. To simplify our 
notation, let P(.) - Po0(') and E(*) - E0(). A prime will denote the derivative with 
respect to 0. 

We shall make the following assumptions. 

A2. 
(i) There exists e > 0 such that for each O E A,, Pe[T < oo] = 1. 

(ii) There exists e > 0 such that for each x E S1 and z e S2, u(-, x) and k(., z) are 
continuously differentiable on A,. 

(iii) There exists a random variable p'(00) such that 

lim E p(o + h)- p() '((o) =0 
h--OL h 

(iv) For each p > 0, there exists e = e(p) such that 

E sup lu(0, Xo)Ip]<, E sup Ik'(,Zl)I <, and sup E[ 
P 

]<0. L0eAi L 0rA, OEA L - 
Q0 J 

Remark 3. Observe that A2 implies that for each p > 0, there exists e = e(p) such 
that 

(2.6) E[sup lu(0, Xo)p] < oo and E[ sup Ik(0, Z)IP] < oo 
L0eA, J e 
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Indeed, one can write u(0, Xo) = 1 + ( - Oo)u'((O), X0) for some (0O) e A,, and 
so 

[ 
su Iu(, Xo)P] E[(- + s u(, Xo)l] 

2PE[1 + eP sup u'(O, Xo)lP] < 0. 
SeAJ 

The same argument applies to the second expression in (2.6). Assumption A2 also 
guarantees that 

(2.7) lim E[sup Ik(0, Z)IP = E[lim sup jk(0, ZI)lP] = 1. 
--0 0 eA,J L?--0 0 OE A, 

To see this, observe that the uniform integrability of the inside expression on the left 
permits one to exchange the limit and the expectation, and the inside limit is equal 
to 1 because k(., z) is continuous and k(0o, z) = 1. 

Recall that the transition density p(O, Xi, Xi+1) was constructed using a measure- 
theoretic argument based on properties of conditional expectation. We will now 
establish the L1 convergence of its difference quotient to the random variable 
p'(0, Xi, Xi+i) - E[k'(0, Zi) I Xi_-, Xi], again using basic properties of conditional 
expectation. 

Proposition 1. Assume Al (i) and A2 (ii). Then, there is an E > 0 such that for 
each i - 1 and 0 E AE, 

lim E[p(O + h, Xi_l, X) -p(, Xi-1, X) _ X 
h-o LI h 

Furthermore, for each p > 0, there exists E = e(p) > 0 such that 

sup E[lp'(0, Xo, X1)IP] < oo and sup E[Ip(0, Xo, X1)IP] < oo. 
OeA, OeA, 

Proof Recall that 

p(O, X,-1, X,) = E[k(O, Z,) Xi-1, Xi]. 

Then, for h such that 0 + h E A,, the continuous differentiability of k(-, Zj) and the 
mean value theorem imply the existence of a random variable f E A, such that 

p(O + h, Xi,_, X)- p(O, Xi-1, Xi)a.s. [k(O + h, Z,) - k(, Z,) i, X] 
h h 

=E[k'(, Zi) I Xi,, Xi] 
and 

E[k'(, Zi)l | Xi-,, Xi] 
-- 

E[sup lk'(0, Zi) Xi_-, Xi]. 0eA, 
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From A2, the latter has finite pth moment for E small enough. From the dominated 
convergence theorem for conditional expectations, it follows that 

lim E[ p( + h, Xi-1, X,) -p(, , X) -i( X1) 
h--*O h 

=E[ E[k(e + h, Zi) - k(O, Zi) k'(6, Z) Xi, Xi] 

=0. 

The finiteness of the two suprema then follows via an application of the conditional 
Jensen's inequality. 

Note that if the derivative of p(., Xi_-, Xi) exists almost surely, then it must be 
equal to p'(, Xi-_, Xi) a.s. Proposition 1 calculates the limit of the sample path 
difference quotient. To calculate the limit of the expectation (2.2) or (2.4), we will 
need to verify that we can pass the derivative inside the expectation operator. An 
important ingredient in establishing this interchange is to control the behavior of the 
likelihood ratios L(O) and L(O). To accomplish this, we will make the following 
assumption, to control the random variable T: 

A3. There exists z > 1 such that E[zT] < oo. 

We will also use the following lemma, which will permit us to analyze the 
difference quotients. This lemma will be used not only in the proof of the next 
theorem, but also later on, in the proof of Proposition 5, where we will need it to 
establish the uniform integrability of some difference quotients directly without 
appealing to the mean value theorem. We denote max (x, y) by (x vy). 

Lemma 1. Let zl, * , Zn be non-negative real numbers. Then, 
n n n 

r-i-1I= - izi- ii -(ziv). 
i=1 i=l j=1 

Proof. This follows by induction on n. The result is obvious for n = 1. Assuming 
that the result holds for n = k, note that 

k+1 k 

H - zi1 < Zk+l l zi 1 + Izk+I 1 

k=1 k=1 

- k -k+1 

-(zk+1 V) IZ 1z,-1 n (zj v 1) + Izk+l- 11 n (zj v 1) 
i=l j7=1 j=1 

k+l k+l 

= Izi-1 II (z,vl). 
i=1 j=1 

We are now ready to state one of our main technical results. 
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Theorem 2. Assume A1-A3. Then, for each p > 0, there exists e > 0 such that 

sup E L(8) - L(80) lP ( s Lp EL(e) 
- L480) 

P1 < 
sup, 8 - 00 ] eAu E - J< 

Proof. The first inequality follows immediately from the conditional Jensen 

inequality and the fact that L(8) "sE[L(8) j 59. So, it remains to prove that the 
second expression is finite. By Lyapunov's inequality (see, for example, p.47 of 

Chung (1974)), it suffices to prove the result for p > 1. Noting that L(80) = 1, 
Lemma 1 yields 

IL(o) - L(80)I- {Iu(8, X0) - ij + p(O) - 11 + jkT , Z5) - 1 

T 

(u(8, XO)vl). (p(0)vl). H (k(8, Z,)vl1). 
i=1 

Since we can assume p > 1, we may apply Hiilder's inequality and then Minkowski's 

inequality to conclude that 

su r L(e) -L(8o) P1 
supE[J 
OeA, 0?I ()-L(0 - 00 

sup E1_4P u(8, XO)-l14p + supE114P P(8 1 4p] 
8Eh, 8~ - 00 - Or=A, 0 - 0 

(2.8) + supE1/44 k(8, Z,)-1 
OeA, - i:=1 0 - 00 i 

sup E[(u(8, Xo)vl)4]sup E[(p(8)vl)4"Isup E[H (k(8, Zj) v 1)4P 

A 
- [a, + a2 + a3]P(bjb2b3)1'4 

We will now show that each quantity in the latter expression is finite. To deal with 
a,, we note that u(80, X0) = 1. Under A2, the mean value theorem yields the 
existence of 6(8) E A,, for each Xo E S1 and 8 EA,,, such that u(0, X) - 1= 

(8 - 8O)u'(6(0), X0). Then, 

(2.9) a4P = sup E[Iu'(6(0), XO)1I4Po E[sup ju'(0, XO)14P] < o 

for e small enough, by A2. The finiteness of a2 is directly guaranteed by A2. For a3, 
we note that k(80, Zj) = 1 for each i and recall that the Zi are i.i.d. Under A2, the 
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mean value theorem can be applied to each of the T summands and for each 0, 
yielding the existence of 6,(0) E A, such that 

a43 = su. E[ Ik'(6,(0), Zi) ] 

E[T4Pmax sup Ik'(0, Zi)l] 

(2.10) _ (E[TP8]E max sup Ik'(0, Zi)18]) 

F T 1/2 

( [T8P]E sup Ik'(e, Zi)18PI) 

= (E[T8P]E[T]E sup Ik'(O, Z,)1 , 

which is again finite, for e small enough, by A2 (iv) and A3. Wald's indentity was 
applied to obtain the final equality. 

