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Abstract

We discuss a statistical procedure to carry out empirical research that combines
recent insights about pre-analysis plans and replication. Researchers send their
datasets to an independent third party who randomly generates training and test-
ing samples. Researchers perform their analysis on the training sample and are
able to incorporate feedback from both colleagues, editors and referees. Once the
paper is accepted for publication the method is applied to the testing sample and
it is those results that are published. Simulations indicate that, under empirically
relevant settings, the proposed method delivers more power than a pre-analysis
plan. The effect mostly operate through a lower likelihood that relevant hypothe-
ses are left untested. The method appears better suited for exploratory analyses
where there is significant uncertainty about the outcomes of interest. We do not
recommend using the method in situations where the treatment are very costly and
thus the available sample size is limited. An interpretation of the method is that
it allows researchers to perform direct replication of their work. We also discuss a
number of practical issues about the method’s feasibility and implementation.
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1 Introduction

The gap between statistical theory and practice makes it challenging to assess the reli-

ability of empirical findings in political science (Gerber, Green and Nickerson, 2001).1

This is due to a combination of researchers’ degree of freedom and publication bias.

As a result, the probability of Type I error in published research is believed to be larger

than the commonly accepted five percent. For example, Gerber and Malhotra (2008)

report that there is a bunching of p-values just below the 0.05 threshold in top politi-

cal science journals.2 This is consistent with researchers and editor unconsciously or

consciously selecting outcome variables, regression methods, estimation samples, and

control variables to deliver significant results.

A number of reforms of the reviewing process have been proposed to decrease the

risk that spurious findings are published and cited (Green, Humphreys and Smith,

2013; Miguel et al., 2014; Nyhan, 2015; Findley et al., forthcoming). The common ob-

jective is to encourage researchers to transparently select which statistical tests to im-

plement before accessing the data on which they will be run. A prominent example is

the introduction of pre-analysis plans (PAPs).3 Such plans are written – and possibly

shared with the research community – before any analysis is carried out. This reduces

the risk that researchers select hypotheses that can be rejected with the available data

(Humphreys, Sanchez de la Sierra and van der Windt, 2013; Olken, 2015; Monogan,

2015; Blair et al., 2016; Dunning, 2016; Lin and Green, 2016).

PAPs have two main limitations: reduced ability to learn from the data and com-

plexity. By construction, PAPs can only include hypotheses that the researcher could

think about before using the data. In situations where the prior information is limited,

it is likely that relevant hypotheses will be left out of PAPs. The pace of new discoveries

might slow down. In addition, social scientists are often interested in both the effects

of a treatment and in the mechanisms underlying it. As analyses usually proceed se-

quentially, pre-specifying all possible regressions along the "analysis tree" is likely to

be too taxing and inefficient (Olken, 2015). Some researchers argue that the profession

1It echoes earlier findings in other social science disciplines (Leamer, 1974, 1978, 1983; Lovell, 1983).
2Brodeur et al. (2016) find similar results for top economics journals.
3The Experiments in Governance and Politics network allows researchers to register both experi-

mental and observational studies (http://egap.org/content/registration). Similarly, The American Eco-
nomic Association and the Center for Open Science have recently set-up similar registries.
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should encourage replications (Coffman and Niederle, 2015; Dunning, 2016). While

filling a PAP offers protection for studies using soon-to-be collected data, it offers less

protection in the case of analysis of existing data as researchers might have analyzed

the data before writing the plan.

In this paper we discuss a related – and possibly complementary – method that

allows researchers to learn from the data before registering their analyses and thus de-

creases the likelihood that relevant hypotheses are left untested. The method seeks

to combine a key characteristic of PAPs – a commitment device – with the sequential

nature of statistical analysis in political science. The process involves sending the data

to an independent third party who randomly generates two non-overlapping subsets

of the data. Researchers only have access to one subset – called the training dataset

– while the third party keeps the second one – called the testing dataset. Researchers

are free to analyze the training dataset and can adapt ideas from seminar audiences,

editors and referees and incorporate them into the analysis. Once the paper has been

accepted for publication it is akin to a detailed pre-analysis plans that fully specifies

the regressions to be estimated on the testing sample. The analysis is implemented,

unchanged, on the testing dataset, and these results are the ones that are published.4

The method combines insights from recent papers on PAPs and replication (Coff-

man and Niederle, 2015; Olken, 2015; Dunning, 2016). The first half of the dataset is

used to prepare a manageable PAP; i.e. one that does not suffer from the complex "anal-

ysis tree" that Olken (2015) identified. Researchers are able to use a subset of the data

to make analysis decisions and can thus allocate their time more efficiently on relevant

regressions. The second half of the dataset is used to perform a full replication of the

results, as suggested by Coffman and Niederle (2015) and Dunning (2016).5 This is a

very appealing replication as the data come from the same context and were collected

using the same protocols.

