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1. INTRODUCTIONSuppose that we are given a real-valued �nite-horizon performance measure Y =f(X0;X1; � � � ;Xn), where X = (Xn : n � 0) is a Markov chain having initial distribution� and transition matrix P . (We assume throughout this paper that the state space S is�nite, unless otherwise stated.) The standard way to estimate the expected performance� = EY is to use a sample mean of i.i.d. replicates of the r.v. Y generated under initialdistribution � and transition matrix P .However, importance sampling o�ers an alternative. Speci�cally, let � and K be,respectively, an initial distribution and transition matrix chosen so that �(x) > 0 implies�(x) > 0 and P (x; y) > 0 implies K(x; y) > 0. To indicate the dependence of the expecta-tion operator of the Markov chain X upon the initial distribution and transition matrix,we shall write EP (�) to denote the expectation operator relative to initial distribution �and transition matrix P , whereas EK(�) is the expectation operator in which the initialdistribution and transition matrix are given by � and K, respectively. Then, it is easilyseen that � = EPY can be written as(1:1) � = Xx0;:::;xn f(x0; : : : ; xn)�(x0) n�1Yi=0 P (xi; xi+1)= Xx0;:::;xn "f(x0; : : : ; xn)�(x0)�(x0) n�1Yi=0 P (xi; xi+1)K(xi; xi+1)# � �(x0) n�1Yi=0 K(xi; xi+1)= EKY Lnwhere Ln = �(X0)�(X0) n�1Yi=0 P (Xi;Xi+1)K(Xi;Xi+1) :The r.v. Ln is known as the likelihood ratio (of EP (�) relative to EK(�)). The identity(1.1) suggests that � can be estimated by calculating i.i.d. replicates of the r.v. Y Lngenerated under initial distribution � and transition matrix K. This technique is knownas the method of (static) importance sampling for Markov chains. (See Glynn and Iglehart(1989) for a discussion of a related variant of importance sampling known as dynamicimportance sampling.)Our goal in this paper is to show that this importance sampling technique is typicallypoorly behaved from a variance standpoint when the time horizon is large. In fact, wewill show that for a wide variety of performance measures, the variance essentially growsexponentially rapidly in the length n of the time horizon. This result suggests that (static)importance sampling of the kind described above is typically going to be (highly) ine�cientwhen the time horizon is large. While this conclusion is suggested by some previousanalyses (see, for example, Ermakov (1975), Ermakov and Mikailov (1982), and Glynn(1987)), our current treatment permits a rather precise quantitative characterization ofthe statistical ine�ciency of importance sampling in such a context.These results are of interest in at least three di�erent problem settings.



Setting 1 (Variance Reduction): By choosing � and K judiciously, one hopes that theestimator obtained via importance sampling will have a corresponding variance that issigni�cantly lower than that of the standard estimator. This expectation is borne outin certain applications contexts. (See, for example, Goyal et al (1990).) However, ourresults suggest that one needs to proceed with caution in applying importance samplingto performance measures in which the time horizon is large. Basically, if the importancesampling measure is chosen poorly, substantial increases in variance (relative to naivesampling) may occur. This suggests that the most successful applications of importancesampling for rare events are those in which one can use theory to guide the user in choosingan importance sampling distribution.Setting 2 (Gradient Estimation): As is well known (see, for example, Glynn (1986a) andGlynn (1987)), formula (1.1) underlies the likelihood ratio method for estimating gradientsof mean performance measures with respect to vectors of continuous decision parameters.In Section 6 of this paper, we will discuss the implications of our results for such gradientestimation problems. Our results will show that when the time horizon corresponding tothe performance measure is large, there is a best possible choice for K and we will identifythe optimal transition matrix.Setting 3 (Optimization): The likelihood ratio gradient estimator mentioned above canbe used for optimization purposes. Two di�erent approaches can be followed. One methodinvolves developing a stochastic recursive algorithm (such as the Robbins-Monro stochas-tic approximation scheme) which is driven by newly generated likelihood ratio gradientestimators at each iteration (see, for example Glynn (1986b)). The second idea is to useimportance sampling to generate via simulation, at a single point in the decision parameterspace, an estimate to the entire response surface. Typically, the estimated response surfacewill be (at least) twice continuously di�erentiable. Thus, one can attempt to estimate theoptimizer of the true surface by applying deterministic optimization algorithms (such asNewton's method) to the estimated response surface (see Rubinstein and Shapiro (1989)for further details). It turns out that the gradients associated with the estimated responsesurface are precisely the likelihood ratio gradient estimators of Setting 2. In Section 6,we describe this connection more fully and discuss the implications of our results for thisapproach.The remainder of this paper is organized as follows. In Section 2, we describe a formulafor the variance of an arbitrary estimator obtained via importance sampling. This formulais fundamental to our subsequent analysis. In Sections 3 through 6, we apply the formulato: cumulative costs (Section 3), terminal costs (Section 4), steady-state costs (Section 5),and likelihood ratio gradient estimators (Section 6). Finally, in Section 7, we describe theimplications of the theory developed in this paper for general discrete-event simulations.2. A FORMULA FOR THE VARIANCEGiven that we apply importance sampling with initial distribution � and transition