For b,, observe that 

(2.11) bI = sup E[(u(6, Xo)v1)4p] - 1 + sup E[u(O, X)4] < oo 
OeAf e0EA, 

for e sufficiently small, from Remark 3. For b2, observe that 

(p(O) v 1)4 (1 + Ip() - l) 

= 24P(1 + IP(O)- 114) 

<24P(1 + e4P IP (' 11 ) 
= 0- 0o 

and so 

b2 24P(1 + e4sup E[p(0)- 
1 

4p]) < 
9eA. 0- 00 

by A2 (iv). For b3, we have the following inequalities: 

b3 Su (1 ( (k(0 Zi)v 1)4P; T n)] 

(2.12) -^ sup E (k(8 Z,)8p vl) P[T -n]) 

sup (1 + E[k(6, Z) - ) (P[T n]) 

(1 + E[k() l). (P[T n]) 
OefA, n=l 
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From (2.7), for each e > 0, there exists 8(e) > 0 such that supO,EA E[lk(O, Zi)8P - 11] < 
8(e) and lim,.o (E)= 0, while from A3, there exists a < 1 and no such that 
P[T - n] < an for all n _ no. Choose e small enough such that (1 + 8(e))a < 1. Then, 

no--1 X 

b3 n i (1 + 8(E))n/2 + > [(1 + 8(E))]n/2 < o 
n=l n=no 

This concludes the proof of the theorem. 

The derivation of a LR representation for the derivative of Pe basically reduces to 
bringing the derivative inside the expectation operator appearing in expressions 
(2.2) and (2.4). The random variables which then need to be differentiated with 
respect to 0 are L(O) and L(O). 

Proposition 2. Assume Al, A2, and A3. Then, 

lim E -L(e +h)-L(0o) -L'() l=o h--* L h 

and 

lim E L(0o + h) - L(0o) L'(0) =o, 
h--*O h 

where 

,'(1o ) = 
[,(0 

o )[u'(( ?' Xo) p'( 0o ) + T,f k'(00, Z,)'J 
(2.13) L'(0) =L(6o)[ u( XO) + +p(o) o, u(o0, xo) p(Oo) i= k(80, Z) 1' 

Fu'(8o, Xo) p'(Oo) p'(Oo, T,_1, x )] 
L'(0o) = L(00) uI 0,o)L p0):0, XiU(, Xi)] 

(2.14) u(o, XO) p(o) ,i= p(Oo, X-1, Xi) 

= E['(0o) 11]. 

Proof. Assumption A2 permits us to define the random variable: 
T 

D = [u'(0O, Xo)p(6o) + u(80, Xo)p'(0o)]Hl k(0o, Zi) 
i=1 

T 

+ u(Oo, Xo)p(0o)E k'(0o, z,)Hl k(o, zj). 
i=1 joi 

That assumption also guarantees that we have enough differentiability present for 
the difference quotient (L(0o + h) - L(0o))/h to converge in probability to D. In 
Theorem 2, we have established the uniform integrability of that difference quotient. 
It then follows that 

limE[ L(O + h) - L(?)- D) =0. h-O L h 
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To show that Z) can be written as in (2.13), we need to show that u(o0, X0) is 
positive whenever u'(00, Xo) 0 (so that we may divide through by u(80, Xo)), and 
similarly for k and p. Observe, however, that if {u(0o, Xo) = 0, u'(00, Xo) # 0} has 
positive probability, then it follows that {u(00, X0)< 0} has positive probability as 
well. This contradiction allows us to divide through by u(00, X0), and similarly for k. 
For p, recall that p(0o)=1 by definition. Therefore D = L'(0o). The expression 
(2.14) follows by taking conditional expectations in (2.13) with respect to Tr and 
applying Proposition 1. 

In Theorem 2 and Proposition 2, we proved that the difference quotients are 
well-behaved. Those results are the main tools required to establish our next 
theorem. That theorem provides general conditions under which finite-horizon 
performance measures are differentiable. 

Theorem 3. Let Y be an YT-measurable random variable for which there exists 
6 > 0 such that E[IYI'+8] < oo. If A1-A3 hold, then 

(2.15) dEo[Y] = Eo[YL'(0o)]. dO O=6 0o 

Furthermore, E,o[YL'(0o) I| T] = YL'(0o). 

Proof. Given Theorem 1 and Proposition 2, it is sufficient to establish that there 
exists p > 1 and e > 0 such that 

(2.16) sup E[Y. L(e + )-L(80)]<00 
Oo+h EA, h 

since this will guarantee the appropriate level of uniform integrability necessary to 
justify (2.15) (the assertion involving L'(0o) follows by simple conditioning). But 
(2.16) is an immediate consequence of Theorem 2; just apply H6lder's inequality. 

We note that Theorem 3 suggests two different simulation-based estimators for 
the derivative of a finite-horizon performance measure, one using replicates of 
YL'(00), and the other using replicates of YL'(0o). The principle of conditional 
Monte Carlo asserts that the estimator based on YL'(0o) has lower variance (but see 
Remark 1). 

3. Likelihood ratios for Harris-recurrent stochastic recursions 

We will now turn our attention to the construction of likelihood ratios and gradient 
estimators for infinite-horizon (steady-state) systems. In order to make the steady- 
state derivative estimation problem well-defined at 00 E A, we shall need to require 
that X possesses a (unique) stationary distribution for each 0 E A, for some e > 0. 
Specifically, we shall require the following. 
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A4. There exists e > 0 such that X is a positive recurrent Harris chain under P(9) 
for each 0 e A,. 

It is well known (see Nummelin (1984)) that because S1 is separable, we can assert 
that A4 implies that for each 0 e A,, there exists an integer m(0) 0, a 
non-negative (measurable) function A(0), a (measurable) subset A(0) c S, and a 
probability measure <p(O) on S1, such that: 

(i) Pe,x[Xn A(0) infinitely often] = 1 for x E S1; 
(ii) Po,x[Xm(e) dy] _ A(0, x)<p(0, dy) for x, y E S1; 
(iii) inf{A(0, x):x E A()} > 0. 

In this paper, we shall strengthen these conditions so that they hold uniformly in 
0. Specifically, we shall assume that: 

A5. There exists e >0, an integer m _0, a (measurable) subset A c S1, a prob- 
ability qp on S1, and a non-negative (measurable) function A for which 

(i) Pex[Xn E A infinitely often] = 1 for x E Si, 0 E A,; 
(ii) P,x[Xm E dy] k A(x)op(dy) for x, y E S1, O E A,; 
(iii) inf {A(x):x e A} - A, > 0. 

Remark 4. Allowing m = 0 in A4 and A5 is non-standard, but it will permit us to 
simplify our estimators nicely for systems which have a regenerative state. To be 
more precise, suppose that there is a specific state x, E S1 that is hit in finite time 
with probability 1 from any other state; that is, Po,[T < oo] = 1 for all x E S1 and 
O e A,, where TAinf{n >O:Xn=x*}. Define A={x*} and qp(dy)=I[x, E dy]. 
Then, A5 holds with m = 0, A(x) = I[x = x], and A* = 1. In fact, this degenerate 
case is the only case where A5 can hold for m = 0. 

