Taking a Point of View: Character Identification and Attributional Processes in Story Comprehension and Memory

Justine Owens, Janet Dafoe and Gordon Bower
Stanford University

Text of Speech given at Convention of American Psychological Association San Francisco, California August 29, 1977
The work I'll report was done in collaboration with Janet Dafoe and Gordon Bower. I would also like to thank Susan Lyte, our research assistant for her help on the project. Our basic hypothesis is that when a reader identifies with a character in a story he tries to understand the story from that character's point of view. If you think about it, people are used to understanding the world from a personal perspective and it would be a reasonable strategy to try to comprehend a story from a character's personal perspective. The reader attempts to understand the other character's and situations in the story the same way he tries to understand the stories in his own life. He searches for explanations.

If this is so, we reasoned that this process of explaining the behavior of storybook characters, should reveal similar laws to those governing our attributions about real people. One finding in the attribution literature is that people tend to attribute their own behavior to external causes, to factors in the environment, whereas they tend to attribute the behavior of others to internal causes, to dispositions or traits characteristic of that person. For example, we tend to say, "I couldn't return that serve in a tennis game because the sun was in my eyes; he missed a shot because he's not a very good player. This has been termed the Actor-versus-Observer difference by attribution theorists Jones and Nisbett.

We wanted to see whether we could produce this Actor-Observer difference in our subjects who read a story about two conflicting characters. The subjects were induced by our experimental manipulation to identify with one particular character. The question is whether the readers identification with one character in a story biases his interpretation and recall of events in the story in a manner consistent with the Actor-Observer difference. If you look at the first page of the handout you will see a diagram of our experimental design. We controlled who the reader would identify with by giving a first page to half the subjects that introduced Harry the driver of a motor boat while the other half read a page introducing them to Rich the water skier. The last 4 pages of the
story were identical for all the subjects. After the subjects read the story they were given a 90 item recognition test to see if their memory for the story depended on who they identified with while reading the story. The retention interval was 20 minutes and the subjects participated in an unrelated experiment during that time. Let me give you a quick synopsis of the story:

Cindy is trying to film a television commercial for sun tan lotion, and she selected Rich to be the water-skier in the ad. She gets her boyfriend, Harry, to drive the speed boat. The story describes them meeting at the dock, going out on the lake, and trying to get some good film shots of Rich water-skiing. However, various spills, mistakes, and misunderstandings occur involving the skier and the boatdriver, both of whom are competing for Cindy's attentions. The story was intentionally vague at key places, leaving room for the reader's perspective to influence his interpretation of particular events. For example, the cause of the mishaps is not explained and so the reader was free to explain the characters' behavior however they chose.

To be specific, let's look at one of the items on the recognition memory test on page 2 of the handout. This example illustrates the ambiguity of the text and the difference between our two recognition tests, A and B.

After Rich has fallen off his water skis, he has difficulty getting hold of the handle of the tow-rope again. The statement in the story is "Rich reached for the handle, but it escaped him." Note it is not clear why Rich had trouble catching the handle. We predicted that subjects who identified with the skier, Rich, in this case the actor, would attribute the cause of the skier's behavior to the situation—that the tow-rope was too far away to catch—whereas subjects who identified with the boatdriver, Harry, in this case the observer, would attribute the skier's behavior to the skier's incompetence, a dispositional explanation. This is the analog to the Actor-Observer effect, obtained in a story context.
Looking at the example, you can see that the recognition items on TESTS A & B were written in order to detect the effects of reading the story from 1 character's point of view. We predicted the reader's interpretation of the causes of the characters' behavior, and his imagery of the situation would reveal that he understood the story from that character's perspective.

The TEST-A item states: "Rich reached for the handle, but the boat hadn't come close enough for him to catch it." Subjects who identified with Rich, the skier gave this statement a mean rating of 1.7 on a scale of 1 to 6 with 1 indicating they were sure the sentence had been in the story. Subjects who identified with the driver rated this test statement 3.7. This indicates that subjects who identified with the skier were more likely to false alarm to this sentence than subjects who identified with the driver. This also means that subjects who identified with the driver interpreted the story sentence differently and so were more likely to correctly reject the test item.

The corresponding item on TEST B was:

"Rich reached for the handle, but he wasn't fast enough to catch it." Subjects who identified with Rich gave this statement a mean rating of 2.9 while Harry subjects rated it 1.7. This data shows that subjects who identified with the observer in this case the driver, were more likely to false alarm to test items that imply that the cause of the actor's difficulties, in this case the skier, was due to the dispositional trait of actor himself. Conversely, subjects who identified with the actor, in this example the skier, were able to correctly reject the item because they attributed the cause of the character's behavior to the situation, and the test item did not match this attribute. This example illustrates the attribution effect we found and shows you how TEST A relates to TEST B and how they both relate to the actual text. Notice in the results the interaction between the character identified with, and the recognition ratings given to test items written from the viewpoint of Rich or Harry. These
interactions are evidence for the Actor Observer difference in attribution, and its impact on later memory tests.

To briefly summarize part of the data, we averaged the recognition ratings for all the items that, on the basis of the Actor Observer difference, we predicted the skier subjects would false alarm to. Subjects who identified with the skier should be lower than that for subjects who identified with the boatdriver. These means are 2.19 for the skier, and 3.22 for the driver.

Similarly, we averaged the ratings for the items that we thought subjects who identified with Harry would remember as being in the story. These means are 2.81 for the skier and 2.44 for the driver. A 2 x 2 analysis of variance reveals a statistically significant interaction, p < .01.

