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ABSTRACT
Priority effects, where the order and timing of species arrival influence the assembly of ecological communities, have been observed in 
a variety of taxa and habitats. However, the genetic and molecular basis of priority effects remains unclear, hindering a better under-
standing of when priority effects will be strong. We sought to gain such an understanding for the nectar yeast Metschnikowia reukaufii 
commonly found in the nectar of our study plant, the hummingbird-pollinated Diplacus (Mimulus) aurantiacus. In this plant, M. reu-
kaufii can experience strong priority effects when it reaches flowers after other nectar yeasts, such as M. rancensis. After inoculation 
into two contrasting types of synthetic nectar simulating early arrival of M. rancensis, we conducted whole-transcriptome sequencing 
of 108 strains of M. reukaufii. We found that several genes were differentially expressed in M. reukaufii strains when the nectar had 
been conditioned by growth of M. rancensis. Many of these genes were associated with amino acid metabolism, suggesting that M. 
reukaufii strains responded molecularly to the reduction in amino acid availability caused by M. rancensis. Furthermore, investigation 
of expression quantitative trait loci (eQTLs) revealed that genes involved in amino acid transport and resistance to antifungal com-
pounds were enriched in some genetic variants of M. reukaufii. We also found that gene expression was associated with population  
growth rate, particularly when amino acids were limited. These results suggest that intraspecific genetic variation in the ability of 
nectar yeasts to respond to nutrient limitation and direct fungal competition underpins priority effects in this microbial system.
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1   |   Introduction

One particularly challenging type of interspecific interactions 
to predict are those that are historically contingent, where the 
outcome depends on the order and timing of species arrival 
(Drake, Huxel, and Hewitt 1996; Fukami 2010; Palmgren 1926). 
These interactions, called priority effects, can be a major source 
of unexplained variation in the species composition of ecologi-
cal communities (Chase 2010; Delory et al. 2019; Song, Fukami, 
and Saavedra  2021). An increasing number of studies have 
sought to gain a better understanding of how and when priority 
effects operate because this understanding can allow some of 
the apparently random variation in species composition among 
local communities to be explained as a predictable outcome 
of history-dependent species interactions (Debray et  al. 2022; 
Fukami 2015; Palmgren 1926; Stroud et al. 2024; Vellend 2010).

The ultimate cause of priority effects is positive feedback that 
makes initial conditions important to community assembly (De 
Meester et al. 2016; Ke and Letten 2018). Therefore, knowledge 
of the mechanisms of this positive feedback is key to explaining 
priority effects. Two groups of such mechanisms are niche pre-
emption and niche modification (Fukami 2015). In niche pre-
emption, early-arriving species deplete resources, limiting the 
growth of later-arriving species. In niche modification, early-
arriving species change the local environment, for example, by 
releasing an inhibitory compound, altering the growth of a later-
arriving species. However, how species respond to niche pre-
emption or niche modification remain poorly described in many 
systems. Understanding how species differ in their response to 
niche preemption and niche modification helps to predict when 
priority effects will be strong (Grainger et al. 2019).

Niche modification and preemption can vary not just among 
species, but also among genetically variable populations within 
species (Urban and De Meester 2009). Such intraspecific vari-
ation makes priority effects even more difficult to understand, 
but this variation at the same time provides a largely unex-
ploited opportunity to study how genetic variation influences 
individuals' molecular response to priority effects. By connect-
ing population-level genetic variation with differences in tran-
scriptional responses, we can better understand how genetic 
variation influences how priority effects play out. However, few 
studies have made this connection.

In this paper, we report an experimental study where we used 
transcriptomics to identify genes that might be responsible 
for niche preemption and modification in a microbial system 
(Figure 1A). Previously, we sequenced and annotated the whole 
genome of the nectar-inhabiting yeast Metschnikowia reukaufii, 
which suggested that their resistance to priority effects against 
a closely related species Mestchnikowia rancensis might be due 
to extensive duplications of nitrogen transport genes (Dhami, 
Hartwig, and Fukami  2016). To explore the role of intraspe-
cific genetic variation on this species, we had also conducted 
whole genome resequencing of 108 M. reukaufii strains isolated 
from the hummingbird-pollinated shrub Diplacus (formerly 
Mimulus) aurantiacus (Dhami et  al.  2018). In this study, we 
found that the 108 strains grouped into three distinct lineages 
that were associated with metabolic ability and resistance to pri-
ority effects. Here, we build on these previous studies to conduct 

RNA sequencing on the 108 strains of M. reukaufii in two ex-
perimentally created nectar conditions, one mimicking priority 
effects by a competitor, to better understand the genetic basis 
of within-species differences in the strength of priority effects. 
For this purpose, we investigated whether the strains varied 
in the patterns of gene expression. We also examined whether 
the strains express genes differently depending on the nectar 
environment they grow in, which would represent an instance 
of phenotypic plasticity (de Nadal, Ammerer, and Posas  2011; 
Rivera et al. 2021).