Remark 5. In most applications, A will be a compact set, and conditions A5 
(ii)-(iii) will follow via a continuity argument. To verify A5 (i), let E,x(*) denote the 
expectation operator corresponding to Pe,x(-) Suppose that for each O E A,, there 
exists a non-negative (measurable) function g(O, .) and a positive constant e(0) such 
that: 

(i) Ex[g(O, X l)] - g(, x) - E(0) for x t A; 
(3.1) 
(3.1) (ii) sup Eo,[g(, X1)] < oo. 

xEA 

Let T(A) = inf{n _ 1 :X e A}. Then, conditions (3.1) ensure that 

(3.2) sup E,x[T(A)] < oo 
xeA 

(see, for example, Nummelin (1984) for details) and hence A5 (i) is satisfied. In fact, 
(3.2) and A5 together imply A4. (We note that A5 does not guarantee that X is 
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positive recurrent under P(O); the additional hypothesis (3.2) yields this.) The 
function g(O, .) is called a 'test function' or 'stochastic Lyapunov function' in the 
literature. 

Assumption A5 ensures that for each 0 e A,, the Markov chain X possesses a 

unique a-finite stationary measure ir(O) having a regenerative representation. To 
see this, one uses the so-called 'splitting method' due to Athreya and Ney (1978) and 
Nummelin (1978). This technique consists of observing that A5 (ii) ensures the 
existence of a family of transition functions Q(O) such that 

(3.3) Po,x[Xm E dy] = A(x)p(dy) + (1 - A(x))Q(0, x, dy) 

for 0 E A,, x, y e Si. Roughly speaking, (3.3) asserts that if the Markov chain X 
currently occupies state x e S, then there is a probability A(x) that m time units 
later, the chain will be distributed according to <p. Because of A5 (i) and (iii), there 
will therefore be a random time r at which the state of the chain is distributed 
independently of the state at time r - m. The stationary distribution r(O) can then 
be represented in terms of a ratio formula expressed over the time interval [0, r]. 
Note that if m = 0 and A* = 1, then qp is concentrated on a single state x* and r is the 
first hitting time of x*. For the remainder of this section, we will assume (unless 
otherwise specified) that m ' 1. For the case where m = 0, the development goes 
through with many simplifications. 

To develop likelihood ratio representations for ;r(O), we need to make the above 
discussion more precise. To facilitate this task, we will modify slightly the 
interpretation of Q adopted in the previous section. Our interpretation will provide 
the randomness necessary to 'split' P(O) and construct the first regeneration time r, 
as well as the succeeding regeneration times. Specifically, let CQ = S1 x S2 x {0, 1}. A 
typical element co E Q then takes the form (x0, z1, z2, '.., il, i2 '' 

). The random 
variables (Zn :n - 1) and (X n >n 0) are defined and distributed as before (so we can 
still denote their probability measure by P,x), and we further define the random 
variables rl,()) = in for n > 1. 

Before completing the construction of probability measures on Q, we note that 
the splitting idea requires the ability to generate variates having distributions given 
either by qp or by Q(6, x, .). We wish to show that such variates can be constructed 
directly from the simulation of the Markov chain X itself and the 0-1 valued random 
variables rln defined above. In other words, no additional randomization will be 
introduced to generate the appropriate variates. (The details of this type of 
construction have not previously been explored in the literature on simulation of 
Harris chains.) To accomplish this task (for m _ 1), we fix 3 E (0, 1) and let 

'pp(x, dy) = PA(x)'p(dy), 

(3.4) QG(e, x, dy) = (1 - P3)A(x)'p(dy) + (1 - A(x))Q(O, x, dy) 

= PO,x[Xm E dy ]- A (x)cp(dy). 
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Note that introducing B effectively shrinks A(x). The main reason for introducing 
this shrinkage is to make sure that Q,(0, x, -) is equivalent to Pm(0, x, ) (in the 
measure-theoretic sense, i.e. Q,(O, x, dy) = 0 if and only if Pm(0, x, dy) = O) where 
Pm(o, x, ') P,x[Xm E *]; this will be used later. Furthermore, qp,(x, ) is absolutely 
continuous with respect to pm(0, x, '). Hence, there exist densities wi(O, x, y), i = 0, 
1, such that 

Q,(0, x, dy) = wo(, x, y)Pm(0, x, dy) 

pp(X, dy) = Wl(, x, y)Pm(o, x, dy) 

Also, these densities are non-negative and satisfy wo(O, x, y) + w (0, x, y)= 1. 
Let So = -m and Sj = inf{n _ Sj_, + m :Xn E A} for j _ 1 be a sequence of hitting 

times of the set A defined so that at least m time units elapse between such visits to 
A. We can now define a probability Po, on Q2 as follows: 

Po,,(dxo x dzl x ... x dz, x {i} ... x {in}) 

(3.6) n 

= 8x(dxo)Ke(dzl) . . K (dzn)H wij(8, Xsj(),, Xsj(w)+m). 
j=1 

Under P,,, X and Z are distributed as before. Let 

Pe(d ) = p(dx)P,x(da ) 

be the probability on Q under which X0 has distribution qp (this ensures that X 
'regenerates' at time 0) and let Eo(') be the corresponding expectation operator. 
Again, P(-) and E(.) will be a shorthand notation for Poo(-) and Eo('). In any case, 
the 7j's have conditional distribution given by 

Pe[j = 1 I X0, Z] = W1(0, Xs, Xj+m) = 1 - Pe[7j = 0 X0, Z]. 

With this definition of Po, we find that on the event {S = n}, 

PO[Xn+m E dy | Xo, Z1, - ' 
, Z, , 71 , 7 1] 

=P[Xn+m E dy I Xn, r] 

w (0, X,,, y)Pm(0, Xn, dy) 

W7,1( , X )Pm(0, Xn, dz) 

Taking advantage of (3.5) and (3.6), we find that on {S, = n, rl, = 1}, 

Pe[Xn+m E dy s Xoi Z1, f 1, z ,* * * , Z n, * * * ] = p (dy). 

Hence, if we set y = inf{n -1: 7'n = 1}, we may conclude that r = S, + m is a 

1033 



PETER W. GLYNN AND PIERRE L'ECUYER 

randomized stopping time at which the distribution of X is independent of its 
position at time T - m. We have 

n-1 

Pe[r = Sn + m I X, Z] = w(0O, Xs,, XSn+m) l wo(e, Xs, XSj+m), 
i=l 

which is a function of only Xo, * Xs,+m. As a consequence, T is the desired 

'regeneration time' for X under Po, and it follows that under A4 and A5, there exists 
E > 0 such that 

(3.7) Ee[I(XjEdx)1 
re(dx) = E 

for 0 E A,. 

Remark 6. The representation (3.7) for 7ro is valid for arbitrary positive recurrent 
Harris chains. In other words, the construction of T followed above does not depend 
on the fact that X is the solution of a stochastic recursion or on the uniformity 
hypotheses implicit in A5. 

We now turn to the construction of a likelihood ratio (LR) representation of 7ro in 
terms of 7ro0. Assume that: 

A6. Al (i) is in force; i.e. there exists e > 0 such that Ko is absolutely continuous 
with respect to Ko0 for 0 E A,. 

We note that under A6, Pn"(, x, .*) P,,x[Xn E ] is absolutely continuous with 

respect to P"(00, x, ) for O e A,, x E S,, n > 1. Let p,(O, x, y) be the density of 
Pn(, x, .) with respect to Pn(0o, x, ') for n _ 1. 

