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Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via
air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can
modify nectar chemical constituents that are plant-provisioned or impart
their own through secretion of metabolic by-products or antibiotics into the
nectar environment. Such modifications can have consequences for pollinator
perception of nectar quality, as microbial metabolism can leave a distinct
imprint on olfactory and gustatory cues that inform foraging decisions. Fur-
thermore, direct interactions between pollinators and nectar microbes, as
well as consumption of modified nectar, have the potential to affect pollinator
health both positively and negatively. Here, we discuss and integrate recent
findings fromresearchonplant–microbe–pollinator interactions and their con-
sequences for pollinator health. We then explore future avenues of research
that could shed light on the myriad ways in which nectar microbes can
affect pollinator health, including the taxonomic diversity of vertebrate and
invertebrate pollinators that rely on this reward.

This article is part of the theme issue ‘Natural processes influencing
pollinator health: from chemistry to landscapes’.

1. Introduction
A diversity of pollinators ranging from tiny thrips to large lemurs seek nectar to
fuel their energetic demands [1–3]. This energy is derived primarily frommetab-
olism of chemical constituents, namely the sugars glucose, fructose, and sucrose
[4–6], together comprising 6–85% (w/v) of nectar [7], along with lower concen-
trations of amino acids, lipids, minerals, and vitamins [8–11]. Such resources
are critical for reproduction of many animals, but animals are not the only organ-
isms that benefit from floral nectar. Increasingly, nectar is being appreciated for its
role as a habitat for archaea, bacteria, fungi, protozoa, and viruses that disperse to
flowers via air-, rain-, and animal-mediated transmission [12–14].

Current research regarding nectar microbes largely centres on documen-
tation of patterns of occurrence and diversity (reviewed in [14]), as well as
consequences of microbial metabolism for plant fitness (reviewed in [15]). In
this paper, we review the emerging evidence suggesting that the nectar micro-
biome can also influence pollinator health, defined here as a state of well-being
that allows pollinator individuals and populations to achieve high fitness
through increased longevity and reproduction even in the presence of patho-
gens [16]. The nectar microbiome could affect pollinator health in multiple
ways, including modification of the nutritional landscape encountered by pol-
linators, altering nectar foraging behaviours, and interacting with symbionts
and pathogens associated with pollinators. Many of the potential consequences
discussed here are untested hypotheses. Thus, we first review current findings
and then highlight future research areas that would improve our understanding
of the ways in which nectar microbes affect pollinator health.
2. Occurrence, abundance, and diversity of nectar microbes
To date, surveys of the nectar microbiome have largely focused on bacteria and
fungi [17–19]. Generally, both microbial occurrence and abundance in nectar
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increase over the lifetime of a flower [14,20], with yeasts and
bacteria reaching densities of up to about 105 and 107 cells µl−1,
respectively [18,19]. Nectar microbial communities tend to be
species-poor, at least in temperate regions, with only one
yeast or bacterial species achieving dominance [21,22]. Disper-
sal limitation [21], competitive exclusion [20,23], and the
environmental constraints of nectar [24], including high osmo-
tic pressure and low nitrogen availability, appear to contribute
to low species richness. Subtropical and tropical plant commu-
nities, however, may support a higher species richness of nectar
microbes [25,26], perhaps owing to longer periods of habitat
availability [27], greater plant species richness [27,28], and
the short longevity of tropical flowers [29], preventing competi-
tive exclusion among species of nectar microbes.

Not surprisingly, taxa gaining dominance tend to be
nectar specialists (i.e. animal-transported, osmotolerant
species that are found almost exclusively on pollinators and
in nectar) or autochthonous species sensu [30]. Nectar special-
ists include the ubiquitous yeasts Metschnikowia reukaufii and
Metschnikowia gruessii and bacteria of the genera Acinetobacter
and Rosenbergiella (reviewed in [14]). In addition, many non-
specialists are frequently encountered in nectar, including
fungi and bacteria that are associated with animals, other
plant organs, or environmental habitats such as water or
soil [31]. However, generalist species are not well-adapted
to the stressful nectar environment and typically occur less
frequently and appear at low abundances, while specialist
microbes are common and found at much higher densities
[14]. With high cell numbers, nectar specialists can metab-
olize many of the available nutrients in nectar and alter its
quality. Finally, while found in lower abundances, non-
specialist microbes encountered by nectar foragers, such as
pathogens and gut symbionts, still have the potential to
directly affect pollinator health.

