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Abstruct- In this paper we present a unified framework for 
simulating Markovian models of highly dependable systems. 
Since the failure event is a rare event, the estimation of sys- 
tem dependability measures using standard simulation requires 
very long simulation runs. We show that a variance reduction 
technique called Importance Sampling can be used to speed 
up the simulation by many orders of magnitude over standard 
simulation. This technique can be combined very effectively with 
regenerative simulation to estimate measures such as steady- 
state availability and mean time to failure. Moreover, it can 
be combined with conditional Monte Carlo methods to quickly 
estimate transient measures such as reliability, expected interval 
availability, and the distribution of interval availability. We show 
the effectiveness of these methods by using them to simulate large 
dependability models. We also discuss how these methods can be 
implemented in a software package to compute both transient and 
steady-state measures simultaneously from the same sample run. 

Index Terms- Dependability measures, highly available sys- 
tems, importance sampling, Markovian models, rare event simu- 
lation, variance reduction. 

I. INTRODUCTION 

HE requirements for highly dependable systems, such T as air traffic control and transaction processing systems, 
increase the importance of dependability prediction at a de- 
sign stage. Typically, stochastic models are used to analyze 
such systems. A system is considered to be a collection of 
components which can fail and possibly get repaired. The 
system is considered operational if at any given moment 
the operational components satisfy some minimum system 
operational requirements. Many details of failure and repair 
behavior of the components have been introduced in such 
models: common-mode failures in [2], [5], and [31], detailed 
fault and error handling models in [9] and detailed recovery 
hierarchies, operational and repair dependences in [ 161 and 
[18]. Models which include degraded modes of operation 
have also been introduced ([18], [42]). Different measures 
are used to evaluate the modeled systems depending upon 
whether they are mission oriented systems or continuously 
operating systems. Some of the dependability measures of 
interest are steady-state availability, reliability, mean time to 
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failure, expected interval availability, and the complementary 
distribution of interval availability (i.e., the probability that 
a system would achieve a higher interval availability than 
a specified value between 0 and 1). Similar measures have 
also been constructed for degradable systems, e.g., steady- 
state performance and distribution of performance over a time 
interval ([33]). Detailed surveys of these modeling techniques 
and the dependability measures calculated appear in [12] and 

The most common stochastic models used in this context 
are continuous-time Markov chains (CTMC’s). Typically, nu- 
merical methods are used to solve Markov chains. Although, 
many modeling packages have been built, e.g., [18] and [9], 
which incorporate numerical methods capable of computing 
steady-state as well as transient state probabilities of Markov 
chains with thousands of states, the size of the system modeled 
is typically small because the number of states in the sys- 
tem increases exponentially with the number of components. 
Techniques like state lumping and unlumping ([17], [36]) and 
state aggregation and bounding ([l], [35]) can reduce the size 
of the state space substantially. However, large systems with 
a large number of redundant components are still out of the 
range of the solution capabilities of current numerical methods, 
primarily due to storage or computational limitations. 

An alternate approach for the solution of large models is 
Monte Carlo simulation, which is the subject of this paper. 
Simulation is especially useful for those models for which 
the transition rate matrices exceed the available storage. By 
nature, this approach has the immediate advantage of having 
relatively small storage requirements. On the other hand, since 
the failure events are rare events, it is apparent that the 
analysis by simulation of large models with a high degree 
of redundancy will require many regenerative cycles or many 
long independent replications in order to attain reasonable 
confidence intervals ([12], [30]). Our goal is to obtain variance 
reduction methods that are applicable to a broad class of 
models. Specifically, we are interested in models defined by 
the reliability and availability modeling language described in 
[MI, so that the techniques can be implemented in a software 
package and made available to designers in an automatic 
and transparent fashion. A typical system contains multiple 
component types with redundant units for each component 
type. Failure of these systems is usually caused by exhaustion 
of redundancy or by a combination of component failures 
leading to a system failure. Failed components may be re- 
paired. If all components are repairable and component failures 
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are exponential, then a regenerative state for the system 
(see, e.g., [8]) is the state where all units of all component 
types are operational. If, in addition, all repair times are 
exponentially distributed, then the system can be modeled 
by a continuous time Markov chain. For highly reliable and 
highly available systems, it is usual for the repairhecovery 
rates of components to be orders of magnitude larger than the 
failure rates, and in these circumstances the use of importance 
sampling variance reduction techniques [21], [23] can be very 
effective in reducing the simulation run length significantly. 

Importance sampling for rare event simulation has been 
used successfully in [6], [29], [45], [47], and [40]. Proper 
selection of the importance sampling distribution makes the 
rare events more likely to occur; this results in a variance 
reduction. The key, of course, is to choose a good importance 
sampling distribution. The theory of large deviations was used 
in [6], [45], and [47], [40] to select an effective distribution for 
problems arising in Markov chains with “small increments,” 
random walks, and queueing networks, respectively. Effective 
heuristics were used in [29] to select importance sampling dis- 
tributions for reliability estimation in large models of machine 
repairman type, and in [13] for acyclic reliability models. 

In this paper, we review and extend the methods in [4], [19], 
and [43] and present a comprehensive and unified framework 
for simulating a broad class of models, specifically models 
defined by the reliability and availability modeling language 
described in [18]. The language is used to describe failure 
and repair behavior of components as well as operational, re- 
pair, recovery and common-mode failure dependencies among 
them. The language is also used to describe conditions (e.g., re- 
liability block diagram or fault-tree) under which the system is 
considered operational. The model described by the language 
is simulated assuming that all failure, repair, and recovery 
distributions are exponential. We estimate both steady-state 
and transient measures simultaneously from the simulation. 
Importance sampling techniques are used to estimate these 
measures; these techniques are orders of magnitude faster 
than ordinary simulation. The basic idea behind importance 
sampling is described in Section 11. We also give formal 
definitions of the dependability measures of interest in this 
section. 

In Section I11 we present our methods for estimating de- 
pendability measures, such as the steady-state availability and 
the mean time to failure (MTTF). The estimators are based 
on combining regenerative simulation ([SI) with importance 
sampling. The concepts of dynamic importance sampling (DIS, 
see [4]) and measure specific dynamic importance sampling 
(MSDIS, see [19]) are explained using a very simple three state 
example. Direct application of these techniques does not yield 
a significant variance reduction for the MITF. However, when 
the MTTF is formulated as a ratio of two expectations (both 
are estimated using regenerative simulation), then significant 
variance reductions can be achieved using our importance 
sampling techniques (see also [43]). Therefore, while the 
MTTF is, in fact, a transient measure, we can estimate it 
using a regenerative simulation; this is the reason why we have 
considered its estimation with other steady-state measures in 
Section 111. The equations for optimal run-length allocation 

and asymptotic bias expansions are also given. 
In Section IV we present our methods for estimating the 

transient measures, such as reliability, interval availability, 
and distribution of interval availability. The estimators are 
obtained by independently replicating observations based on 
combining “conditioning” (e.g., [lo], [ l l ] )  or “forcing” (e.g., 
[29]) methods with importance sampling. In Section V we 
show how we implemented both regenerative simulation and 
the independent replications so that steady-state and transient 
measures can be computed simultaneously from the same 
sample run. Some implementation issues as well as theoretical 
issues in using importance sampling are also described in this 
section. 

In Section VI we show the effectiveness of the above 
techniques in a large example. Typically, we obtain orders 
of magnitude reduction in variance over standard simulation, 
which translates into large reductions in simulation run times. 
We also perform coverage experiments on the confidence 
intervals and compute the bias values for the estimates of 
the steady-state availability. Finally, in Section VI1 we give 
concluding remarks and suggest some directions for future 
research. 

11. BACKGROUND AND NOTATION 

In this section, we review the basic ideas of importance 
sampling. We include this background material to make the 
paper self contained and more accessible to the nonspecialist. 
A continuous-time Markov chain (CTMC) model of systems 
is then introduced and the associated measures that are of 
primary interest in evaluating highly available systems are 
defined. 

A. Review of Importance Sampling 

The basic notion behind importance sampling can be illus- 
trated using a simple example: estimating the expected value 
of a function of a random variable (see, e.g., [21]). Suppose 
that I9 is an input parameter to the simulation., e.g., a failure 
rate. Associated with each 0 is a probability density function 
(pdf) p ~ ( x )  for -cc < x < 30. Suppose we wish to estimate 
.(e) = Ee[h(X)]  for some function h where the subscript I9 
indicates that the random variable (IT) X is sampled from the 
pdf pe(x ) .  Then 

cc 

.(e) = Ee[h(X)]  = 1 h(z)pe(z)dx. (2.1) 
-m 

Now assuming that pL0 (2) is another probability density 
function such that pLo(x) > 0 for all z. Equation (2.1) can 
be written as 

where L(B,Bo, x )  pe(z)/p;, ( x )  is called the likelihood 
ratio. Equation (2.2) thus provides a means to produce an 
unbiased estimate of ~ ( 0 )  by simulation using the different 
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probability density function pLo (x). This switch of the prob- 
ability density function is called a change of measure; the 
resulting simulation algorithm is called importance sampling. 