To proceed further, we observe that (3.4) and (3.5) imply that 

cp,(x, dy) = wl(0, x, y)Pm(o, x, dy) 

= wi(O, x, y)pm(, x, y)Pm(0o, x, dy) 
and 

(p3(x, dy) = Wl(0, x, y)Pm(6o, x, dy), 
and hence 

W1(0 x, y)pm(, x, y) = w1(0o, x, y) 

Pm(0o, x, .)-a.s. Furthermore, if we define 0/0 to be zero, it is evident that 

~(3.~8) w1(O, x, y) 1 
(3.8) 

w1(00, x, y) pm(6, x, y) 

Pm(0O, , .)-almost everywhere. We now take advantage of the fact that because 
Qs(, x, ) is equivalent to Pm(, x, '), it follows that Q,3(0, x, ) is absolutely 
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continuous with respect to Qp (0o, x, *) (this is the prime reason why we took f3 < 1). 
We let q (0, x, y) be the corresponding density, and note that (3.4) and (3.5) imply 
that 

Q,0 (0, x, dy) = q (9, x, y) Q,9(0o, x, dy) 

= q(6, x, y)wo(0o, x, y)Pm(00, x, dy). 

On the other hand, 

Q,0(0, x, dy) = wo(6, x, y)Pm(0, x, dy) 

= wo(6, x, y)p.(0, x, y)Pm(00, x, dy) 
and thus 

q(0, x, y)w0(00, x, y) = WO(O, x, Y)prn(O, x, Y) 

Pm(60, x, -)-almost everywhere. Because of the measure equivalency mentioned 
above, pm (O, x, .) and q (9, x, ) have the same support. Hence, whenever 
wo(60, x, y) > 0, 

(3.9) ~~WO(O, x, y) q q(0,x, y) 
(3.9) ~~~~wo(60, x, y) Pm(9' ,XY) 

Pm(60, x, -)-almost everywhere. 
We can now make the connection with the finite-horizon framework of the 

previous section: take T - 

v-i 

rT(9, X0, ..., xT) = wi(e, xsy xs+m) H Wo(o, Xs,, Xs,+m), 

and ~p- Using the relation r = Sy, + m, one can construct r and y from either L2 
or fl. With (3.8) and (3.9) at our disposal, and since (p does not depend on 6, we 
obtain that u(e, X0) 1 and 

(0\-(I q (9,Xs,, Xs, +m) 1 

~kj=1Pm(6, IX.jxS+M) Iprn(0, Xrm X?r) 

T'he likelihood ratios L (0) and L(6) can then be written as 

/?Y1q(,X, X,m 
(3.10) L (e) f ( k (0, Z1) '~ ff (,X, l+)~ 

i=1 Ij=i Pm(O,Xsj, .S'+m) M0 m XTm, 
X 

and 

(3.11) L(O) = fp0xj_l.X))Q'( Xf,X,m)lp(, Tm ? 

Under A4-A6, Al holds and Theorem 1 applies, with %r= o-(Xo, Z1,...,IZT 
.q,- , 714) Combining this with (3.7), we also obtain: 
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Corollary 1. Under A4-A6, there exists e > 0 such that 

(3.12) Eoo I(Xj E dx)L(O)] Eoo E I(Xj e dx)L()] 
L=e(dx) 

_] ]= 
edx) Ee[rL(x)] Ee,[rL(o)] 

for 0 E A,. 

Remark 7. We note that the last expression in (3.12) is defined only in terms of 
the chain X and the random variables r17, * * , ry. This representation for 7rC is in 
fact valid without any assumption that X be derived from a stochastic recursion, 
provided that A6 is replaced by an assumption that P(O, x, ) is absolutely 
continuous with respect to P(00, x, .) for each 0 e A,, x e S1. 

Remark 8. We must acknowledge that implementing this construction in actual 
simulations is not easy in general, because w0 and w1 may be hard to evaluate. 
Moreover, when m > 0, we must memorize the sequence of states for the last m 
transitions in order to be able to do the acceptance/rejection test properly. In the 
degenerate case where m = 0, there is no need to shrink A(x): one can take 3 = 1. 
Then, one has p(0) 1 and the likelihood ratios simplify to 

L(0)= l k(0, Z,); 
i=1 

L(o) = f p(0 x, Xi, Xi). 
i=l 

4. A likelihood ratio representation for the derivative of the stationary 
distribution 

To obtain a LR representation for the derivative in Section 2, we required the 
family Ko to be suitably smooth in 0. One of the major results of this section is that 
the imposition of appropriate regularity hypotheses on the densities k(0, *) in fact 
forces the densities pm(', x, y), and q(., x, y) appearing on (3.10) and (3.11) to be 
well-behaved. A similar result for p(-, x, y) was already established in Proposition 1. 
We shall assume the following conditions. 

A7. 
(i) There exists e>0 such that for each z ES2, k(, z) is continuously 

differentiable over Al; 
(ii) For each p > 0, there exists E = e(p) such that 

E[sup lk'(O, Z)l] <oo; 
OeAJ 
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(iii) For each r E R, 

limE[sup jk(0, Z1)l] = 1. 
E-O 0 = A., 

Remark 9. Note that in contrast to (2.6), A7 (iii) is assumed to hold not only for 
positive values of r, but for negative values as well. This will be used in the proof of 
Proposition 5 (and only there). When the stopping time ? is non-randomized, as 
when the system is regenerative in the classical sense as indicated in Remarks 2, 4, 
and 8, then the result of Proposition 5 will hold trivially and A7 (iii) for r < 0 is no 
longer necessary. In the proof of Proposition 3, we will need A7 (iii) for r > 0, but 
that follows from A7 (ii) and the same argument as in Remark 3. 

A glance at formulas (3.10) and (3.11) suggests that any LR derivative formula for 
the stationary distribution will require differentiability of pm(-) and q(*) in the 
parameter 0. The next proposition establishes the required differentiability; the key 
idea in the proof is the recognition that the derivative of pm(') can be defined in 
terms of the conditional expectation of the derivative of k(.). 

Proposition 3. Assume A4-A7. Then, for each i and n 2- 1, there is an e > 0 such 
that for each 6 E A., there exist random variables pn(O, Xi, Xi+n) and 
q'(, Xs,, Xs,+m) such that 

lim E Pn( + h, Xi, Xi+n) -pn(6, Xi, Xi+n) pn(O, Xi Xi+n) ] 0 
h--.O h 

and 

nXq(0+h, Xs, Xs,+m) q(), Xs 
lim E , Xs,+,,,) - 

q'(, Xs,, Xs,+m) =0. h-O+ I h 

Proof. The proof for Pn is similar to that of Proposition 1. From the defining 
relation for a conditional expectation, one has 

pn(, Xi, Xi+n) = E k(, Zj) X, Xi+n. 

Hence, 

pn(O + h, Xi, Xi+n) - Pn(O, Xi, Xi+n) 
h 

(4.1) Fl /i+n l+f 

= E[( k(O + h, Zj) - I k(0, Zj)) XI X +n]. 
Ljh =i+l j=i+1 

By A7 (i), it follows that for 0 sufficiently close to 0o, 

1 i+n i+n i+n i+n 
(4.2) lim- ( k( +h , Zj)- H k(0, Z)) = k'(9, Zj) HI k(, Z,). 

h- O h =i+1 j=i+1 j=i+1 lMj 
l=i+l 
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On the other hand, for h small, the continuous differentiability of k(., Zj) and the 
mean value theorem assert the existence of 5 E [0 - h, 0 + h] such that 

1 i+n i+n i+n i+n 

, l k(O+h, Zj)- H k(O, Zj) -= k'(4, zj) n k(6, Z), 
h \=j+1 j=i+l j=i+l l&j 

l=i+1 

which is in turn dominated, if 0 + h e A., by 

i+n i+n 

(4.3) S sup Ik'(0, Zj)l n sup k(O, Zl), 
j=i+l 0eA- l ij O eA 

I=i+1 

which has expectation 

nE[sup Ik'(0, Zi)I](E[sup k(O, Zj])k. 