2   |   Materials and Methods

2.1   |   Microbial Growth and Sampling

A total of 108 isolates of M. reukaufii reported in Dhami 
et al. (2018) (Figure 1B,C and Table S1) were plated from glycerol 
stocks that had been kept at −80°C on yeast mould (YM) agar 
and incubated at 25°C for 2 days. Previously, each of the 108 iso-
lates of M. reukaufii had been sequenced, genotyped, and clus-
tered into genetically distinct groups using FastSTRUCTURE 
(k = 4), which is reproduced in Figure 1C (Dhami et al. 2018). 
An additional rooted ML tree was built using Treemix (1.13) by 
grouping SNPs to account for linkage disequilibrium (k = 1000) 
and accounting for migration (Figure  S2 and Data  S3). A sin-
gle isolated colony on each of these plates was inoculated into 
YM broth and shaken at 200 rpm for 2 days at 25°C. Cells were 
pelleted at 3000 rpm for 5 min and washed twice with sterile 
phosphate buffered saline (PBS). After measuring optical den-
sity at 600 nm (OD600), cells were inoculated at a final density of 
2 × 102 cells/μL into 3 mL of synthetic nectar into the two nectar 
treatments, either the high amino acid nectar or M. rancensis-
conditioned nectar. Four replicates per treatment were shaken at 
200 rpm for 10 h at 25°C and harvested by pelleting at 3724 g for 
5 min at 25°C. The pellet was flash frozen in liquid nitrogen for 
subsequent RNA extraction. All 864 samples were grown and 
processed in a single batch over a single 48 h period. Samples 
were stored at −80°C until further use.

We prepared synthetic nectar to mimic D. aurantiacus nec-
tar in amino acid and sugar composition (Peay, Belisle, and 
Fukami 2012). Specifically, the synthetic nectar contained fruc-
tose (4%), glucose (2%), sucrose (20%), serine (0.102 mM), glycine 
(0.097 mM), proline (0.038 mM), glutamate (0.035 mM), aspartic 
acid (0.026 mM), GABA1 (0.023 mM), and alanine (0.021 mM). 
All components were mixed in water until dissolved, filtered 
through a 0.2 μm filter, and stored at −20°C until used. The first 
treatment increased the amino acid concentration in nectar to 
10× the concentration of the standard nectar, to mimic a rich 
environment. The second treatment was prepared exactly the 
same as the first treatment, except that it was conditioned by 
Metschnikowia rancensis, which is closely related to M. reukaufii 
(Peay, Belisle, and Fukami 2012; Pozo et al. 2016) and has previ-
ously been shown to engage in strong priority effects with M. re-
ukaufii (Dhami, Hartwig, and Fukami 2016; Dhami et al. 2018; 
Grainger et al. 2019; Peay, Belisle, and Fukami 2012; Vannette 
and Fukami 2014).

Adding multiple species to the same nectar would have 
been a more conventional approach to evaluate the effect of 
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FIGURE 1    |    Sub-populations of nectar yeast differ in transcriptional response. (A) Schematic of this study where early-arriving Metschnikowia 
rancensis exerts a priority effect on M. reukaufii in the nectar of D. aurantiacus through niche preemption or niche modification. We report (1) the 
molecular response of M. reukaufii to priority effects exerted by M. rancensis and (2) the effect of intraspecific genetic variation within M. reukaufii 
on its molecular response to priority effects by M. rancensis. (B) Wild yeast were isolated from the nectar of Diplacus aurantiacus growing at 12 sites 
in and around the San Francisco Bay Area of California, USA. (C) Whole genome resequencing of 108 strains of nectar yeast Metschnikowia reukaufii 
revealed three populations (Dhami et al. 2018). (D) In the current study, 108 strains of M. reukaufii were grown separately in synthetic D. aurantiacus 
nectar with high amino acid or synthetic nectar conditioned with competitor yeast M. rancensis. After 10 h of growth, overall gene expression was 
predominantly influenced by population group (colour) and less by nectar treatment (shape) (PERMANOVA, population group: N = 742, R2 = 0.028, 
p = 0.009). M. reukaufii grown in high amino acid nectar are circles versus conditioned nectar as triangles. There was no significant difference 
between nectar treatments (PERMANOVA, nectar treatment: N = 718, R2 = 0.0007, p = 0.60). Each point represents an individual replicate. Outgroup 
strains are Y1227, Y1229, Y1248, Y173, and Y142. [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com
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interspecific interactions. However, because our focal species 
M. reukaufii and competitor M. rancensis are closely related, it 
would have been challenging to identify whether RNA reads 
came from M. reukaufii or M. rancensis. To avoid this problem, 
we used nectar where M. rancensis was grown, but then filtered 
out. This conditioned nectar treatment represents a similar 
environment to what M. reukaufii may encounter if M. ran-
censis arrives early to a flower and draws down amino acids in 
nectar before M. reukaufii arrives, while eliminating the need 
to disentangle RNA reads from two closely related species in 
co-culture. M. rancensis-conditioned nectar was prepared by 
growing M. rancensis in the normal synthetic nectar for 48 h 
at 25°C and shaking at 200 rpm. M. rancensis was removed 
from the nectar by centrifugation at 6000 g for 5 min, followed 
by filtration of supernatant through a 0.02 μm filter. To ensure 
that yeast cells and RNA had been sufficiently removed in the 
final conditioned nectar, we used a MOBIO PowerWater RNA 
Isolation Kit (MO BIO Laboratories, Carlsbad, CA) to extract 
residual RNA. Less than 9 ng/μL of RNA was detected in the 
conditioned nectar.