For our purposes, the goal of this change of measure is to 
produce an estimate with lower variance. In fact, if h(x )  > 0 
for all x, then choosingpLo (x) = h(x)po(x)/r(O) yields a zero 
variance estimator, since in this case the r.v. h(X)L(B,  00, X) 
takes on the constant value .(e) with probability one. In prac- 
tice, however, this is not a feasible change of measure since it 
requires knowing T (  e) ,  the unknown measure to be estimated. 
Nevertheless, we will find the zero variance transformation 
useful, since it can be calculated for some simple examples 
and forms the basis of a heuristic for simulating more complex 
examples of highly available systems. 

Walrand [47] shows why importance sampling can be 
particularly effective for estimating the probability of rare 
events. Basically, good variance reduction is achieved by 
making the likelihood ratio very small on the rare set. This 
corresponds to choosing the parameter 80 so that p L 0 ( z )  is 
relatively large for x in the rare set, i.e., by making the rare 
set more likely to occur under the new measure defined by 
PkO (XI. 

B. Markov Chains and Associated Dependability Measures 

We assume that the system can be represented by a CTMC 
Y = { Y s , s  2 0) with finite state space E and infinitesimal 
generator matrix Q = { q ( i , j ) , z , j  E E }  . We let q ( i )  = 
-q(z , i )  denote the total rate out of state i (see, e.g., [24]). 
We further assume that E can be partitioned into two subsets: 
E = 0 U F(O n F = 4) where 0 is the set of up states, i.e., 
the set of states for which the system is operational, and F is 
the set of down, or failed states. We assume that the system 
starts out in the state for which all components are operational; 
we label this state as state 0. For any set of states A, let Q A  

denote the time the Markov chain first enters the set A. Of 
particular interest are 00, which is the first return time to state 
0, and O F ,  which is the first entrance time into the subset F 
of failed sates. 

We will be interested in two types of dependability measures 
associated with the CTMC Y :  transient measures and so-called 
steady-state measures. Considering the transient measures first, 
the interval availability A ( t )  is defined by 

where l{ys,=o} is the indicator of the event {Y, E O } ,  i.e., 
l{y,~o) = 1 if Y, E 0 and l{yaEo) = 0 if Y, 0. This is 
the fraction of time that the system is operational in the time 
interval (0, t ) .  We let 

be the expected interval availability and let 

A ( t , x )  = P{A( t )  5 x} (2.5) 

denote the distribution of availability. The reliability of the 
system is defined to be the probability that the system does 

not fail in the interval (0, t ) :  

For steady-state measures we assume that Y is irreducible, 
in which case Y, + Y as s + cx), where j denotes 
convergence in distribution and Y is a r.v. having the steady- 
state distribution T = { ~ i ,  i E E }  ( 7 ~  solves the equations 

.ir Q = 0). Notice that steady-state measures are independent 
of the starting state of the system; however, we will choose 
the fully operational state (i.e., state 0) to define a regenerative 
state for the system. By regenerative process theory (see [46] 
or [SI), steady-state measures take the form of a ratio of two 
expected values: 

T E [ f ( Y ) ]  = lim E [ f ( Y , ) ]  
t-cc 

where f is a real valued function on E.  If f ( i )  = l{iEo), 
then E [ f ( Y ) ]  is the long run fraction of time the system is 
operational and is called the steady-state availability, which 
we denote by A = limt+cc E [ A ( t ) ] .  We will sometimes find 
it convenient to consider the expected unavailability U ( t )  = 
1 - I ( t )  = 1 - E [ A ( t ) ]  and the steady-state unavailability, 
U = 1 - A. The problem of steady-state estimation thus 
reduces to one of estimating the ratio of two expected values. 

The mean time to failure (MTTF), E[QF] ,  is typically 
thought of as a transient measure, since it depends on the 
starting state of the system (state 0) which is assumed to be 
the fully operational state. The same measure is sometimes 
referred to as the mean time to first failure (MTFF). A ratio 
representation for E[QF]  is found to be particularly useful. To 
derive this ratio, we write 

Now, applying the Markov property at time a0 shows that, on 
the set (00 < O F } ,  ( O F  - QO) is conditionally independent of 
1{,,,,,) and furthermore has the same distribution as O F .  

Therefore, taking expected values of (2.8) and rearranging 
terms yields the ratio formula 

Thus, we can view estimating E [ ~ F ]  as a ratio estimation 
problem, where both the numerator and the denominator 
are estimated using a regenerative simulation. Therefore, in 
Section Ill we consider the estimation of the mean time to 
failure (MTTF) together with steady-state measures which 
are also (and more commonly) estimated using regenerative 
simulations. 

111. ESTIMATING STEADY-STATE MEASURES 
In this section, we discuss the estimation of steady-state 

measures of CTMC’s. We begin by reviewing how this prob- 
lem can be reduced to estimating associated steady-state 
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measures in discrete-time Markov chains (DTMC’s) and de- 
scribe the regenerative method of simulation (see, e.g., [SI). 
We next describe the application of importance sampling to 
DTMC’s. In particular, we note that the importance sampling 
transformation selected for actual simulation can be dynamic 
in the sense that it need not correspond directly to a time 
homogeneous DTMC. We also note that, since the problem is 
one of estimating the ratio of two expected values, there is no 
need to use the same importance sampling transformation for 
estimating both the numerator and denominator of this ratio, 
i.e., the importance sampling transformations can be measure 
specific. Analysis of a three state example emphasizes the ben- 
efit of both dynamic and measure specific importance sampling 
and serves as the basis for heuristics for larger, more complex 
system availability models. The optimal allocation of CPU 
time to estimation of the numerator and denominator is then 
discussed. The section concludes by considering asymptotic 
bias expansions of the estimators. 

A. Discrete Time Conversion of CTMC’s 

In this it is shown how one can estimate steady-state 
measures of an irreducible CTMC by simulating only the 
embedded DTMC (and not generating random holding times). 
Let X = { X , ,  n 2 0) denote the embedded DTMC 
of the CTMC Y :  X has transition matrix P = { p ( i , j ) }  
where p ( i , i )  = 0 and p ( i , j )  = q ( i , j ) / q ( i )  for j # i .  Let 
.h(i)  = l /q(i)  be the mean holding time in state i and let 
g ( i )  = f ( i ) / q ( i ) .  Let TA be the first entrance time of the 
DTMC into the set A and let 70 be the first return time of the 
DTMC to state 0. Then 

To emphasize the dependence of this ratio on the transition 
matrix P,  we write (3.1) explicitly as T = E p [ G ] / E p [ H ]  
where G = C 2 = i 1 g ( X k )  and H = C?=i’h(Xk). In 
this, it is shown that this discrete time conversion is always 
guaranteed to produce a variance reduction over simulation of 
the original CTMC. Fox and Glynn [lo] have extended this 
result to simulation of semi-Markov processes. 

Equation (3.1) forms the basis for the regenerative method 
of simulation for CTMC’s (see, e.g., [SI). One simulates (using 
the transition matrix P )  m (say) independent and identically 
distributed (iid) replicates of the random vector (G, H ) ,  yield- 
ing the iid random vectors { (G,  , H, ) : j = 1, . . . , m}. Each 
replication involves simulating the DTMC X (with the initial 
condition XO = 0 ) to time TO; these replications are known as 
regenerative cycles. Let .i-,(P) = E,”=, G,/ C,”=, H,. Then, 
because the cycles are iid, limm-m .i-,(P) = T with probabil- 
ity one and f i (? , (P)-r)  + N(O,O~(P)/E~[H~]~), where 
N ( 0 ,  e’) denotes a normally distributed random variable with 
mean zero and variance e’, and c z ( P )  = Varp[Gj - rHj] .  

B. Importance Sampling for DTMC’s 

We next extend the change of measure transformation of 
(2.1) to DTMC’s. Let r be any stopping time of the DTMC 
X and let Y be a r.v. defined on X up until time T .  Informally, 
T is a stopping time if the event {r  = n} is determined 
by X ,  G ( X O , .  . . , X , ) .  The r.v. Y is then a (measurable) 
function of X ,  = (XO, . .. , X , )  (see [24] for a more detailed 
and precise treatment of stopping times). The first entrance 
time to a state, or a set of states, is a stopping time. In 
particular, both 70 and TF are stopping times. Let A ,  denote 
the set of all possible sample paths up until time n, i.e., 
A,  = {s, = ( S O , .  . . , s,) : ~j E E} .  

For any s, E A,, let 

P(sn) = P(SO)P(SO, Sl)P(Sl, s2) .. .P(S,-l, s,) (3.2) 

where p ( s 0 )  is the probability that the initial state is SO. Let 
B, c A,  be the set of sample paths for which r = n. 

Proposition 3.1: Let r be a stopping time which, under the 
transition matrix P ,  is finite with probability one and let Z be 
a (measurable) function of X ,  for which Ep[lZ(X, )I ]  < CO. 