Improved methodologies could shed light on the living
microbes found in nectar that could have the ability to colo-
nize pollinator hosts, food stores, and nesting habitats. The
possible roles of microbial communities depend on how
many microorganisms are present. One future priority
should be to evaluate absolute community sizes, which can
be assessed through various methods such as quantitative
polymerase chain reaction (qPCR). Microbes must also be
viable to colonize new hosts. For example, honeybee and
bumblebee pathogens and gut symbionts are known to be
transmitted via contact with floral surfaces, but the longevity
of these microbes outside of their host organisms can be lim-
ited to a few hours or less [32]. To date, most nectar
microbiomes have been described using PCR amplicons of
16S rRNA or internal transcribed spacer genes for bacteria
and yeast, respectively. Therefore, the taxonomic profiles
probably include entities that do not represent living cells.
To ensure identification of only viable microbes, one
method currently used in nectar microbiome research is to
first culture dilutions of nectar samples on agar plates and
then sequence individual colonies with unique morphotypes.
This method is useful for identifying nectar specialists, which
are largely culturable, but is probably less effective for iden-
tifying viable cells of non-specialist microbes. Another
method to detect living cells is to start with RNA samples
since RNA degrades quickly when a cell is lysed [33]. This
approach has seen little use in nectar microbiome research
and might help to elucidate the findings of studies on
nectar communities and their effects on pollinators.
Nectar microbes are encountered by pollinators in flowers
of nearly all angiosperms surveyed thus far. Their effects on
the nutritional quality and attractiveness of nectar have
been increasingly studied over the last two decades. In the
next section, we outline the known effects of several
common nectar microbe species on nectar chemistry.
3. Nectar microbes’ influence on nectar
chemistry

Nectar microbes, particularly specialists, affect the nutritional
quality of nectar through consumption of mono- and di-
saccharide sugars, alterations of their relative proportions,
and decreases in pH through fermentation [34–37]. Addition-
ally, they can metabolize, modify, or synthesize amino acids
and secondary metabolites, resulting in altered nectar fla-
vours and scents that can be perceived by pollinators and
impact pollinator preferences [38–40]. The chemical signa-
tures of several species of microbes isolated from nectar
have largely been assessed in vitro, discussed more below.

Nectar-specialist yeasts in theMetschnikowia genus tend to
reduce the concentrations of sucrose and glucose, leaving an
elevated proportion of fructose in nectar [17,36,41,42]. These
changes are associated with production of volatile organic
compounds (VOCs) detectable by floral visitors, including
alcohols, esters, and ketones [40,43,44]. Moreover, these
yeasts deplete amino acids and possess a relatively high
number of genes related to nitrogen scavenging in nitrogen-
poor environments like the nectar habitat [45]. Metschnikowia
rekaufii has been found to reduce nectar pH by a half unit in
36 h and more than two units in a 5-day period [34,35].
The effects of a handful of non-specialist fungi on nectar
chemistry and VOC emission have also been assessed. The
generalist black fungus, Aureobasidium pullulans, has a mini-
mal effect on amino acids, but can reduce sucrose by 90%
[43]. This species also appears to metabolize fructose, with
resulting nectar containing a high proportion of glucose
[43]. In comparison, the phylloplane yeast, Sporobolomyces
roseus, has little effect on sugar concentration but can increase
amino acid concentrations by 12%, on average [43]. On the
other hand, Hanseniaspora uvarum, an apiculate yeast
common on mature fruits, does not significantly alter concen-
trations of sugars or amino acids but has been shown to
significantly alter nectar VOC emissions by producing
acetaldehyde and small alcohols [40,43]. The three non-
specialist fungi studied can also reduce nectar pH by 0.8
(Ha. uvarum) to 1.8 (Au. pullulans) in a 7-day period [43].