Crucially, as opposed to PAPs, the method allows researchers to test hypotheses

that they did not think about before starting their analysis. Researchers can refine

their research plans based on initial findings, interactions with seminar audiences, and

4The results from the training sample should remain available to the interested (Bayesian) reader.
5Researchers have been discussing ways to promote replication across the social sciences. A number

of panels and roundtables on this topic were organized both at APSA in Philadelphia in September 2016
and at the ASSA in Chicago in January 2017.
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requests from referees and editors.6 We believe this approach better fits the way em-

pirical research is carried out in political science – particularly when drawing inference

about treatment effects. It is common for new hypotheses to arise from observing re-

alizations of the data (Laitin, 2013; Gelman, 2014). Hence it is rarely possible for re-

searchers to ex-ante list all possible tests they may want to perform. Only a subset of

hypotheses tested on the training sample - potentially those that are rejected on that

sample - are carried over to the testing sample. As we correct for multiple testing, this

compensates for the loss of power due to smaller sample sizes. In practice, we do not

recommend a purely mechanical approach with all hypotheses rejected on the train-

ing set tested on the testing set. Rather, researchers are expected to select a subset of

those hypotheses. This should be guided by theory, additional robustness tests and the

feedback from colleagues, seminar audiences, editors and referees.

Importantly, this method can be combined with a PAP as a researcher could regis-

ter in a PAP a number of hypotheses to be tested on the full sample and then carry out

more exploratory analyses with the proposed method. This is related to the various

phases of medical research that starts with very clear objectives and then follows more

exploratory work. Indeed, at first the research has two very clear objectives: to estab-

lish that the drug is safe and that it has the intended therapeutic effect. Once the drug

has been proven to work, researchers engage in more exploratory work to study both

whether the drug has other therapeutic effects, works differently on some populations

or interacts with other drugs. This often requires sequential trials and data collection.

But given the way social science data is collected, those steps can be combined.

The proposed method offers two other methodological benefits: reduced type I

errors, as in PAPs; and reduced the risk of publication bias. The main potential cost of

split samples is loss of power. First, the method reduces the risk of Type I error because

researchers fully specify the regressions they want to estimate before having access to

the dataset on which hypotheses will be tested. This reduces the risk of focusing on

specifications where a spurious null happens to be rejected. The authors are able to

credibly commit to implementing adequate p-value adjustments. Second, the method

reduces the risk of publication bias because journal editors decide whether to publish

6One could argue that additional hypotheses can be addressed in future research. But given the cost
of collecting additional data and the long publication lag, this would unnecessarily delay the availability
of evidence.
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a paper before seeing the final results.7 This last benefit could also be achieved by

PAPs if journal editors were willing to accept a paper on the basis of the quality of PAP

design alone (Findley et al., forthcoming).

To capture these features in a simple way, we imagine a situation in which the

researcher wishes to test multiple hypotheses, without strong a priori information on

which hypotheses are most relevant. In such a situation, it is common for researchers to

adjust for multiple testing. We present results from simulations quantifying the trade-

off between reduced type I error and loss of power, compared to a situation where the

researcher test hypotheses on the full sample using a PAP. In both cases we adjust for

multiple testing. We show that when the researcher most wishes to learn from the data,

the proposed split sample approach can dominate a PAP. The effect operates through a

lower likelihood that relevant hypotheses are left untested and through a reduction in

the number of tests that are implemented. Indeed, multiple comparison adjustments

can induce a large reduction in power when using the full sample. The split sample

approach allows the researcher to curtail the number of tests carried on the testing

sample, and this compensates for the loss of power due to smaller sample size. This

is because researchers decide on the few hypotheses to test based on initial work with

the data which limits the loss of power associated with multiple testing adjustments.

We also provide guidance on the optimal way of splitting the full sample into training

and testing subsamples.

Results presented in the paper indicate that in a large number of relevant empirical

settings, the proposed method delivers more power than a PAP. 8 Effect sizes of 0.2

standard deviation can be detected with power comfortably above 80 percent as soon

7Franco, Malhotra and Simonovits (2014) take advantage of an NSF-sponsored program to quantify
publication bias. They show that strong results are much more likely to be published. This effect is
partially explained by the fact that researchers do not write up null findings (Franco, Malhotra and
Simonovits, 2014), and partly by the fact that editors and referees are reluctant to publish null results.
Publication bias is particularly damaging to meta-analyses since it generates an inflation bias. Our
method offers a credible way of mitigating this bias.