Assumptions A7 (ii-iii) ensure the finiteness of this expectation. Hence, the 
dominated convergence theorem for conditional expectations, applied to (4.1) and 
(4.2), yields 

lim E[ pn(O + h, Xi, Xi+n) -pn(, Xi, i +n) p((, X,, Xi+n) 
h--. O h 

i+n i+n i+n i+n 
=limEE I k'(O+h, Z,)- n k(0, Zj)- k'(, Zj) k k(0, Z) 

h-1O h =i+l j=i+l j=i+l lj 
l=i+l 

=0 

where 
+n 

i+n i+n 

p;OXie, Xi+n)= E k'(0, Zj) n k(, Zl) X,, i+n. 
j-i+l tij 

l=i+1 

To handle q(-), we observe that (3.4) and (3.5) imply that 

Pm(o + h, x, dy) - Pm(0, x, dy) 

(4.4) = Q,(O + h, x, dy)-Q (0, x, dy) 

= [q(0 + h, x, y) - q(0, x, y)]Q0(0o, x, dy) 

= [q( + h, x, y) - q(e, x, y)]wo(0o, x, y)Pm(0o, x, dy). 
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But 

(4.5) Pm( + h, x, dy) - Pm(, x, dy) = [pm(O + h, x, y) - p(, x, y)]P(0o, x, dy) 

is a (finite) signed measure. Relations (4.4) and (4.5), together with the Pm(0o, x, )- 
almost everywhere positivity of wo(0o, *), therefore yield the equality 

q( +h,x,h)-q(,x,y) _Pm( +h,x,y)- pm(,x,y) 
h hwo(6o, x,y) 

Moreover, from (3.3)-(3.5), 

wo(o, x,y) =d( ') 1- . 
dPm(Oo, x,) 

Hence, the second part of the proposition follows again from the dominated 
convergence theorem. 

Remark 10. The proof of Proposition 3 in fact shows that 

1 XQ X a.s.Pn(O, XSi, XS,+m) q'( , X,, Xi+m) w(o, X, XS+m) 
wo(Oo, Xs, Xs,m) 

From that proposition, it also follows that the difference quotient of p(O) converges 
in L1 to p'(O) at each 0 E Ae (although p(O) is not necessarily continuously 
differentiable) under A4-A7. 

It now remains to show that A2 (iv) and A3 hold, so that all the results of Section 
2 apply. To accomplish this, we need to control the random variables T and y. In 
particular, we will show that, under suitable hypotheses on the chain, T and y have a 
geometrically dominated tail. This will require making a further assumption about 
the set A appearing in A5: 

A8. The set A is a Kendall set for the Markov chain having transition function 
P(0O), i.e. if T(A) = inf{n 1 :Xn E A}, then there exists z > 1 such that 

sup Eeox[Z T(A)] < 0. 
xeA 

Remark 11. The verification that a set A is a Kendall set can be implemented via 
the use of appropriate Lyapunov function methods. In particular, suppose that there 
exists a non-negative function g defined on S1, e > 0, and r < 1 such that: 

(i) EoO,x[g(X1)]- rg(x) - E for x z A; 
(4.6) 

(ii) sup Eoo,^[g(X,)] < o. 
xeA 

Then, A is a Kendall set; see Nummelin (1984), pp. 90-91 and Chapter 16 of Meyn 
and Tweedie (1993). Note that such a Lyapunov function automatically implies the 
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existence of a Lyapunov function satisfying the conditions of Remark 5 at the 

parameter point 8 = 60. 

Proposition 4. Under assumptions A4-A7, P[y > k] - (1 - 3A*)k for k ? 0. If, in 

addition, A8 is in force, then there exists z >1 such that E[z] <cc. 

Proof. Relation (3.6) implies that 

P[y > k]=E[P[y>k IX]]E[H] 
= E f4wo(6o, Xs, Xs1+m)} 

By applying the strong Markov property first at time Sk and then at times Sk-1, 

Sk - S...1S, we conclude that 

P[y >k] = E[H iM0 Xs)] 

where 

vo(6o, Xs) = E[wo(6o, Xs,, X,+m) I X55] 

= w0(8o, Xs,, y)Pm(80, Xs,, dy) 

-1 -/3A(Xs;) 1 -/A*, 

proving the tail bound for y. To prove the existence of z >1 such that E[zT] <cc0, we 
note that P[y = k I Xi, mj, j k Ski i E k] i I A* on {y > k - 1}. The result then follows 
from Lemma 5.6 of Nummelin (1984), p. 88. fl 

From (3.5), (3.9), and Remark 10, it is easily verified that 

q'(O, Xs5, Xs,+m) p'(O, Xs1, Xs,+m) _ P(8, AT5, Xs,+m) W1(, XS,, XS'+m) 
q(9Xs,,X1Si+M) Pm(8 ,A5,A.Xs+M) Pm( 6, A,, X5+>M w0( 6, X55, X.,+m) 

P-a.s., and therefore 

q'(8, Xs,, Xs&+m) i=iPm(0, Xs,, Xs,+m) 
(4.7) 

() p' (6, Xsi, X.s+ m) WI(, Xs5, Xs,,+m) P p(O, Xs,, Xs,+m) 

i=lpm(6, X,,x .+m)wo(6,Xsj,X+,,,) Pm(O,X5, Xs7+m) 

If the derivative of pm(., Xs,, X,+m) exists a.s., then it is a.s. equal to 
p,,(-, 4.,, Xs;+m) and the above expression is a.s. equal to p'(6)Ip(8). 

Recall that the random variables pm(0, Xs,, X.s;m) and q(0, X,, X,!m) were 
constructed indirectly via conditioning arguments. Consequently, when viewing 
Pm(Q Xs,, Xs,+,,) and q(Q, Xs,, Xs+.) as stochastic processes in 9, there is no a priori 
reason to expect almost sure differentiability or even continuity over 9E AE,. (This 
can be said even if the derivative exists a.s. at every 9, and this is for the same 
reason that a Poisson process N = (N(t): t O0) is discontinuous even though at 
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every point t, N(-) is continuous a.s. It could happen, for instance, that the set of 
measure zero on which the derivative fails to exist does depend on 0 in such a way 
that for each w, there is a value of 0 E A, where the derivative does not exist.) To 
proceed further, we will use Lemma 1, which will permit us to analyze the difference 
quotients directly without appealing to the mean value theorem. 

Proposition 5. Assume A4-A8. Then, for each p > 0, there exists e > 0 such that 

sup E[ () - P(o) I< 
OeA, 0 - 0o 

Proof. Again, by Lyapunov's inequality, it suffices to prove the result for p > 1. 
To reduce the notational burden, let 

K,(O) = k(0, Zi), 

K(o) = k'(6, Z,), 

Pi(0) =pm(, Xs,, X,+m), 

Qi(O) = q(, Xs,, Xs,+m), 

Wij(O) = w,(e, , X, X+m), j = , 1. 

Noting that p(0o)= 1, Lemma 1 yields 

Ip(o) - p(0o)lI { I()-1 - 11 + IQ,() - 11 
1 i = 1 

Y e-1 
* I (Pi(o)-x v 1). -I (Qi(0) v 1) 
i=1 i=1 

y1 -Y-)-+ 1ei=1 

(Pi(o)-2 V 1). It (Qi(e )v 1). 
i=1 i=1 

Now, from Holder's and Minkowski's inequalities, 

sup E[ p() - p(o) PI 
OeA, L|0 -- 

00 

eEA, i=1 - 0-0 e, ,=1, 0- 0 

. (sup E[ (P() )3P sup E[r (Qi() v 1)3p) 

A [a4 + a5]P(b4b5)l3. 
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By the same argument as in the proof of Proposition 3, one has 

(4.8) E[ |p () _ K(e) 6P] m6PE sup IK;(0)6P] . (E[ sup (K())6P]) C 
0 - 00 OJA, LA0, 

for some finite constant C. Therefore, using Proposition 4, we have 

a3P<sup E , :[-yi](o ] 4 
0FA, L=I( 0 - 

0o 

sup i (P[y- i])'/2(E[ Pi() - P(0) 6p 
])2 

-0eA<, i=1 - I]J 

'- (1 -A,)('-I)'2c1/n 
i=1 

<00. 