Bacterial nectar specialists profiled thus far include Neoko-
magataea sp., Rosenbergiealla nectarea and flower-associated
species of the Acinetobacter genus. Neokomagataea sp. and
R. nectarea have metabolic effects similar to M. rekaufii, redu-
cing sucrose and increasing glucose and fructose
concentrations [37,40,46,47]. Flower-associated Acinetobacter
species consume fructose and nitrogen-containing bypro-
ducts of yeast metabolism such as ammonia and have been
found to associate with yeasts in nectar [48]. Rosenbergiealla
nectarea and Acinetobacter species reduce amino acid
concentrations, while Neokomagataea increases amino acids.
Non-specialists in metabolic experiments include Lactococcus
garvieae, Apilactobacillus kunkeei [49], Erwinia tasmaniensis,
and Asaia species among others [37,40,50,51]. Erwinia tasma-
niensis does not change nectar sugars or amino acids but
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reduces nectar pH by one unit over 4 days. The acetic acid
bacteria Asaia platycodi and Asaia astilbes reduce sucrose and
amino acid concentrations, increase monosaccharide concen-
trations, and significantly reduce nectar pH via production of
acetic acid and other metabolic byproducts. The lactic acid
bacterium L. garvieae has no effect on sugars, increases
amino acid concentrations, and reduces nectar pH with pro-
duction of lactic acid and other metabolites [37]. In general,
bacteria share many of the same VOCs produced by fungi,
albeit emitted in lower amounts [40]. Unique compounds
have been detected, however, including 2,5-dimethylfuran,
emitted by As. astilbes and Neokomagataea sp. [40].

From these studies, it is clear that nectar microbes can sig-
nificantly modify nectar chemistry along several different
axes that could impact pollinator foraging. Having estab-
lished these microbial effects, we now discuss current
research on how microbe-induced changes to nectar aroma
and nutritional content alter pollinator foraging decisions
and subsequent fitness (figure 1). Where appropriate, we
also highlight future research areas that would improve our
understanding of the ways in which nectar microbes affect
pollinator health.
10155
4. Current research and future directions on
nectar microbe effects on pollinator health

(a) Microbially induced effects on pollinator foraging
Pollinators use visual, olfactory, and gustatory cues to inform
foraging decisions. Thus, it may not be entirely surprising
that microbe-induced shifts in nectar chemistry can affect pol-
linator preferences. With respect to scent, both bumblebees
and honeybees are responsive to VOCs produced by nectar
yeasts and bacteria. Indeed, naive Bombus impatiens and
Bombus terrestris foragers can use VOCs produced by the
yeast M. reukaufii to discover nectar [38,39]. Electroantenno-
graphy studies have shown that bumblebee and honeybee
olfactory neurons are sensitive to the microbe-produced
VOCs n-hexanol, 2-ethyl-1-hexanol and 2-phenylethanol at
low concentrations (0.4 µmol) [40,52]. Additional VOCs
identified that elicit a response in bumblebees and honeybees
are 3-methylbutyl acetate and 2-nonane, respectively. Bum-
blebees also consume more yeast-inoculated nectar in
laboratory and field experiments [38,39,52,53]. By contrast,
bumblebees and honeybees have either an averse or neutral
foraging response to nectar bacteria, though this effect may
depend on the identity of the bacterium [50,54] or sensory
modality. For instance, B. impatiens has been observed to
prefer odours produced by the bacterium As. astilbes, yet
consumes more nectar colonized by M. reukaufii [39].

Despite these observed effects, the energetic conse-
quences of microbe-induced altered nectar foraging for
pollinator health remain largely unknown. Eusocial bees are
sensitive to shifts in the identity and concentration of
sugars in nectar. In honeybees, low nectar sugar (i.e. sucrose)
concentrations are associated with a reduction in the number
of foraging trips made by workers [55], probably informed
via social communication (i.e. waggle dance) [56] and poten-
tially translating to fewer resources for the colony.
Bumblebees similarly have a strong preference for sucrose
in nectar and will shift foraging tactics in response to shifts
in concentration [57,58]. Yet, while nectar yeasts often
reduce sugar concentrations and particularly sucrose, bum-
blebees are attracted to nectar yeasts and incorporate more
yeast-inoculated flowers into foraging bouts [38,53]. This evi-
dence suggests that nectar microbes could supply benefits
that outweigh the cost of diluted rewards.