8The simulations assume that experimental data are available but the approach can be applied to
observational data as well. This is important as concerns about p-hacking are more marked for observa-
tional studies than they are for experiments (Brodeur et al., 2016). Type I errors in observational studies
can arise from both sampling variation - dealt with by splitting the data - and from misspecification
of the estimating equations. Our proposed method offers more scope to reduce errors arising from the
second source than standard PAPs because it allows researchers to incorporate feedback from a broader
set of colleagues, editors, and referees. This is especially important for observational studies for which
registering an estimation strategy without adequate feedback is inherently more risky.
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as sample size is above 3,000. For a smaller effect size (e.g., 0.1 standard deviation),

a sample of 10,000 observations or more is required. Results further suggest that the

method increases the likelihood that relevant hypotheses are tested. Indeed, due to the

expected loss in power associated with multiple testing adjustments researchers often

limit the number of hypotheses included a PAP. In those situations, researchers are

unable to learn from observations made during data collection and field experimenta-

tion. For effect sizes of .3 , we show that as long as there is a small likelihood that the

relevant hypothesis isn’t included in the PAP, the split sample approach delivers more

power for sample sizes above 2,000. The method is less attractive in situations where

the viable sample size is small, e.g., in experiments with a costly treatment.

We argue that the method is especially relevant as social sciences are entering the

age of big data (Einav and Levin, 2014; Grimmer, 2015). Researchers now have access to

large datasets from both the public and private sectors and are increasingly able to run

experiments on a large number of subjects. Those datasets often contain a large num-

ber of potential outcome and control variables which creates great opportunities for

exploring previously untestable hypotheses. It appears important to develop methods

that deliver credible results (Hainmueller and Hazlett, 2013; Belloni, Chernozhukov

and Hansen, 2014; Athey and Imbens, 2015).

There are other ways by which spurious results can be published, but dealing with

them is beyond the scope of this paper. For instance, our proposed method still delivers

biased estimates if researchers use unreliable data, or faulty code and software. To

illustrate, Bell and Miller (2015) could replicate Rauchhaus (2009)’s findings in STATA

but not in R – an outcome they attribute to a problem in Stata. More perniciously, some

researchers have been caught fabricating data. In line with current practice, we argue

that the best way to deal with those issues is to ask researchers to make their code

and data publicly available after publication. This would increase the likelihood that

potential mistakes are quickly identified.

The remainder of the paper is organised as follows. In Section 2, we discuss the

statistical problem and the two procedures that we propose to solve it. Results from

simulations are discussed in Section 3. Section 4 discuss some practical considerations.

Section 5 concludes.
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2 The statistical problem

We consider the following canonical setup. Researcher A is interested in estimating

the effect of an exogenous treatment T (with T = 1 for half of the observations and

T = 0 otherwise). She has access to a sample S of size N that includes a set of m

potential outcome variables (yk)k=1,...,m. The m outcome variables can either capture

different concepts, related concepts, or different ways of measuring the same concept.

For example, the researcher may have access to individual data on voting behavior,

vote buying, political knowledge, political interest, etc. Unsure of which aspects of

voting behavior is affected by the treatment, the researcher can run regressions of the

form:

yk = a + bkT + u (1)

Some of these null hypotheses (Hk
0 : bk = 0) are true (m0), some are non-true (m �

m0).9

The researcher is interested in selecting a statistical procedure that maximises power

while avoiding Type I errors. In the remainder of this section we compare two statisti-

cal procedures that can help the researcher reach her objective. We start by assuming

that the researcher wants to reduce type I errors by controlling the Family Wise Error

Rate (FWER). We then assume that the researcher wants to control the False Discov-

ery Rate (FDR) instead. In the next Section we quantify the cost and benefits of both

methods.

The method we propose can be applied to any type of statistical test that corrects for

FWER or FDR – for example, one could incorporate equivalence tests in the analysis

(Hartman and Hidalgo, 2015). It offers no gain in power for methods that do not apply

FWER or FDR corrections, however. But such methods are ill-suited to exploratory

analysis, which is what our proposed method is designed for. To keep the exposition

as clear as possible, we focus our presention the estimation of treatment effects through

regression analysis.

9There are alternative ways of thinking about this problem. Gelman et al. (2013) and Gelman (2015),
for instance, approach the problem from a more Bayesian point of view. They assume that we live in a
world where there are very few true zeros: most null hypotheses are non-true but most effect sizes are
very small (Gelman et al., 2013; Gelman, 2015). Future research should explore how the proposed split
sample approach could be adjusted to fit this perspective.
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2.1 Controlling the Family Wise Error Rate

We now assume that the researcher is interested in maximizing power while control-

ling the Family Wise Error Rate (FWER).

Definition 1 The Family Wise Error Rate is the probability of rejecting at least one true null

hypothesis.

The most basic way of controlling the FWER is to make Bonferoni adjustments:

instead of rejecting H0 if the p-value is smaller than a, reject if it is smaller than a/m.10

The main issue is that the method is only valid if the researcher can keep track of all

tests she performed. If for example, the researcher ran m0 tests and attempt to control

the FWER as if only m tests had been carried out (with m < m0), the reported FWER

will underestimate the actual FWER. As a result, we rule out that the researcher can

implement the Bonferoni adjustments without a pre-analysis plan.

