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Summary

� Plant–soil feedback (PSF) may change in strength over the life of plant individuals as plants

continue to modify the soil microbial community. However, the temporal variation in PSF is

rarely quantified and its impacts on plant communities remain unknown.
� Using a chronosequence reconstructed from annual aerial photographs of a coastal dune

ecosystem, we characterized > 20-yr changes in soil microbial communities associated with

individuals of the four dominant perennial species, one legume and three nonlegume. We also

quantified the effects of soil biota on conspecific and heterospecific seedling performance in a

glasshouse experiment that preserved soil properties of these individual plants. Additionally,

we used a general individual-based model to explore the potential consequences of tempo-

rally varying PSF on plant community assembly.
� In all plant species, microbial communities changed with plant age. However, responses of

plants to the turnover in microbial composition depended on the identity of the seedling

species: only the soil biota effect experienced by the nonlegume species became increasingly

negative with longer soil conditioning. Model simulation suggested that temporal changes in

PSF could affect the transient dynamics of plant community assembly.
� These results suggest that temporal variation in PSF over the life of individual plants should

be considered to understand how PSF structures plant communities.

Introduction

Plants often cause changes in the composition of the soil micro-
bial community, which can then feed back to affect the growth of
neighboring plants or plant individuals that colonize the soil sub-
sequently, the process known as plant–soil feedback (PSF) (Bever
et al., 1997; Bever, 2003). Because plant species vary in their
effects on, and responses to, soil microbes, PSF can modify inter-
specific differences in plant performance, thereby affecting plant
community composition (Klironomos, 2002; Mangan et al.,
2010; Eppinga et al., 2018). The strengths of these feedbacks are
commonly assumed to be constant through time. Under this
assumption, most empirical studies quantify feedback strengths
via short-term glasshouse experiments that are terminated at the
same time for all species (Kulmatiski & Kardol, 2008; Kardol
et al., 2013a). However, given that plant individuals often arrive
at different times and die at different ages in the field, understand-
ing how feedback strengths vary over time can be critical for pre-
dicting the consequences of PSF for plant community assembly.

The strength of plant–soil microbe interactions can vary tem-
porally because of changes in the soil microbial community com-
position with increasing time of soil conditioning (Lepinay et al.,
2018). This mechanism differs from previous studies, which typi-
cally focused on ontogenetic changes in plant responses to soil

microbes (Hawkes et al., 2012; Bezemer et al., 2018; Dudenhöffer
et al., 2018). Studies have shown that changes in the microbial
community can proceed at different rates depending on host plant
identity (Knelman et al., 2012; Chen et al., 2019; Hannula et al.,
2019). As a result, seedlings of the same species could face differ-
ent microbial communities and experience different PSF
strengths, depending on the species identity of conditioning plants
and for how long they have modified the soil (Kardol et al., 2013b;
Peay, 2018). Moreover, plant responses to temporal changes in
the microbial community may depend on the plant functional
group. For example, studies have shown that legumes can be less
sensitive to changes in soil properties by forming effective symbi-
otic relationships with a range of ubiquitous rhizobia (Birnbaum
et al., 2018; Png et al., 2019; but see Yang et al., 2020). However,
few studies have quantified the changes in plant–soil microbe
interactions with increasing soil conditioning length.

Two logistical challenges may explain the current paucity of
relevant empirical work. First, preparing soils with different con-
ditioning lengths for an experiment is labor-intensive and often
infeasible (Kardol et al., 2013a; Kulmatiski, 2018). Second, the
soil conditioning length in the field can only be quantified with
coarse resolution due to uncertainty about the ages of individual
plants (e.g. Day et al., 2015; Speek et al., 2015). Moreover,
although the plausible consequences of time-varying PSF for
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plant communities can be studied theoretically, most models
treat feedback strengths as time-independent parameters (e.g.
Fukami & Nakajima, 2013; Teste et al., 2017; Ke & Wan,
2020). In this study, we overcome these challenges by using high-
resolution aerial photographs of a coastal dune ecosystem that
were taken annually from 1990 through 2017. These pho-
tographs allowed us to estimate the age of individual plants and
use it as a proxy for soil conditioning length. By sampling soils
from individual plants of different ages, we apply a chronose-
quence approach to test the hypothesis that soil microbial com-
munities would vary across plant species and conditioning time.
We then evaluate how changes in the soil community influenced
the strength of their effects on plant performance in a glasshouse
experiment that preserved plant age-specific soil properties.
Specifically, we test the hypothesis that the observed soil biota
effects would vary with soil conditioning length and that the tem-
poral patterns would differ among different plant species or func-
tional groups (i.e. legume or not). Finally, to investigate potential
general consequences of time-varying PSF beyond our specific
study system, we use an individual-based model to examine how
temporal patterns of PSF may affect plant community assembly.