Microbial scent cues could play a role in honest signalling
of rewards since high abundances of nectar microbes are
found in flowers with enough nectar to support them. Alter-
natively, nectar microbes could provide nutritional benefits
(§4c). Yeasts might also warm nectar through metabolism
and fermentation, particularly in winter-blooming plants
like the herb Helleborus foetidus [59]. Given that some pollina-
tors may prefer warmer nectar [60], perhaps because warmer
nectar is easier to digest (but see [61]), nectar microbes may
exert their influences on pollinator health through nectar
warming. Viscosity is another aspect of nectar that can influ-
ence pollinator foraging, explaining 56% of nectar imbibition
rate by bumblebees [62]. In the absence of microbes, sugar
concentration and composition are significant predictors of
viscosity [62]. Thus, nectar microbes could change viscosity
indirectly via alterations to sugars. Microbial cells might
also directly influence viscosity when microbial abundances
are high. All of these mechanisms remain almost entirely
hypothetical.

When there are multiple species of angiosperms in a land-
scape, the changes that nectar microbes make to pollinator
foraging behaviour can affect the total nutritional value of
floral resources that pollinators acquire from the plant com-
munity [63]. What makes it both interesting and difficult to
understand regarding this landscape-scale effect of nectar
microbes on pollinator foraging is the feedback between the
microbes and pollinators. Microbes may affect pollinators
by changing nectar chemistry, but microbes are affected by
pollinators in the first place because microbial movement
among flowers is largely facilitated by pollinators [64]. The
dynamics of this feedback may be key to understanding the
role of nectar microbes in affecting pollinator foraging, and
ultimately their health.
(b) Microbially induced effects on pollinator health
The above evidence suggests that nectar microbes could med-
iate the effects of nectar quality and floral phenotype on the
energetics of pollinator foraging. Here we discuss the effects
of diet quality on pollinator health. Amino acid and carbo-
hydrate availability in food resources is an important
determinant of animal health and fitness [65]. Indeed,
changes in sugar and amino acid quantities are known to
affect the well-being of bees, with nutrient limitation redu-
cing immune responses to infection [66–68]. Bumblebee
workers consume 7.5% more sugars in response to immune
stimulation, indicating that they require additional energy
intake when under disease stress [69]. Dietary regimes can
also change bacterial community composition in the digestive
tract of honeybees and bumblebees. In a recent study, high
sucrose diets resulted in more diverse honeybee midgut com-
munities, while diets high in glucose or fructose led to more
diverse hindgut communities [70]. Given that the gut micro-
biome of social bees can greatly affect their host’s health
through both metabolization of carbon-rich food sources
and modulation of the immune system [71–73], greater con-
sideration of links between microbiomes of nectar and the
host gut is warranted.
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The metabolic activities of several common nectar
microbe species, described in §3, have been shown to alter
the concentrations of sugars and amino acids available to pol-
linators. There are three additional potential mechanisms by
which they could change the nutritional properties of
nectar. First, microbes can modify the nutritional value of
not just nectar per se, but also pollen that falls in. From obser-
vations of nectar droplets under the microscope, Herrera [74]
described that the yeast M. reukaufii was often found clus-
tered around pollen grains and hypothesized that the yeast
might scavenge leached nutrients [74,75]. Metschnikowia reu-
kaufii has also been found to induce pollen bursting,
although this effect may depend on the plant species [76].
Further, Christensen et al. [77] showed that common nectar
bacteria Acinetobacter spp. have the capacity to induce both
germination and bursting of Eschscholzia californica (Califor-
nia poppy) pollen [77]. The nutrients released by pollen
bursting may enhance the nutritional value of nectar for pol-
linators as well [78]. However, this possibility remains to be
fully investigated. Second, some species of nectar yeasts
and bacteria greatly reduce levels of hydrogen peroxide in
nectar [34]. This effect could have a potential benefit to bee
health as hydrogen peroxide significantly reduces bee survi-
val and has effects on the bee gut microbiome [79]. Third,
when consumed by pollinators, the microbes themselves,
particularly yeasts, may serve as a modified form of nectar
nutrition (e.g. vitamins and steroids [80]), as seen in non-pol-
linating Drosophila species [81–84]. These mechanisms remain
almost entirely hypothetical.