2.1.1 Procedure 1: Pre-Analysis Plan with Bonferoni corrections

Before having access to the data, the researcher can prepare and register a pre-analysis

plan (Humphreys, Sanchez de la Sierra and van der Windt, 2013; Olken, 2015; Dun-

ning, 2016). Such a plan lists the hypotheses to be tested and describes how they will

be tested, including which variables to include, how they will be included, and how

researchers intend to deal with the multiple comparison problems.

The main drawback of PAPs is that they do not allow researchers to learn from the

data, and this can slow down the pace of new discoveries. PAPs can only cover hy-

potheses that the researcher could think of before carrying out their experiment. There

often are other testable hypotheses that the researcher did not think of beforehand.

A number of social scientists have recently argued that some of their most important

findings were the direct result of time spent with the data (Laitin, 2013; Gelman, 2014).

For example, Simonsohn (cited by Laitin (2013)) argues that: "I also think of science as a

process of discovery . . . Every paper I have [written] has some really interesting robustness,

extensions, follow-ups that I would have never thought about at the beginning." Similarly,
10Importantly the Bonferoni adjustments are only valid if all null hypotheses are true (m = m0) and

all tests are independent. It is well known that this correction tends to be very conservative and can lead
to serious loss of power. Below we also discuss alternative p-values adjustments to correct for multiple
testing.
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Gelman (2014) states that "Many of my most important applied results were interactions that

my colleagues and I noticed only after spending a lot of time with our data."

To capture those constraints, we assume that the researcher picks a subset m0 of the

m variables that might be affected by the treatment. This includes m0
0 true null hy-

potheses and (m0 � m0
0) non-true null hypotheses. Those m0 variables are included the

PAP. A crucial parameter in this context is y: the likelihood that variables for which the

null hypotheses is non-true are included in the PAP. To put it differently, y captures the

degree of uncertainty surrounding the effects of T; or the degree of prior information

available.

Rejecting a given hypothesis in this set-up requires that the hypothesis is included

in the subset m0 and that it is rejected on the full sample. Let a be the significance level

used to test Hk
0 and let dk be the standardized effect size for the m � m0 non-true null

hypotheses. Under our assumptions, power is given by:

1 � b
PAP/Bon f
k = y ⇤ F(dk

r
N
4
� Z1� a

2m0
) (2)

where F is the cumulative distribution function for the standard normal distribu-

tion. More details on the calculations are provided in the technical appendix. As the

researcher implements m0 tests at level a/m0 she controls the FWER at level a.

2.1.2 Procedure 2: Sample split with Bonferoni adjustments

We now outline the main characteristics of the the split sample approach. More practi-

cal guidelines on how to implement the procedures are provided in Section 4.

• Step 1: Guided by theory and existing evidence, researcher A puts together a

sample S including a number of variables that broadly captures the general set

of hypotheses that she wants to test. The researcher also includes variables used

to test for potential heterogeneous effects. This step is likely to include extensive

data cleaning.

• Step 2: A third-party B randomly generates two non-overlapping subsets. If the

researcher is interested in studying particular subgroups the sample should be

stratified accordingly. The first sub-sample (training sample) is sent back to A. The
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third-party keeps the second one (testing sample). All relevant IDs are scrambled

during the process so that A is unable to ‘reverse engineer’ the randomization.

• Step 3: A runs regressions, presents the results at seminars and conferences, and

refines the methodology based on feedback received.

• Step 4: The paper is submitted to a journal, referees make their comments and A

amends her analysis in response, possibly several times.

The discovery process described by steps 3 and 4 identifies a final subset J of the

m outcome variables. We call this the final methodology for analysis. One option

is to select outcome variables for which we can reject the null of no effect at the

a level in the training set, conditional on a choice of estimator, control variables,

and standard error correction.

• Step 5: Once the editor is satisfied that the estimation strategy is reliable, she ac-

cepts the paper conditional on the agreed upon final methodology for analysis. A

then secures the testing sample from B and applies the agreed upon methodology

to it. The published version of the paper includes the results obtained from the

testing sample with adequate p-values adjustments to deal with multiple testing.

In essence, this final step allows researchers to perform a direct replication of their

findings. We nonetheless recommend that the results from the training sample

be made available as an appendix to the paper, e.g., for an interested (Bayesian)

reader or for possible inclusion in a meta-analysis.

Throughout we assume that the researcher starts with m possible null hypotheses.

Of these, a subset J are found to be significant at the a level in the training set and

interesting. This subset determines the list of tests estimated on the testing set. To

illustrate, let m = 20 and imagine that, in the training sample, treatment is significant

at the a = 5% level for seven of these 20 outcome variables. Then we only regress

treatment on these seven outcome variables in the testing sample.