Let P‘ be any other measure such that, under PI, r is finite 
with probability one and for any s, E B,, P’(s,) # 0 
whenever Z(s,)P(s,)  # 0. Then 

E p [ Z ( X , ) ]  = Ep/ [ z ( X , ) L :  (X,)I (3.3) 

where for any n, L’,(X,)  = P ( X , ) / P ’ ( X , ) .  

and since Z has a finite absolute first moment, we can write 
Proof: Since, under P,  r is finite with probability one 

00 

n=O 5, E E,, 
M 

= Epl[Z(X, )L’ , (X, ) ]  (3.4) 

where the last equality follows since r is finite with probability 

Versions of this proposition have appeared elsewhere, e.g., 
in [47], [40], or [15]. Note that there can exist a sample path s, 
such that P(s,)  > 0 even though P’(s,) = 0, provided that 
Z(sn )  = 0. We emphasize, however, that the measure P‘ does 
not have to correspond to a time homogeneous Markov chain, 
nor even that it corresponds to a Markov chain. Indeed we 
will see that it is highly advantageous in many circumstances 
for PI not to be Markovian. The general form that we will 
consider for P’ is 

one under PI. 0 

P’(sn) = ~ ‘ ( ~ O ) ~ ‘ ( ~ l I ~ O )  

. P’(S21S0, S I ) .  . . PI(s,(so,. . . , &-I). (3.5) 

With this formulation, we have the freedom to, e.g., adjust the 
transition probabilities to depend upon the number of visits 
the chain has made to a set of states (say the failed states) 
or simply to “turn off’ the importance sampling whenever 
the likelihood ratio gets too small, thereby avoiding numerical 
problems. We term the use of such an importance sampling 
distribution Dynamic Importance Sampling (DIS). 
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Applying DIS to estimating the ratio of (3.1) yields the 
following procedure. A total of m iid regenerative cycles 
of the DTMC X are simulated using the DIS distribution 
P’. Let Gj, Hj ,  and L& be the samples of G, H ,  and L i ,  
respectively, from cycle 3 .  Define the point estimate ?m(P’) = 
Cj”=, Gj L& / Hj L&. Then, as in the case without im- 
portance sampling, we have limm--rm ?,(P’) = r with prob- 
ability one and Jm(?,(P’) - r )  * N(0 ,  c ~ ~ ( P ’ ) / E p [ H j 1 ~ )  
where 

oz(P’) = V a r p [ ( G j  - rHj )L i j ]  
= V a r p  [Gj L i j ]  - 2rCovp [GjLij, Hj L i j ]  

+ r2Varpl [HjL i j ] .  (3-6) 

From the form of u2(P’),  it is seen that selecting a good DIS 
distribution P’ involves taking three terms into consideration. 
For example, selecting a P’ to reduce the variance of the 
estimate of the ratio’s numerator may actually increase the 
variance of the estimate of the denominator, or vice versa. In 
addition, the effect on the covariance term will generally be 
difficult to control, or even predict. Thus, selection of a single 
importance sampling distribution for both the numerator and 
denominator involves a tradeoff. 

This suggests that, since we are really trying to estimate 
two different quantities, we should use different changes of 
measures to estimate each quantity. Estimating the numera- 
tor and denominator independently allows one to tailor the 
importance sampling distributions to the particular measure 
being estimated, without having to be concerned about the 
covariance term. We call this Measure Specific Dynamic 
Importance Sampling (MSDIS). Section 111-C provides further 
motivation for the use of DIS, as well as MSDIS. In fact for the 
example given, the two optimal, i.e., zero variance, changes 
of measure are opposites in the sense that numerator’s optimal 
change of measure brings the system very quickly to the failed 
state, whereas the denominator’s optimal change of measure 
is approximately the same as the original measure and thus 
brings the system only very slowly to the failed state. 

The procedure for MSDIS can be described more com- 
pletely as follows. Let P’ and P” denote the DIS distributions 
for the numerator and denominator, respectively. A total of m 
cycles are simulated. Assume that Pm cycles of the numerator 
are simulated and (1 - P)m cycles of the denominator are 
independently simulated where 0 < ,6’ < 1 (for notational 
simplicity, assume that pm is an integer). Define 

Note that GjL& is actually independent of HjLYj even 
though they have the same subscript. Then, as before, 
limm--rm im(P’,P’’) = r with probability one and 
Jm(?,(P’, P”) - r )  N(0 ,  02(P‘, P”)/Ep[Hj]’) where 

V a r p  [Gj L&] + r2 V a r p  [Hj  L‘i,] . (3.8) 
P (1  - P )  

2(P’ ,P’‘ )  = 

The optimal run length allocation between the numerator and 
the denominator will be considered in Section 111-D. 

C. A Three State Example 

In this section, we consider a simple availability example, 
namely a three state birth and death process (see [24]). 
Because of its simple structure, the optimal zero variance 
importance sampling distributions can be derived in closed 
form. The optimal changes of measure for the numerator and 
denominator are quite different. These results would be of 
no significance except that the three state example serves as a 
paradigm for more complex models and thus strongly suggests 
a basic form for effective importance sampling distributions in 
more complex availability models. 

The state space is E = {0,1,2}, the birth rates are 
A,, i = 0 , l  and the death rates are pz,  i = 1,2. In the 
reliability context, this models a system with two identical 
components which can fail and be repaired. We assume that 
births correspond to failures and deaths correspond to repairs 
so that state i corresponds to having i failed components. We 
consider the system to be operational in states 0 and 1, but 
failed in state 2. 

The embedded DTMC has the following nonzero entries: 
p (0 , l )  = p(2 , l )  = 1, p(1,2) = t =X1/ (X1  + PI) and 
p( l .0)  = ( 1  - E). Letting h, denote the mean holding time in 
state i ,  then ho = l / A o ,  hl = l / ( X l  + p1) and h2 = l /p2 .  
We assume that failure rates are much less than repair rates, 
specifically we assume that ho = O ( l / t ) , h l  = O(1) and 
h2 = O(1) (we follow Knuth’s [25] usage of f(x) = O ( g ( x ) )  
if there exist constants C1 and C2 such that Vx, 0 < Clg(z) < 

The steady-state measure T of interest is the stationary 
probability of being in state 2, the steady-state unavailability. 
This can be estimated using regenerative simulation with 
function values g(O), g(1), and g ( 2 )  equal to 0, 0, and hz, 
respectively, and function values h(O), h( l ) ,  and h(2) equal to 
ho, hl ,  and h2, respectively. Assume state 0 is the regenerative 
state. We first compute the variance of the estimator using 
standard regenerative simulation. Let n~ be the number of 
visits to the failed state, state 2, during a regenerative cycle 
and let s, denote the (unique) sample path of a regeneration 
cycle of the DTMC for which n F  = i .  Then G = n ~ h z  
and H = ho + hl + n ~ ( h 1  + hz). Furthermore, n~ has a 
geometric distribution, P { ~ F  = i }  = (1 - E)E‘ for i 2 0, 
so that E p [ n ~ ]  = t/(l - t) and V a r p [ n ~ ]  = t / ( 1  - 6)’ .  

Thus, Ep[G] = h p t / ( l  - E )  and E p [ H ]  = (ho + hl )  + (hl + 
h & / ( l - ~ ) .  Straightforward calculations show that r = @(E’)  

and that the asymptotic squared coefficient of variation of 
i,(P) (obtained from the central limit theorem) is 

S(z) < G d x ) ) .  

Varp[G - r H ]  1 
= O( -). 

mr2Ep [ HI2 m t  (3.9) 

The dominant term in (3.9) is due to contribution of the 
numerator. Thus, to obtain a confidence interval with a relative 
width (width divided by the point estimate) that goes to zero 
requires that the sample size m be large enough so that 
me + CO. This demonstrates the potentially large sample size 
required for rare event simulations (in which E M 0). 

Let P(si)  be the probability of a regenerative cycle sample 
path si, then P(si)  = (1 - €)ti, i 2 0. The optimal 

Authorized licensed use limited to: Stanford University. Downloaded on July 21,2010 at 07:23:47 UTC from IEEE Xplore.  Restrictions apply. 