matrix K to the estimation of �, the variance will be given by(2:1) varK [Y Ln] = EKY 2L2n � (EKY Ln)2= EKY 2L2n � �2:Since � is independent of K, our goal is to simplify the expression for EKY 2L2n. In pursuitof this objective, we note that(2:2) EKY 2L2n = Xx0;:::;xn f2(x0; : : : ; xn)�2(x0)�(x0) n�1Yi=0 P 2(xi; xi+1)K(xi; xi+1)Let G = (G(x; y) : x; y 2 S) be the matrix in which G(x; y) = P 2(x; y)=K(x; y) whenP (x; y) > 0 and G(x; y) = 0 when P (x; y) = 0. Assume that the stochastic matrix P isirreducible. Then, G is necessarily irreducible. Since G is clearly non-negative, we may ap-ply the Perron-Frobenius theory for non-negative matrices to the study of G. In particular(see Karlin and Taylor (1975)), it can be asserted that G possesses a positive eigenvalue� = �(G) (known as the Perron-Frobenius eigenvalue) such that � is the eigenvalue ofmaximum (complex) modulus. Furthermore, the eigenvalue � has multiplicity one. Thecorresponding eigenvector h can be chosen to be strictly positive in all components. Sinceh is the eigenvector corresponding to �, it follows thatXy G(x; y)h(y) = �h(x)for x 2 S. Hence, Xy G(x; y) h(y)�h(x) = 1:Let R = (R(x; y) : x; y 2 S) be the matrix in which R(x; y) = G(x; y)h(y)=(�h(x)). Then,R is non-negative with row sums equal to 1, and is hence stochastic. Furthermore, R isirreducible since G is. Noting thatG(x; y) = �h(x)R(x; y)=h(y);it is evident that(2:3) n�1Yi=0 G(xi; xi+1) = �n h(x0)h(xn) n�1Yi=0 R(xi; xi+1):Let � = (�(x) : x 2 S) be the stochastic vector de�ned by�(x) = � 
�1�2(x)=�(x); �(x) 6= 00; �(x) = 0



where 
 = Xx:�(x)6=0�2(x)=�(x). With the aid of (2.3), we may now express (2.2) asEKY 2L2n = 
�n Xx0;:::;xn f2(x0; : : : ; xn)�(x0) n�1Yi=0 R(xi; xi+1)h(x0)=h(xn)= 
�nER �f2(X0; : : : ;Xn)h(X0)h(Xn)� ;where ER(�) is the expectation operator associated with initial distribution � and tran-sition matrix R. We summarize our discussion with the following variance identity; thespecialization of this formula to r.v.'s Y that are additive functionals is implicit in muchof the large deviations discussion given in Bucklew (1990).]THEOREM 1. If P is irreducible, thenvarK [Y Ln] = 
�nER[Y 2h(X0)=h(Xn)]� �2;where 
; �; h, and R are de�ned as above.Typically, the magnitude of Y is polynomial in n (see Sections 3 through 6). Thus,the variance of Y Ln is determined by the exponential behavior of �n (if � 6= 1). Our nextproposition tells us that � is typically strictly greater than 1. Hence, if Y is of polynomialorder in n, it is evident that varK [Y Ln] is basically increasing geometrically fast at rate �.PROPOSITION 1. The quantities 
 and � are always greater than or equal to 1.Also, 
 > 1 if � 6= �. Furthermore, suppose P is irreducible. Then, � > 1 if P 6= K.For the proof of Proposition 1, see the Appendix. Thus, we may conclude that in anynon-trivial importance sampling context (i.e. P 6= K), the sequence of multipliers 
�n isgrowing geometrically fast. Hence, in order that varK [Y Ln] be well-behaved as a functionof n, it is evident that ER[Y 2h(X0)=h(Xn)] must be small. For example, if Y = I(A),where A is a \rare event" under R, varK [Y Ln] can still be of moderate size (see Cottrellet al. (1983)). However, as we will see in Sections 3 through 6, importance sampling inmost other problem settings leads to geometric growth in the variance.



3. APPLICATION 1: CUMULATIVE COSTSLet f be a real-valued function de�ned on the state space S of the Markov chainX. Suppose that the performance measure is the cumulative cost corresponding to thefunction f , namely Yn = n�1Xk=0 f(Xk):Assume P is irreducible and aperiodic. Then, Theorem 1 implies that(3:1) varK [YnLn] = 
�nER[Y 2nh(X0)=h(Xn)]� �2nwhere �n = EpYn. Since jYnj � n � kfk, where kfk = maxfjf(x)j : x 2 Sg, it is evidentthat �2n = O(n2) as n!1. If K 6= P , Proposition 1 states that � > 1 so that it is evidentthat the growth of the variance is governed by 
�nER[Y 2nh(X0)=h(Xn)].Note that R inherits the irreducibility and aperiodicity of P . Then, we can assertthat R has a unique stationary distribution �R(�). Let PR(�) = ER[I(�)] be the probabilitydistribution on X associated with initial distribution � and transition matrix R. Wecan apply Theorem 4 of Niemi and Nummelin (1982) to conclude that there exist �niteconstants � =Px �R(x)f(x) and �2R such that for �1 < t <1 and x; y 2 S,PRfn 12 (Yn=n� �) � t;Xn = zjX0 = xg(3:2) ! PfN(0; �2R) � tg�R(z)as n!1, where N(0; �2R) is a normal r.v. with mean zero and variance �2R. We note that� is the steady-state mean of f(Xn) under R, and �2R its time-average variance constant.Since (3.2) holds for all x, it is evident thatPRfX0 = x; n 12 (Yn=n� �) � t; Xn = zg(3:3) ! �(x)PfN(0; �2R) � tg �R(z)as n!1. Note that the r.v.'s X0, n 12 (Yn=n��), and Xn are all asymptotically indepen-dent under PR(�). The continuous mapping principle, followed by a converging-togetherargument (see, for example, Billingsley (1968)), therefore establishes that under the dis-tribution PR(�),(3:4) (Yn=n)2h(X0)=h(Xn)) �2h(X0)=h(X1)where X1 is a r.v. with mass function �R and X0 and X1 are independent. Sincejh(X0)=h(Xn)j � maxfh(x)=h(y) : x; y 2 Sg <1, we can apply the bounded convergencetheorem to (3.4), yielding(3:5) n�2ER[Y 2nh(X0)=h(Xn)]! �2�1�2;