For an hypothesis to be rejected, it is necessary that it be rejected first on the training

sample, and then again on the testing sample. We assume that researchers allocate a

share s of their data to the training sample and that they use significance level atr on

the training sample and a on the testing sample. As the training and testing samples

are independent, power becomes:
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1 � b
Split/Bon f
k = F

 
dk

r
sN
4

� Z1� atr
2

!
F

 
dk

r
(1 � s)N

4
� Z1� a

2B

!
(3)

where B is the number of tests carried out on the testing sample. B corresponds to

the number of rejections in the training sample, aggregating across both true positives

and false positives. It is the sum of two binomial-distributed random variables. The fist

has distribution B(m0, atr); the second has distribution B
✓

m � m0, F
✓

dk

q
sN
4 � Z1� atr

2

◆◆
.

Their sum is distributed according to:

B ⇠ B(m0, atr) + B

 
m � m0, F

 
dk

r
sN
4

� Z1� atr
2

!!
(4)

As above the researcher implements B tests at level a/B and so she controls the

FWER at level a.

Setting a critical value for the training sample (atr) involves trading off a larger

number of rejections on the training sample for a lower probability of rejection on the

testing sample due to multiple testing adjustment. The above formulas show that the

optimal value of (atr) is a function of the number of hypotheses, the number of true null

hypotheses, the sample size, and the distribution of effect sizes across all hypotheses.

Should a researcher be willing to assume the number of true null hypotheses and the

distribution of effect sizes across all hypotheses in their data, the formulas can be used

to numerically derive the optimal critical value for a particular sample size and number

of tested hypotheses.

2.1.3 Recap

The relative benefits of both approaches - that we will quantify in Section 3 - are a

function of two main parameters. First, if prior information about the expected effects

of treatment T is low (i.e., y is close to zero) the loss of power associated with a pre-

analysis plan is greater and the sample split method becomes more appealing. This

is because if researchers do not know which hypotheses are likely to be non-true then

the pre-analysis plan is less likely to include the relevant hypotheses. To put it differ-

ently, we expect the split sample approach to be especially useful when carrying out

exploratory work. Second, if N is large, researchers are less concerned about the loss
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of power associated with the sample split and the method becomes more appealing.

2.2 Controlling the False Discovery Rate

We now assume that researchers are interested in maximizing power while control-

ling the False Discovery Rate (FDR). The concept, introduced Benjamini and Hochberg

(1995), captures the idea that, in a number of relevant cases, it is acceptable to reject true

null hypotheses as long as such rejections constitute a small share of total rejections.

The intuition is that the decision-maker would reach the same conclusion regardless of

whether or not those true null hypotheses are rejected.

Definition 2 The False Discovery Rate is the expected proportion of errors among the rejected

hypotheses.

Benjamini and Hochberg (1995) proposed a method to control the FDR. The BH

method proceeds as follows:

1. Carry out the m tests and get the associated p-values p1, . . . , pm

2. Rank the p-values from smallest to largest p(1), . . . , p(m)

3. Get k = Max{i|p(i)  i
m q}. q is the level at which the researcher would like to

control the FDR.

4. Reject all H(i) for i  k

Benjamini and Yekutieli (2001) show that the method is conservative as it controls

the FDR at level m0
m q. The proof relies on the fact that while for true null hypotheses

the p-values are uniformly distributed over [0, 1], they tend to be bunched towards 0

for non-true null hypotheses. As a result, when observing two p-values the hypothesis

associated with the smallest one is more likely to be non-true. Simulations presented

in Benjamini and Hochberg (1995) indicate that power is significantly larger than for

methods that control the FWER. Benjamini, Krieger and Yekutieli (2006) extend the

method to a two-stage procedure where the first stage is used to get an estimate of m0.

The sharpened q-values are obtained as follows:
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1. Apply the BH procedure at level q0
= q/(1 + q). Let c be the number of hypothe-

ses rejected. If c = 0, stop; otherwise, continue to step 2.

2. Let m̂0 = M � c

3. Apply the BH procedure at level q⇤ = q0m/m̂0

In the simulations we compare a pre-analysis plan with our sample split approach

with sharpened q-values. The trade-offs are similar as before but both methods are

expected to deliver higher power than when researchers wanted to control FWER.

3 Comparing the two procedures

3.1 Main results

We illustrate the method for the canonical setup described above. We compute power

and FWER under the full sample approach with a PAP and the split sample approach.11

In both cases, we present results with Bonferroni adjustments. We show the sensitivity

of power and FWER to variation in the following parameters: prior information (y);

the sample size (N); the standardized effect size (d); the number of tested hypotheses

(m); the number of tested null hypotheses that are true (m0); and the share of the total

sample that is allocated to the training set (s).

