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Abstract
Along with bacteria, fungi can represent a significant component of animal- and plant-associated microbial communities. 
However, we have only begun to describe these fungi, much less examine their effects on most animals and plants. Bacteria 
associated with the honey bee, Apis mellifera, have been well characterized across different regions of the gut. The mid- and 
hindgut of foraging bees house a deterministic set of core species that affect host health, whereas the crop, or the honey 
stomach, harbors a more diverse set of bacteria that is highly variable in composition among individual bees. Whether this 
contrast between the two regions of the gut also applies to fungi remains unclear despite their potential influence on host 
health. In honey bees caught foraging at four sites across the San Francisco Peninsula of California, we found that fungi 
were less distinct in species composition between the crop and the mid- and hindgut than bacteria. Unlike bacteria, fungi 
varied substantially in species composition throughout the honey bee gut, and much of this variation could be predicted by 
the location where we collected the bees. These observations suggest that fungi may be transient passengers and unimportant 
as gut symbionts. However, our findings also indicate that honey bees could be vectors of infectious plant diseases as many 
of the fungi we found in the honey bee gut are recognized as plant pathogens.
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Recently, the honey bee, Apis mellifera, has emerged as a 
model system for uncovering rules that govern the assembly 
of host-associated microbial communities and their effects 
on host health [1, 2]. Studies on honey bee microbes sug-
gest that different regions of the gut house distinct micro-
bial communities, making it necessary to examine these 

communities separately in order to understand how they 
affect host health [3, 4]. For example, in the mid- and hind-
gut (hereafter the intestine, Fig. 1a), a deterministic set 
of functionally indispensable core microbes represent the 
majority of the microbial cells inhabiting the bee gut [3, 5, 
6]. These core species are found across all healthy workers 
regardless of location [5]. In contrast, the crop, or the honey 
stomach, shows high heterogeneity in microbial species 
composition even among healthy workers, likely reflecting 
the spatial and temporal variation of ingested environmental 
microbes [7–10]. However, research on the honey bee gut 
microbiota has focused almost exclusively on bacteria, and 
it remains unknown whether the contrast between crop and 
intestinal communities applies only to bacteria or is also 
observed in other groups of microbes, such as fungi, which 
may affect host health in ways that are currently underap-
preciated [11, 12].

In this study, we examined both bacteria and fungi in 
foraging workers to test two hypotheses: (1) fungal species 
composition is as distinct between the crop and the intes-
tine as is bacterial species composition and (2) fungi, like 
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bacteria, show more variable species composition in the crop 
than in the intestine. To test these hypotheses, we collected 
a total of 101 A. mellifera foraging workers at four sites on 
the San Francisco Peninsula in CA, USA (Fig. 1b, Table S1). 
We dissected the entire gut, separating the crop from the 
intestine. We then extracted and sequenced the bacterial 
V4 region of the 16S ribosomal RNA gene (505–806) and 
the fungal ITS1-5.8S-ITS2 region [13] (see Supplementary 
Information). Sequences were clustered into operational tax-
onomic unites (OTUs) using VSEARCH [14] and taxonomy 
assigned for bacterial and fungal OTUs using QIIME [15] 
and UNITE [16].

As expected, bacterial community composition was most 
strongly predicted by gut region (PERMANOVA, gut region: 
R2 = 0.34, p = 0.001, Fig. 1c–f, Fig. 2a), and higher among-
host variation was detected in the crop than in the intestine 
(beta deviation [17]: F1,168 = 14.5, p = 0.0002). Although 
fungi also showed high variability in the crop (Figs. 1 and 
2, beta deviation: F3, 161 = 40.8, p < 0.0001, Fig. S2), fungi 
in the intestine were more diverse in species composition 
(Shannon, tissue: F1,164 = 6.56, p = 0.01, Fig. S3). Addition-
ally, fungi retained more of the among-site differences from 
the crop to the intestine than did bacteria (Figs. 1 and 2). 
Sample site was the strongest predictor of fungal species 

Fig. 1   a Honey bee gut anatomy 
color-coded by sampling 
scheme dividing the gut into the 
crop (turquoise) and the remain-
ing posterior intestine regions 
(gold). b Map of the collection 
sites along the San Francisco 
Peninsula: Jasper Ridge Bio-
logical Preserve (N = 25 bees), 
Stanford University (N = 26 
bees), Palo Alto (N = 24 bees), 
and San Francisco (N = 26 
bees). c–f Bacterial communi-
ties were relatively consistent 
across sampling sites, whereas 
fungal communities were more 
reflective of collection site. 
Principle coordinate analyses 
(PCoA) based on Bray–Curtis 
dissimilarity matrices calcu-
lated from rarefied OTU tables 
show variation in c bacterial 
crop communities, d fungal 
crop communities, e bacterial 
intestine communities, and f 
fungal intestine communities. 
Each point represents a bee 
individual, and shape and color 
indicate collection site
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composition not just in the crop, but also in the intestine 
(PERMANOVA, site: R2 = 0.14, p = 0.001, Fig. 1 d and f, 
Fig. 2b), with gut region explaining only a small propor-
tion of fungal composition (PERMANOVA, gut region: 
site, R2 = 0.03, p = 0.001). Bray–Curtis distance, which is 
calculated based on relative OTU abundance, and Jaccard 
distance, based on OTU presence/absence, showed qualita-
tively identical results (Figs. 1 and S1).