2.2   |   RNA Extraction, Library Preparation, 
and Sequencing

RNA was extracted from 864 cell pellets using a phenol-
chloroform extraction method (Collart and Oliviero  1993; 
Eggermont, Goderis, and Broekaert  1996). Pellets were resus-
pended in phenol, chloroform, and isoamyl alcohol with an 
RNA extraction buffer, and incubated at 60°C for 30 min while 
shaking. RNA was extracted using phase separation and cen-
trifugation with phenol, chloroform, and isoamyl alcohol. RNA 
was precipitated using a lithium chloride solution and incubated 
at −20°C overnight. Samples were centrifuged, and the pel-
let resuspended in cold 80% ethanol. After pelleting again, the 
ethanol was removed and the purified RNA was resuspended 
in pyrogen-free water and stored at −80°C. Diluted RNA was 
treated with DNase I using a Zymo DNase I kit (Zymo Research, 
Irvine, CA) and purified using a Zymo RNA Clean and 
Concentrator Kit (Zymo Research, Irvine, CA). Final RNA con-
centrations were quantified using an Invitrogen Quant-iT Broad 
Range RNA Assay Kit (Thermo Fisher, Waltham, MA). Purified 
RNA was shipped to the Joint Genome Institute (JGI), where 
cDNA libraries were generated using an TruSeq RNA Library 
Prep Kit (Illumina, San Diego, CA). Samples were sequenced 
on a NovaSeq 6000 sequencer (2 × 251 bp reads). JGI provided 
cleaned, trimmed reads for bioinformatic analysis. BBDuk (ver-
sion 38.25) was used to remove contaminants, trim reads of 
adapter sequences, and remove reads with low quality scores. 
BBMap (Bushnell  2014) was used to map reads to an M. reu-
kaufii reference genome (Dhami, Hartwig, and Fukami  2016) 
and reads that mapped to human, cat, dog, or mouse references 
at 93% identity were filtered, along with ribosomal sequences. 
Reads were pre–processed using BBDuk (JGI 2021) for quality 
trimming and filtering, then aligned to the reference genome 
(Dhami, Hartwig, and Fukami  2016) using HISAT2 (2.2.0) 
(Kim, Langmead, and Salzberg 2015). deepTools (v3.1) (Ramírez 
et al. 2014) was used to generate strand-specific bigWig files and 
raw gene counts were generated using featureCounts (Liao, 
Smyth, and Shi 2014).

2.3   |   Differential Expression Analysis

In R (3.5.2), DESeq2 (Love et  al. 2014) was used to gener-
ate a differential expression count matrix, using a raw read 
count matrix as the input. After an inverse normalisation 
transformation, the transformed count matrix was used in 
principal component analysis (PCA) and differences be-
tween groups were analysed by PERMANOVA with Bray–
Curtis Dissimilarity using the adonis function in vegan 
(2.5-7) (Oksanen et  al.  2019). After log normalisation, inde-
pendent hypothesis weighting was used to determine the 
number of significantly differentially expressed genes per 
treatment (p < 0.1, FDR = 0.1). Significantly differentially ex-
pressed genes (p < 0.05, LFC < 0.5 or > 0.5) are reported in 
Table S4. We predicted the function of expressed genes using 
the InterPro database (interproscan 5.45–80.0) (Blum 
et al. 2021). TopGO (2.46.0) was used to identify enriched GO 
terms in significantly differentially expressed genes (Alexa 
and Rahnenführer 2009). GO term enrichment was examined 
for Biological Process (BP) (Figure  2B), Cellular Component 
(CC), and Molecular Function (MF) based on the “weight01” 
algorithm and Fisher statistic (Figure S5 and Table S5).

2.4   |   cis-eQTL Mapping and Functional 
Annotation

Pre- and post-processing of the cis-eQTL data were performed in 
R (4.0.3). Strains with no genotype data, and samples with fewer 
than 4,000,000 RNA-seq library reads were excluded from eQTL 
calling. In the RNA-seq dataset, samples corresponding to the 
Y76 strain had exceptionally low read counts relative to the rest of 
the dataset (mean = 1,557,935 vs. 10,582,904 reads). A minimum 
library size of four million reads provided an arbitrary cutoff that 
cleanly separated these low-expression samples from the rest.

Only genes with at least 0.1 TPM (transcript per kilobase mil-
lion) and five or more read counts in at least 144 samples (20% 
of samples) were retained for analysis. Genes on scaffolds 
without complete genotype information were excluded from 
cis-eQTL mapping. Raw gene count estimates were converted 
to counts per million (cpm) using the cpm function from 
edgeR (Robinson, McCarthy, and Smyth 2010), then inverse-
normalised using the RankNorm function from RNOmni 
(McCaw et  al.  2020). Principal components (PCs) were cal-
culated from the transformed count data using PCATools 
(Blighe, 2018/2022), and the number of PCs to include in the 
final model was determined using the Gavish-Donoho method 
(Gavish and Donoho 2014).

