Uncovering the phenotypic fitness landscape of microbes adapting to novel environments

Grant Kinsler
Stanford University

@GrantKinsler
Evolution Experiment in Glucose Limitation

Levy and Blundell et al. (2015)
Evolution Experiment in Glucose Limitation

Levy and Blundell et al. (2015)
Evolution Experiment in Glucose Limitation

Levy and Blundell et al. (2015)
Evolution Experiment in Glucose Limitation

Levy and Blundell et al. (2015)
Evolution Experiment in Glucose Limitation

Levy and Blundell et al. (2015)
Evolution Experiment in Glucose Limitation

Levy and Blundell et al. (2015)
Evolution Experiment in Glucose Limitation

Levy and Blundell et al. (2015)
Evolution Experiment in Glucose Limitation

Levy and Blundell et al. (2015)
Evolution Experiment in Glucose Limitation

Thousands of independent adaptive events!

Venkataram and Dunn et al. (2016)
Evolution Experiment in Glucose Limitation

Thousands of independent adaptive events!

237/335 (71%) — Self-Diploidization
82/335 (24%) — Nutrient-Response pathways
14/335 (5%) — Something else

Venkataram and Dunn et al. (2016)
How many fitness-relevant phenotypes are impacted by adaptive mutations?
Genotype-to-Phenotype-to-...-to-Phenotype-to-Fitness Map

- Genotype
- mRNA levels
- Protein abundances
- Cell death
- Cell division rate
- Cell morphology
- Fitness
Subtle environmental perturbations can reveal fitness-relevant phenotypes.

- Genotype
- mRNA levels
- Protein abundances
- Cell morphology
- Cell division rate
- Cell death
- Fitness

?
Subtle environmental perturbations can reveal fitness-relevant phenotypes

Genotype mRNA levels Protein abundances

Cell death Cell division rate Cell morphology

Fitness

?
Subtle environmental perturbations can reveal fitness-relevant phenotypes
Subtle environmental perturbations can reveal fitness-relevant phenotypes

Genotype → mRNA levels → Protein abundances → Cell morphology → Cell division rate → Cell death → Fitness

?
Subtle environmental perturbations can reveal fitness-relevant phenotypes

- Genotype
- mRNA levels
- Protein abundances
- Cell morphology
- Cell division rate
- Cell death

? Fitness
Subtle environmental perturbations can reveal fitness-relevant phenotypes

- Genotype
- mRNA levels
- Protein abundances
- Cell morphology
- Cell division rate
- Cell death
- Fitness

?
Subtle environmental perturbations can reveal fitness-relevant phenotypes

Genotype → mRNA levels → Protein abundances → Cell morphology → Cell division rate → Cell death → Fitness

?
Subtle environmental perturbations can reveal fitness-relevant phenotypes

Genotype → mRNA levels → Protein abundances → Cell morphology → Cell division rate → Cell death → Fitness

?
Remeasure Fitness of Adaptive Mutants

Venkataram and Dunn et al. (2016)
Remeasure Fitness of Adaptive Mutants

Venkataram and Dunn et al. (2016)
Remeasure Fitness of Adaptive Mutants

Venkataram and Dunn et al. (2016)
Remeasure fitness of adaptive mutants

Venkataram and Dunn et al. (2016)
Remeasure fitness of adaptive mutants

Venkataram and Dunn et al. (2016)
A framework for using subtle perturbations
A framework for using subtle perturbations

Phenotype 1

Phenotype 2

Optimal combination of phenotypes
A framework for using subtle perturbations

Optimal combination of phenotypes

Ancestor
A framework for using subtle perturbations
A framework for using subtle perturbations
A framework for using subtle perturbations

Ancestor
A framework for using subtle perturbations

Ancestor
A framework for using subtle perturbations
A framework for using subtle perturbations

Ancestor
A framework for using subtle perturbations
Predicting fitness in new environments using batch conditions

Good Prediction

Bad Prediction

Condition

DMSO
No Anc
GdA
1.8\% Gluc
Ferm_50hr
24hr
1.6\% Gluc
Ferm_44hr
1.4\% Gluc
Ferm_54hr
1.7\% Gluc
Rad_5uM
5 Day
2.5\% Gluc
Ben_2ug/mL
Flu_2ug/mL
7 Day
Predicting fitness in new environments using batch conditions