We present results from applying the above formulas and simulation methods to

various parameter values. To capture the idea that there are many more true null hy-

potheses than false ones (Ioannidis, 2005), we organize the simulations around the

assumption that, out of 100 possible null hypotheses, only one is non-true, i.e., should

be rejected. Hence, unless stated otherwise, the results presented below are based on

m = 100 and m0 = 99.

Given these parameter values, the majority of the results found significant are spu-

rious. For instance, if a = 5%, there will on average be five false rejections and, pro-

vided that power is high enough, one true rejection in the training sample. For now

we use a 50-50 split between the training and testing samples, i.e., we set s = 0.5.

11Data and replication files for this study are archived in the Political Analysis Dataverse (Fachamps
and Labonne, 2017).
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We organize our simulations around two stylized testing scenarios: (1) testing 10

null hypotheses on the full sample with Bonferroni corrections (with y = .25, .50, .50

or 1); (2) testing all 100 null hypotheses on the training sample, and only testing (with

Bonferoni corrections) on the testing sample those null hypotheses that were significant

in the training sample. We assume that we only test 10 hypotheses on the full sample

to capture the idea the the researcher writes a pre-analysis plan.

Role of N and y. We start by investigating the effect of sample size on the power to

detect a true effect of size 0.2. In other words, we compute the likelihood of rejecting

the null hypothesis when this hypothesis is false and the true effect is 0.2. Figure 1 plots

power under the scenarios for sample sizes varying between 500 to 10,000. Power un-

der the split sample approach is well above 0.8 for the kind of sample sizes of 3,000 or

more that are commonly encountered in empirical work. Importantly, the PAP strictly

dominates the split sample approach only when the amount of prior information is

very high. In situations where y is lower, the split sample approach actually delivers

more power than a PAP. If y = .75 the split sample dominates the PAP as soon as N

is larger than 2,300. The split sample delivers more power than a PAP as soon as N is

larger than 700 (resp. 1,500) when y is equal to .25 (resp. .50).

Figures 2 and 3 plot similar results for different effect sizes of 0.1 and 0.3. Larger,

but still relatively common, sample sizes are required to have power above 0.8 with

smaller expected effect sizes (Figure 2). For example, with a small expected effect size

of 0.1, raising power above 0.8 under the split sample approach requires sample sizes

of 10,000 or more. As above, the split sample dominates a PAP for low values of y and

medium sample sizes.

Researchers’ Ability to Learn. As argued above, the split sample approach has an

important benefit: it allows the researcher to test a large number of hypotheses with

little loss in power. Using formulas for power discussed in Section 2.1, we can compute

the value y⇤ at which the two methods yield similar power. In Figure 4, we plot the

value of y⇤ for various effect sizes (.1, .2 and .3). For all values of y below the curve,

the split sample approach delivers more power. In a large number of cases, y needs to

be close to one for the full sample approach with a PAP to be superior (or equivalent)
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to the split sample approach. For example, for effect sizes of .3 as soon as sample size

is above 2,000, y needs to be one for the two approaches to yield similar results. Even

with an effect size of .1 and a sample size of 7,000, y needs to be above .6 for the full

sample approach with a PAP to dominate. This set of results thus confirms that the

split sample approach increases researchers’ ability to learn from the data.

Role of the number of variables (m). So far we have set m = 100 and m0 = 99. Next,

we simulate what happens to power when we vary the total number of hypotheses

that are being tested (m) and the number of non-true hypotheses (m0). The effect size

that we are trying to detect is 0.2, as in Figure 1. Figure 5 shows our simulation results

for scenario (2) – the split sample approach with Bonferroni correction applied to the

testing sample results. Results show that power is a decreasing function of m and m0.

This is because the Bonferroni correction becomes more stringent as m or m0 increase.

Role of the share of the total sample that is allocated to the training set (s). We also

investigate whether it is optimal to split the sample 50-50 between training and testing

sets. We continue to focus on scenario (2) – sample split with Bonferroni corrections –
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Figure 4: Value of y at which the full sample approach with a PAP and the split sample
approach yields the same power.
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and we simulate power under alternative sample splitting rules, i.e., 30/70 and 70/30.

The results, displayed in Figure A.1, indicate that, across all considered sample sizes,

a 50/50 split delivers the best power.

Role of the decision rule on the training sample. Next, we investigate whether

power in the split sample approach with Bonferroni correction depends on the thresh-

old level of significance used to select hypotheses in the training sample. So far we

have assumed that this threshold is the same in the training and testing samples, i.e.,

a = 0.05. We now compare this situation to using a threshold of 0.1 when selecting

hypotheses on the training sample. Three effect sizes are considered: 0.1, 0.2 and 0.3.

We find that, for all three effect sizes, power appears to be marginally larger with a 0.05

threshold than a 0.1 threshold (Figure A.2). This is because applying a less restrictive

threshold to the training sample increases the number of true null hypotheses that are

rejected, and thus the number of hypotheses that are tested on the testing sample. A

larger number of hypotheses means that a stronger Bonferroni correction is required

on the testing sample, and this results in a loss of power. It is important to note that

this finding is somewhat driven by our stated assumptions that m = 100 and m0 = 99.