eQTL mapping was performed using tensorQTL in Python 
(3.9.8) (Taylor-Weiner et  al.  2019). Eight samples representing 
the Y76 strain were excluded from analysis due to low library 
size, an additional 32 samples representing the Y413, Y962, and 
Y983 strains were excluded due to a lack of genotype data, and 
77 samples across 44 strains were removed from analysis due 
to lack of RNA-seq data, leaving 718 remaining samples across 
both conditions for eQTL calling. Lack of genotype information 
for scaffolds 117 and 100 led to the exclusion of 1398 and 2 genes, 
respectively. Of the remaining 4589 annotated genes, 252 genes 



5 of 12

were removed from analysis due to low expression, resulting in 
4337 (94.5%) genes for eQTL analysis. No variants were dropped. 
Variants within 1 Mb of the transcription start site were tested 
for association with gene expression and genotype using a lin-
ear model with an interaction term. The model included sample 
strain, group, collection site, sequencing plate, and the first 33 
PCs as covariates:

In this model, expression represents the level of RNA for a 
particular gene present in the sample. Genotype does not refer 
to the strain of M. reukaufii. Rather, we use the term genotype 
to refer to the individual genetic polymorphism (variant) pres-
ent at a particular site in the genome, such as A versus T. For 

example, at a single site at the genome (e.g., the 764027th base 
pair on scaffold (chromosome) 4), a SNP can either be C/C (ho-
mozygous for the reference allele C), C/A (heterozygous), or 
A/A (homozygous for the alternate allele A), depending on the 
strain. There are two alleles since this yeast has a diploid ge-
nome. The nectar condition is whether the sample was grown 
in conditioned or high amino acid nectar. The strain rep-
resents which sequenced M. reukaufii isolate was grown, in 
which genetically distinct group (Group 1, 2, or 3 in Figure 1). 
The collection site (where the yeast was originally collected 
from), sequencing plate, and principal components (PCs) rep-
resenting the aggregated additional experimental variation 
were also included in the model. The top eQTL variant was 
reported for each gene, and corrected for multiple testing by 
multiplying the nominal p-values to the effective number 
of tests reported by tensorQTL's eigenMT option. Response 
eQTL genes were defined by a significant interaction term 
(Bonferroni-corrected, adjusted p-value ≤ 0.05).

We predicted the function of expressed genes using the InterPro 
database (interproscan 5.45–80.0) [4]. TopGO (2.46.0) was 
used to identify enriched GO terms in genes associated with 
interaction. GO term enrichment was examined for Biological 
Process (BP) based on the “weight01” algorithm and Fisher 
statistic.

2.5   |   Metabolomics Analysis

The nectar (supernatant) from a subset of samples (n = 192) 
presented above were analysed for targeted amino acid quan-
tification (Table S6). Supernatant nectar was stored at −80°C. 
After thawing, 700 μL of the sample was filtered through 0.22-
μm Costar Spin-X cellulose acetate filter tubes (Corning Inc., 
Corning, NY) for 5 min (13,000 rpm, 20°C). Samples were then 
lyophilised and resuspended in 1 mL methanol containing a 1× 
internal standard. Internal standards were 13C-labelled amino 
acids, summarised in Table S7, as well as labelled inosine, tre-
halose, mannitol and adenine. Calibration curves were gener-
ated using seven high and conditioned control nectars at the 
following concentrations of each internal standard: (1) 10×, (2) 
5×, (3) 1×, (4) 0.5×, (5) 0.1×, (6) 0.05×, (7) 0.01×. An extraction 
control with empty tubes was also conducted. All samples and 
controls were vortexed for 3–5 s, sonicated for 10 min, and cen-
trifuged for 5 min (5000 rpm, 4°C). The supernatant was then 
transferred to 0.22-μM Costar Spin-X cellulose acetate filter 
tubes (Corning Inc., Corning, NY) and centrifuged for 2.5 min 
(2500 rpm, 4°C). Filtrate was transferred to LCMS vials for 
polar (HILIC) LC–MS. Samples were run using UHPLC nor-
mal phase chromatography on an Agilent 1290 LC stack and 
a Q Exactive HF Orbitrap MS (Thermo Scientific). MS and 
HILIC methods are described in detail here (Domeignoz-Horta 
et  al.  2023). Using average peak area in negative ionisation 
mode, we created a standard curve for each amino acid to 
calculate the concentration within each sample. Amino acids 
where the concentration was less than or equal to that detected 
in the negative controls were removed from the analysis. To 
calculate the amount of each amino acid secreted or consumed 
in the nectar, and the concentration of each amino acid in each 
sample was subtracted from the average concentration in the 
negative controls. A t-test was used to compare changes in each 

expression∼genotype+nectar condition+genotype

×nectar condition+strain+group+collection site

+sequencing plate+PCs

FIGURE 2    |    Transcriptional differences based on nectar treatment. 
(A) Significantly differentially expressed genes (n = 6613) between 
treatments, high amino acid nectar (bottom, magenta) and M. rancensis-
conditioned nectar (top, teal). Each point represents an individual 
gene. (B) Enriched biological process gene ontology (GO) terms in 
significantly differentially expressed genes (n = 2520). The size of each 
bubble denotes the number of significant genes with that GO term. GO 
terms coloured in orange are associated with amino acid metabolism 
or catabolism. [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com
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amino acid concentration between nectar treatments and pop-
ulation groupings (groups 1, 2, and 3).