In addition to the recognition memory test we asked the subjects to rate both Rich's skiing ability and Harry's driving ability on a 6 point scale, with 6 indicating excellent and 1 meaning poor. The Actor-Observer effect led us to predict an interaction in this data also. Subjects identifying with the skier, who had attributed his problems to the situation, should feel that the skier had relatively high ability. Subjects who had identified with the driver and thus were observers of the skier should feel the skier had relatively low ability since his mishaps were his own fault. The converse would be true for ratings of the driver's ability. Please refer to the graph on page 3. In line with this prediction, we found that Subjects who identified with the skier rated his ability at 4.89 but the driver's ability at only 2.61. On the other hand, Subjects who identified with the driver rated his ability at 4.95 but rated the skier at only 4.26. 82% of the subjects follow this pattern. As expected, then, the reader's judgments about the characters also reflect the Actor-Observer difference.

Afterwards, we asked our readers to describe the mental images they had while reading the story. Subjects reported that they imagined the water scene and
placed themselves with the character they identified with. Consistent with these introspections, false alarms to the recognition items revealing a character's spatial perspective showed the predicted pattern of interaction. The 2nd example on the second page is an example of an item written to detect a difference in spatial perspective.

We think that our data are interesting from several points of view.

First, an adequate representation of the meaning of a narrative can not be mechanically derived from it without taking account of which character the reader identifies with. We tried to influence which character a reader chose to identify with by introducing that character first in the story, and trying to make both characters equally appealing in the main body of the text. We wouldn't expect our manipulation to work if the first character introduced was clearly unattractive for our subjects. The attractiveness of a character and his similarity to the reader should influence whether the reader identifies with him. To cite an example, one subject read the introductory bit about the driver, but nonetheless he identified with the skier, in the main story. Later he mentioned that he was an avid waterskier. We could not expect our brief lead-in to override a reader's natural tendency to identify with a character he perceives to be like himself. It seems that the process of identification depends on personal attributes of the reader as well as the order of mention of characters in the text.

Secondly, we have demonstrated that readers explain the actions of characters in stories according to the Actor-Observer distinction researched in attribution theory. In particular, the actions of the character with whom a reader identifies are attributed to aspects of the situation, whereas actions of others reveal their personal characteristics. Such analogs suggest that person perception, attribution, and other social-psychological phenomena can be studied in stories which set up any social situation and social behavior of interest. It also suggests that our social inferences about a character influences how we remember his actions and events in which he participated. Jones & Nisbett suggested the Actor-Observer
difference in attributions might be due to differences in perceptual salience of the actor's environment versus the actor himself. Our subjects reports of mental imagery are consistent with this hypothesis of perceptual salience. Subjects who identified with the skier imaged the scene "through his eyes" but were outside observer's of the driver's actions. They imaged the skier's actions as though they themselves were performing them. These differing images for skiers versus driver may account for many of our effects of differing identifications.

Let me summarize our main points.

First, An adequate representation of the meaning a reader derives from a story with interacting characters must include reference to his personal perspective and reference to which character he emotionally identified with.

Second, A reader's memory for the causes of a character's behavior is the Actor-Observer difference found in real life.

Third, Subjects engage in visual imagery and their descriptions reveal a spatial perspective consistent with the character they identified with. Imagining the scene from particular vantage point could account for Actor-Observer effect we detected in the recognition test and ability ratings.
IDENTIFY WITH THE SKIER

SERIES OF MIS-HAPS BETWEEN BOAT AND SKIER

RECOGNITION MEMORY TEST FORM A

RECOGNITION MEMORY TEST FORM B

IDENTIFY WITH THE DRIVER
RECOGNITION DATA
1 - 6 RATING SCALE 1 = OLD 6 = NEW N = 38

EXAMPLES

1) Sentence as stated in story:
Rich reached for the handle but it escaped him.

TEST B SENTENCE
Rich reached for the handle, but he wasn't fast enough to catch it.
2.9 1.7

TEST A SENTENCE
Rich reached for the handle, but the boat hadn't come close enough for him to catch it.
1.7 3.7

2) Sentence as stated in story:
The engine sputtered and the boat jumped ahead.

TEST A SENTENCE
The engine sputtered and Harry felt the boat jump ahead.
3.4 2.1

TEST B SENTENCE
The engine sputtered and Rich saw the boat jump ahead.
1.6 2.1

3) Sentence as stated in story:
He gripped the wheel tensely and turned it sharply to the right trying to avoid the troughs of their wake.

TEST A SENTENCE
He gripped the wheel tensely as he skillfully avoided the troughs of their wake.
3.0 2.0

TEST B SENTENCE
He gripped the wheel tensely having difficulty avoiding the troughs of their wake.
2.2 3.7

SUMMARY OF ACTOR OBSERVER RECOGNITION DATA

Average recognition rating of all the items that we predicted subjects who identified with the skier would false alarm to

2.19 3.22

Average recognition rating of all the items that we predicted subjects who identified with the driver would false alarm to

2.81 2.44

This interaction is significant at p < .01
ABILITY RATINGS OF THE DRIVER AND THE SKIER
BY SUBJECTS WHO IDENTIFIED WITH THE SKIER AND THE DRIVER

<table>
<thead>
<tr>
<th>Subjects who identified with the skier</th>
<th>Driver's ability</th>
<th>Skier's ability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.61</td>
<td>4.89</td>
</tr>
</tbody>
</table>

For the interaction in this table, $F(1, 36) = 30.62$, $p < .001$