Materials and Methods

Study system

We conducted our study at the coastal foredunes of Bodega Bay,
California, USA (38°190N, 123°30W), located within the UC
Davis Bodega Marine Reserve and the Sonoma Coast State
Beaches. This region experiences a Mediterranean climate, with
an average annual temperature of 15.8°C and annual precipita-
tion of 760 mm, mostly occurring between October to April
(Barbour et al., 1973). The soils in our 400 m × 500 m study
area are predominantly sand, with a negligible amount of silt and
clay (Kleinhesselink et al., 2014). The sandy top soils generally
contain little organic matter and are fast draining, nitrogen-poor,
and strongly alkaline (Barbour et al., 1973; McNeil & Cushman,
2005; Lortie & Cushman, 2007). We focused on the four domi-
nant species of the foredune plant community, including the
introduced grass Ammophila arenaria (Poaceae), the introduced
succulent dwarf-shrub Carpobrotus edulis (Aizoaceae), the native
shrub Baccharis pilularis (Asteraceae), and the native nitrogen-
fixing leguminous shrub Lupinus arboreus (Fabaceae). The first
two species have fibrous root systems, with C. edulis having a
shallower root system concentrated in the upper 50 cm of the soil
(D’Antonio & Mahall, 1991); the latter two species have well-
developed taproot systems.

Soil sampling

We used a series of aerial photographs that were taken annually
by Delta Geomatics Corporation and curated by the Bodega
Marine Reserve since 1990 (Danin et al., 1998). Since the fore-
dune vegetation has little vertical structure, we were able to
identify plant individuals to the species level and estimate their
age (i.e. identify the first year the individual appeared in the

photographs) by comparing photographs across multiple years.
Age estimates were used as proxies for soil conditioning length
as the foredune undergoes primary succession starting from
unconditioned bare sand. For the four dominant species, in
2016 we selected individuals of different ages. In total, we
selected 30 individuals of A. arenaria, 30 individuals of B. pilu-
laris, 33 individuals of C. edulis, and 43 individuals of L.
arboreus. All individuals were selected to sample evenly along
the plant’s age span provided by the aerial photographs, which
ranged between 2 to 12 yr for L. arboreus and between 3 to 26
yr for the other three species. No spatial autocorrelation was
evident for the age of selected individuals (Moran’s I,
P ¼ 0:24; Mantel test, P ¼ 0:39). See Fig. 1 for a representa-
tive aerial photograph, the spatial distribution of selected indi-
viduals, and representative examples of different age classes for
each species.

To study how soil microbial communities varied with plant
age, in July 2016 we collected three soil samples beneath each
plant individual (i.e. at azimuth angles 0°, 120° and 240°; half
way between the plant’s center and edge) in separate sterile 50-ml
Falcon tubes. We also collected soil samples from three randomly
selected juveniles (i.e. one sample per juvenile, which are individ-
uals that germinated within 1 yr and were too small to be visible
on the aerial photographs from the previous year) for three of the
four species (i.e. all but A. arenaria). Finally, a total of 13 soil
samples from randomly selected bare sand areas (i.e. no vegeta-
tion in a c. 3 m radius throughout the entire length of time of the
aerial photographs) were collected across our field site (Fig. 1).
All soil samples were stored at 4°C up to a week before being pro-
cessed in the laboratory. Each soil sample was passed through a
disposable sieve made out of 2-mm iron mesh (sterilized by soak-
ing in 5% bleach for 30 s and then 95% ethanol for 30 s), and
further homogenized thoroughly in separate sterile plastic bags.
The fungal and bacterial communities of the resulting 430 soil
samples (i.e. 136 individuals × 3 samples + 3 species × 3 juve-
niles + 13 bare sand samples) were characterized with DNA
sequencing.

DNA sequencing of fungal and bacterial communities

For each processed soil sample collected in July 2016, we
extracted microbial DNA from 0.25 g of subsampled soil with
the PowerSoil DNA Isolation Kit. We then PCR-amplified the
bacterial 16S ribosomal DNA region and the fungal internal
transcribed spacer 1 region (ITS1) with specific primer pairs.
Amplicon libraries were then normalized, pooled based on DNA
concentration, sequenced by the Illumina MiSeq sequencer, and
processed through a bioinformatic pipeline to obtain a rarefied
sample × operational taxonomic units (OTUs) matrix (see Sup-
porting Information Methods S1 for detailed description of
primer design and bioinformatic pipeline).

Glasshouse experiment

To examine how changes in the soil communities affect plant
performance, we conducted a glasshouse experiment assessing
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seedling performance in soils that differed in their host plant
species and conditioning length. In July 2017, we revisited the
same plant individuals and collected soils for our experiment. For

all four species, we collected soils from 27 individuals (i.e. a ran-
dom subset of the previously sampled individuals) and three new
randomly selected juveniles. For each individual, we used a steril-
ized soil core sampler to collect 300 ml of soil from the top 15
cm, which were pooled together from three sampling positions
adjacent to the original sampling position in 2016 (100 ml from
each position). Soils collected from all 120 individuals (i.e. (27
individuals + 3 juveniles) × 4 species) were processed with the
same method as earlier and stored at 4°C before the glasshouse
experiment.