2.6   |   Growth Phenotyping

To assay yeast growth in nectar with varying amino acid 
concentrations, we used two synthetic nectars similar to that 
described in Section  2.1. One was low amino acid nectar, 
using the same relative concentrations of amino acids as in 
the standard nectar used in the main experiment reported in 
Section 2.1, but reducing the overall concentration of amino 
acids by 1/10×. The other was high amino acid nectar, with 
a 2× concentration of amino acids. Because the two experi-
ments (i.e., those described in Sections  2.1 and 2.6) did not 
use an identical pair of nectar environments, we cannot make 
direct comparisons between the two, but as detailed in the 
results section, the experiments nonetheless yielded broadly 
consistent results, both indicating that gene expressions de-
pended strongly on amino acid availability.

To assay growth, we first streaked 12 strains of M. reukaufii 
(Y382, Y383, Y385, Y466, Y467, Y644, Y818, Y821, Y858, Y893, 
Y1092, MR1) from a glycerol stock onto a yeast malt agar 
(YMA) plate. These strains were phylogenetically dispersed 
across the three populations and had varying morphologies. 
We incubated plates of each strain at 26°C for 2–3 days. For 
each repetition of each treatment for each strain, we homo-
genised a single plated colony into yeast malt (YM) broth to 
create an overnight culture that was incubated at 26°C while 
shaking at 200 rpm for 16 h. Next, we rinsed the overnight cul-
tures to separate them from the nutrient-dense YM broth. We 
vortexed each culture, centrifuged 200 μL solution at 6000 g 
for 5 min on an Eppendorf 5415D (Eppendorf, Germany), de-
canted the liquid using a pipette, and then added 200 μL nor-
mal amino acid synthetic nectar. We repeated this process for 
a second rinse and resuspended in nectar of the appropriate 
type for each treatment. Rinsed cultures were then diluted to 
10−4 using the treatment's nectar type. We incubated 10 μL of 
these rinsed, diluted cultures at 26°C and used the remainder 
for plating to estimate the starting colony forming unit (CFU) 
counts. After one day, we plated the incubated cultures for 
final CFU counts. For starting CFU counts, we plated using 
additional 100, 10−1, 10−2, and 10−3 dilutions using sterile 0.85% 
NaCl solution; for final CFU counts, we used 10−1, 10−2, and 
10−3 dilutions. For all CFU counts, we used spot plating onto 
YMA plates with 10 μL per spot and 3 technical replicates. 
Plates were counted after 48 h of incubation at 26°C. To esti-
mate growth rates, we conducted a linear regression for each 
strain of per-capita growth (log[final CFU/starting CFU]) on 
starting density (starting CFU). The y-intercepts from these 
regressions can be regarded as the predicted maximum popu-
lation growth rates since they are the estimated growth rates 
when the starting densities approach zero.

The relationship between the estimated maximum growth rate 
in either low or high amino acid nectar and the level of gene 
transcription for the corresponding strain was then assessed. 
Growth rates were averaged across replicates and regressed 
against average Fragments Per Kilobase of transcript per Million 
mapped reads (FPKM) across replicates using a Spearman's 

rank correlation test. In this analysis, we examined the top 110 
most differentially expressed genes, which had an adjusted p-
value of < 0.00001. For each gene, those strains in which no gene 
expression was detected were excluded from the analysis. In 
examining the expression-growth relationships, final p-values 
were adjusted using a Bonferroni correction to take into account 
the multiple tests that were conducted to investigate 110 genes.

We used a general independence test (coin V3) to determine 
whether there were more genes that were associated with growth 
(−log10(p-value)) in the high versus low amino acid nectar treat-
ments and if so, whether the absolute value of that association 
(to account for differences in directionality) was significantly 
different between high and low amino acid nectar treatments.

3   |   Results

3.1   |   Transcriptome Sequencing and Alignment

A total of 12,559,122,137 raw reads were obtained from all 
samples. After quality control, an average of 14,428,231 (85%) 
of clean reads per sample mapped to the M. reukaufii MR1 ref-
erence genome (Dhami, Hartwig, and Fukami 2016) (Tables S1 
and S2, Figure S1). Distributions of mapped reads were similar 
between the two nectar-type treatments.

3.2   |   Population-Level Response to the Nectar 
Environment

Previously, the 108 strains of M. reukaufii used here were isolated 
from wild D. aurantiacus flowers, sequenced and genotyped 
using GATK (Dhami et al. 2018). From these 108 strains, three 
distinct population genotypes of M. reukaufii were identified 
using the model-based Bayesian algorithm fastSTRUCTURE 
and an identity-by-state (IBS) phylogenetic tree with a non-M. 
reukaufii Metschnikowia sp. outgroup (n = 7) (Dhami et al. 2018; 
Raj, Stephens, and Pritchard  2014, Figure  1C). We refer to the 
groups described in Dhami et  al.  (2018) as populations in this 
paper, following the convention in population genomics. Thus, 
by populations, we do not necessarily mean spatially defined en-
tities. Here, we found that samples that were from similar pop-
ulations were more likely to have more similar gene expression 
overall (Figure  1D) (PERMANOVA, population group: n = 718, 
R2 = 0.028, p = 0.009). In fact, they clustered according to our 
three, previously identified populations (Figure 1C). In addition, 
we found two clusters that consisted of strains belonging to pop-
ulation 1 (Figure 1D), which corresponded to the two genetically 
distinct subgroups of population 1 (Figure 1C). Population 1 ap-
peared to be polyphyletic due to gene flow and admixture be-
tween populations 1 and 2 (Figure S2 and Table S3). There was no 
statistically significant difference between the nectar treatments 
(PERMANOVA, nectar treatment: n = 718, R2 = 0.0007, p = 0.60).