where �1 =Px �(x)h(x) and �2 =Px �R(x)=h(x). If � 6= 0, (3.5) provides the asymptoticestimate that we need (since the strict positivity of h implies that �1; �2 > 0). If � = 0,we note that (3.3) proves that under PR,(Yn=n 12 )2h(X0)=h(Xn)) �2RN(0; 1)2h(X0)=h(X1);where N(0; 1);X0, and X1 are independent r.v.'s. Theorem 3, p. 102, of Chung (1967),together with the boundedness of h(X0)=h(Xn), then yields the conclusion that if � = 0,n�1ER[Y 2nh(X0)=h(Xn)]! �2R�1�2as n!1. We can summarize our discussion thus far with the following theorem.THEOREM 2. Suppose P is irreducible and aperiodic. Then,i) if � 6= 0 and P 6= K, varK [YnLn] � n2
�n�2�1�2as n!1;ii) if � = 0; P 6= K, and �2R > 0,varK [YnLn] � n
�n�2R�1�2;as n!1.Typically, we would expect � 6= 0 to hold in most practical settings, in which case thevariance grows as n2�n.It is instructive to also describe the asymptotic distribution of the r.v. YnLn. LetPK(�) = EK [I(�)] be the probability distribution on X associated with initial distribution� and transition matrix K. Then,log(Ln) = log ��(X0)�(X0)� + n�1Xi=0 log � P (Xi;Xi+1)K(Xi;Xi+1)� :Applying the law of large numbers to the �nite chain (Xn;Xn+1), we conclude that1n logLn !Xx;y �K (x)K(x; y) log �P (x; y)K(x; y)� �= �PK a.s. as n!1. If P 6= K, the strict concavity of the log function implies that� < log"Xx;y �K (x)K(x; y) P (x; y)K(x; y) # = log 1 = 0;so that in this case,(3:6) L 1nn ! exp(�) < 1:



PK a.s. as n ! 1. For an arbitrary function g, let kgk = supfjg(x)j : x 2 Sg. SincejYnj � n � kfk, it is evident that jYnLnj 1n � n 1n kfk 1nL 1nn , so that (3.6) yields(3:7) limnjYnLnj 1n < 1PK a.s. Fix 0 < " < 1. If limjYnLnj � ", thenlimnjYnLnj 1n � lim " 1n = 1;contradicting (3.7). Thus, (3.7) implies that limjYnLnj = 0, so that(3:8) YnLn ! 0PK a.s. as n!1, whenever P 6= K.This gives us a more complete description of the asymptotic behavior of the r.v. YnLn.While (3.7) and (3.8) state that YnLn is very small (with high probability) when n is large,Theorem 2 asserts that when YnLn is large (with small probability), it must be extremelylarge (in order that the variance grow geometrically fast). Thus, for large n; YnLn is ar.v. that takes on extremely large values with very small probability and small values withvery high probability.4. APPLICATION 2: TERMINAL COSTSAs in Section 3, let f be a real-valued function de�ned on the state space S of theMarkov chain X. In this section, we are concerned with the terminal cost correspondingto the function f , namely Yn = f(Xn)Assume P is irreducible and aperiodic. We may then apply Theorem 1 to obtain theidentity(4:1) varK [YnLn] = 
�nER[f2(Xn)h(X0)=h(Xn)]� �2n;where �n = EpYn. Since R is aperiodic (by virtue of the aperiodicity of P ), it is evidentthat for each x 2 S,(4:2) PRfXn = yjX0 = xg ! �R(y)as n!1. Relation (4.2) implies that(4:3) PRfX0 = x;Xn = yg ! �(x)�R(y)as n!1. Thus, X0 and Xn are asymptotically independent r.v.'s. Applying the contin-uous mapping principle to (4.3), we conclude that(4:4) f2(Xn)h(X0)=h(Xn)) f2(X1)h(X0)=h(X1)