![Graph showing predictability of fitness conditions](#)
Predicting fitness in new environments using batch conditions

1 Trait Model

Good Prediction vs. Bad Prediction

Predictability vs. Condition

Subtle vs. Not-so-subtle
Predicting fitness in new environments using batch conditions

Good Prediction

Bad Prediction

Predictability

1 Trait Model

2 Trait Model

Subtle

Not-so-subtle

Condition

DMSO
No Anc
GdA
1.8% Gluc
Ferm_50hr
24hr
1.6% Gluc
Ferm_44hr
Ferm_40hr
1.4% Gluc
Ferm_54hr
1.7% Gluc
Rad_5U/mL
5 Day
2.5% Gluc
Ben_2ug/mL
Flu_2ug/mL
7 Day
Predicting fitness in new environments using batch conditions

Predictability

Good Prediction

Bad Prediction

Condition

DMSO
No Anc
GdA
1.8% Gluc
Ferm_50hr
24hr
1.6% Gluc
Ferm_44hr
Ferm_40hr
1.4% Gluc
Ferm_54hr
1.7% Gluc
Rad_5uM
5 Day
2.5% Gluc
Ben_2ug/mL
Flu_2ug/mL
7 Day

Subtle

Not-so-subtle
Predicting fitness in new environments using batch conditions

Subtle

Not-so-subtle
Predicting fitness in new environments using batch conditions

Predictability

Good Prediction

Bad Prediction

Subtle

Not-so-subtle

Condition

DMSO, No Anc, GdA, 1.8% Gluc, Ferm_50hr, 24hr, 1.6% Gluc, Ferm_44hr, Ferm_40hr, 1.4% Gluc, Ferm_54hr, 1.7% Gluc, Rad_5uM, 5 Day, 2.5% Gluc, Ben_2ug/mL, Flu_2ug/mL, 7 Day
Predicting fitness in new environments using batch conditions

![Graph showing predictability of fitness under various conditions.]

- **Good Prediction**
- **Bad Prediction**

Conditions:
- DMSO
- No Anc
- GdA
- 1.8% Gluc
- Ferm_50hr
- 24hr
- 1.6% Gluc
- Ferm_44hr
- Ferm_40hr
- 1.4% Gluc
- Ferm_54hr
- 1.7% Gluc
- Rad_5uM
- 5 Day
- 2.5% Gluc
- Ben_2ug/mL
- Flu_2ug/mL
- 7 Day

Predictability

Subtle

Not-so-subtle
Few (~2) fitness-relevant traits explain behavior across subtle perturbations.
Subtle

Not-so-subtle
Another phenotype matters here?
1 Big Batch Experiment

#1BigBatch
@GrantKinsler
1 Big Batch Experiment

#1BigBatch
@GrantKinsler
1 Big Batch Experiment

#1BigBatch
@GrantKinsler
First #1BigBatch data is back! We sequenced 8 samples on 1 lane of HiSeq X, each with unique set of primers. For each primer, ~10% of reads were in pairs not included, showing high rates of index switching, which could impact frequency estimates.

@GrantKinsler @PetrovADmitri

Evidence for Index Switching in #1BigBatch Sequencing

Update on #1BigBatch: we tested how different sources of technical variation influence our ability to estimate the relative frequencies of 500 barcoded yeast lineages. Want to bet which source contributes most noise?

#1BigBet @GrantKinsler @PetrovADmitri

26% Inefficient cell lysis
18% Index switching
41% Stochasticity of PCR
15% Variation btw Hiseq runs

100 votes • Final results

7:37 PM - 6 Jun 2018
1. Subtle perturbations + precise fitness estimates give insight about phenotypic evolution

Preliminary conclusions about phenotypes involved in adaptation to glucose-limitation
Preliminary conclusions about phenotypes involved in adaptation to glucose-limitation

1. Subtle perturbations + precise fitness estimates give insight about phenotypic evolution

2. First step of adaptation (in this case) seems to involve few fitness-relevant phenotypes
Thanks!

Kerry Geiler-Samerotte

Dmitri Petrov

Petrov Lab

Yuping Li + Sherlock Lab

#1BigBatch

@GrantKinsler

SSE