Our glasshouse experiment aimed at transplanting seedlings of
all four species in soils collected from the 120 plant individuals.
To this end, soils collected from different plant individuals were
kept separated throughout the experiment so that each soil main-
tained its age-specific properties (Rinella & Reinhart, 2018;
Peacher & Meiners, 2020). We performed the glasshouse experi-
ment in two separate rounds, which started in late August and
September 2017. The range and variance of soil conditioning
length were kept similar among the two experiment rounds,
which was achieved by sorting soil source individuals based on
their age and assigning every other individual along the age axis
to different rounds. Half of the soil volume (150 ml) collected
from each individual was autoclaved to create a sterilized treat-
ment (120°C for 60 min, sit overnight for 24 h, and another
120°C for 60 min), allowing us to assess the potential effects of
soil communities. Autoclaving was used as other approaches (e.g.
gamma irradiation) were not accessible, although autoclaving
might have changed soil physico-chemical properties and might
not have completely eliminated soil biota (Dietrich et al., 2020).
It would have been desirable to have soils collected from 60 indi-
viduals in each experimental round (i.e. 15 individuals for each
of the four species), but we had to discard soils collected from
nine individuals due to handling mistakes during the sterilization
process: six in the first round (i.e. soils from one individual of
A. arenaria, three individuals of C. edulis, and two individuals of
L. arboreus) and three in the second round (i.e. soils from two
individuals of B. pilularis and one individual of C. edulis). With
the two experiment rounds combined, our soil preparation step
created 222 unique soil environments: 108 for the first round
(i.e. (14 A. arenaria + 15 B. pilularis + 12 C. edulis + 13 L.
arboreus) individuals × 2 sterilization treatments) and 114 for the
second round (i.e. (15 A. arenaria + 13 B. pilularis + 14 C.
edulis + 15 L. arboreus) individuals × 2 sterilization treatments).
Live and sterilized soil environments collected from the same
plant individual were always tested within the same experimental
round.

Seeds of the four species were surface-sterilized by soaking in
5% bleach for 30 s, 95% ethanol for 30 s, and rinsing them with
deionized water for 1 min. The sterilized seeds were spread
evenly onto germination trays filled with sterilized sand (1 : 1
mixing of sterilized play sand and Lapis Lustre #2/12 sand
(Cemex) to mimic the soil particle distribution in the field), and
placed in a growth chamber (16 h : 8 h, light : dark, and tempera-
ture held at 16°C). After 2 wk, we transplanted the seedlings
individually into 107-ml ‘cone-tainers’ pots (i.e. one seedling per
pot) filled with 80 ml of sterilized sand (prepared with the same

Fig. 1 Study area at Bodega Bay. (a) Aerial photograph taken in 2015,
labeled with the location of selected plant individuals and bare sand
sampling locations. The four species are represented by different colors,
following the color scheme in panels (b–e); bare sand sampling location
are in black. (b–e) Examples of young (upper row) and old (lower row)
individuals of the four dominant species. (b) Ammophila arenaria (brown);
(c) Baccharis pilularis (yellow); (d) Carpobrotus edulis (orange); (e)
Lupinus arboreus (green). Left column of panels (b–e) are taken from the
same 2015 aerial photograph, zoomed in on different selected plant
individuals (indicated with arrows); right columns of panels (b–e) are
photographs of the focal individuals in the field in 2016. As individuals
arrived at different years in the past, they reach different ages at the year
of sampling (indicated at the bottom-right corner).

New Phytologist (2021) 231: 1546–1558
www.newphytologist.com

� 2021 The Authors

New Phytologist� 2021 New Phytologist Foundation

Research

New
Phytologist1548



method as for germination) and added 20 ml of either live or
sterilized soil inoculum to the top. A relatively small volume of
soil inoculum was added to minimize the potential side effects of
autoclaving on soil abiotic properties (Brinkman et al., 2010).
Three of the four species were transplanted in both experimental
rounds, except B. pilularis, the germination rate of which was too
low for the second round. The final number of pots therefore
deviated from our original full factorial design, with a total of
774 pots: 432 from the first round (i.e. 54 soil source individu-
als × 2 sterilization treatments × 4 species) and 342 from the
second round (i.e. 57 soil source individuals × 2 sterilization
treatments × 3 species).