3.3   |   Functional Enrichment of Differentially 
Expressed Genes

Although there was no overall significant difference in tran-
scription, on a per sample basis, by treatment, individual genes 
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did differ in expression by treatment. A total of 4972 genes had a 
nonzero total read count when mapped to the reference M. reu-
kaufii MR1 genome (Dhami et al. 2018) (Figures S3 and S4). Of 
these, 1177 (20%) genes were more highly expressed in the high 
amino acid nectar, and 886 (15%) were more highly expressed 
in the conditioned nectar after accounting for independent 
hypothesis weighting (padj. < 0.1, nominal FDR control = 0.1) 
(Figure 2A and Table S4). Of differentially expressed genes, 1657 
(90%) had predicted functions. Biological processes enriched in 
differentially expressed genes by treatment included cellular ni-
trogen biosynthesis (n = 193, p = 0.01) and organonitrogen com-
pound biosynthesis (n = 165, p = 0.08) (Figure 2B, Table S5 and 
Figure S5).

3.4   |   eQTLs

Previously, single nucleotide polymorphisms (SNPs) and inserts 
and deletions (InDels) were called for the strains using GATK 
(Dhami et al. 2018; McKenna et al. 2010). Variants were filtered 
using GATK (version 3.4) and VCFtools (version1.5) (Danecek 
et al. 2011). eQTL mapping was performed using these 88,193 
SNPs and 4111 genes, testing the association between genotype 
and transcriptional response to the two nectar treatments. Here, 
we use the definition of genotype used in population genomics, 
which refers to how variation at a specific site in the genome 
(e.g., a single A or T) is associated with differences in expres-
sion of a single RNA transcript. Thus, our test for the association 
between genotype and transcriptional response is a comparison 
between a single portion of the genome (a single DNA site) with 
a unique RNA transcript. We tested whether this association 
between genotype and transcriptional response differed be-
tween environments (nectar treatment) or had an interacting 
effect between the genotype and environment (interaction ef-
fect) (Figure  S6 and Table  S6). We observed 355 genes whose 
expression was associated with genotype (genotype eQTLs), 
and 176 with treatment-dependent genotype associations (inter-
action eQTLs, Figure 3A). Only 39 genes were shared between 
genotype and interaction eQTLs. The effect sizes of significant 
eQTLs were similar between treatment, genotype, and the in-
teraction between them (Figure 3B). Generally, treatment, gen-
otype, and interaction eQTLs had the same direction of effect 
(Figure S5).

The top GO terms of genes associated with interaction eQTLs 
included ion transport pathways (Figure 3C). For example, a 
predicted aminotransferase involved in the N starvation re-
sponse (Figure  4A) (adj. pGxE = 0.013) and an ATP-binding 
cassette (ABC) transporter was differentially affected by 
genotype and nectar treatment (adj. pGxE = 0.002) (Figure 4B) 
(Table S6).

3.5   |   Metabolomics

We identified three amino acids where the degree to which 
they were secreted or consumed differed significantly be-
tween high and conditioned nectar (Figure 5). The degree to 
which phenylalanine was secreted or consumed also differed 
based on the population from which each yeast strain came 
(Figure 5A).

3.6   |   Growth Phenotyping

Across the top 110 most differentially expressed genes, the ad-
justed p-values for the relationship between gene expression 
and growth rate across the 12 strains examined were signifi-
cantly smaller in the low amino acid nectar treatment than in 
the high amino acid nectar (Z = −2.53, p = 0.01; Figure 6A). Of 
the 110 genes, 13 genes showed a significant association between 

FIGURE 3    |    Expression QTLs by treatment, genotype, and 
interaction. (A) Summary of eQTLs by treatment, genotype, and 
the interaction between them. (B) Frequency distribution of effect 
sizes of eQTLs by treatment, genotype, and interaction. (C) GO term 
enrichment of interaction eQTLs. [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com
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the level of expression and the estimated maximum growth rate 
in either low or high amino acid nectar (Table S8). Only three 
genes of these 13 had a significant association in the high amino 
acid nectar, whereas all of the remaining 10 showed a significant 
trend only in the low amino acid nectar. For example, we found 
that strains that were slower to grow relative to other strains had 
a higher level of transcription of a predicted histidine phospha-
tase (transcript 117,768) in low amino acid nectar, r(11) = −0.80, 
padj = 1.7 × 10−7; Figure 6B, but no such relationship was found 
in high amino acid nectar, r(9) = −0.24, padj = 0.45; Figure  6C. 
Moreover, across the top 110 genes, the association between 
growth and gene expression was significantly stronger when the 

strains grew in low amino acid nectar than in high amino acid 
nectar (Z = 2.04, p-value = 0.04; Figure S7).