When nectar microbes modify the nutritional value of
nectar, this modification might affect not just the nectar-
foraging adults themselves, but also egg production and the
health of their offspring [85]. In honeybees and bumblebees
reared in laboratory settings, diet quality has been shown to
affect ovarian development and egg-laying in queens and
queen-less workers [67,86,87]. Using queen-less bumblebee
microcolonies, Schaeffer et al. [39] found that consumption of
nectar inoculated with M. reukaufii does not affect egg
production by female workers, despite their preference for
M. reukaufii-inoculated nectar [39,52]. At the colony-level, how-
ever, Pozo et al. [36,88] revealed that the development of entire
bumblebee (B. terrestris) colonieswas affected byyeasts andbac-
teria in nectar, but these effects depended on the species added.
Two of the five yeasts studied increased the number of workers
in the first few weeks of colony development, suggesting they
may improve the micronutrient content of nectar provisions
for the first larval generation. Inoculation with each of the five
yeasts was also associated with the occurrence of fructo-
oligosaccharides in nectar, compounds with known prebiotic
effects [89,90]. In a subsequent experiment looking at the effects
of yeasts, bacteria,and co-cultures on bumblebee colony devel-
opment, Pozo et al. [88] found that nectar provisions
inoculated with bacteria resulted in faster egg-laying and
larger brood sizes than control nectar or nectar inoculated
with yeasts or co-cultures. Of the eight microbes included
across the two studies, microbial effects on bumblebee colony
development varied between neutral and positive effects.

(c) Effects of microbe–microbe interactions in nectar
on pollinator health

Microbe–microbe interactions within the nectar environment
can have consequences for nectar chemistry and pollinator
health. To date, however, the majority of studies have focused
on individual taxa [34,36,39]. Nectar microbes frequently
engage in competition for resources, often excluding one
another via niche preemption or modification [91]. Despite
such documented priority effects [20,23,35] and individual
flowers being observed to be dominated by individual
species [22], surveys of floral nectar have also revealed fre-
quent co-occurrence of microbes (but see [92]). For example,
positive associations have been detected between Metschniko-
wia yeasts and Acinetobacter bacteria [48]. Co-occurrence
between these taxa has been hypothesized to be facilitated
through niche partitioning and the assimilation of different
nectar resources, as many Metschnikowia species are able to
ferment glucose, while Acinetobacter species can metabolize
fructose [93]. This possibility suggests potential for both addi-
tive and non-additive effects of nectar microbe assemblages
on nectar chemistry and pollinator health. Indeed, recent
studies have revealed that yeast and bacteria consortia can
increase nectar scent in an additive manner and can have
positive effects on honeybee and hoverfly visitation [44,94],
yet effects on bumblebee reproduction and colony develop-
ment are no better than exposure to individual species
alone [88]. Considerable work remains, however, as to the
effect of nectar microbe consortia on pollinator attraction,
nectar feeding, and health [95]. Such consequences may be
particularly pronounced when one of the microbes involved
is a pathogen.

Flowers are hubs for horizontal transmission of bee
pathogens [96,97], both within and among visiting species
[98]. As infected individuals visit flowers, they can deposit
pathogens via defecation [32,98–100]. Individual bumblebees
infected with a pathogen have been found to defecate on
flowers more frequently, indicating that transmission at the
floral interface may be particularly important for some patho-
gens of pollinators [32]. Infection of subsequent visitors can
occur via consumption of contaminated nectar resources,
particularly for faecal-orally transmitted pathogens like the
trypanosome Crithidia bombi [101]. Although a body of
research has accrued to date on the effects of nectar constitu-
ents (e.g. secondary metabolites) on pathogen viability and
infectivity [102,103], to our knowledge, interactions involving
pathogens of pollinators and nectar microbes have received
little attention. Circumstantial evidence suggests these inter-
actions can be strong. For instance, a recent in vitro
experiment revealed that nectar yeasts can suppress the
growth of C. bombi by upwards of 50%, although the
degree of suppression differed among yeast species in the
artificial nectar environment tested [36]. The authors hypoth-
esized that the superior competitive ability of the yeasts
accounted for this observation. However, additional mechan-
isms may also be at play. As reviewed above, nectar microbe
metabolism can modify sugars, amino acids, secondary
metabolites, and pH, factors which have been shown to
affect C. bombi growth and infectivity [102,104,105]. Many
microbe species, including a few that are closely related to
common nectar microbes, produce antibiotics [106,107]. Anti-
biotics, if produced by nectar microbes, may directly affect
pathogen viability in floral nectar, resource provisions, or
the host gut if they are capable of establishment (but see
[36,108]). Going forward, consideration for such interactions
within the nectar and host environment could help reveal
the transmission of pathogens among wild and managed
pollinators.
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(d) Indirect effects of non-pollinating floral visitors on
pollinator health via nectar microbes