These assumptions are intended to capture the fact that there are many more true hy-

potheses than false ones Ioannidis (2005). However, in the extreme case m = m0 = 1, a

higher threshold in the training sample will deliver higher power.

FWER. Having compared the two statistical procedures - the PAP and the split sam-

ple approach - in terms of power, we now compare in terms of their ability to minimize

the risk of false rejection. In Table 1 we compare the FWER under our two scenarios.

Recall that the FWER is the probability of rejecting at least one true null hypothesis. As

expected given that we use Bonferonni corrections, the FWER is below 5% under both

methods.

3.2 Extensions

Controlling the FDR. We now compare the two procedures if the researcher is in-

terested in controlling the FDR rather than the FWER. We run simulations computing

q-values for m = 100, m0 = 90, d = .2 and sample sizes varying from 500 to 5,000 in
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Table 1: Comparing the Family Wise Error Rate with the 2 methods

FWER for:
m m0 Full Sample Split Sample
10 9 0.044 0.018
100 90 0.044 0.016
100 99 0.048 0.048
1,000 900 0.044 0.016
1,000 990 0.048 0.041

Notes: authors’ calculations.

100 increments using the method described in Section 2.2. We assume that half of the

observations are allocated to the training set. For both the full sample and the split

sample approach we compute power as the share of the 1,000 iterations for which the

q-value is below .05. Results are available in Figure 6. As expected under both the

full sample and the split sample approaches, power is higher when using sharpened

q-values than when using Bonferroni corrections. In addition, power under the split

sample approach is now above .8 as soon as sample sizes are larger than 2,000 obser-

vations. Importantly those results assume that y=1. Given the narrow gap between

power with a PAP and power with the split sample approach, the split sample ap-

proach will dominate the PAP if y is below .5 for sample sizes of about 1,000 and if y

is below .8 for sample sizes of about 2,000.

Clustered samples. Up to now we have assumed that researchers have access to an

unclustered sample (or that inter-cluster correlation is sufficiently low to be ignored).

In a number of settings this assumption is likely to be violated and we now report

results from simulations with clustered samples. In a sample with c clusters and an

intra-cluster correlation coefficient of r power is given by:

1 � bClustered
k = F(dk

s
N

4 ⇤ (1 + (c � 1)r)
� Z1� a

2
) (5)

We can easily adjust the formula to obtain power both for the full sample approach

and the split sample approach with Bonferroni corrections. As before, we run 10,000

simulations. We compute power for sample sizes varying from 500 to 10,000 with

20 observations per clusters. We assume that r is either .05 or .1. To ensure that the
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two samples are independent we sample full clusters rather than individuals within

clusters. The sample split therefore leads to the loss of half of the clusters rather than

to the loss of half of the observations per cluster. Results are available in Figure A.3.

As expected power is lower than what it is with an unclustered sample. For example,

with r = .05 power is above .8 with the split sample approach for samples of 5,000

observations and more. If r = 1, sample sizes of about 8,000 are required for power to

be above .8.

Sub-group analysis The approach proposed here should apply equally well to sub-

group analysis - analyses of a sub-sample/subset of the target population. To see this,

one can simply think of a treatment effect regression on a sub-group as a separate

regression with its own outcome variable (i.e., the outcome in the sub-group). It is im-

mediately apparent that the smaller the sub-group is, the less informative the data will

be, and the more results can be expected to vary between training and testing sam-

ple. In other words, sub-group analysis is where power issues are most stringent, and

thus where our method can prove particularly useful – provided that the sub-group

samples do not become too small relative to the effect size of interest. The simulations

reported here can be used a guide for deciding when sub-group analysis will not be
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helped by a sample-split approach.

Correlated outcomes So far we have assumed that all outcomes are uncorrelated. In

many situations it is likely that some outcomes will be correlated, e.g., because different

outcome variables together capture a general concept or behavior. In those situations,

researchers can aggregate the outcomes into adequately defined indices (Anderson,

2008). The split sample approach outlined here can be applied to these indices as well,

although the gain in terms of power is likely to be smaller: (i) aggregating outcome

variables into indices reduces the number of tested outcomes, mechanically reducing

the loss of power due to corrections for multiple hypotheses testing corrections; and

(ii) if constructed indices are less likely to be left out of the core analysis, this raises our

parameter y, which also reduces the gain from the split sample approach.