For a5, we note that the proof of Proposition 3 establishes that 

(4.9) Qi() - Qi(0o) Pi() - Pi(0o) 1 
0- 00 Wo(0o, S, Xi,+m) 0- 00 

Since (1 - 3)P(0, x, dy) Q3(0, x, dy) - P(O, x, dy), it follows that 1 -/3 , 
wo(0o, Xs,, X^+m) - 1 a.s. and consequently 

(4.10) a5 ^ (1 - )-'a4, 

proving the finiteness of a5. Turning now to b4, the Cauchy-Schwarz inequality 
yields 

b = su E[p (P(0)-P v 1)] 
(4.11) 

e =1 

sup I E[ (Pi()-Pv 1)]. P[y n]. 
0^A, n=l i l 

Recall that 
& s,+m , , 

p(0) sIE[K n ( Kj() X s,+m 

and note that (x-4v 1) is the maximum of two convex functions and hence convex. 
So, the conditional Jensen inequality yields 

P,(6)-4P v 1 E[ ( H () -4P)v 1| Xs, XS +] 

j=si+l 

EE[H (Kj (6f4) 
- I4p X's; XS?m]. 

Hence, 

E[ I (P(o)"v i)] E[-n E iv (Kj(O4"v) I Xsi, Xi+,. 
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Applying the strong Markov property at time S,, we obtain 

-_ 'I: i el~(x,(s)'D~e-4p V 

[n E[ 
Si+m -(K(4v) X, Xs+mj 

=i_fl E Il (Kj(O) 4P 1)I XSsi Xsi+m E f[ 
S, 

Xsn 

n-1 - 5,+ -jr Sn+m 

'-[J E rI (Kj(69)-4P v 1)] E xLj,+ 
. (K j(O)-4pv 1)| Sn 

-n S +m - n 
= n E f (Kj(K)-4p v 1) I X.s, Xs+m. E f (Kj(O)-4pv 1) 

i=1 ij=Si+l - j= J 

= n E fn (Kj(O)-4Pv1) |x Xs+m . (E[(Kl(0)-4Pvl)]). i=1 -j=Si+l 

Successively conditioning at times Sn-1, Sn-2, * , S, we obtain 

[n - Si+m - 
E n E H (Kj(0) r v 1) I X,, Xs,+m (E[(K()-4P v l)])nm. 

So, 

b4 - sup I (E[(Ki()-4 v l)])nmP[y n]. 
OeA n=1 

Proposition 3 and Assumption A7 can then be exploited, as in (2.12), to obtain that 
b4 < oc. For b5, we argue as in (4.11) to obtain 

n-1 
b,5 sup > E [I (Qj(O)2P v 1) P[y n]. 

E A, n=O j=o 

We now apply a conditioning argument similar to that used for b4: 

E[H (Qj,()2P vl) IXo, *, Xsn] 

n-2 

< r (Qi ()2P v i) E[(Qn 1(9)2p v ) XS_l]J. 
j=O 

But 

E[(Qn_ ()2p V 1) I Xs_ ] 

E[(1 + IQn-1(0) - 1)2P I XS_,-] 

E[(1 + IQn-(8)- ll)211)p2 Xs,] 

=1 + ( [lQn-(0)-E[ ) I lXs. i=1 I 
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By (4.9), it is evident that 

E[IQnl(0)- lli I Xs,-] 

Pn--(0)- Pn-(o) 1 ) 
\EW o,X 2j22) I XS.,J = ?[,wo(Oo, Xs,_,, x,,_+m) I Xs._] 

_ (1 - 3)-jE[IPPn(O) 
- Pn-,(0o)lj I XS,] 

<--(1- 3)-'esup E[| Pn1() - 
Pn-1(0?) ] 

OEA, L t0- 00 

Arguing as in (4.8), we may therefore conclude that for every 8 >0, there exists 
E > 0 such that 

sup E[(Qn_(0)2p v 1) I Xs_,] 1 + 8. 
EAf 

By conditioning on Xs,2, * * , Xs, and arguing similarly, we obtain the bound 

n-1 

sup E[f (Qj(0)2p V 1) (1 + )n, 
OrA, j=o 

SO so 

b5 (1 + 8)"P[y n]. 
n=0 

By Proposition 4, b5 is then finite for e small enough, concluding the proof. 

Proposition 5 completes the verification of A1-A3 for our Harris-recurrent setup. 
Theorem 2 shows in that case that the difference quotients are well-behaved. It is 
the main tool required to establish our next theorem. Theorem 4 shows that the 
stationary distributions to are in fact differentiable in a very strong sense, namely in 
an extended version of the total variation norm. (For f 1, the notion of 
convergence presented will be precisely that of total variation.) 

For a measure ,/ on S1 and a S1-measurable function f, we adopt the notation 

t f (y)d(dy). 

We also put 
?-1 

Y(g)= g(Xn). 
n=0 

Theorem 4. Let f be a non-negative S1-measurable function and assume that 
there exists 8 >0 such that rof+8 < oo. If A4-A8 hold, then there exists a finite 
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signed measure i' such that 

lim sup rO+g -og -7rg = 0 
h-*0 Igl-f h 

and 

E[ [I(Xn E 
)- 

( -)]L()] E[(Y(I(.))- T (-))L (0o) 
E[] E[r] 

Proof. Assume, to start, that g is non-negative. By (3.12), there exists e > 0 such 
that for 0 E A^, 

(4.12) 7rog = u(g; 0)/1(O) 

where 

u(g; 0) = E[ g(X)L(), 
ur=o 

(O) = E[TL(o)]. 

We observe that 

u(g; 0o + h) - u(g; 00) _ E[Y(g)L'(0o)] sup 
O-_gf h 

E[Y(f) L(oo + h)-L() L'(0)o) -O [Y(t)| ( ? h (?L'(0o)|] 

[ max f(X,)-z L(0 + 
h)- L(0o) '(0) 

0:-<(n <'r h 

_ E" [ max f(XnY' Elq[']" E1/r L(e0 
+ h)- L(0o) - L'(0o) 

Lo0n<Tr 

P 
L h 

L 

by H1lder's inequality, where p-l + q-1 + r-1 = 1 and p, q, r > 0. Choose p = 1 + 8 
and use the inequality 

E max f(Xn)P c E f(Xn = E[T]7rf1+0 
O^?n<Tr n=O 

to obtain the finiteness of the first factor. The second factor is finite by Proposition 
4, and the proof of Theorem 3 establishes that the third goes to zero. Consequently, 

(4.13) lim sup u(g; 0 + h)- u(g; 0o) E[Y(g)L'()] =0. 
h-00 OSg=f h 
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Setting f-1 and noting that (O) = u(1; ), we conclude that 1(.) is also 
differentiable at 0= 0o, so 

1 1 l'(8o) 
(4.14) l((0o + ho(h). 

Combining (4.12), (4.13), and (4.14) yields the conclusions of Theorem 4 uniformly 
in non-negative g f-. To handle general g, we split g into its positive and negative 
parts and apply the above argument to the separate pieces. 