Any visitor that contacts a flower can introduce microbes, in
addition to other chemical signatures [109], regardless of its
role in pollinating the flower. A diversity of non-pollinating
animals visit flowers, from thrips to ants to nectar-robbing
bees and birds (figure 2). Each species has its own life history,
which can determine the microbes that are vectored by that
flower visitor [110]. For example, ants travelling across the
forest floor to forage nectar from Cytinus hypocistis flowers
carry common soil microbes on their body surfaces [31].
Flower visitors that carry little to no pollen may still intro-
duce diverse microbes into flowers. A recent study of a
multilevel plant–microbe–pollinator network found that
flies (Diptera) and non-bee Hymenoptera are important vec-
tors of microbes despite being poor vectors of pollen [111].

Nectar thieves (figure 2c,d) consume nectar through floral
openings without dispersing pollen. Ants are among the
most common nectar thieves, collecting nectar from up to
40% of plant species in the tropics and 60% in Mediterranean
ecosystems [112,113]. They introduce diverse fungal species
to nectar, including basidiomycetes and other common soil
microbes [31]. Minute flower-feeding thrips (Thysanoptera;
typically ≤1 mm) are also common nectar thieves across
most terrestrial habitats [114]. Thrips can access unopened
flowers and introduce microbes, particularly bacteria, into
the nectar environment that can exert priority effects within
the nectar microhabitat, thereby excluding subsequently
arriving microbes [115].

Unlike nectar thieves, nectar robbers (figure 2e) do not
access nectar through floral openings. Instead, primary
nectar robbers puncture flowers to extract nectar, bypassing
reproductive structures and creating potential routes for
external floral epiphytes to enter the nectar [116]. Of the
large diversity of primary nectar robbers (reviewed in
[116]), only large bees, Xylocopa californica, Bombus bifarius,
and Bombus mixtus, have been assessed for their effects on
the nectar microbiome [13,117], with distinct nectar micro-
biomes found to be associated with pollinators and nectar
robbers respectively. Flowers robbed by X. californica had
higher concentrations of monosaccharides and were domi-
nated by an Acinetobacter sp. equipped with genes for
xylose metabolism, a sugar constituent of wood that is not
common in nectar, indicating that this bacterium is adapted
to association with carpenter bees [13].

Nectar robbing has been shown to deter pollinators in
several flowering species, but the mechanisms behind the
deterrence remain unknown despite investigations into
visible cues and changes to nectar volumes [118–120].
Microbes vectored by nectar robbers could deter pollinators
if they are found in robbed nectar alone, or in higher abun-
dances in robbed nectar. Future studies of pollinator
avoidance of robbed flowers should assess the effects of
robber-vectored microbes as potential mediators of this inter-
action. While nectar robbers and pollinators can have distinct
effects on the nectar microbiome, it is unclear whether the
observed effects of nectar robbers are owing to dispersal of
unique microbes by primary robbers, facilitation of microbial
dispersal by secondary robbers, or damage to floral tissues. It
seems likely that a combination of all three mechanisms
results in the distinct nectar microbiomes arising from
robber visitation. Future studies should assess the microbial
communities vectored by each visitor species (e.g. microbes
on visitor mouthparts) and the effects of the robbing
wound on the floral microenvironment (e.g. higher evapor-
ation rates), including consequences for nectar nutritional
quality and pollinator health.

The distinct nectar microbes dispersed by non-pollinating
floral visitors may have downstream consequences for polli-
nator health. Further studies of plant-animal-microbe
pollination systems at the level of entire flowering commu-
nities are needed to clarify the roles of non-pollinating
species on nectar microbiomes and the nutritional landscape
available to pollinators.