Transplanted pots were randomly placed onto every other cell
of 98 well trays (to avoid crowding) and were grown in the
glasshouse for 12 wk (14 h : 10 h, light : dark with ambient tem-
perature). To mimic precipitation regimes in the field, which was
mainly fog during the summers, 30-s brief water spray with auto-
matic misting nozzles were applied every hour. Seedlings that
died within the first 10 d were replanted, and for seedlings that
died afterwards their live–sterilized soil pair were discarded. With
two rounds combined, data for 20 live–sterilized soil pairs were
discarded due to seedling mortality: three seedlings of A. arenaria
(i.e. one in A. arenaria soil, one in B. pilularis soil, one in L.
arboreus soil), five seedlings of B. pilularis (i.e. two in A. arenaria
soil, one in B. pilularis soil, one in C. edulis soil, one in L.
arboreus soil), nine seedlings of C. edulis (i.e. two in A. arenaria
soil, three in B. pilularis soil, two in C. edulis soil, two in L.
arboreus soil), and three seedlings of L. arboreus (i.e. one in B.
pilularis soil, one in C. edulis soil, one in L. arboreus soil). No
effect of soil conditioning length on seedling survival was found
(logistic regression, P = 0.39). After 12 wk, we harvested and
oven-dried all plant tissues from each pot at 70°C for 96 h. The
resulting total dry biomass was weighed to assess the effects of soil
communities on plant performance.

Data analysis

We analyzed fungal and bacterial communities separately. To
better match our microbial community data from soil samples to
the soils used in our glasshouse experiment, we summed the
OTU reads of the three samples that belonged to the same plant
individual. As a result, the following statistical analyses were per-
formed by viewing plant individuals as the unit of replication. To
examine how species richness of the microbial community varied
with plant age, we fitted linear, quadratic, and Monod functions
with R package ‘NLME’ (Pinheiro et al., 2019) to model observed
OTU richness as a function of plant age. Models were fitted for
each plant species separately, and the best model was selected
based on their Akaike information criterion (AIC) with sample
correction (AICc) values. To visualize compositional differences
among microbial communities, we used nonmetric multidimen-
sional scaling (NMDS) to ordinate microbial communities based
on Bray–Curtis dissimilarity matrices with R packages ‘VEGAN’
(Oksanen et al., 2019) and ‘PHYLOSEQ’ (McMurdie & Holmes,
2013). Effects of soil host species identity (i.e. the species that
conditioned the soil) and plant age on microbial community

composition were tested with permutational multivariate analysis
of variance (PERMANOVA with 999 permutations, Anderson,
2001). To identify the microbial taxonomic groups that drove
the observed community pattern, we aggregated the microbial
communities to the family level and performed another NMDS
ordination. For the fungal community, we further assigned
OTUs to functional groups based on the FUNGuild database
(Nguyen et al., 2016) and performed linear regression to see how
the abundance of different functional groups changed with plant
age. The earlier-mentioned statistics with plant age as a predictor
were performed for each soil host species separately.

In our glasshouse experiment, seedlings of the same plant species
were paired based on the plant individual where field soils were col-
lected, with one seedling inoculated with live soil and the other
with sterilized soil from the same plant individual. As soils from
different individuals were not mixed (Rinella & Reinhart, 2018),
we were able to evaluate the effects that the soil community from a
k-yr-old individual of species j had on the seedling of species i as:

soilbiotaeffecti , jk ¼ log10
Bi , jk ,live

Bi, jk ,sterilized

 !
,

where Bi , jk ,live and Bi , jk ,sterilized represent seedling biomass of
species i when grown in pots inoculated with either live or steril-
ized soil from a k-yr-old individual of species j, respectively. Since
autoclaving attempts to remove the whole soil community
instead of targeting soil microbes, we will refer to this metric as
soil biota effect (i.e. biotic feedback, sensu Semchenko et al.,
2018). A positive (or negative) value means that the soil biota
associated with the k-yr-old individual of species j had a net bene-
ficial (or detrimental) effect on the seedling of species i. The met-
ric represents conspecific soil biota effects when seedlings were
grown in soils collected from the same species (i.e. i = j), and it
represents heterospecific soil biota effects when soils collected
from different species were used (i.e. i ≠ j). Since the inocula used
in the two biomass measurements were collected from the same
plant individual in the field, we obtained an age-specific biota
effect associated with the individual that conditioned the soil.

We used two approaches to analyze the age-specific soil biota
effects. First, we took the time-averaged value for each plant ×
soil host species combination (i.e. ignored the age information by
taking the temporal mean), which is the common approach when
field-conditioned soils were used but information of soil condi-
tioning length not being available. For each of the four plant
species, the effects of soil host species on the time-averaged soil
biota effect were tested by fitting generalized linear mixed models
(GLMMs, using R package ‘LME4’; Bates et al., 2015). We
included the identity of soil host species as a fixed effect and
glasshouse round, when present, as a random effect (note that a
separate model including glasshouse round as a fixed effect was
not significant, P = 0.478). An additional GLMM with the 16
plant × soil host species combinations as fixed effect and
glasshouse round as random effect was fitted to assess whether
time-averaged soil biota effects were significantly different from
zero (i.e. by offsetting the intercept). Post hoc group comparisons
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and compact letter display of pairwise comparisons were per-
formed with R package ‘MULTCOMP’ (Hothorn et al., 2008).