as n!1 (in PR distribution), where X0 and X1 are independent r.v.'s (with X1 havingdistribution �R). The bounded convergence theorem then implies thatER[f2(Xn)h(X0)=h(Xn)]! �1�3as n ! 1, where �1 = Px �(x)h(x) and �3 = Px �R(x)f2(x)=h(x). This discussion hasyielded the following theorem. (Note that �n is bounded.)THEOREM 3. Suppose P is irreducible and aperiodic. If f 6= 0 and K 6= P , thenvarK [f(Xn)Ln] � 
�n�1�3as n!1.The argument employed in Section 3 to study the \almost sure" behavior of YnLn isequally applicable here. In particular, if K 6= P , we may conclude thatf(Xn)Ln ! 0PK a.s. as n! 1. As in the case of cumulative costs, it therefore follows that when thetime horizon n is large, f(Xn)Ln takes on extremely large values with small probabilityand very small values with high probability.5. APPLICATION 3: STEADY-STATE COSTSIn this section, we apply the results of Section 3 (on cumulative costs) to the analysisof importance sampling for steady-state costs. Given a real-valued function f de�ned onthe state space of X, let Yn = n�1Xk=0 f(Xk)be the cumulative cost corresponding to the function f . Let PP (�) = EP I(�) be theprobability distribution on X associated with initial distribution � and transition matrixP . Assume that P is irreducible and aperiodic. Then, the law of large numbers applies toYn and we may assert that(5:1) Yn=n!Xx �P (x)f(x) �= rPP a.s. as n!1, where �P (�) is the (unique) stationary distribution of P . The constantr may therefore be interpreted as the steady-state cost associated with the performancemeasure f . We note that the bounded convergence theorem applies to (5.1), yieldingEP [Yn=n]! ras n!1. Since EPYn = EKLnYn, it follows thatEK [YnLn=n]! r



as n!1. Hence, the r.v. YnLn=n (when generated under PK) can be used as an estimatorfor the steady-state mean r.In particular, suppose that T represents the computer budget available to estimatethe steady-state mean r. To simplify our analysis, we assume that exactly one transitionof the chain X is generated per unit time. Given the budget T , we can generate (underPK) m = m(T ) replicates of the chain X, each of length n(T ), where n(T ) = bT=m(T )c.This results in the estimator r(T ) = 1T m(T )Xi=1 Yin(T )Lin(T );where Yin(T )Lin(T ) is the i'th independent replicate of the r.v. Yn(T )Ln(T ). The meansquare error (MSE) of r(T ) is given by(5:2) MSEK [r(T )] = varK [r(T )] + (biasK [r(T )])2;where biasK [r(T )] = EKr(T ) � r. We note thatvarK [r(T )] = m(T )T 2 varK [Yn(T )Ln(T )]biasK [r(T )] = EP [Yn(T )=n(T )]� r:In our subsequent analysis of (5.2), we shall assume that n(T ) ! 1 as T ! 1. (Invirtually all practical applications, this is necessary in order that the MSE converge tozero as T !1.)Now, Theorem 2 states that if P 6= K and � 6= 0, then(5:3) varK [r(T )] � 
�2�1�2 n(T )�n(T )=T:To analyze the bias term, we recall that we are assuming that P is aperiodic and irreducible.Then, it is well known that EP f(Xn)! r geometrically fast, and henceb = 1Xn=0(EP f(Xn) � r)converges absolutely. Hence, there exists � 2 [0; 1) such thatEP [Yn=n]� r = b=n� 1Xj=n(EP f(Xj ) � r)=n= b=n+O(�n)as n!1. Thus, if b 6= 0 (as is typical in most applications), it is evident that(5:4) (biasK [r(T )])2 � b2=n2(T )



as T ! 1. The following theorem is easily veri�ed from the asymptotic formulae (5.3)and (5.4).THEOREM 4. Suppose that P is irreducible and aperiodic. Assume b 6= 0; � 6= 0; P 6=K, and that n(T )! +1.i) If log � � n(T ) � (log T � 3 log log T )! +1 as T !1, then(log T )2varK [r(T )]!1; lim(log T )2bias2K [r(T )] � (log �)2b2as T !1.ii) If log � � n(T ) � (log T � 3 log log T )! a as T !1, then(log T )2varK [R(T )]! 
�2�1�2ea; (log T )2bias2K [r(T )]! (log �)2b2as T !1.iii) If If log � � n(T ) � (log T � 3 log log T )! �1 as T !1, then(log T )2varK [r(T )]! 0; lim(log T )2bias2K [r(T )] � (log �)2b2:Part ii) suggests that n(T ) � log � � (log T � 3 log log T ) + a de�nes the critical case inwhich both components of the mean square error (namely variance and the squared bias)go to zero at the same rate, namely (log T )�2. However, this critical rate depends on aparameter � which is typically unkown and di�cult to estimate. In addition, the theorem(taken as a whole) suggests that the best possible convergence rate for the root mean squareerror of r(T ) is (log T )�1 as T !1. Thus, the convergence rate of the replicated steady-state importance sampling estimator is exceptionally slow (when compared to the rateof T� 12 which is achieved for typical steady-state simulations when implemented withoutimportance sampling).The poor convergence rate of r(T ) basically arises because of the exponential growthin the variance of YnLn. One way to (partially) avoid this is to use the regenerativestructure that is present in �nite-state Markov chains. This allows us to reduce the timehorizon to that of a regenerative cycle. Speci�cally, select a regeneration state x and let� = inffn � 1 : Xn = xg. Thus, if we set � = �x (i.e. a unit point mass at x), we recallthat the steady-state cost r can be represented as(5:5) r = EPY�=EP �= EK [Y�L� ]=EK [�L� ]:As suggested in Glynn and Iglehart (1989), one can use importance sampling to estimate rvia the ratio formula (5.5). Let (Y1� ; �1; L1� ); (Y2� ; �2; L2� ); : : : be a sequence of i.i.d. repli-cates of (Y� ; �; L� ) (generated under PK ). Suppose that the time required to generate thei'th cycle is �i and let N(T ) = inffn � 0 :Pni=1 �i � Tg be the number of cycles completed