GOYAL et al.: UNIFIED FRAMEWORK FOR SIMULATING MAKOVIAN MODELS OF DEPENDABLE SYSTEMS 41 

zero variance importance sampling distribution P’(si), i 2 
0, for estimating Ep[G]  is computed from explicit enu- 
meration of all sample paths. First, we write Ep[G]  = 

G(si)P(si)  = Ct/;[G(si)L(si)]P‘(s;) = Ep, [GL], with 
L(si)  = P(si) /P’(s i ) .  Now, the optimal P‘(si), for all i 2 0, 
can be computed (similar to what is described in Sectio 11-A): 

since then G(si)L(si), for all i 2 0, is a constant equal to 

Similarly, the optimal zero variance importance sampling 
E p  [GI. 

distribution for estimating Ep[H] is given by 

- [(ho + h l )  + (hl  + h2)i](l - E ) 2 t z  - 
ho + hl - E(h0 - h2) 

7 

i 2 0. (3.11) 

From (3.10), P’*(so) = 0, P’*(SI )  = (1 - E ) ~ ,  P’*(s2) = 
Ze(1 - and so on. Now let p”(1,O I n F  = i )  denote the 
probability of going from state 1 to state 0 given that the chain 
is in state 1 and that the failed state has already been yisited 
i times. Then p’*(l,O 1 TLF = i )  = P ’ * ( s ; ) / ( C ~ ~ ~ P ’  (sj)) 

and thus, from (3.10), p’*(l ,O 1 n p  = 0) = U and 

Therefore, each successive time the simulation enters state 1, 
the probability of returning to state 0 changes (under both 
E‘’*(.) and P”*(s)) .  Thus, the optimal changes of measure 
for both the numerator and the denominator of (2.1) are 
dynamic. In particular note that while p’*(l, 0 I TLF = 0 )  = 0, 
p’*(1,0 1 nF = 1) = ( I - E ) ~  M (1-ZE) M (1-E) = p(1,o) for 
E M 0. Also, lim,,,p’*(I,O I n F  = i )  = (1 - E) = p(1 ,O) .  
This suggests that, for more complex models, the importance 
sampling distribution for the numerator should be chosen to 
move the system very quickly to the set of failed states F ,  
but that once F is entered, the importance sampling should 
be turned off so that the system quickly returns to state 0. 
This should hold true for systems in which the probability 
of two or more failures in a regenerative cycle is at least 
an order of magnitude less likely than the probability of one 
failure in a cycle. This is also consistent with the argument 
given in Section 11-A as well as Walrand’s suggestion in [47] 
and [40] (which was derived using large deviation results) to 
interchange X and p for estimating the probability of buffer 
overflow in the M/M/l queue. 

For the denominator, on the other hand, the largest con- 
tribution to the expected value comes from the sample path 
on which n F  = 0, which is not a rare event. This suggests 
using standard simulation., i.e., not using importance sampling, 
to estimate the denominator. Indeed, the optimal change of 
measure of (3.11) has 

p’l*(so) = p”*(l ,O I n F  = 0 )  

(1 - E ) 2  

1 - E(h0 - h2)/(ho + hl) 
- - 

M (1 - E) = p(1,O) (3.13) 

so that there is very little difference between P”*(s) and P(s)  
for the most likely sample path. 

D. Optimal Run Length Allocation 

Equation (3.8) gave the form of the asymptotic variance 
when a fixed number m of cycles are simulated of which 
pm are devoted to simulation of the numerator and (1 - p)m 
are allocated to the denominator. Since the expected amount 
of CPU time to simulate a sample of the numerator and 
denominator may be different, a more practical run length 
allocation model can be formulated as follows. Let the total 
CPU time be T and assume that PT is allocated to the 
numerator and (1 - P)T is allocated to the denominator. Let 
c, ( c d )  denote the expected CPU time to simulate a sample of 
the numerator (denominator). Then, for large T ,  approximately 
OTIC, cycles of the numerator and (1 - P)T/cd cycles of 
the denominator are obtained. The asymptotic variance of the 
resulting point estimate is 

where 0: = Varp[G,L&] and 0; = Varp,[H,Lyj]. This 
result is obtained by applying results from renewal theory 
(see [46]). Minimization of (3.14) with respect to ,6’ yields 
[?* = S/(1 + 6) where 6 = a,JCn/(~ad&). 

Suppose that c, M Cd and that 0, M g d  (we are equally 
effective in reducing the variance of the numerator and denom- 
inator). Then, for estimating the steady-state unavailability, T is 
small and p* M 1, i.e., the bulk of the effort should be applied 
to estimating the numerator, which in this case is a rare event 
simulation using importance sampling. On the other hand, for 
estimating the MTI’F using the ratio formula given in (2.9), 
T is large and p* M 0, i.e., the bulk of the effort is devoted 
to the denominator. However, for the MTTF, the denominator 
also corresponds to a rare event simulation using importance 
sampling (moreover, as will be discussed in Section V, the 
same importance sampling distribution can be used to estimate 
both measures). Thus, in either case, the optimal allocations 
are consistent in the sense that they allocate most of the effort 
to rare event simulation. 

In practice, we always devote a minimum percentage, 
say lo%, of the effort to standard simulation even though 
the optimal allocation usually suggests devoting much less 
time to standard simulation. This permits stable variance 
estimation and the loss in asymptotic efficiency from the 
optimal allocation is small. 

E. Bias Expansions 

We now consider bias expansions of ratio estimators of 
steady-state measures. Because the numerator and denominator 
are simulated independently, some specific conclusions can 
be drawn from these expansions. In particular, we show 
that effective application of MSDIS for variance reduction 
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has the added benefit of reducing bias. References for this 
type of bias expansion may be found in Section 27 of [7], 
Chapter 2 of [28], or [14]. They are derived using Taylor 
series expansions and multidimensional central limit theorems. 
Let {C, = (C, ( l ) , . . . ,C , (d) ) ,  n 2 1} be a sequence 
of iid vectors of length d and let v = ( V I ,  . . . , vd) where 
E[C,] = v. Suppose we are interested in estimating g(v) for 
some function 9. In the case of ratio estimation v = (VI, VZ) 
and g ( v )  = V ~ / V Z .  Let C, = ( l / m )  E,“==, C,. Then, under 
appropriate technical conditions on g and the moments of C,, 

, d d  

where aij = Cov[C,(i),C,(j)] and g i j  = &g(z)Iz=v. 
In our case, C, = (G,Li,, H,Ly,), a11 = Varp, [G,Li,], 
a22 = Varp/[H,L”,] and g 1 2  = 0 (since the numerator and 
denominator are simulated independently). Note that in the 
above we assume for simplicity that m cycles of both the 
numerator and denominator are simulated. Differentiation of 
g yields 911 = 0, g22 = 2y/u23 = 2r/u,2 and g12 = -1/v,”. 
Since ~ 1 2  = 0, the value of 912 does not enter into the MSDIS 
bias expansion. Therefore, 

For the measures of interest in availability modeling, T 2 
0, H ,  2 0 and v2 > 0 so that, asymptotically, E[g(C,)] 2 
g ( v ) .  Furthermore, this asymptotic bias expansion is indepen- 
dent of the importance sampling distribution P’ chosen for 
simulation of the numerator. 

For the steady-state unavailability we select P” = P.  
By the results of Section 111-C, in the three state example 
T = @ ( e 2 ) ,  Varp[H,] = @(e) and vz = Ep[H,]  = @ ( 1 / ~ ) .  
Therefore, the leading term in the bias expansion is of order 
e5/m (relative bias is of order e3/m ) which is typically quite 
small. With standard simulation the bias expansion, which now 
includes the effect of correlation between the numerator and 
denominator, becomes 

E[S(Gm, Bm)l 

(3.17) 

reducing variance also has the beneficial effect of reducing 
bias. 

For the MTTF, notice that T is large and vz = P f a ~  i ao} 
is small, which potentially makes the leading bias term large. 

In practice, m may have to be very large in order for 
these asymptotic expansions to be valid. In particular, for 
small values of m the higher order terms may contribute in a 
nonnegligible way so that, e.g., E[g(C,)] 5 g ( v ) .  If bias turns 
out to be of significant concern, then a bias reducing technique 
such as jackknifing may be used to remove the leading term 
of order l / m  in the bias expansion (see [34]). 

IV. ESTIMATING TRANSIENT MEASURES 

Simulation of the CTMC Y consists of two parts: simulating 
the sequence of states visited by the embedded DTMC X with 
transition matrix P,  and simulating the holding times in each of 
the states. We let ti denote the holding time in state X,.  Thus, 
given that X ,  = j ,  t, has an exponential distribution with 
mean l /q ( j )  and the (conditional) likelihood of t ,  is simply 
q(j)e-‘J(J)ta. We let t ,  = ( t o , .  . . ,in) denote the first n + 1 
holding times of the CTMC. Given that X, = ( X O ,  . . * , X,), 
the likelihood of t ,  is therefore 

f ( t ,  1 x,) q(Xo)e-q(Xo)to . . . q(X,)e-‘(Xn ) t n  (4.1) 

and thus the likelihood of the sample path (X,, t ,) is 

Q(Xn, tn)  E P(Xn)f( tn  I X n )  (4.2) 

where P ( X , )  was defined in (3.2). Equation (4.2) gives the 
likelihood at the times of the jumps of the embedded DTMC. 

We basically adapt the development in [15] in order to 
extend Proposition 3.1. Define TO = 0 and T, = to+. . .+t,-l 
for n 2 1. Then T, is the time at which state X ,  is entered, 
i.e., the time of the nth transition. Let Yt = (Ys,O 5 s 5 t) .  
Let r be an integer valued stopping time with respect to the 
sequence of pairs { ( X n , t n ) ,  n 2 0} ,  i.e., the event {T = n} 
can be determined by ( X o ,  t o ) ,  . . . , (X,, t,). We let Q’ denote 
another measure for generating sequences { (X,, t,), n 2 0). 
We will specifically assume that Q’(X,,  t,) = P‘(X,>f‘(t, I 
X , ) .  With this factorization, the form of the contribution of 
the holding times to the likelihood, f ’ ( t ,  I X,), is almost 
arbitrary (the restrictions will be discussed below), but the 
sequence of states selected does not depend upon the holding 
times. Let B, be the subset of the sample paths of Y for 
which r = n. 