Remark 12. Theorem 4 requires the hypothesis that rofl+s < o, where f is a 
given non-negative S1-measurable function. Once again, Lyapunov function methods 
can be used to verify this condition. In particular, assume that there exists a 
non-negative function g defined on S1 and e > 0 such that: 

(a) Eo,x[g(X1)] g(x) - Ef(x)+8 for x g A 
(4.15) 

(b) sup E?o0,[g(X,)] < oo 
xEA 

Then, under A4-A8, Tweedie (1983) has established that finiteness of rof1+f 
necessarily follows. 

Remark 13. Theorem 4 gives general conditions under which the stationary 
measure of a Markov chain (driven by a stochastic recursion) is differentiable in a 
strong (total variation-type) sense. Recent work of Vasquez-Abad and Kushner 
(1992) also addresses this question. The hypotheses given there are quite different 
and, in particular, are not given in terms of conditions that can be checked directly 
from the transition function of the chain (unlike, for example, the Lyapunov 
function criteria used above). 

Remark 14. Much of the analysis in this paper is independent of whether the 
chain is driven by a stochastic recursion of the type described above. Our results 
could then be generalized. However, because the need for more general results from 
an applications viewpoint does not seem compelling, we shall not pursue this 
further. 

Noting that L'(0o) = E[L'(0o) I| ] and that Y(g) and T are both 9-measurable, 
we obtain the following corollary to Theorem 4. 

Corollary 2. Under the assumptions of Theorem 4, rog is differentiable at 0 = 0o 
for any g satisfying Igl _f, and 

d oo= E[(Y(g)- (reog)T)L'(0o)] 
d [E[r] 

E[(Y(g) - (r90g)T)L'(0o)] 

E[T] 

1046 



Likelihood ratio gradient estimation for stochastic recursions 

Remark 15. The representation of the derivative of erg given in Corollary 2 can 
be used to construct simulation-based derivative estimators that converge at rate 
t-'2 in the amount of computational effort t; see Glynn et al. (1991). 

It turns out that because the random variables Y(g) is an additive functional, an 
alternative representation for the derivative can be constructed. The representation 
takes advantage of the fact that 

E[g(X,)k'(0o, Xj) I ] =0 

for i<j. Consequently, roughly half the cross-product terms appearing in 
Y(g)L'(0o) (and Y(g)L'(0o)) have vanishing expectations. The resulting estimators 
are called triangular estimators. 

Corollary 3. Under the assumptions of Theorem 4, one has: 

E[r] * -eog E[= k'(0o, Zj) [g(Xi)- 7oog] 
d e6o= =0 j= i =j 

y-1 r-1 
+ ? q'(o0, X,XXs,+m) [g(Xi)- rog]] 

L=1 / 
i=Si+l 

(4.16) - E Ps(0o, Xs,, Xsj+m) [g(Xi) - 7roeg] 
F' 1 1i=Si+l 

= E p'(0o, Xj_, Xj) [g(Xi) - roog] 
i=j 

+ E q'(0o, XSj) Xs, m) E [g(X,)- roog] 
-j=1 i=Si+l 

(4.17) - E[ M(O Xsj XSj+m) [g(Xi)-~o] . 
j=1 i=Si+l 

5. Examples 

The theory that we have developed in the previous sections is well suited to 
providing sufficient conditions under which steady-state performance measures are 
differentiable. In particular, suppose that X is the solution to a stochastic recursion 
for which the measures Ko satisfy A6 and A7. Assume that A5 is satisfied and, for 
the set A appearing in A5, there exists a non-negative function g, and constants 
r < 1 and e > 0, such that for 06 A,, 

(i) Eo,x[g(X,)] rg(x) - e for all x ~ A 
(5.1) 

(ii) sup E,,[g(X,)] < oo. 
xeA 
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Then, Remarks 5, 11, and 12 guarantee that 7rQ exists for 0 in a neghborhood of o0, 
and Irof is differentiable at 00 for each f satisfying the growth condition 

(5.2) If(x)l a + b(g(x))P, 

where a, b =0 and p <1. We will now illustrate these ideas with a couple of 

examples. 

Example 1. Consider the sequence of waiting times in a single FIFO GI/GI/1 

queue, (Xn, n - 0), with Xo = 0. That sequence follows the well-known recursion 

Xn+l = [Xn + Vn - Un+l+, 

where Vn is the service time of customer n (n 0) and Un+1 represents the 
interarrival time between customers n and n + 1. This is a special case of (1.1) with 

Zn+l = Vn - Un+l and h(x, z) = [x + z]+, or with Zn+1 = (Vn, Un,+) and h(x, v, u) = 

[x + v - u]+..We will adopt the latter representation, in which Z,n+ is a vector of 
two independent random variables. Let B(O, .) and A(6, .) be the service time and 
interarrival time distributions and let C(, .) be the distribution function of 

Vn - U,n+. Assume that over A,, the support of these distributions is independent of 
0. Let c(0, ) denote the density of C(O, ) with respect to C(00, ), so that 
C(6, dy) = c(O, y)C(00, dy), and similarly for a and b with A and B. This gives 
k(6, v, u) = b(0, v)a(0, u) and p(0, x, y) = c(0, y - x). 

We assume that k satisfies A6 and A7, and will now examine how to verify A4, 
A5, and A8 for that example using stochastic Lyapunov functions as suggested in 
Remarks 5, 11, and 12. For that, we will find a function g that satisfies (5.1)-(5.2). 
One of our objectives here is to illustrate the use of such functions. There also exist 
other approaches for verifying A4-A8 for the GI/G/1 queue, based on the fact (for 
example) that the GI/G/1 queue can be modeled as a random walk (see for 

example Asmussen (1987) and L'Ecuyer and Glynn (1994)). 
To verify A5 (ii)-(iii), take m = 0, A = {0}, and qp(dy) = I[0 e dy]. Then, p() 1 

and this system is regenerative in the classical sense, with regeneration occurring at 
each n for which Xn = 0. 

Now, define D = V1 - Uo. Assume that Eo0[D] < 0 and that D has a finite and 
differentiable moment generating function in some neighborhood of zero; that is, 
there exists z >0 such that supeoA, sPD(o, Z) < 0o, where pD(O, 13) E[exp (PD)]. 
Since Eeo[D] < 0 and (0D(, 0) = 1, it follows that for /3 > 0 and e > 0 small enough, 
one has 

