Online Appendix

Appendix A.1: Deriving the Power Calculations Formula

This appendix relies on Wittes (2002) and McConnell and Vera-Hernández (2015). Researcher A is interested in estimating the effect of T (the treatment randomly assigned to a subset of the sample) and she has access to sample S that includes a set of m potential outcome variables $\left(y^{k}\right)_{k=1, \ldots, m}$. The researcher decides to run a series of regressions:

$$
\begin{equation*}
y^{k}=a+b_{k} T+u \tag{A.1}
\end{equation*}
$$

and carries out a series of tests: $H_{0}^{k}: b_{k}=0$. The z-statistic associated with each test is given by:

$$
\begin{equation*}
Z^{k}=\frac{\bar{Y}_{1}^{k}-\bar{Y}_{0}^{k}}{\sigma_{k} \sqrt{1 / n_{0}+1 / n_{1}}} \tag{A.2}
\end{equation*}
$$

Where $\bar{Y}_{1}^{k}\left(\bar{Y}_{0}^{k}\right)$ is the sample average of Y^{k} for observations with $T=1(T=0)$ and $n_{0}\left(n_{1}\right)$ is the number of observations with $T=1(T=0)$. Under $H_{0}^{k}, \bar{Y}_{1}^{k}=\bar{Y}_{0}^{k}$ and Z^{k} follows a normal distribution with mean zero and variance one.

The choice of α and β lead to the following set of equations:

$$
\begin{gather*}
\operatorname{Pr}\left(|z|>Z_{1-\alpha / 2} \mid H_{0}\right)<\alpha \tag{A.3}\\
\operatorname{Pr}\left(|z|>Z_{1-\alpha / 2} \mid H_{A}\right)>1-\beta \tag{A.4}
\end{gather*}
$$

Assuming that, for non-true null hypotheses, the effect is δ_{k} and that $n_{0}=n_{1}=$ $N / 2$ leads to

$$
\begin{equation*}
\operatorname{Pr}\left(\left.\frac{\sqrt{N}\left|\bar{Y}_{1}^{k}-\bar{Y}_{0}^{k}\right|}{\sigma_{k} \sqrt{4}}>Z_{1-\alpha / 2} \right\rvert\, H_{A}\right)>1-\beta \tag{A.5}
\end{equation*}
$$

Subtracting both sides by δ_{k} and dividing both sides by $\sigma_{k} \sqrt{4 / N}$ leads to

$$
\begin{equation*}
\operatorname{Pr}\left(\left.\frac{\sqrt{N}\left(\left|\bar{Y}_{1}^{k}-\bar{Y}_{0}^{k}\right|-\delta_{k}\right)}{\sigma_{k} \sqrt{4}}>Z_{1-\alpha / 2}-\frac{\sqrt{N} \delta_{k}}{\sigma_{k} \sqrt{4}} \right\rvert\, H_{A}\right)>1-\beta \tag{A.6}
\end{equation*}
$$

Given that under H_{A}, the expectation of $\left(\bar{Y}_{1}^{k}-\bar{Y}_{0}^{k}\right)$ is $\delta_{k}, \frac{\sqrt{N}\left(\left|\bar{Y}_{1}^{k}-\bar{Y}_{0}^{k}\right|-\delta_{k}\right)}{\sigma_{k} \sqrt{4}}$ is normally distributed. It follows that

$$
\begin{equation*}
Z_{1-\alpha / 2}-\frac{\sqrt{N} \delta_{k}}{\sigma_{k} \sqrt{4}}=Z_{\beta}=-Z_{1-\beta} \tag{A.7}
\end{equation*}
$$

Rearranging the equation leads to:

$$
\begin{equation*}
Z_{1-\beta}=\delta_{k} \sqrt{\frac{N}{4 \sigma_{k}^{2}}}-Z_{1-\alpha / 2} \tag{A.8}
\end{equation*}
$$

and so:

$$
\begin{equation*}
1-\beta=\Phi\left(\delta_{k} \sqrt{\frac{N}{4 \sigma_{k}^{2}}}-Z_{1-\alpha / 2}\right) \tag{A.9}
\end{equation*}
$$

If the researcher has access to m variables and plans to use Bonferroni corrections, power is:

$$
\begin{equation*}
1-\beta^{\text {Bonf }}=\Phi\left(\delta_{k} \sqrt{\frac{N}{4 \sigma_{k}^{2}}}-Z_{1-\alpha /(2 m)}\right) \tag{A.10}
\end{equation*}
$$

Appendix A.2: Additional Results

Figure A.1: Power Under the Sample Split Approach with Bonferroni Corrections: Share in the Training Sample

Figure A.2: Power Under the Sample Split Approach with Bonferroni Corrections: Decision Rule on Training Sample

Figure A.3: Comparing Power with Clustered Samples \& Bonferroni Corrections: Full Sample vs. Split Sample [Effect size = .2]