Proposition 4.1: Let r be an integer valued stopping time 
which, under Q,  is finite with probability one. Define a 
T, and let 2 be a (measurable) function of Y, for which 
EQ[IZ(Y,)I] < 03. Let Q’ be another measure of the form 
Q‘(X, , t , )  = P’(X,)f’(t,IX,) such that, under P‘, r 
is finite with probability One and for any (S,, t , )  E Bn7 

P‘(s,)f’(t, 1 s,) # f 
O. Then 

For the three state example, Covp[G,,H,] = hz(h1 + 
h ~ ) V a r p [ n ~ ]  = @ ( E )  so the dominant term in the bias 
expansion is @(e3/m) which is significantly larger than the 
@( c5/m) bias obtained using MSDIS. Moreover, using stan- 
dard simulation, the relative bias (biaslr) is only @(Elm). 
These observations are consistent with the experimental results 
described in Section VI. Notice that one could also simulate the 
numerator and the denominator independently, without using 

out in (3.17). For the three state example, the dominant term in 
the bias expansion becomes @(e5/m), which is the same order 
as that with MSDIS. However, as seen from (3.16), choosing 
an importance sampling distribution P” for the purpose of 

whenever z ( y T n ) p ( 3 , ) f ( t ,  I 

importance sampling. In this case, the covariance term drops EQ [ z(ya)] = E&’ [ z( Ya)Li  (XT )Li ( XT , t~ )] (4.3) 

where for any n, LL(sn, t,) = f ( t ,  I s , ) / f ’ ( t ,  I 3,). 
The proof of this proposition is essentially the same as 

that of Proposition 3.1. Notice that if the stopping time r of 
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Proposition 4.2 is r = T F ,  then the CY of Proposition 4.1 is first 
time to failure, i.e., CY = C Y F .  Measures defined over a fixed 
time interval (0, t )  (e.g., the expected interval availability) are 
handled in this formulation by defining r = N ( t )  + 1 where 
N ( t )  = max{n : T, 5 t}. The reliability R ( t )  is handled by 
setting r = min(rF, N ( t )  + 1) (since, with this definition, at 
time T, either a failure has occurred or simulated time has 
surpassed t )  and setting Z = 1{~,5~}.  

A. Estimating the Reliability 
By Proposition 4.1, there are two importance sampling 

distributions to construct, corresponding to two likelihood 
ratios. The first distribution is for the embedded DTMC 
[corresponding to L;(X , ) ]  and the second is for the state 
holding times given the DTMC’s sample path [corresponding 
to L;(X , , t , ) ] .  Lewis and Bohm [29] presented a technique 
for estimating the reliability. They apply “failure biasing” 
to the embedded DTMC; this causes failures to occur with 
higher probability and therefore quickly moves (biases) the 
DTMC toward the set of failed states. They also apply “forced 
transitions” to the holding time in state 0 (the state with 
all components operational). This forces the next component 
failure to occur before time t. Specifically, if X ,  = 0 and 
Tn < t ,  then the next holding time, tn+l is forced to be 
between zero and t -Tn by selecting tn+l from the conditional 
density given by 

(4.4) 
where A0 is the total failure rate in state 0. The simulation 
continues until time r = min(rF,N(t) + 1). 

Ross and Schechner [39] propose an alternative approach in 
which some, or all, of the holding times are conditioned out. 
If all holding times are conditioned out then no holding times 
are sampled and we set 2 = P{T,, 5 t 1 X,,}. Calculation 
of Z requires computing the convolution of exponentially 
distributed random variables with different means. For a 
sequence of n states, this can be done in C3(n2) time using the 
recursions in [41]. Using failure biasing, TF will typically be 
small so that carrying out this computation is, in principle, not 
an obstacle. However, an effective and much simpler approach 
is to only condition out the total holding times in state 0 
(which typically represents the bulk of the time anyway). The 
embedded DTMC is simulated until the set of failed states is 
entered, i.e., until time T F .  Holding times in the nonzero states 
are randomly sampled, but no holding times are sampled for 
state 0. Let 4 denote the total holding time in states other than 
0: 4 = x ; f o t k  x l{x,+o}. Let no denote the number of 
visits to state 0 and let y be a r.v. denoting the total holding 
time in state 0. Given no, y has an Erlang distribution with 
shape parameter no and scale parameter A0 and we write 
P{y 5 s I no} = E,, (s,  Ao). We then set 

2 = P { a F  5 t I XT.V,$} = p { y  5 t - 4  1 no} 
= Eno ( t  - 4,  Ao). (4.5) 

Unlike Ross and Schechner, we apply the conditional Monte 

Carlo approach in addition to some form of failure biasing. 
By the variance reducing property of conditional expectations, 
(i.e., since Var[E[X I Y ] ]  5 Var[X], see, e.g., [38, p. 12]), the 
conditional approach plus failure biasing is always guaranteed 
to reduce the variance over just failure biasing. To see this, 
notice that 

where the last equality follows from (4.5). 
While no such analytic result exists for comparing condi- 

tioning with forcing, the conditioning approach has several 
advantages over the forcing approach. First, with forcing, 
different holding times must be generated for each value of t 
for which R(t) is to be estimated. Because of sampling errors, 
the estimates of R(t)  may not be monotonic in t .  Using the 
conditional approach, simultaneous, monotonic estimates of 
R( t )  are obtained. Second, with forcing, different conditional 
holding time distributions are used and different likelihood 
ratios must be maintained for each value o f t  for which R(t)  
is to be estimated. This is not necessary in the conditional 
approach. Thus, it has computational time advantage when 
R ( t )  is computed for multiple values of t simultaneously. 

Another approach would be to use the technique of uni- 
formization (see [20]). A discussion of approaches to using 
uniformization in simulations, including discrete conversions, 
may be found in [ll]. In our context, failure rates are much less 
than repair rates and therefore Xo << x where x = max{q(i)} 
is the maximum state exit rate. The number of transitions in 
the uniformized chain before exiting state 0 (sometimes called 
“pseudo transitions”) is geometrically distributed with success 
parameter Xo/X z 0: Therefore, effective estimation of these 
rare event measures requires using some sort of importance 
sampling on the number of state 0 pseudo transitions. This, in 
turn, is very similar to using forced transitions. 

B. Estimating the Expected Interval Availability 

In this section we present two methods to estimate quanti- 
ties, such as the expected interval availability, which take the 
form r ( t ) / t ,  with r ( t )  = E[Ssf=, f (Ys)ds] .  We assume that Xot 
is small so that very few failures are expected by time t .  The 
first method, due to Lewis and Bohm [29], uses failure biasing 
and forcing as described in Section IV-A. The simulation ends 
at time T N ( t ) + l  = t o  + . . . + t N ( t ) .  With this notation, t N ( t )  
is the holding time that crosses the threshold t .  A practical 
implementation of this method typically turns off the forcing 
after L visits to state 0 at some value of L for which XO) 
is extremely small; without this modification N ( t )  may grow 
to be quite large and, furthermore, the simulation may generate 
extremely unlikely sample paths having an unusually large 
number of visits to state 0 in the interval (0, t ) .  
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To apply the conditional Monte Carlo approach to ~ ( t ) ,  we 
begin with an important result from Fox and Glynn [ l l ] :  

N ( t ) - 1  

(4.7) 
k=O 

where g ( i )  = f ( i ) / q ( i )  and the expectation is with respect 
to the transition matrix P .  Now, as suggested in [ l l ] ,  we 
could generate holding times for the sole purpose of deter- 
mining N ( t ) ,  and then ignore these holding times by using 
xk=O g ( X k )  to estimate ~ ( t ) .  However, we would still 
have to use conditioning or some sort of importance sampling, 
such as forcing, on the holding times in state 0 since otherwise 
N ( t )  = 0 with high probability. Similarly, uniformization 
implementations based on (4.7) would also require importance 
sampling on the number of state 0 pseudo transitions in order 
to be effective. To combine forcing with (4.7), we write 

N ( t ) - I  

N ( t ) - I  

T ( t )  = E [  d X k )  I t o  > t]P{to > t> 
k=O 

N ( t )  - 1 

+ E [  d X k )  I t o  5 t IP{ to  5 t> 
k=O 

N ( t ) - 1  

= E [  g ( X k )  I to  5 t ]P{tO 5 t> (4.8) 
k=O 

since if t o  > t ,  then N ( t )  = 0 and therefore E,”li)-’ g ( X k )  = 
0. Equation (4.8) can also be combined with failure biasing. 

We next extend (4.7) in a way that allows us to condition 
out the state 0 holding times. While the development below 
is in terms of the original embedded DTMC, the results 
extend directly to using importance sampling as described 
in Proposition 3 . 1 .  We also present the method in terms of 
conditioning out only the holding times in state 0, although 
the method also applies more generally. Analogous to the 
approach in Section IV-A, define no(k )  = Et=, l { x J = o }  and 
q?~k = E;=, t, x l{sJ+o}. With these definitions, no(k )  is the 
number of visits to state 0 and q5k is the total holding time in 
the nonzero states at the kth transition. Then, by (4.7) 

ix 

k=O 
ix 

k=O 
M 

k=O 
ix 

= E I C g ( X k ) E n o ( k ) ( t  - 4kl A,)]. (4.9) 
k=O 

The key step in the above derivation follows since on { N ( t )  2 
k + 1 )  = { t o  + . . . + t k  5 t}.  The exchanges of expectation 
and summation are easily justified for finite state spaces by 
using the dominated convergence theorem (see [3]). 