To further quantify differences between bacteria and 
fungi, we applied the CLAMtest, a multinomial species clas-
sification method [18], which differentiated OTUs into four 
categories: generalist, crop-associated, intestine-associated, 
and too rare to classify. We found that only 1.5% of bacterial 
OTUs were categorized as generalists, whereas 7.3% of fun-
gal OTUs fell into this category (Fig. 3a–d). Furthermore, 
only 1.8% of bacterial OTUs were classified as intestine-
associated, whereas 11.4% of fungal OTUs were classified 
as intestine-associated.

We examined how tightly crop composition was corre-
lated with intestinal composition by applying Mantel tests to 
bacterial and fungal data separately. Crop composition was 

positively correlated with intestinal composition in both bac-
teria (Mantel r = 0.34, p < 0.0001, Fig. 3e) and fungi (Mantel 
r = 0.24, p ≤ 0.0001, Fig. 3f). However, quantile regression 
analysis indicated that bacteria in the intestine were corre-
lated with those in the crop similarly across all three quan-
tiles (10th slope = 0.11, 50th slope = 0.24, 90th slope = 0.31, 
Fig. 3e), whereas the slope of the relationship for fungi 
depended on the quantile examined (10th slope = 0.78, 50th 
slope = 0.42, 90th slope = 0.08, Fig. 3f).

Taken together, our results reject both of the hypotheses 
we set out to test, highlighting contrasting compositional 
patterns between bacteria and fungi in the honey bee gut. 
Specifically, we found that honey bees retained more of the 
across-site differences from the crop to the intestine in fungi 
than in bacteria. Furthermore, unlike the constrained set of 
bacterial species in the intestine [3], fungal species com-
position was highly variable not just in the crop, but also 
in the intestine. The broad distribution of fungal taxa we 
found throughout the gut suggests that these microbes are 
ingested from external sources, with some of them oppor-
tunistically colonizing the gut [19]. Our Mantel test results 

Fig. 2   Relative abundance of 
dominant (> 2,000 reads across 
all samples) microbial genera 
across sites and gut regions 
within each bee individual 
illustrating high variation within 
crops. a Dominant bacterial 
genera, including Snodgras-
sella, Bombella, Acinetobacter, 
Lactobacillus, Commensali-
bacter, and Bifidobacterium. 
Each bar represents one sample 
and the relative abundance of 
bacterial genera out of the total 
reads detected in that sample. b 
Dominant fungal genera, includ-
ing Fellomyces, Malassezia, 
Taphrina, Hyaloscypha, Leu-
cosporidiella, and Phaeococ-
comyces. Each bar represents 
one sample and the relative 
abundance of fungal genera out 
of the total reads detected in 
that sample
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further indicate that various fungal taxa disappear in a seem-
ingly stochastic fashion as they move from the crop to the 
intestine, perhaps because fungi are low in absolute abun-
dance throughout the gut. These processes inferred for fungi 
contrast the deterministic filtering of bacteria from the crop 
to the intestine that has been documented previously and 
corroborated here [3, 5].

Some of the 20 most common fungal OTUs that could be 
identified with moderate certainty in our study were reported 
previously as plant pathogens, including Taphrina carpin 
and Exidia glandulosa (Table S3). Assuming that some 
fungi remain viable as they pass through the gut [20], our 
study supports the role of honey bees as vectors of a diver-
sity of plant fungal pathogens. Transmission of phytopatho-
gens on the surface of honey bees has been implicated in 
the spread of bacterial and fungal pathogens [21, 22], but 
the extent to which fecal transmission of fungal pathogens 

contributes to plant epidemics remains unknown. Honey bee 
hives are often transported among multiple orchards and 
farms for pollination [23]. Our data indicate that the com-
position of gut fungal communities is specific to foraging 
sites. However, if honey bees do act as vectors of plant-
pathogenic fungi, fungal pathogens that would otherwise be 
locally restricted could be transmitted more broadly when 
hives are transported. It is also possible that some of the 
fungal taxa we identified are pathogens to bees and other 
arthropods [24], including Aspergillus (Table S3), which can 
cause stonebrood in honey bees [25].

In summary, here we provide evidence that fungal species 
composition is not as distinct between the crop and intestine 
as in bacteria and that fungal species composition is highly 
variable across the entire gut, unlike bacteria. These findings 
suggest that most fungi found in the honey bee gut may be 
transient passengers rather than symbionts that affect the 

Fig. 3   Fewer bacterial OTUs 
were categorized as intestine-
associated and generalists 
compared to fungi using a mul-
tinomial species classification 
method (clamtest) to sort OTUs 
into categories based on relative 
abundance in each domain: a 
bacteria and b fungi. Summa-
rized classification results for c 
bacteria and d fungi. Rela-
tionships between e bacterial 
crop and intestine community 
structure and f fungal crop and 
intestine community structure. 
Lines are regressions against the 
10th, 50th, and 90th quantiles, 
respectively, from bottom to 
top. Changes in slope reflect the 
extent to which the composi-
tion of intestine communities 
depends on crop communities
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health of the host. In future research, quantification of abso-
lute microbial abundance paired with manipulative studies 
testing the efficacy of honey bees of vectors of phytopatho-
gens is needed to determine the ecological relevance of this 
transience to plant disease transmission and pollination.
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