The second approach took advantage of the age information
provided by the aerial photographs. Specifically, we visualized the
age-specific soil biota effect on the temporal axis (i.e. soil condi-
tioning length) and quantified its temporal trends by fitting
GLMMs. The model included the age-specific biota effects as the
response variable, and plant species identity, soil host species
identity, soil conditioning length, and their pairwise interactions
as fixed effects; glasshouse round was included as a random effect.
We did not include the three-way interaction term as preliminary
analysis suggested that it is insignificant (Table S1). We also fit-
ted models using plant functional group (i.e. a dummy variable
indicating whether the plant species is a legume) instead of plant
species identity as a predictor, and compared model performance
based on AIC values. In our model, a significant interaction
between plant species (or plant functional group) and soil condi-
tioning length would indicate that the plant species identity (or
being a legume) affects how soil biota effects varied through time.
If a significant temporal trend was found, we dug further into the
pattern by fitting GLMMs with plant total biomass as the
response variable, and soil host species identity, soil conditioning
length, sterilization treatment, and their interactions as fixed
effects. To ease interpretation, this three-way interaction model
was fitted separately for different plant species or different plant
functional groups (i.e. legume or not). A significant interaction
between sterilization treatment and soil conditioning length
would indicate that plant performance in live vs sterilized soils
followed different temporal trend, therefore creating time-
varying soil biota effects.

Simulation model

Our empirical study measures temporal changes in plant–soil
interactions in the Bodega Bay dune system, but we were also
interested in exploring potential consequences of temporally
varying PSF more broadly across plant communities. As a first
step towards general understanding of how the temporal changes
in PSF strengths may affect plant community assembly, we used
an individual-based model modified from Fukami & Nakajima
(2011) (see also Fukami & Nakajima, 2013; Zee & Fukami,
2015; Fukami et al., 2017). The purpose of this simulation exer-
cise was not to predict what may happen specifically in the
Bodega Bay dune system, but to investigate general possibilities
of how different temporal changes in PSF strengths affect the
transient and steady states of plant community assembly.

The model consisted of species pools containing 50 plant
species (each with a different trait value) and patches consisting
of 1024 local sites (each with a different habitat condition). We
simulated immigration, reproduction, arrival, competition for
establishment, and death of plant individuals. Competition for
establishment at empty sites is determined not only by the match
between species’ trait values and local habitat conditions (i.e.
environmental filtering) but also by the soil microbial legacy
effects (i.e. PSF) created by the previously established plant
species. Following empirical evidence (e.g. Semchenko et al.,

2018; Chen et al., 2019), we allowed the microbial legacy effects
to be either positive or negative. The key distinction between our
model and previous studies is that microbial legacy effects in our
model are age-dependent, i.e. the strength depends on the age of
death of the previous established individual. See Methods S2 for
full details of the simulation model.

For our simulation, we generated 10 patches for the regional
species pool to colonize independently and one set of baseline
microbial legacy effects, which represent the microbial effects cre-
ated by the previous individual if it died a year immediately after
colonization. The microbial effects experienced by a new arriving
species depended on the previous individual’s age of death and
the temporal development pattern of microbial effects. We con-
sidered five feedback scenarios: (1) no interaction, where plants
do not create microbial effects; (2) constant, where microbial
effects remain unchanged despite individuals becoming older; (3)
magnifying, where both positive and negative microbial effects
intensify in strength as individuals become older (i.e. the longer
the previous individual lived before it died, the stronger its impact
on the new individual); (4) decaying, where both positive and
negative microbial effects attenuate in strength because mature
individuals support less pathogens and rely less on mutualists; and
(5) bidirectionally varying, where both intensifying and attenuat-
ing are possible. For each scenario, we simulated 20 replicated
runs of community assembly, where 20 independently created
sets of species pool (each with 50 species) were allowed to colonize
the same set of 10 patches, using the same set of baseline micro-
bial effects. We quantified beta diversity among the 10 patches for
each replicated run, which was measured as gamma diversity
divided by mean alpha diversity, and compared temporal patterns
of beta diversity among different scenarios. All analyses and simu-
lations were performed in R v.3.3.1 (R Core Team, 2016).