To apply (4.9) requires determining a stopping criterion. 
We could simulate until & 2 t at which point Eno(k)(t - 

&, A,) = 0. However, since repairs are fast, q5k grows slowly 
and therefore an excessive number of transitions may have to 
be simulated. The summation could be truncated at some finite 
value. However, this introduces bias error. While the error is 
easily bounded, we prefer unbiased estimates, particularly for 
quantities such as the interval unavailability which itself is 
quite small. A simple unbiased estimate can be constructed in 
a reasonable amount of time as follows: after the Lth visit to 
state 0, begin sampling the state 0 holding times and adding 
them to &. Very quickly, & will exceed t and the sample is 
then complete. More formally, let No(L) be the (discrete) time 
at which state 0 is entered for the Lth time. For k 2 No(L)+l, 
let & = 4 N o ( L )  + xq=No(L)+l t j .  Then, arguing as above, 

NO(L)  

T ( t )  =E[ g ( X k ) E n o ( k ) ( t  - d’k, A , ) ]  
k=O 

00 

f E [  g ( X k ) E L ( t  - 6 k ,  A O ) ] .  (4.10) 
k=No (L)+I 

The estimators for the distribution of interval availability can 
be formulated in a similar way. We derive these estimators in 
the Appendix for the sake of completeness. 

V. IMPLEMENTATION ISSUES 

In this section we consider the implementation of the 
different variance reduction techniques described in the pre- 
vious sections. These techniques have been implemented in 
the SAVE package [16], [18] so that large models can be 
simulated. One salient feature of our implementation is that 
we use one simulation run for estimating all the measures. 
Regenerative simulation is used with the “all components 
operational” state as the regeneration state. The event gen- 
erator simulates only the embedded Markov chain (DTMC 
formulated in Section 111-A). For the steady-state measures we 
accumulate functions of the mean holding times in the various 
states, and for the transient measures we accumulate functions 
of the sample holding times (from exponential distributions) 
in the various states. In the following paragraphs we describe 
the implementation of the importance sampling technique for 
the various measures. 

Recall that we formulated the likelihood ratios for the 
transient measure in Proposition 4 . 1  as the product of two 
likelihood ratios L’, (X,) and Li(X,, t , ) .  The first likelihood 
ratio corresponds to the embedded Markov chain and it is 
needed for the steady-state as well as the transient measures 
as indicated in Propositions 3.1 and 4.1. On the other hand, 
Lh(X,,t,) corresponds to the holding times, given a sample 
path on the embedded DTMC; this likelihood ratio is needed 
only for transient measures and is different for different 
transient estimators. 

The importance sampling for the embedded Markov chain 
is based on the following heuristics. As suggested in Section 
111-C, we need to move the system very quickly to the set of 
failed states F ,  and once F is entered, the importance sampling 
should be turned off so that the system quickly returns to 
state 0, the “all components operational” state. We achieve this 
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by increasing the probability of failure transitions over repair 
transitions. This has been called “failure biasing” in [29]. We 
assign a combined probability bias1 to the failure transitions 
in all the states where both failure and repair transitions are 
feasible. Individual failure and repair transitions are selected 
in the ratio of their rates given that a failure or a repair is 
selected, respectively. We call this the BiasllRatio method, 
or simply Bias1 method. We have found two other methods 
useful for selecting individual failure transitions, given that a 
failure has occurred. The first is to use a uniform distribution 
on the failure transitions which has very good performance 
for “unbalanced systems” as shown in Section VI. We call 
this the BiasllBalancing method. The second is to give a 
higher combined probability bias2 to those failure transitions 
which correspond to component types which have at least 
one component of their type already failed. This exhausts 
the redundancy quickly and has much better performance for 
“balanced systems” as shown in Section VI. We call this the 
Biasl/Bias2 method. Another method for failure biasing in 
acyclic reliability models is found in [13]. 

For the steady-state availability each regenerative cycle 
corresponds to a sample. We use either the DIS or the MSDIS 
method given in Section 111-B to estimate the steady-state 
availability. For the mean time to failure, a sample ends 
when either the regeneration occurs or the system enters 
one of the system failed states from the set F .  In the latter 
case, we continue to simulate the embedded Markov chain 
until the regeneration occurs before starting a new sample. 
This wastes only a few events as typically a regenerative 
cycle has a very few events (approximately twice the average 
redundancy which is typically 2 or 3). Once again, we use 
either the DIS or the MSDIS method to estimate the mean time 
to failure. For the transient measures, multiple regenerative 
cycles may be contained in a sample. Moreover, a sample 
typically ends either when a failure occurs or when the time 
interval expires, which is usually in the middle of some 
regenerative cycle. As in the mean time to failure case, 
we continue to simulate the embedded Markov chain until 
the next regeneration occurs before starting a new sample. 
Separate accumulators for the appropriate likelihood ratios 
are maintained for each transient estimator and for each 
time horizon of interest. Thus, all measures can be estimated 
simultaneously from a single simulation run. 

VI. EXAMPLES AND DISCUSSIONS 
In this section, we provide an example, based on a model 

of a computing system, to illustrate the effectiveness of 
the different variance reduction techniques discussed in the 
previous sections. A block diagram of the computing system 
considered is shown in Fig. 1. We use two different parameter 
sets to create a “balanced and an “unbalanced” system. A 
balanced system is one in which each type of component 
has the same amount of redundancy, (i.e., same number of 
components of a type must fail in order that the system fail, 
e.g., 1-out-of-2 of a type has the same redundancy as 3-out- 
of-4 of another type); in addition, the components must have 

processors 

cc 

Fig. 1 A block diagram of the computing system modeled. 

the same order of magnitude failure rates. A system that is not 
balanced is unbalanced. 

For a balanced system we select two sets of processors 
with two processors per set, two sets of controllers with two 
controllers per set, and six clusters of disks, each consisting 
of four disk units. In a disk cluster, data are replicated so that 
one disk can fail without affecting the system. The “primary” 
data on a disk is replicated such that one third is on each 
of the other three disks in the same cluster. Thus, one disk 
in each cluster can be inaccessible without losing access to 
the data. The connectivity of the system is shown in Fig. 1. 
We assume that when a processor of a given type fails, it 
has a 0.01 probability of causing the operating processor of 
the other type to fail. Each unit in the system has two failure 
modes which occur with equal probability. The failure rates 
of processors, controllers, and disks are assumed to be 1/2000, 
1/2000, and U6000 per hour, respectively. The repair rates for 
all mode 1 and all mode 2 failures are 1 per hour and 1/2 
per hour, respectively. Components are repaired by a single 
repairman who chooses components at random from the set 
of failed units. The system is defined to be operational if all 
data are accessible to both processor types, which means that 
at least one processor of each type, one controller in each 
set, and 3 out of 4 disk units in each of the 6 disk clusters 
are operational. We also assume that operational components 
continue to fail at the given rates when the system is failed. 

We make minor changes to the above parameters setting in 
order to create an unbalanced system. We increase the number 
of processors of each type to 4, and double each processor’s 
failure rate to 1/1000 per hour. We decrease the failure rates 
of all other components by a factor of ten. In this system, 
although a processor failure is more likely to occur in a failure 
transition, it is less likely to cause a system failure due to the 
high processor redundancy. This is typical behavior for an 
unbalanced system. 

A. Steady-State Measures 

In this section we discuss the results of our experiments 
for estimating the steady-state unavailability and the mean 
time to failure. Numerical (nonsimulation) results for these 
measures were obtained using the SAVE package [18]. Since 
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the balanced system has a few hundred thousand states and the 
unbalanced system has close to a million states, only bounds 
could be computed ([35]). These bounds are very tight and 
typically do not differ from the exact results significantly. We 
simulate both the balanced and the unbalanced systems. The 
goal of the simulation experiments is to study the efficiency 
of the importance sampling methods, described in this paper, 
compared to standard simulation. We also experimented with 
the MSDIS technique described in Section 111. It is shown 
that the Bias1 method gives many orders of magnitude vari- 
ance reduction over the standard Monte Carlo simulation. 
Moreover, further significant improvements can be obtained 
using the BiasllBias2 method for the balanced systems and 
BiasllBalancing method for the unbalanced systems. Further 
improvements are obtained when these methods are combined 
with MSDIS. Table I and Table I1 show the results obtained 
for the balanced and the unbalanced systems, respectively. We 
ran the simulation long enough so that the smallest entry in 
the tables for the percentage relative half-widths of the 90% 
confidence intervals was less than 5%. The percentage relative 
half-width of a confidence interval is defined to be 100% 
times the confidence interval half-width divided by the point 
estimate. This corresponds to approximately 100 000 events 
for each entry in Table I and 1 000 000 events for each entry 
in Table 11, respectively. For the MSDIS entries, we assigned 
10% of the total events to estimate the denominator (numera- 
tor) for unavailability (MTTF) as suggested in Section 111-D. 
Based on empirical results obtained in [4], [19], and [43], the 
values for bias1 and bias2 were selected as follows: for DIS, 
0.5 and 0.5, and for MSDIS, 0.9 and 0.9. 