in T units of computer time. Let r0(T ) be the ratio estimator available after T units ofcomputer time have been expended, namelyr0(T ) =8>>>>>>><>>>>>>>: N(T )Xi=1 Yi�Li�N(T )Xi=1 �iLi� ; N(T ) � 1;0 ; N(T ) = 0.In Glynn and Iglehart (1989), it is shown that if EKZ2 <1, where Z = (Y� �r� )L� , thenT 12 (r0(T ) � r)) dN(0; 1)as T !1, where d2 = EK� �EKZ2=(EP � )2: Thus, the regenerative estimator r0(T ) enjoysa convergence rate of T�1=2, provided that EKZ2 <1. Unfortunately, as argued in Glynnand Iglehart (1989), the quantity EKZ2 can be in�nite (even in the current �nite stateMarkov chain setting).We can use the machinery developed in this paper to obtain a precise analysis of whenEKZ2 <1 will hold. Let fc(x) = f(x) � r and observe that Z = Y 0�L� , whereY 0n = n�1Xk=0 fc(Xk):Then, for each n � 1, Theorem 1 applies, yielding(5:6) EK [Y 02n L2nI(� = n)] = 
�nEK �Y 02n h(X0)h(Xn)I(� = n)� :Summing each side of (5.6) over n and using Fubini's theorem, we get the identity(5:7) EKZ2 = 
ER 24��  ��1Xk=0 fc(Xk)!235 :(We've used the fact that h(X0) = h(X� ) and that PKf� < 1g = PRf� < 1g = 1 inobtaining (5.7)). In virtually all practical applications, it will therefore be necessary thatER�� < 1, in order that EKZ2 < 1. Furthermore, if ER��0 < 1 for some �0 > �,this will always be su�cient to guarantee the �niteness of EKZ2. (To see this, note that��Y 02� � kfck2�2�� � kfck2��0 on f� � n0g, where n0 is chosen su�ciently large.) Thus,the �niteness of EKZ2 basically comes down to the issue of when the Perron-Frobeniuseigenvalue � = �(G) lies in the interior of the set fz 2 IR : ERz� <1g.Let A be the submatrix of R de�ned by A = (R(u; v) : u; v 2 S � fxg). (Note that Ahas one fewer row and column than does R.) Clearly, A is non-negative. Suppose that Ais irreducible. Then, A has a unique positive Perron-Frobenius eigenvalue �(A).



PROPOSITION 2. Suppose that A is irreducible and �nite. Then, ER�� < 1 if andonly if �(G) < �(A)�1.For the proof, see the Appendix.Thus, the slow convergence rate of the replicated steady-state estimator r(T ) manifestsitself in the regenerative setting through the possibility of in�nite variance. If EKZ2 =+1, one can not expect a convergence rate of T� 12 , but must instead expect a slowerrate of convergence. As we have just argued, in order that EKZ2 <1, this will typicallyrequire that �(G) < �(A)�1. Unfortunately, since �(G) and �(A) are unknown in practicalsettings, this suggests that a great deal of care must be exercised in applying importancesampling using the regenerative estimator r0(T ).6. APPLICATION 4: LIKELIHOOD RATIO GRADIENT ESTIMATORConsider a family f(P (�); �(�)) : � 2 �g of transition matrices and initial distributionson S that are indexed by some open set � � IRk. As mentioned in the Introduction, thecalculation of the gradient of the expected performance of the Markov chain with respectto � is a problem that has recently attracted considerable attention within the simulationcommunity.One approach to this problem is known as likelihood ratio gradient estimation. Inorder to simplify the notation, we specialize (without any essential loss of generality) tothe scalar case in which k = 1. Given a performance measure Y = f(X0;X1; : : : ;Xn), itsexpected value under initial distribution �(�) and transition matrix P (�) is given by�(�) �= Xx0;:::;xn f(x0; : : : ; xn)�(�; x0) n�1Yi=0 P (�; xi; xi+1):Assume that P (�) and �(�) are both continuously di�erentiable on �. Then, for �0 2�; �0(�0) exists and is given by(6:1) �0(�0) = Xx0;:::;xn f(x0; : : : ; xn)h�0(�0; x0) n�1Yi=0 P (�0; xi; xi+1)+�(�0; x0) n�1Xi=0 P 0(�0; xi; xi+1)Yj 6=iP (�0; xj ; xj+1)iIn order to estimate �0(�0) via simulation, it is necessary to represent �0(�0) as an expec-tation. Suppose that we select a measure � such that �(x) > 0 whenever �0(�0; x) 6= 0 or�(�0; x) > 0 and select a transition matrix K so that K(x; y) 6= 0 whenever P 0(�0; x; y) 6= 0or P (�0; x; y) > 0. An important observation here is that, under our hypotheses, se-lecting � = �(�0) and K = P (�0) always �ts this prescription. (The key point is thatif P 0(�0; x; y) 6= 0 when P (�0; x; y) = 0, this implies that P (�; x; y) is strictly negativein some neighborhood of �0. This contradiction implies that P 0(�0; x; y) = 0 wheneverP (�0; x; y) = 0, so that K = P (�0) satis�es our condition.) Let E�(�) be the expectation