(e) Effects of nectar microbes on lesser-studied
pollinators

Many of the examples and hypotheses discussed thus far
centre on eusocial bees [36,38–40], and to a lesser degree,
hummingbirds [13,34]. However, the health of other invert-
ebrate and vertebrate pollinators (figure 2b) that depend on
nectar may also be sensitive to nectar microbes, the chemical
changes they induce, and other potential mechanisms dis-
cussed. This is especially true given increasing evidence for
both the likelihood and frequency for such interactions to
occur, as surveys of flowers pollinated by these guilds have
revealed that they may harbour abundant and diverse
microbial communities [17,92,121].

Among insects, many species in the orders Coleoptera,
Diptera, Hymenoptera, and Lepidoptera visit flowers to pro-
cure nutritive and non-nutritive rewards. Nectar sugars in
particular fuel flight or movement for these insects, especially
during periods of dispersal, migration, and congregative
behaviours that influence mating and oviposition [122–124].
Studies conducted on individual species across these orders
have revealed diverse preferences for nectar sugars. For
instance, butterflies and hawkmoths (Lepidoptera) generally
prefer sucrose over fructose and glucose in floral nectar
[125–128], with this preference being sensitive to concentration
differences as low as 5% [129]. Among Dipteran visitors, long-
tongued flies are found to be associated with sucrose-domi-
nant nectars [130], while those that are short-tongued or
lapping tend to visit hosts with hexose-rich nectars [131,132].
Thus, shifts in nectar sugar profiles stemming from microbial
metabolism are likely to affect foraging preferences. However,
to our knowledge, little work has been done to address the
influence of nectar microbes on non-bee flower visitors. Two
studies on Dipteran species have revealed an attraction to
nectar yeasts and bacteria: hoverflies and mosquitoes (Culex
pipiens) are attracted to the bacterium Acinetobacter nectaris
and nectar yeasts M. reukaufii and Lachancea thermotolerans,
respectively [94,133]. Nectar sugars were not addressed in
either of these studies though, with VOCs instead noted to
play an important role in attraction. The latter can
also probably be said for many angiosperms pollinated by
beetles (Coleoptera), whose bouquets are often characterized
as being ‘yeasty’ [134–136] with some species having nectar
microbiomes dominated by yeasts to match [92]. Careful dis-
section of the relative contribution of host and microbe to
these signals as well as their reliability regarding information
on both nectar availability and quality conveyed to visitors
should be incorporated into future studies.

Beyond sugars, amino acids in nectar can also influence
the attraction and feeding of numerous pollinators



microbe–microbe
interactions

nectar nutrients

foraging
behaviour

Figure 1. Potential mechanisms by which nectar microbes could affect pollinator health. In this review, the following mechanisms are considered: (i) microbe–
microbe interactions in the nectar environment, (ii) microbial impacts on nectar nutritional quality, and (iii) microbial impacts on cues important for pollinator
foraging. Figure created with BioRender.com. (Online version in colour.)
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[137,138]. This preference for nectar with a higher concen-
tration of amino acids is probably tied to its nutritional
value, as their metabolism can influence adult longevity
and fitness, as observed in Dipteran and Lepidopteran
species [139–141]. As reviewed above, nectar microbes can
both increase or decrease amino acid content in nectar, the
effects of which are likely to influence the health of pollina-
tors that rely on these resources. Current evidence for such
effects is limited and mixed. In two studies conducted with
the generalist parasitoid wasp Aphidius ervi (Hymenoptera:
Braconidae) [37,43], nectar microbe effects were species-
dependent, with the bacterium Lactococcus sp. enhancing
adult longevity and survival, and bacterium Asaia sp. and
yeasts Saccharomyces cerevisiae, Au. pullulans, Sp. roseus, and
Ha. uvarum shortening these health metrics. Finally, nectar-
specialist yeasts M. reukaufii and M. gruesii had neutral
effects. Though evidence from these studies points to a role
for amino acid changes to affect health (e.g. Lactococcus sp.
increasing content and adult survival), neutral effects of
nectar specialist yeasts, despite reducing amino acid content
themselves, suggest other factors may also be at play.
Additional research is needed, especially for pollinator
guilds with life-history stages that may be more sensitive to
nectar amino acid content.