(/3, e) sup PD(, 3) < 1. 

~~~~~Define ~BeA 
Define 

P = inf{1 > 0:pD(0o, 3) 1}, 
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and let 0 < 3 < /, r = (Fr(,, e) + 1)/2, and g(x) = K exp (,1x)I(x > 0) for some K > 0. 

Then, for x > 0, one has 

Eo,x[g(X,)] = Ee[K exp (13(x + D))I(D > -x)] 

= g(x) Ee[exp (13(D))I(D > -x)] 

g(x) D( x) 

fr(3, E)g(x) - (2r - 1)g(x) 
- 

rg(x) - K(1 - r), 

which verifies parts (i) of (5.1). For x = 0, condition (ii) in (5.1) is trivially verified. 
This completes the verification of A4, A5, A8, and Remark 12. 

As a result, Theorem 4 applies even if f grows exponentially fast in x, provided 
that it grows no faster than O(exp (,3x)) for some /3 < /. This growth rate also 

typically turns out to be a tight bound, as indicated by the next proposition. 

Proposition 6. Suppose that poD(o0, p) = 1 for some p > 0. If f(x) - K exp (p3x) as 
x -> oo, for K < oo, then r0Jf < oo if and only if 3 < /. 

Proof We have just shown the 'if part. Recall that from the Cramer-Lundberg 
approximation (Asmussen (1987), p. 269), one has Po[X > x]- c exp (-,x) as 
x -- oo, where c is a positive constant. So if X denotes the steady-state waiting time, 
then 

E[exp (}3X) -1] = E[3f exp (px) dx] 

= E[J exp (,x)I(X > x) dx] 

o 
Bf exp (3x)Po,[X >x] dx < 

if and only if 3 < P. So, for 13 ' , roof = oo. 

For a more specific illustration and numerical results comparing the use of L(O) 
with that of L(0), consider an M/M/1 queue with arrival rate Ao and mean service 
time 0. Assume that 0 < 0o < 1/Ao. Details on the specific expressions for k, L, L, 
and so on, for that case, are given in Glynn and L'Ecuyer (1994), which is a slightly 
expanded version of this paper. The derivatives u'(0o) and 1'(0o) can be estimated 

by simulating the system at 0= 00 and computing either L'(o0)Y and L'(0o)r, or 

L'(00)Y and L'(0o)r, where Y= ':i-1 Xi. The first pair of derivative estimators is 
based on the innovations process Z (we will denote them by IP) while the second 

pair is based on the transition probabilities of the Markov chain X (and will be 
denoted by TP). 

To estimate u'(O), we can also use the triangular LR estimators (4.16)-(4.17), 
where, roughly speaking, the derivative of each Xi is estimated 'separately' using a 
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likelihood ratio based only on the minimal information required to determine Xi. 
We will denote them by IP-T and TP-T, respectively. 

Suppose that we simulate at 0 = 00 for N regenerative cycles and let U k, k, k; and 

;k denote the (unbiased) estimators of u(0o), l(0o), u'(0o), and l'(0o), respectively, 
based on cycle i. Unbiased estimators of the latter quantities are obtained by 
averaging out: 

1 N 

a(eo)=- a 
Nk=l 

and similarly for 1(00), u'(0o), and 7'(0o). Then, consistent estimators of a(0o) and 
a'(00) are given by: 

a 
(ao) a(00o)= :(o) 

c*'(9 ) 
- 

a'(0o) - (00)i'(00) 

We performed numerical experiments for this system with N = 1000, Ao = 1, and 
different values of 00. Based on these 1000 cycles, we estimated u(00), l(0o), a(0o), 
and the derivatives u'(0o), l'(0o), and a'(00), using IP, TP, IP-T, and TP-T. To 
estimate the variance of our estimators, we repeated this estimation process 
R = 10000 times (that is, 104 x 103 cycles). Table 1 gives the sample variances of 
those derivative estimators, for 00 =1, 0.1, 0.5, 0.8, and 0.9. We also estimated the bias 
of a '(00) and in all cases, the squared bias was negligible compared to the variance. 
For this simple case, for Ao= 1, the exact values are u(0)= 2/(1 - 0)2 and 

1(0)= 1/(1- 0), from which one can also derive u'(O), l'(0), a(0), and a'(0). 

TABLE 1 

Experimental results for the M/M/1 queue (sample variances) 

Derivative LR approach 00 = 0-1 00 = 0-5 0O = 0-8 0o = 0-9 

u(0o) 4-59E-6 2-29E-2 1-32E1 6-68E2 
l(0o) 1-52E-4 5-99E-3 1-82E-1 1-70E0 
a(0o) 3-36E-6 3-56E-3 2-38E-1 2.64E0 
u'(0o) IP 0-0106 11-17 1-76E4 3-57E6 
u'(0o) TP 0-0091 10-15 1-62E4 3-16E6 
u'(Oo) IP-T 0-0088 7-59 1-18E4 2-20E6 
u'(0o) TP-T 0-0081 7-30 1-11E4 2-03E6 
l'(0o) IP 0-3335 1-33 1-12E2 3-78E3 
I'(0o) TP 0-1582 1-12 1-00E2 3-38E3 
a'(00) IP 0-0073 1-50 2-44E2 8-86E3 
a'(0o) TP 0-0063 1-34 2-19E2 7-56E3 
a'(0o) IP-T 0-0060 0-88 1-30E2 4-02E3 
a'(0o) TP-T 0-0055 0-84 1-17E2 3-61E3 
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Generally speaking, we can see that the triangular estimators have significantly less 
variance than their 'more standard' counterparts (approximately half the variance, in 
some cases). It turns out that here, the TP estimators do not have much less variance 
than the IP ones, and this holds for small 00 as well as large 00. There is one 
exception, however, namely the estimation of l'(00) for small 00. 

Example 2. As a second example, we consider the same non-linear storage 
process as in Example 2 of Glynn (1992). In contrast to Example 1, this chain hits no 
point infinitely often. Specifically, let X, represent the volume of water in a reservoir 
at time n, and Zn+1 0 denotes the inflow during period n +1. The model is 
assumed to satisfy the equation 

(5.3) Xn+l = Xn + Zn+l a XnZ+1, 

where a > 0 and b > 0. This can be rewritten as Xn+1 = h(Xn + Zn+1), where h is the 
inverse function to h(x) = x + axb. Let Fo be the probability distribution function of 
Z1 under K,. The transition law of the Markov chain is then given by 

P(O, x, [0, y]) = P[h(Xn + Zn+ ) y I Xn = x] 

=P[Z+ h(y) - x] 

=F[y + ayb - x], 

which can be positive only for y ' h(x). Then, for y _ h(x), 

P(0, x, dy) = Fd(y + ayb - x)(1 + abyb-1) dy. 

Let us assume that Ko is such that A6 and A7 are satisfied. For the other 
conditions, we will use a stochastic Lyapunov function as follows. Let A = [0, K] 
where K _ 0, /3 > 0, and 

g(x) = exp [J(x + axb)]. 

For x - K, one has g(x)- exp [/(K + aKb)] <oo, and so conditions (ii) in (5.1) 
holds. For x > K, one has 

Eg,x[g(X,)] = Eo,x[exp (3(X1 + aXe))] 

= Eo,x[exp (P(Xo + Z1))] 

= g(x) exp (-3axb)oz(O, 3), 

where (Pz(O, 13) = E,,x[exp (/3Z1)] is the moment generating function of Z1. We shall 
assume that 

sup qpz(0, ) < oo. 
OreA, 
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Then we can choose K such that Kb > supOE^A In (Pz(0, 13))/(,3a) (because a, b > 0), 
and so 

(5.5) r = sup exp (-,BaKb)qz(0, 13) < 1. 

Let r = (1 + r)A2. Then, 
Let r = (1 + F)/2. Then, 

E,x[g(X1)] - g(x) = rg(x) - (1 - r)g(x) - rg(x) - (1 - r). 

This verifies (5.1). It follows that if A5 (ii)-(iii) also hold, then Theorem 4 applies 
for functions f of the form f(x) = exp [3,'(x + axb)], for any 13' </3, if 9pz(, ,3) is 
finite in a neighborhood of 00. Note that if supeOA. Pz(O, 1) < 1, then we can take 
K = 0 and so A = {0}. 

To verify A5 (ii)-(iii), we need to make further assumptions on the distribution K6. 
For example, if there exists a lower-bound measure ? such that P(O, x, dy) _- (dy) 
for all x E A and 0 E A., where A. = fo p(dy) > 0, then these conditions are verified 
with m = 1 and (p = p/A*. Otherwise, the conditions can still hold for larger m, but 
their actual verification gets more messy. 

In Glynn and L'Ecuyer (1994), we verify these conditions and develop specific 
expressions for a special case of this example in which the distribution of inflows is 
exponential. 

Note that in this model, the strict monotonicity of h guarantees that n = n, for 
each n _ 0, and consequently L'(00) = L'(60). 
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