operator associated with initial distribution �(�) and transition matrix P (�). Then, (6.1)can be re-written as(6:2) �0(�0) = E�0 [Y L0n(�0)]where L0n(�0) = �0(�0;X0)�(�0;X0) + n�1Xi=0 P 0(�0;Xi;Xi+1)P (�0;Xi;Xi+1) :The r.v. L0n(�0) is known as the score function. We can now apply importance sampling(see formula (1.1)) to (6.2), thereby yielding(6:3) �0(�0) = EK [Y L0n(�0)Ln];where Ln = �(�0;X0)�(X0) n�1Yi=0 P (�0;Xi;Xi+1)K(Xi;Xi+1) :The estimator based on Y L0n(�0)Ln (when generated under PK) is called the likelihoodratio gradient estimator.Suppose P (�0) is irreducible and �nite. By Theorem 1, we arrive at the identity(6:4) varK [Y L0n(�0)Ln] = 
�nER[Y 2L0n(�0)2h(X0)=h(Xn)] � �0(�0)2Since � > 1 if P (�0) 6= K, (6.4) strongly suggests that the choice K = P (�0) minimizesthe variance of the likelihood ratio gradient estimator when the time horizon is large.To obtain a more precise statement, we need to specify the performance measure.Speci�cally, let us consider a cumulative cost of the formYn = n�1Xk=0 f(Xk);where f is some real-valued function de�ned on the state space S of X. To analyze theright-hand side of (6.4), we observe that the �niteness and irreducibility of R guaranteesthat the following strong laws will hold:(6:5) 1nYn !Xx �R(x)f(x) �= �1nL0n(�0)!Xx �R(x)R(x; y)P 0 (�0; x; y)P (�0 ; x; y) �=  PR a.s. as n!1. As in Section 3, one can show that X0;Xn, and (Yn; L0n(�0)) are asymp-totically independent of one another. If P (�0) is additionally assumed to be aperiodic, then(6.5) and the continuous mapping principle implies thatn�4Y 2nL0n(�0)2h(X0)=h(Xn)) �2 2h(X0)=h(X1);



as n ! 1, where X1 is a r.v. having mass function �R(�). The bounded convergencetheorem then yields n�4ER[Y 2nL0n(�0)2h(X0)=h(Xn)]! �2 2�1�2as n!1. We can summarize our discussion thus far with the following theorem.THEOREM 5. Suppose that P (�0) is irreducible and aperiodic. If K 6= P (�0),� 6= 0, and  6= 0, then varK [YnL0n(�0)Ln] � 
�nn4�2 2�1�2as n!1.In L'Ecuyer and Glynn (1994), it is shown that var�0 [YnL0n(�0)] is typically of ordern3. One might expect, based on Theorem 5, that the rate ought to be that obtained bysetting � = 1, namely n4. However, the fact that K 6= P (�0) not only introduces thefactor �n into the variance, but also turns L0n(�0) from an additive functional that hassteady-state mean zero under P to one having non-zero mean under R, so that  6= 0. Inany case, Theorem 5 shows that choosing K 6= P (�0) signi�cantly degrades the variance(for cumulative cost performance measures) when the time horizon is large.We conclude this section with a brief discussion of the implications for optimization.Assume that P (�) is such that if P (�; x; y) > 0 for some �, then P (�; x; y) > 0 for all �.Similarly, assume that if �(�; x) > 0 for some �, then �(�; x) > 0 for all �. Suppose that,as suggested in the Introduction, one simulates the Markov chain X under the distributionP�0 associated with parameter point �0 2 �. Then, we can obtain a global estimate for�0(�) by using (6.3):(6:6) �0(�) = E�0 [Y L0n(�)Ln(�; �0)]where L0n(�) = �0(�;X0)�(�;X0) + n�1Xi=0 P 0(�;Xi;Xi+1)P (�;Xi;Xi+1)Ln(�; �0) = �(�;X0)�(�0;X0) n�1Yi=0 P (�;Xi;Xi+1)P (�0;Xi;Xi+1) :Note that by simulating at the single parameter point �0, we can obtain an unbiasedestimate for �0(�) at each � 2 �. However, as shown earlier, we can expect the varianceof the estimator for �0(�) to increase geometrically (in the length of the time horizon) atrate �(�), where �(�) is the Perron-Frobenius eigenvalue of the matrix G(�) = (G(�; x; y) :x; y 2 S) and G(�; x; y) = P 2(�; x; y)=P (�0 ; x; y). Recall thatXy G(�; x; y) � 1 =Xy � P (�; x; y)P (�0; x; y) � 1�2 P (�0; x; y):