Among vertebrate flower visitors, birds are perhaps best
known for their role as pollinators, with specialist and gener-
alist species visiting flowering plants for nectar to meet their
energetic and nutritional requirements [142–144]. Though a
strong dichotomy in nectar traits (volume, concentration
and sugar type) has been observed between plants pollinated
by specialist avian nectarivores (e.g. hummingbirds, honeyea-
ters and sunbirds) and those pollinated by generalists (e.g.
bulbuls and starlings) [145], specialist nectarivores can dis-
play variable sugar preferences that are concentration-
dependent [146–148], suggesting potential for nectar microbe
impacts on foraging via sugar metabolism. As with numer-
ous insect visitors [108,115,149,150], some bird pollinators
have been found to be effective vectors for yeast dispersal
to flowers [17,21]. In one community-wide survey [17], the
nectar of bird-pollinated species had a higher incidence and
abundance of yeasts than those pollinated by other guilds.
Nectar bacteria are also likely to be encountered by specialist
and generalist avian nectarivores [151], which may have
negative effects on foraging. For instance, hummingbirds
(Calypte anna) can be averse to the bacterium Gluconobacter
(Neokomagataea) sp. [34], which may stem from its metabolism
of nectar sugars and the corresponding secretion of metabolic
by-products, namely acetic acid. Understanding links
between diet, including exposure to nectar microbes, and
avian gut microbiome structure and associated feedbacks
on physiology and health are only now starting to receive
attention (see [151,152]).

Mammal pollinators are no less important in the mainten-
ance of floral diversity [143], and numerous flying (i.e. bats)
and non-flying mammals (e.g. primates, rodents and
marsupials) visit flowers to imbibe nectar [2,153]. Mammal-
pollinated species are particularly notable for their strong
floral scent, which probably facilitates the attraction of such
visitors at night when their foraging activity often occurs.
These strongly scented volatile bouquets have also often

BioRender.com


(a)

(b)

(c)

(e)

(d)

Figure 2. Floral visitor diversity and the nectar microbiome. (a) Common, effective pollinators typically include members of the insect orders Hymenoptera and
Lepidoptera, as well as nectarivorous birds and bats. (b) Lesser-studied pollinators include non-flying mammals, reptiles and beetles. (c) Nectar thieves, including (d )
thrips, can vector microbes that can then affect pollinator foraging. (e) Nectar robbers can have similar effects. Figure created with BioRender.com. (Online version
in colour.)
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been described as ‘yeasty’ [154–156], with fermentation-
related VOCs hypothesized to be an honest signal for
nectar availability [157]. Beyond signalling nectar availability,
fermentation by-products may also serve as a nectar feeding
stimulant for mammals [158,159]. Such potential has at least
been observed in a controlled setting with model laboratory
rats, which consume more ethanol when sucrose is added
to solution [160]. Furthermore, ethanol catabolism could
yield considerable energy gains over that of carbohydrates
alone [159]. In nature, mammals such as pen-tailed treesh-
rews (Ptilocercus lowii), slow lorises (Nycticebus coucang),
and aye-ayes (Daubentonia madagascariensis) frequently con-
sume fermented nectar, probably stemming from activity of
Pichia, Schizosaccharomyces, and Hanseniaspora yeasts, with
alcohol concentrations reaching upwards of 3.8% (v/v)
[121,161]. Moreover, a recent preference experiment revealed
that slow lorises and aye-ayes can discriminate among nec-
tars that vary in alcohol concentration, even displaying a
preference for the highest concentration tested (5%, [161]).

5. Concluding remarks
Wehave argued that nectarmicrobes are an integral component
of the web of ecological interactions affecting pollinator health.
Knowledge has accumulated in recent years regarding the
effects of nectar microbes on nectar chemistry, eusocial bee be-
haviour, and the establishment of common bee pathogens. In
addition, our understanding of pollinator nutritional
landscapes and nectar microbe-pathogen interactions is cur-
rently expanding. Much work remains to assess the impacts
that nectar microbes have on the longevity and reproduction
of pollinators. As researchers continue to investigate each of
these aspects of pollinator health, conservation and
agricultural practitioners will be in a better position to safe-
guard their populations.
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