For the balanced system (Table I), the BiasllBias2 method 
is most effective, which supports our intuition that it helps 
push the system quickly toward a likely path to failure. For 
the unbalanced system (Table 11), the BiasllBaZancing is the 
most effective method, which also supports our intuition as 
follows. By making individual failures equally likely we are 
also increasing the failure probability of a more reliable but 
less redundant component, thus leading to a more likely path 
to failure. 

Note that the percentage relative half-widths for both the 
steady-state unavailability ( U )  and the mean time to failure 
(MTTF) are approximately equal. This is because the estimate 
of U is approximately proportional to the estimate of l/MT"F. 
To see this, using the notation of Section 11, m i n ( a F ,  (YO) = QO 

with high probability when no importance sampling is used. 
Thus an individual sample r.v. in the numerator of the ratio 
for MTTF (2.9) is equal to the r.v. in the denominator of U 
(2.7) with high probability. Now for the three state model, a 
sample r.v. G in the numerator of U is G = h2 x n F  where 
n F  is the number of times the failure state is entered. Using 
our importance sampling schemes, G = h2linFZl) with high 
probability. Furthermore, l{nF=l} = 1{,,,,,) with high 
probability so an individual sample r.v. in the denominator of 
the M'ITF ratio is proportional to the r.v. in the numerator of U 
with high probability. Thus, an estimate of U is approximately 
proportional to 1°F. Finally, direct manipulation of the 
asymptotic variance (3.6) shows that the relative half-width of 
a ratio is equal to the relative half width of its reciprocal. 

We next performed the coverage experiments (see e.g., [26]) 
to determine the validity of the confidence intervals that are 
formed based on the asymptotic central limit theorems de- 
scribed in Section 111. Such studies are important since certain 
variance reduction techniques sometimes do not produce valid 
confidence intervals, except for very long run-lengths (see e.g., 
[26]). In such cases, the variance reduction technique cannot 
be relied upon to actually shorten simulation run lengths. We 
performed coverage experiments on estimates of the steady- 
state unavailability, U ,  in the above described balanced system 
as follows. We chose three run lengths corresponding to 
small, medium and large sample sizes and considered three 
ways of estimating U :  standard simulation, the BiasllBias2 
method with DIS and the BiasllBias2 method with MSDIS. 
For each method and run length we ran R = 100 replications 
and formed point estimates U,, ' . ' , U, and 90% confidence 
intervals. We then calculated the mean percent relative bias (= 
100% x ( l / R )  xkl(Ui - U ) / U )  and the standard deviation 
of this mean. Note that if an estimate is unbiased, then its mean 
percent relative bias should converge to zero as R + CO. We 
also calculated the 90% coverage which is the percentage of 
the (alleged) 90% confidence that actually contain the true 
value U. If the confidence interval is valid, then by definition, 
the 90% coverage should be close to 90%. 

We also computed the mean percent relative half width 
of the 90% confidence intervals. For each replication, this 
relative value is computed using the point estimate and not 
the true value. The mean is computed over all replications 
with a nonzero point estimate. The results are listed in Table 
111. As anticipated from Section 111-E, the standard estimate 
is significantly more biased than either the DIS-BiasllBiasZ 
or the MSDIS-Biasl/Bias2 estimates and that its confidence 
intervals are at least an order of magnitude wider. Furthermore, 
for the small run length, its coverage drops significantly 
below 90%. In fact, there were no system failures in the runs 
corresponding to the 46% of the confidence intervals which 
did not contain U .  Using our variance reduction techniques, 
all the coverages are close to the nominal 90% value except 
for the longest run using MSDIS which had a coverage 
of 81%. Changing the random number generator from the 
multiplicative linear congruential generator In+l = ( I ,  x 
16807) mod 231 - 1 to the combined generator described 
in [27], and running R = 200 replications, increased the 
coverage to 85% which still represents a statistically significant 
departure from 90%. Despite a considerable effort, we have 
been unable to identify the source of this slight coverage 
problem. However, note that the first nonzero digit in U is 
in the sixth decimal place, so the problem (if any) is occurring 
in the eighth decimal place. In practice, such high precision 
may not be warranted, given inaccuracies in model parameters 
and distributional assumptions. 

B. Transient Measures 
In this section we discuss the results of our experiments 

for estimating reliability and expected interval availability. 
Recall that for transient measures we not only want the system 
to move quickly toward the set of system failed states F ,  
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Numerical Direct Bias 1 Biasl/Balancing Biasl/Bias2 
Results 

10.9309 x 1.0171 x 0.9779 x 0.9547 x lo-' 0.9395 x lo-' 

(0.5) (0.5) (0.5/0.5) 

Unavailability f 27.1 YO f 7.6 Yo f 6.2 Yo & 2.7 Yo 

0.1637 x 0.1524 x 0.1581 x lof6 0.1631 x lof6 0.1626 x lof6 

MTTF - + 25.7 Yo f 7.0 Yo f 5.7 Yo * 2.5 % 

47 

MS- 
Bias 1/Bias2 
(0.9/0.9) 

0.9317 x 

* 1.0 Yo 

0.1633 x lof6 

f 1.0 Yo 

Events per 
Replication 

Numerical 
Results 

0.6967 x 

Unavailability 

0.2188 x 10" 

MTTF 

2000 

Direct Bias 1 Biasl/Balancing Biasl/Bias2 MS- 
Bias 1 /Balancing 

(0.5) (0.5) (0.5/0.5) (0.9) 
0.4164 x lo-' 0.6644 x 0.6976 x 0.6375 x lo-' 0.6810 x 

164.5 YO f 46.1 YO f 2.4 Yo f 5.6 Yo f 2.2 Yo 

0.4703 x 10" 0.2227 x lo+' 0.2183 x lo+' 0.2349 x lo+' 0.2222 x 10" 

f 164.5 Yo + 43.7 Yo f 2.3 Yo f 5.1 Yo f 2.0 Yo 

20000 

BiasliBias.2 (0.5/0.5) 

Relative Bias Relative H W  Coverage 
(Std. Dev.) 

200000 

MS - Biasl/Bias2 (0.9/0.9) 

Relative Bias Relative HW Coverage 
(Std. Dev.) 

0.74 Yo 
(1.21 Yo) 

18.88 Yo 85 % 0.35 Yo 6.70 Yo 91 % 
(0.91 Yo) 

TABLE I11 
COVERAGE EXPERIMENTS FOR THE BALANCED SYSTEM 

0.39 % 
(0.34 Yo) 

0.05 Yo 
(0.13 Yo) 

Direct Simulation 

(Std. Dev.) 

6.95 Yo 
(12.88 Yo) 

5.99 Yo 90 Yo 0.11 Yo 2.56 Yo 91 % 
(0.22 Yo) 

1.90 Yo 90 Yo 0.03 Yo 1.04 YQ 81 Yo 
(0.073 Yo) 

-3.94 % 

1.29 Yo 19.6 Yo 96 Yo 
(1.09 Yo) 

but also reach there before the observation period expires. 
Since these two issues are, in some sense, orthogonal, we 
use the same technique as in the steady-state case to bias 
the embedded Markov chain toward the system failed set, 
in addition to another independent technique (e.g., forcing or 
conditioning as discussed in Section V) to reduce the variance 
due to holding times in the various states. The likelihood 
ratios corresponding to these two aspects of simulation are 
independent and can be formulated as in Proposition 4.1. The 
goal of the simulation is to study the effect of the forcing 
and conditioning techniques. We considered only the balanced 
system. For each measure, we allowed each method to run 
for 400 000 events. Standard simulation was not considered 
as it is very ineffective for estimating transient measures. The 
results are given in Tables IV and V. 

For all methods, the confidence intervals are smaller for 
some range of intermediate time periods and wider at the ends. 
To explain this, we recognize two key factors affecting the 
variance of the estimates; namely, the number of replications 
in a simulation run and the value of biusl used with importance 
sampling. For smaller time intervals, there are more replica- 
tions in a simulation run than for larger time intervals (since 
we kept the total number of events fixed). This contributes 
to a larger variance for larger time intervals. Furthermore, for 
each time interval, there is an optimal value for biusl which 
maximizes the variance reduction. While bias1 = 0.5 may be 
close to optimal for some intermediate range of time intervals, 
it departs from the optimal value for either smaller or larger 
time intervals. 