Results

Temporal patterns of microbial communities

Fungal community composition differed among plant species
(Fig. S1a, PERMANOVA, R2 ¼ 0:148, P<0:001). Within each
plant species, fungal composition varied with plant age (Fig. 2a–
d, age effect for A. arenaria: R2 ¼ 0:096; B. pilularis: R2 ¼ 0:083;
C. edulis: R2 ¼ 0:100; L. arboreus: R2 ¼ 0:077; all P<0:001),
becoming progressively different from bare sand communities
with increasing conditioning time (fungal richness ceased to
increase further after a few years following plant colonization,
Fig. S2). Similar results were obtained for bacterial communities
(Figs 2e–h, S1b, S3; species effect: R2 ¼ 0:126; age effect for A.
arenaria: R2 ¼ 0:115; B. pilularis: R2 ¼ 0:112; C. edulis:
R2 ¼ 0:120; L. arboreus: R2 ¼ 0:116; all P<0:001). Figure S4
shows qualitatively how different fungal families change over
time. For example, the contribution of fungal families Trichoco-
maceae and Mycosphaerellaceae decreased towards the left-hand
side of Fig. S4a, indicating that their relative abundance
decreased with longer soil conditioning length. Moreover, the
fungal family Lasiosphaeriaceae increased in soils associated with
L. arboreus (i.e. towards lower-left of Fig. S4a) whereas
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Teratosphaeriaceae increased in the soils associated with the other
three species (i.e. towards upper-left of Fig. S4a; see also Fig. S5
for bacterial family patterns).

Temporal patterns of soil biota effects on plant
performance

By quantifying the time-averaged soil biota effects that each
plant species experienced when grown in soils conditioned by
different soil host species, we found that the soil biota effects
were positive for L. arboreus but negative for the other three
plants (Figs 3, S6). Most soil biota effects were significantly dif-
ferent from zero (except when B. pilularis grown in soils from
A. arenaria and L. arboreus; Fig. 3b), but the identity of the soil
host species had no effect on the soil biota effects that plants
experienced (soil host species effect insignificant for A. arenaria:
F 3,101:06 ¼ 0:354, P ¼ 0:786; B. pilularis: F 3,44 ¼ 1:190,
P ¼ 0:324; marginally significant for C. edulis:
F 3,95:216 ¼ 2:203, P ¼ 0:092; Fig. 3a–c). The only exception
was L. arboreus, which grew best in soils from C. edulis individu-
als and worst in soils from A. arenaria individuals (soil host
species effect: F 3,101:08 ¼ 3:492, P ¼ 0:018; Fig. 3d; see also
Table 1 for significant interactions between plant species (or
plant functional group) and soil host species identity).

Soil conditioning length significantly influenced the strength
of soil biota effects when using either plant species or plant func-
tional group (i.e. legume or not) as the predictor (Table 1). The
model that best described temporal changes in soil biota effects
included legume, soil host species identity, soil conditioning
length, and their two-way interactions (Table S2). The temporal
pattern of soil biota effects experienced by L. arboreus differed
from that experienced by the three other plants (i.e. there was a
significant interaction between soil conditioning length and plant
functional group, but not with soil host species nor plant species;
Tables 1, S3). Based on these statistical results, in Fig. 4 we visu-
alized the temporal pattern of soil biota effects by separating L.
arboreus from the other three plant species. The soil biota effects
experienced by A. arenaria, B. pilularis and C. edulis became
more negative with longer conditioning time (Fig. 4a; see also
Fig. S7), with the ratio of plant performance in live soils to that
in sterilized soils decreasing 2.6% yr−1 (i.e. 1�10�0:0113; Table
S3). In contrast, the soil biota effects experienced by L. arboreus
showed little temporal change (Fig. 4b; Table S3).

The temporal pattern for A. arenaria, B. pilularis, and C. edulis
arose because plant performance slightly increased when grown
in sterilized soils with longer conditioning history but decreased
when grown in live soil with longer conditioning history (Fig. 4c;
see also Tables S4 and S5 for significant interaction terms
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between soil conditioning length and sterilization treatment for
the three plant species). In contrast, the performance of L.
arboreus did not show different temporal patterns between live
and sterilized soil (Fig. 4d; see also insignificant interaction terms
in Tables S4 and S5 for L. arboreus).

Effects of temporally varying soil microbial effects on plant
community assembly

Simulation results showed that plant communities converged in
all scenarios, i.e. beta diversity declined through time, as commu-
nities became dominated by a subset of species. Despite eventu-
ally reaching similar beta diversity values, simulations ran under
different temporal development scenarios converged with differ-
ent rates (Fig. 5a). Similar to a previous study (Fukami & Naka-
jima, 2013), beta diversity declined most rapidly when plants did
not create microbial legacies (Fig. 5b; light gray line in Fig. 5a),
but was maintained at high levels and declined at slower rates if
plants created microbial legacies that maintained a constant
strength as individuals became older (Fig. 5c; black line in Fig.
5a). When the strength of microbial legacies varied depending on
the previously established individual’s age of death, communities
converged most rapidly in the decaying scenario (Fig. 5e; blue
line in Fig. 5a), followed by the magnifying scenario (Fig. 5d;

orange line in Fig. 5a), and slowest in the bidirectionally varying
scenario (Fig. 5f; green line in Fig. 5a).