Thus, we can expect that as the distance between � and �0 grows, the row sums of G(�)grow. Let �(�) = minnPy G(�; x; y) : x 2 So and note thatG(�)e � �(�)ewhere e is a column vector of 1's. Perron-Frobenius theory implies that if P (�0) is irre-ducible, there exists a positive row vector x(�) such that x(�)G(�) = �(�)x(�). Hence,�(�)x(�)e = x(�)G(�)e � �(�)x(�)e:Since x(�)e > 0, it follows that �(�) � �(�). Thus, the growth of the row sums forces �(�)to grow. So, we can expect that in many practical settings, �(�) will be large at points� that are distant from �0. Thus, the geometric growth problem discussed above may beparticularly troublesome at points � that are distant from �0. This suggests that somecare needs to be taken with the development of optimization algorithms based on (6.6).In certain applications settings, the relaxation time of the system is su�ciently shortthat it may be unnecessary to take the time horizon n to be large. Furthermore, theparametric dependence of the system on � may be such that one can use the structure ofthe system to select a point �0 at which the magnitude of �(�) is moderate for �-valuesin the neighborhood of interest. In such settings, the above idea can prove to be quitee�ective from a practical viewpoint.7. IMPLICATIONS FOR DISCRETE-EVENT SIMULATIONThus far, our discussion in this paper has focused on the analysis of importancesampling, as it applies to discrete-time �nite state Markov chains. However, we believethat the results presented here have obvious analogues in the more general discrete-eventsimulation context.The basic idea is that a typical discrete-event simulation, when considered on the timescale of state transitions, can be viewed as a discrete time Markov chain living on a general(uncountable) state space. In particular, suppose that we let Sn represent the \physicalstate" (e.g., the location of the customers in a queuing network, as described by a queue-length vector) of the system at the time of the n'th (physical) state transition. Also, letCn be the \clock reading" vector, at the time of the n'th transition. The ith component ofCn then describes the time that remains until the i'th possible trigger event will initiate astate transition. The key observation is that Xn = (Sn; Cn) is then a discrete-time Markovchain; see Glynn (1983) and Glynn (1989) for further details. Of course, the state spaceof this Markov chain is typically uncountable.The analysis presented in this paper hinges on two important pieces of mathemati-cal machinery. The �rst is the existence of the Perron-Frobenius theory of non-negativematrices. Fortunately, much of this theory carries over to the more general setting of non-negative operators acting on an abstract state space; see Chapter 5 of Nummelin (1984) fora recent account of this theory. The second tool that was repeatedly applied was the limittheory for additive functionals of �nite state Markov chain (e.g., laws of large numbersand central limit theorems). Again, these results have a number of generalizations to the



uncountable state space setting; see Niemi and Nummelin (1982) for a description of suchresults.Our view is therefore that, under suitable regularity hypotheses, the results of thispaper will carry over to the general state space setting, and hence to discrete-event simula-tions. For example, we would expect (as in Theorem 2) that when importance sampling isapplied to a cost that is cumulated over the �rst n transitions of the system, the variancewill typically grow at rate n2�n for some constant � > 1. In other words, the resultsobtained in this paper are qualitatively representative of what one should expect in themore general discrete-event simulation setting.A couple of caveats should be added, in interpreting the implications of our resultsfrom a practical viewpoint. Firstly, the constants that appear in all our results depend onthe choice of alternative transition matrix K; a good choice of K for a speci�c problem canlargely mitigate the di�culties that we have described. Secondly, we assume in our analysisthat the choice of K is independent of the time horizon n. If one permits K to depend onn, then the asymptotic results obtained can be quite di�erent; see Andradottir, Heyman,and Ott (1991) for a discussion of such results. Permitting K to depend on n allows oneto move K closer to P as n gets large, yielding better convergence characteristics.



APPENDIXProof of Proposition 1. Consider a typical row of the matrix G. Then, for eachx 2 S,(A:1) Xy G(x; y) � 1 =Xy P 2(x; y)=K(x; y) � 1=Xy � P (x; y)K(x; y) � 1�2K(x; y) � 0:Let B = (B(x; y) : x; y 2 S) be the stochastic matrix de�ned byB(x; y) = G(x; y)=Xz G(x; z);and note that G(x; y) � B(x; y) for each x; y 2 S (since the normalization factor thatde�nes each row of B is greater than or equal to 1, by (A.1)). By Corollary 2.3, p. 551,of Karlin and Taylor (1975), � = �(G) � �(B), where �(B) is the Perron-Frobeniuseigenvalue of B. But since B is stochastic, �(B) = 1. Hence, � � 1.As for 
, an argument similar to (A.1) shows that 
 � 1, with 
 = 1 if and only if� = �.It remains to show that �(G) > 1 if P 6= K. In this case, at least one row sum of Gis strictly greater than 1. Hence, there exists at least one state x� such that G(x�; y) >B(x�; y) for each state y such that B(x�; y) > 0.Note that B is irreducible, since P (and hence G) is. Since B is stochastic, thereexists a unique strictly positive stochastic row vector ' (the stationary distribution of B)such that 'B = '. Furthermore, there exists a strictly positive column eigenvector hcorresponding to the Perron-Frobenius eigenvalue � = �(G) of G. Since Gh = �h, it isevident that(A:2) 'Gh = �'h:On the other hand, Gh � Bh with strict inequality in the x�-th component. (This followsfrom the strict positivity of h.) Hence, 'Gh > 'Bh. (Here, we make use of the strictpositivity of '.) So, using the stationarity of ' and (A.2), we get�'h > 'Bh = 'h:We conclude that � = �(G) > 1 (since the positivity of ' and h implies that 'h > 0).Proof of Proposition 2. The argument is very similar to that used in Section 2 to studyvarK [Y Ln]. We note thatER�� = � + �Xy 6=xR(x; y)ER[�� jX0 = y]:



Recall that A necessarily possesses a strictly positive column eigenvector h0 such thatAh0 = �(A)h0. Set C = (C(u; v) : u; v 2 S � fxg), whereC(u; v) = A(u; v)h0(v)�(A)h0(u) :Arguing as in Section 2, it is easy to see that for y 6= x; n � 1,PRf� = njX0 = yg = �(A)n�1EC � h0(X0)h0(Xn�1)R(Xn�1; x)jX0 = y� :where EC(�) is the expectation operator in which X evolves according to the (stochastic)matrix C. We therefore arrive, for y 6= x, at the identity(A:3) ER[�� jX0 = y] = �(A)R(y; x)+ �(A) 1Xn=0[�(G)�(A)]nEC � h0(X0)h0(Xn)R(Xn; x)jX0 = y� :Note that the expectations EC(�) appearing in (A.3) are bounded above bymaxfh0(u)R(v; x)=h0(v) : u; v 2 S � fxgg so that if �(G)�(A) < 1, (A.3) clearly con-verges. On the other hand, there exists a sequence of the form I = fi + jm : m � 0g(depending on the periodicity of X under C) such that R(Xn; x) is bounded away fromzero for n 2 I. Since h0 is strictly positive, this guarantees that the expectations EC(�) arebounded away from zero on the subsequence I. Thus, in order that (A.3) converge, it isnecessary that �(G)�(A) < 1.



ACKNOWLEDGEMENTThe author's research was supported by the U.S.Army Research O�ce under ContractDAAL-03-91-G-0101, National Science Foundation Grant DDM-9101580 and the StanfordInstitute for Manufacturing Automation.REFERENCESAndradottir, S., D.P. Heyman, and T.J. Ott (1991). On the choice of alternative measurein importance sampling with Markov chains. Submitted for publication.Billingsley, P. (1968). Convergence of Probability Measures. John Wiley, New York.Bucklew, J. A. (1990). Large Deviations Techniques in Decision, Simulation, and Estima-tion. John Wiley, New York.Chung, K. L. (1967). Markov Chains with Stationary Transition Probabilities. Springer-Verlag, New York.Cottrell, M. J. C. Fort, and G. Malgouyres (1983). Large deviations and rare events inthe study of stochastic algorithms. IEEE Transactions on Automatic Control AC-28,907{920.Ermakov, S.M. (1975). Monte Carlo Methods and Related Problems, (in Russian), Nauka,Moscow.Ermakov, S.M. and G.A. Mikailov (1982). Statisticheskoje Modelirovanie, (in Russian),Nauka, Moscow.Glynn, P. W. (1983). On the role of generalized semi-Markov processes in simulationoutput analysis. Proc. of the 1983 Winter Simulation Conference, 38{42.Glynn, P. W. (1986a). Sensitivity analysis for stationary probabilities of a Markov chain.Proc. of the 4'th Army Conference on Applied Mathematics and Computing, 917{932.Glynn, P. W. (1986b). Stochastic approximation for Monte Carlo optimization. Proc. ofthe 1986 Winter Simulation Conference, 356{365.Glynn, P. W. (1987). Likelihood ratio gradient estimation: An overview. Proc. of the1987 Winter Simulation Conference, 318{319.Glynn, P. W. (1989). A GSMP formalism for discrete-event systems. Proceedings of theIEEE, 14{23.Glynn, P. W. and D. L. Iglehart (1989). Importance sampling for stochastic simulation.Management Science 35, 1367{1392.Goyal, A., P. Shahabuddin, P. Heidelberger, V. F. Nicola, and P. W. Glynn (1992). Auni�ed framework for simulating Markovian models of highly dependable systems.IEEE Transactions on Computers 41 36-51.Karlin, S. and H. J. Taylor (1975). A First Course in Stochastic Processes. AcademicPress, New York.L'Ecuyer, P. and P. W. Glynn (1994). A control variate scheme for likelihood ratio gradientestimators. Manuscript in preparation.Niemi, S. and E. Nummelin (1982). Central limit theorems for Markov random walks.Commentationes Physico-Mathematicae 54, Societas Scientiarum Fennica, Helsinki.



Nummelin, E. (1984). General Irreducible Markov Chains and Non-Negative Operators.Cambridge University Press, Cambridge.Rubinstein, R. Y. and A. Shapiro (1989). Optimization of simulation models by thescore function method. Mimeograph Series 397, Faculty of Industrial Engineering andManagement, Technion-Israel Institute of Technology, Israel.