4   |   Discussion

We found that early arrival of M. rancensis altered gene ex-
pressions in M. reukaufii differently depending on M. reukau-
fii strain identity. In particular, functional analysis of genes 

FIGURE 4    |    Differential expression by genotype and treatment. 
Differential expression of two specific genes by genotype. Here, 
genotype refers to variation of a single nucleotide (A, T, C, or G) at 
a single site in the genome. Two nucleotides are presented at each 
site since the M. reukaufii genome is diploid and a single nucleotide 
polymorphism (SNP) can be homozygous or heterozygous for either 
the reference or alternative allele at each SNP. These are presented as 
examples to demonstrate patterns that may be found across other genes 
and sites. (A) Expression (transcript per kilobase million, or TPM) of 
a putative amino acid transporter (transcript 38,411) differs based on 
genotype at SNP 764027 and nectar treatment (adj. pGxE = 0.013, effect 
size = 0.100 ± 0.022), suggesting a gene-by-environment interaction. 
(B) Expression (TPM) of a putative ABC transporter (transcript 
35,539) based on genotype at SNP 1047038 and nectar treatment (adj. 
pGxE = 0.002, effect size = −0.370 ± 0.075). Individual points represent 
gene expression within an individual sample (e.g., the expression level 
of transcript 35,539 in a strain with C/C at SNP 764027), including 
technical replicates (n = 4) per strain. Points are coloured by whether 
the sample (strain) was from population 1, 2, or 3 (Figure 1C). [Colour 
figure can be viewed at wileyonlinelibrary.com]

FIGURE 5    |    Amino acid consumption or excretion by nectar 
treatment and population group. Change in the concentration of 
phenylalanine, arginine, and lysine relative to control nectar differed 
between conditioned and high amino acid nectar treatments. Each 
point represents an individual sample (strain), where we measured 
amino acid concentration, with four biological replicates per strain. (A) 
Change in phenylalanine concentration (μM), when compared to control 
nectar, by nectar type and population group. Some population groups 
differed in their phenylalanine consumption or excretion. (B) Change 
in arginine concentration (μM), when compared to control nectar, by 
nectar type and population group. (C) Change in lysine concentration 
(μM), when compared to control nectar, by nectar type and population 
group. [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com
https://onlinelibrary.wiley.com
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that were differentially expressed between the two nectar 
environments found enrichment associated with cellular ni-
trogen biosynthesis and organonitrogen compound biosyn-
thesis (Figure  2B). In nectar, competition for amino acids 
between M. reukaufii and other yeast species such as M. ran-
censis can be severe (Dhami et al. 2018; Grainger et al. 2019; 
Letten et al. 2018; Peay, Belisle, and Fukami 2012; Vannette 
and Fukami 2014). When M. rancensis arrives first to a D. au-
rantiacus flower via a hummingbird, M. rancensis can rapidly 
deplete amino acids in nectar. Thus, to resist priority effects 
by M. rancensis, a late-arriving M. reukaufii strain would have 
to express genes that help them survive in low nitrogen envi-
ronments. Indeed, our differential expression analysis showed 
that M. reukaufii changes expression of genes associated with 
competition for amino acids due to the early arrival of M. ran-
censis. This finding is broadly consistent with our prior ge-
nome analysis of M. reukaufii, which revealed extensive gene 
duplications in high-capacity amino acid transporters (Dhami, 
Hartwig, and Fukami 2016). We speculate that the limited ni-
trogen availability in the form of amino acids, an essential N 
resource for microbial growth, have exerted strong selection 
pressure in the evolution of M. reukaufii (Dhami et al. 2018).

A surprising finding from this study is how strongly genotypic 
identity influences the yeasts' transcriptional response to early 
arrival of M. rancensis. Prior work identified three groups 
within this collection of M. reukaufii strains (Dhami et al. 2018) 

(Figure 1C). Our results suggest that the three groups do not al-
ways respond in the same way to priority effects. By combining 
population-level genetic variation (Figure 1) and differences in 
gene expression (Figure  2), we identified several genes whose 
expression level differed based on yeast lineage (cis eQTLs) 
(Figure 3).

Two examples of eQTLs illustrate how our results suggest 
lineage-specific mechanisms of priority effects. First, variation 
at SNP 764027 demonstrates how the interaction between gen-
otype and the environment can strongly alter expression of a 
putative amino acid transporter (transcript 38,411) (Figure 4A). 
This gene, which is predicted to help import amino acids into 
the cell, was more highly expressed when M. rancensis had de-
pleted amino acids. Increased expression of a putative amino 
acid import gene in nectar environment conditioned by a com-
petitor suggests niche preemption as a mechanism of priority 
effects. This hypothesis is supported by the previous studies 
showing that Metschnikowia yeast species drew down amino 
acid concentration in nectar (Peay, Belisle, and Fukami 2012; 
Vannette and Fukami 2014, 2018), that competition for amino 
acids in nectar altered competitive outcomes (Tucker and 
Fukami 2014; Grainger et al. 2019), and that gene expression 
levels of select N scavenging genes increased in microcosm 
competition experiments (Dhami, Hartwig, and Fukami 2016). 
We found that in the conditioned nectar treatment, earlyarriv-
ing M. rancensis drew down nectar N, making the late-arriving 