Discussion

Our data provide evidence that the strength of plant–soil microbe
interactions can depend on the duration of soil conditioning
(Table 1). We showed that microbial community composition
became more and more different from that in bare sand (Figs 2,
S4, S5), indicating a potential change in their functional compo-
sition and effects on plants (Fig. S8). However, plant response to
changes in the soil microbial community depended on the species
identity of the transplanted seedling (i.e. whether or not it was
the legume, L. arboreus). In particular, only the soil biota effect
experienced by nonlegume plants varied with soil conditioning
length (Fig. 4a): the performance of nonlegume plants decreased
when grown in live soils collected from older soil source individu-
als, but slightly increased when grown in corresponding sterilized
soils (Fig. 4c; Tables S4, S5). The former may result from accu-
mulation of multiple generalist pathogens, whereas the latter may
result from accumulation of organic matter and nutrients in soils
with longer conditioning length (Conser & Connor, 2009;
although we cannot rule out the possibility of a larger autoclave
side effect on soil abiotic properties in such soils). In contrast, it
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appeared that only the presence/absence of soil biota mattered for
L. arboreus (Fig. 4d; Kandlikar et al., 2021). We speculate that
this is because legumes can form effective symbiotic relationships
with a range of rhizobia (Birnbaum et al., 2018; Png et al., 2019),
or the relative abundance of their microbial partners did not vary
significantly through time. Future studies can more formally test
the effects of plant functional groups on the temporal pattern of
plant–soil microbe interactions by including multiple species in
each functional group.

We focused on the temporal changes in plant–soil microbe
interactions during the conditioning phase. Previous studies on
the temporal dynamics of PSF have mostly focused on changes
during the response phase (i.e. monitoring its strengths across dif-
ferent plant ontogenetic stages; Hawkes et al., 2012; Bezemer
et al., 2018; Dudenhöffer et al., 2018). For example, Hawkes
et al. (2012) conducted a 19-month-long experiment and quanti-
fied PSF at four different time steps as the planted seedling
matures. Their result suggested that the effects of soil microbes
on native plants became more negative through time (see also
Bezemer et al., 2018; Dudenhöffer et al., 2018). As seedlings
mature, they not only drive continuous turnover in the microbial
composition (Husband et al., 2002; Meaden et al., 2016; Din-
nage et al., 2019), but their sensitivity to soil microbes may also
change (Reinhart et al., 2010; Ke et al., 2015). Experiments like
ours can disentangle the underlying mechanisms and quantify
the effects of microbial turnover during the conditioning phase.

The relationship between soil conditioning length and feed-
back strength has been investigated in the context of plant inva-
sion. These studies have quantified how the PSF strength
experienced by the invading species changes after multiple gener-
ations, focusing on how the benefit of escaping host-specific soil
pathogens in their native range attenuates with their resident time
(Diaz et al., 2010; Dostál et al., 2013; Day et al., 2015; Speek
et al., 2015). For example, Diaz et al. (2010) found that nonna-
tive plant species that became established in New Zealand for a
longer time (e.g. hundreds of years) experienced stronger negative

PSF (but see Day et al., 2015; Speek et al., 2015). The impor-
tance of soil conditioning length has also been studied in the con-
text of successive planting in agricultural systems, which
demonstrated intensifying negative microbial effects with increas-
ing rounds of planting (Mazzola, 1999; Packer & Clay, 2004).
Recent studies have generalized the traditional focus of single
species to consider multiple rounds of soil conditioning by differ-
ent species, showing that the order of species conditioning the
soil explained a large part of plant performance variability (Wubs
& Bezemer, 2017). Our results show that the negative soil biota
effects experienced by the two invasive plants may aggravate
within a few years in the field (Fig. 4a; Table S3), which may
indicate a decreasing degree of enemy release as shown in other
studies (Beckstead & Parker, 2003; de la Peña et al., 2010).

Recognizing that plant–soil microbe interactions are more
dynamic than generally assumed can be useful when studying their
effects on plant community recovery after disturbance. Some dis-
turbance, such as severe wildfire, kills all individuals, whereas other
forms of disturbance cause higher mortality for specific age classes
(Sousa, 1984). For example, insect herbivore outbreak may cause
plant juveniles to suffer higher mortality, whereas windthrow may
have a more significant direct impact on large adults (Sousa,
1984). Different types of disturbances thus terminate soil condi-
tioning at various stages, leaving behind different microbial lega-
cies that could alter recovery trajectories. Other studies have also
shown that PSF affects restoration (Wubs et al., 2016, 2019) and
information on how plant–soil microbe interactions change
through time can also help design restoration projects. At our field
site, we found that the two invasive species performed worse in
soils with longer conditioning history. This result suggests that
removing old individuals may be an effective restoration strategy
since the soil legacies that they leave behind are more detrimental
for propagules from nearby nonnative individuals to regenerate.