The two tables indicate that forcing and conditioning are 
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f 3.9 Yo 

.9276 x IO-’ 

48 

f 12.9 ?‘a 

,8651 x lo-’ 

TABLE IV 
UNRELIABILITY ESTIMATES IN A BALANCED SYSTEM 

f 5.5 % 

,9012 x 

f 6.6 Yo 

1.0766 x 

f 13.9 Yo 

.3707 x IO-’ 

f 36.1 % 

Vumencal Biasl ( O S )  
Jnreliability Standard t- 

f 3.1 Yo f 4.8 Yo 

,8822 x IO-’ ,8862 x IO-’ 

f 4.0 % f 3.2 Yo 

1.0010 x lo-’ .9049 x 

f 9.3 Yo f 4.4 Yo 

.6168 x lo-’ 1.0760 x 10- 

f 51.6 Yo f 64.8 Yo 

. 5 /  o. 5)  

* 2.1 % 

,8966 1 0 - ~  

,9133 IO-’ 

f 2.4 Yo 

f 4.2 Yo 

1.0728 x IO-’ 

f 1.2 Yo 

,8821 lo-’ 

,9063  IO-^ 
f 1.5 Yo 

f 3.3 Yo 

.7822 x 

f 65.0 Yo f 21.3 Yo 

3ias 1 /Bias2 

jtandard 

1583 lo4 

t 7.0 Yo 

8693 x 

k 3.3 Yo 

3801 x 

k 1.8 Yo 

Time ( r )  
in 
Hours 

4 

16 

64 

256 

1024 

Bias 1 /Balancing (0.5) 

Forcing Conditioning Standard Forcing Conditioning 

,1477 .1435 1 0 - ~  ,1255 lo4 .I531 io4 ,1463 

5.2 Yo f 7.5 Yo f 21.3 Yo f 4.0 ‘?A f 5.5 % 

,8569 x ,8383 x lo4 ,8855 x lo4 ,8565 x IO“ ,8301 x 

f 25.0 Yo f 25.0 Yo 

f 10.7 Yo 

+ 5.8 YQ 

1565 x 

k 1.5 Yo 

6226 x 1.1968 x IO- I 6275 x 

k 4.9 T o  f 73.3 Yo 

TABLE V 
EXPECTED INTERVAL UNAVAILABILITY ESTIMATES IN A BALANCED SYSTEM 

- 
rime ( t  
n 
Hours 

Vumerical Biasl (0.5) 
Interval 
Unavailability + 3178 x lo-’ ,3057 x lop5 

I Bias 1 /Balancing (0.5) I Bias 1 / Bias2 (0.5/0.5) 

Forcing Conditioning Standard + ,3224 x ,2572 x lop5 1 3110 x 1 0 - ~  

f 6.8 Yo f 4.7 Yo 

,7401 x lo-’ ,7677 x 

f 27.5 % + f 3.5.0 Yo 

16 7148 

k 6.7 % f 15.8 % 

54 

- 
5 6  

8866 x l o r5  

k 8.3 % 

9442 lo-’ 

k 12.9 Yo 

9677 x l o r5  

t 91.5 Yo 

f 11.4 % + 9178 x .9882 x 

1024 

If 91.5 % & 103.5 Yo I f  36.3 % 

most effective for short time intervals. This is intuitive because 
for a long interval enough transitions occur before the interval 
expires, and therefore, the embedded Markov chain has a 
chance to reach the system failed set using only failure 
biasing. This is not true for short intervals, and therefore, 
either forcing transitions to occur before the end of the 
period or conditioning the holding time out in state 0 has a 
significant effect. Both forcing and conditioning give similar 
results for unreliability, while conditioning is consistently 
better for the interval unavailability. Note that for interval 
unavailability we are using (4.7) with conditioning, but not 
with forcing. However, forcing can be similarly combined 
with (4.7) to possibly yield better results. Also, note that 

BiasllBias2 method is consistently better than both the Biasl 
and the BiasllBalancing methods. This is consistent with a 
similar conclusion with respect to the steady-state measures in 
a balanced system. 

VII. SUMMARY AND DIRECTIONS FOR FUTURE WORK 

In this paper, we have developed a unified framework 
for simulation of Markovian models of highly dependable 
systems. Conventional numerical techniques are difficult to 
apply to this class of stochastic models because of the fact that 
the size of the state space of the Markovian model increases 
exponentially with the number of components in the system. 
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On the other hand, simulation algorithms tend to be relatively 
insensitive to the size of the state space of the simulated 
Markovian model, both in terms of storage and computational 
requirements. However, standard simulation is inefficient in 
our setting because the principle focus of interest; namely, 
system failures, occur so infrequently in highly dependable 
systems. As a consequence, few system failures, if any, would 
be observed if standard simulation methods were to be used 
in our problem context. 

The emphasis in this paper has therefore centered on apply- 
ing variance reduction techniques to improve the efficiency of 
the simulations associated with Markovian models of highly 
dependable systems. We have reviewed the basic theory of 
importance sampling in several elementary problem settings 
and then used this insight to develop sampling heuristics for 
the complex systems of interest here. Different variants of 
these ideas were developed for both transient and steady- 
state dependability measures. In addition, we have "fine-tuned" 
the importance sampling techniques to take advantage of 
the structure of highly dependable systems which are either 
balanced or unbalanced. 

Our work has also shown that importance sampling may 
be fruitfully applied in conjunction with a variance reduction 
method known as conditioning. The basic idea here was to 
observe that highly dependable systems spend a significant 
fraction of time in the state in which all components are fully 
operational. Since the stochastic behavior of the time spent in 
the fully operational state was easy to calculate analytically, 
this permitted us to effectively integrate out the randomness in 
our importance sampling estimators due to the holding times 
in the fully operational state. 

Our empirical investigation showed that the combined vari- 
ance reduction obtained by using both conditioning and im- 
portance sampling is typically substantial. In fact, in all of 
our experiments, our methods yielded estimators in which the 
variance was decreased by several orders of magnitude. In a 
recent analytical work in this area ([44]), the heuristics used in 
this paper have been proven to be very efficient. Our empirical 
work also showed that the confidence intervals associated 
with our estimators typically provided acceptable levels of 
coverage. We view this as important, since the scientific 
representation of the accuracy of a simulation estimator is 
usually gauged through a confidence interval. 

A number of possible directions for future research present 
themselves. One important issue relates to the fact that the 
importance sampling heuristics presented in this paper were 
basically developed for systems in which system dependability 
is achieved principally through high component reliability. 
However, another approach to obtaining high system de- 
pendability is through high levels of component redundancy. 
Importance sampling methods approprizte for the analysis of 
highly redundant systems differ from those presented here. 
Such techniques would likely have important ramifications for 
the simulation of certain highly dependable systems. 

A second important research area involves the generaliza- 
tion of the ideas developed in this paper to stochastic models 
of highly dependable systems in which the underlying failure 

stochastic process is typically no longer either Markovian 
or regenerative, many of the ideas presented in this paper 
cannot be implemented directly. Some work in this direction 
is reported in [37]. 

APPENDIX 
ESTIMATING THE DISTRIBUTION OF INTERVAL AVAILABILITY 

We will find it more convenient to estimate the distribution 
of the time in the set of failure states, U ( t ,  x) = P{U(t )  I z}, 
where U ( t )  = Jstt=o l {YsEF)d~ .  Since A ( t )  = 1 - U ( t ) / t  we 
have A ( t , x )  = P{A( t )  I x} = 1 - U ( t ,  (1 - z ) t ) .  To derive 
an estimator for U(t , x ) ,  write 

U ( t ,  x) = Ul(t, x) + UZ(t, .) (A.1) 

where Ul(t,x) = P{U(t) 5 x ,y t  F }  and U~(t,x) = 
P{U(t) I x,K E F}. Define D, = xi=ot31{~,E~} and 
C, = t , l{x,+o,x,g~}, with Y,, 4, and no(i) as defined 
previously. Note that 4, = C, + D, and T,+1 = y, + C, + D,. 
Consider U1 ( t  , x) : 

U1(t,x) = P { U ( t )  I x ,y t  # F} 
00 

= P{U(t) I x, X, # F, N ( t )  = i} 
2=0 
00 

= CP{D,- i  5 x , X ,  # F,T, < t < Tz+1} 
2=0 

2=0 

+ 42-1 < t < Yz + 42). (A.2) 

Now if X, = 0, then dzP1 = 4,. If X, # F and X, # 0, then 
no(z - 1) = no(z) and therefore yz-l = 7,. In either case, by 
conditioning on the sequence of states and the holding times 
in the nonzero states, we can write 

03 

Ul(t,X) = E l{D,-l<z,x,@F} (Eno(z-l)(t - 4 2 - 1 ,  Xo) [ 2=0 
- Eno(z)(t - 4 2 ,  Xo)) . ('4.3) 1 

Now consider UZ(t,x). If Yt E F and N ( t )  = a ,  then 
U ( t )  = DZp1 + t - T, = t - -y,-l - Cz-l. Furthermore, on 
this set no(z - 1) = no(z), yz-l = y, and C,-l = C, so that 

0 0 , -  

- .  . 

and repair distributions are nonexponential. Since the resulting 
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This development provides a computationally attractive way 
to estimate U(t ,  x) without sampling from the state 0 holding 
time distribution. It is easily combined with failure biasing. 
Practical implementations may require truncation or stopping 
rules as described in Section IV-B. 
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