FIGURE 6    |    Association between growth and transcription of a predicted histidine phosphatase gene. (A) Across the top 110 most differentially 
expressed genes, more genes were significantly associated with growth in the low amino acid nectar treatment than in the high amino acid nectar 
treatment (Z = −2.53, p = 0.01). Each point represents a gene. (B and C) Spearman rank correlation between yeast growth of 12 M. reukaufii strains 
and expression of a predicted histidine phosphatase gene (transcript 117,768) in either low amino acid nectar r(11) = −0.80, padj = 1.7 × 10−7or high 
amino acid nectar, r(9) = −0.24, padj = 0.45. Each point represents a sample (strain) where growth was measured in our experiment. We highlight this 
predicted histidine phosphatase gene as an example of a gene where differential expression was associated with differences in yeast growth. [Colour 
figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com
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M. reukaufii express amino acid transporters to scavenge for 
the remaining amino acids. Our results build on prior findings, 
suggesting that the extent to which M. reukaufii can scavenge 
for N also depends on the genotype: heterozygous strains at 
SNP 764027 are able to express that gene more highly than 
those with either homozygous strains.

In a second example, there was increased expression of a tran-
script (35539) depending on the genotype at SNP 1047038 and 
depending on nectar treatment. However, the effect of genotype 
was greatly reduced in the high amino acid nectar environment 
(Figure  4B). This gene is predicted to be an ABC transporter, 
which can support resistance to antifungal compounds (Kumari 
et  al.  2021). In the nectar conditioned by M. rancensis, poten-
tially containing antifungal compounds that inhibit M. reukau-
fii growth (Álvarez-Pérez et al. 2016), M. reukaufii's expression 
of this ABC transporter differed based on its genotype at SNP 
1047038. This second example suggests niche modification as a 
mechanism of priority effects, where M. rancensis could prevent 
the growth of later-arriving M. reukaufii by producing a toxic 
compound (Álvarez-Pérez et  al.  2016). Prior work has shown 
how M. reukaufii and other nectar microbes can be affected by 
secondary metabolites (Mueller, Francis, and Vannette  2023; 
Vannette and Fukami 2018), with secondary effects on pollina-
tor foraging (Vannette and Fukami  2016). Production of toxic 
compounds or chemicals that alter microbial behaviour such 
as quorum sensing could affect community dynamics in nectar 
(Álvarez-Pérez, Lievens, and Fukami 2019).

Here, we show that the interactive effect of environment (such as 
niche preemption by M. rancensis) and genotype can alter how 
species respond to competition. Thus, the effects of intraspecific 
genetic variation within M. reukaufii can only be understood in 
their environmental context. The two examples discussed, as 
well as the 137 additional interaction eQTLs (Figure 3A), sug-
gest that neither yeast genotype nor nectar environment alone 
fully explains the transcriptional response to priority effects. 
Instead, the interplay between genotype and environment is 
necessary to understand how species interact.

Differences in the expression of some genes between treatments 
were associated with differential growth rate among strains in 
both high and low amino acid nectars. However, this link be-
tween gene expression and growth rate was more apparent when 
strains were grown in low amino acid nectar than in high amino 
acid nectar (Figure 6). Although the nectar treatments were dif-
ferent between the two experiments, preventing us from making 
direct comparisons, the results nonetheless suggest that gene 
expression depends on amino acid availability. Further, these 
findings suggest that differences in gene expression among the 
strains matter more for population growth in nectar when M. re-
ukaufii strains grow under low amino acid conditions, as they 
would if another competitive yeast species like M. rancensis es-
tablished in nectar before M. reukaufii arrives, than when they 
grow under high amino acid conditions, which would be the 
case if M. reukaufii arrived before M. rancensis. In other words, 
strain-specific gene expression influences growth more strongly 
when amino acids are depleted by early-arriving competitors, 
suggesting that these genes may underlie priority effects in the 
nectar yeast studied here.

Additionally, we have shown how intraspecific variation within 
M. reukaufii may alter its interaction with the environment. By 
measuring targeted amino acids in nectar before and after yeast 
growth, we found that some amino acid abundance was altered in 
environment-specific (nectar type) and gene-specific (population) 
manners (Figure 5). These differences may explain how priority 
effects arise through niche preemption and modification in this 
system. For example, theory predicts that priority effects occur 
if species deplete the resources that are more essential to other 
species than to themselves more greatly than they deplete the re-
sources more essential to themselves (Chase and Leibold 2003; 
Tilman  1980). Because M. reukaufii and M. rancensis differ in 
their consumption and growth limitation with respect to dif-
ferent amino acids that are available in nectar (Vannette and 
Fukami 2014), this prediction may apply to the nectar yeasts. In 
this study, however, we did not attempt to determine whether the 
assumptions of any specific theoretical model are met in the nec-
tar yeast system. The data presented in this paper do not identify 
an exact cause or mechanism of priority effects. The data, how-
ever, lay a foundation for future identification of the genes respon-
sible for niche preemption or modification in nectar yeast species.

In summary, we have sought to connect population-level genetic 
variation to differences in molecular traits (gene expression) as-
sociated with priority effects. Although it is difficult to tease 
apart exact mechanisms of priority effects, here we used our 
results to speculate on the molecular basis of niche preemption 
and modification as mechanisms of priority effects. To more di-
rectly test for the effects of the proposed genes, future research 
would benefit from generating transgenic M. reukaufii with 
knock-out genes or eQTLs identified in this study.
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