Our study was conducted in a sand dune ecosystem where
individual plants are often spatially separated from one another,
providing the unique opportunity to demonstrate the importance

Table 1 ANOVA table summarizing the effects of plant species (or plant functional group, i.e. legume or not), soil host species identity, soil conditioning
length, and their two-way interactions on the soil biota effects experienced by plants.

Sum Sq. Mean Sq. Num df Den df F P

Two-way interaction model with plant species as predictor

Plant species 9.3167 3.1056 3 336.43 31.706 < 0.0001
Soil host species 0.2415 0.0805 3 336.12 0.822 0.4825
Soil conditioning length 0.4475 0.4475 1 336.43 4.569 0.0333
Plant species × soil host species 2.7169 0.3019 9 336.02 3.082 0.0014
Plant species × soil conditioning length 0.6570 0.2190 3 336.05 2.236 0.0839a

Soil host species × soil conditioning length 0.1937 0.0646 3 336.11 0.659 0.5776
Two-way interaction model with legume as predictor

Legume 9.2414 9.2414 1 346.18 94.248 < 0.0001
Soil host species 0.3032 0.1011 3 346.1 1.031 0.3790
Soil conditioning length 0.6848 0.6848 1 346.49 6.984 0.0086
Legume × soil host species 1.9100 0.6367 3 346.01 6.493 0.0003
Legume × soil conditioning length 0.4823 0.4823 1 346 4.919 0.0272
Soil host species × soil conditioning length 0.1824 0.0608 3 346.12 0.620 0.6025

In the legume model, adding model terms with soil conditioning length increased the conditional R2 from 0.605 to 0.620. Bold typeface in the last column
indicates statistically significant terms (P < 0.05).
aMarginally significant (P < 0.1).
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of soil conditioning length for different species. In many other
systems, however, plant roots may be more intermingled and dif-
ferent plant species co-culture the local soil community (Wubs &
Bezemer, 2018). Understanding the temporal development of
PSF in these systems is of importance because plants may easily
encounter patches with different conditioning length as their
roots explore nearby soil (Hendriks et al., 2015a). One can use
glasshouse experiments with various conditioning duration to
isolate the effects of soil conditioning length for different plant–
soil pairs (Lepinay et al., 2018; though we note that glasshouse
conditioning may occur at a shorter timescale due to more con-
fined soil volume). Future studies can then develop methods to
calculate the overall soil biota effects on a focal individual based
on its root system distribution (Hendriks et al., 2015b).

Our general individual-based model provides an opportunity
to broaden our perspective of temporally dynamic PSF beyond
the specific system. The simulation exercise suggested that plant
communities assembled under different temporal development
patterns of PSF could exhibit various transient dynamics and
converge at different rates (Fig. 5). Without soil microbes,
species’ competitiveness in our model solely depends on environ-
mental filtering (i.e. the match between species’ trait value and
local habitat condition). However, species’ competitiveness is
modified when plants create microbial legacies, and a more
heterogeneous PSF scenario (e.g. more complicated temporal
changes) can delay community convergence by preventing the
immediate dominance of the species with the best fit trait. Previ-
ous studies suggested that a positive correlation between plant

successional stage and PSF strength can facilitate plant species
turnover (Kardol et al., 2006; Middleton & Bever, 2012; Bauer
et al., 2015). In nature, local soils may vary spatially in how long
they have been conditioned as plant individuals often arrive at
different timings and die at different ages (Kardol et al., 2013b;
Peay, 2018). If the duration of soil conditioning affects PSF
strength, as shown in our study, heterogeneity in soil condition-
ing length may weaken the correlation between PSF strength and
plant successional stage and create complex PSF that delay com-
munity convergence (Fig. 5; Fukami & Nakajima, 2013). These
implications suggest that future theoretical models should incor-
porate the different temporal aspects of PSF when studying their
effects on plant community assembly (Kardol et al., 2013a; Ke &
Miki, 2015; Ke & Levine, 2021).

Conclusion

We have shown here that plant–soil microbe interaction strengths
can vary depending on how long the previous plant individual
has conditioned the soil, illustrating the importance of interac-
tion timing in determining species interaction strength (Kardol
et al., 2013b; Peay, 2018). Our results indicate that the length of
soil conditioning can influence the estimated strength of plant–
soil interactions for a majority of dominant plant species in a sys-
tem, highlighting the long-term time dependency of plant–soil
interactions. By treating the temporal dynamics of plant and
microbial communities as a crucial component of PSF (e.g.
Chung et al., 2019; in ’t Zandt et al., 2021), it should be possible
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to more properly place experimental results in a natural context
to better predict how soil microbes influence plant community
assembly.
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