If the researcher is unwilling to postulate the existence of relevant indices, it is pos-

sible to conduct the analysis on the training sample as outline here, but then apply

to the testing sample a multiple hypotheses adjustment that accounts for correlation

in outcome variables. The split sample approach applies to those cases as well and

delivers similar benefits. The main difference is that, when outcomes are correlated,

test results on the training sample are likely to be correlated as well, leading to groups

of outcome variables being either dropped together, or kept in the training sample to-

gether - at which point a multiple hypotheses adjustment can be applied to account for

the correlation in outcomes. For instance, Sankoh, Huque and Dubey (1997) propose

a method to control the FWER without being too conservative, while Benjamini and

Yekutieli (2001) offer a method that controls the FRD even when the tests have positive

regression dependency.

Controlling Referee Degrees of Freedom In political science, referees and editors

take a very active role in defining the paper’s methodology. They often suggest alter-

native estimation strategies, alternative outcome variables, and alternative sub-group

analyses. In particular they are often interested in seeing evidence of mechanisms (e.g.,

does the variable of interest affect a related concept?). By design, those additional anal-

yses can’t be incorporated in a PAP and so they are subject to the potential criticism of

data mining, due to what Pepinsky (2013) refers to as referee degree of freedom.

21



In the split sample approach, once researchers have been invited to revise and re-

submit a paper, they will attempt to find a variable Y that can be considered to proxy

for the related concept introduced by the referees and for which they can reject the null.

The issue is whether the additional hypothesis that the referee wants the researchers to

explore is true (in the sense that it should not be rejected). Let’s call f that likelihood

and g the likelihood that the researchers find a Y for which they can reject the null.

Under the full sample approach, the probability that an error is made is then f ⇤ g.

Under the split sample approach, the probability that an error is made is 0.05 ⇤ g. So as

long as f is larger than 0.05, the split sample approach yields fewer type I errors than

a PAP once the editorial process has been taken into account.

4 Practical considerations and additional benefits

We now discuss a number of important practical considerations to ensure that the split

sample procedure delivers credible results.

4.1 Credible implementation

To ensure maximum credibility, we argue that the third party needs to be involved

early on in the process. In particular, we recommend that a professional association -

such as APSA - sets up a website where the data collection team can upload the data

before the research team gets access to it. The researcher would then get access to

a version of the dataset without the treatment dummy for a round of data cleaning.

Once the data are cleaned, the random sample split is carried out and the research

team is able to download the training sample.

The method is most useful for situations where researchers can credibly commit

not to have seen the data before sending to a third party. This is consistent with the

challenges faced by researchers writing PAPs. We expect this to be possible in a broad

and diverse set of research areas.

First, there are cases in which researchers are involved in setting up data collection

but rely on an intermediary to collect the data. In such a situation, researchers would

ask the data collection intermediary to deposit it with the above mentioned website.
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This potentially applies to a large number of field experiments implemented in de-

veloping countries as well as to research projects involving data collected online (e.g.,

experiments carried out through MTurks).

Second, the method can also be applied by researchers using either proprietary data

or non-publicly available administrative data. The solution here is to arrange for the

owner of the data to only send a random sample of it. Researchers would only have

access to the remainder of the data in Step 5 discussed in Section 2.1.2.

Third, the method is also applicable in some situations where new survey data is

collected, e.g., data collected in relation to the Election Research Preacceptance Com-

petition that the Centre for Open Science organised with the 2016 American National

Election Studies (ANES) data.12

There nonetheless remain a number of research situations for which our method

is not, at this point, implementable in a fully credible manner. For example, the ap-

proach is not currently applicable to research using publicly available data such as

the Current Population Survey (CPS) collected by the US Census Bureau, The Demo-

graphic and Health Surveys (DHS) or data from the Living Standards Measurement

Study (LSMS) available through the World Bank. If the split sample approach were

to be become standard, however, access to new rounds of data could be organized

to facilitate split sampling, as for proprietary data. The approach is also not readily

suitable for researchers running their own lab experiments. Yet experimental labora-

tories could easily embargo the data collected in their facilities to facilitate subsequent

split sample analysis. One area in which split sample analysis is not, by construction,

applicable is the reanalysis of data that have been released after publication. Data re-

analysis, however, typically serves a objective different from split sampling, namely,

that of verifying the reliability and robustness of the published results.

4.2 Cost implications

Researchers might be concerned about the cost implications of the method. However,

as the analysis in the paper makes clear, once we take into account the risk that impor-

tant hypotheses are left untested. In a number of cases, power will actually be higher

than under a pre-analysis plan. In addition, as discussed above, the method can be
12More information is available at: http://www.erpc2016.com (visited on January 6, 2017).
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combined with a PAP. For example, if the researcher has strong prior that the treat-

ment has an effect on a subset of the variables she could submit a code to estimate

those equations on the full sample - with the appropriate p-value adjustments. If those

results are important to guide future research the team could get access to those results

when they receive the training sample.

4.3 Implications for the publication process

First, some might worry that the publication process will be bit longer as researchers

have to implement the final methodology on the testing sample once the paper has

been accepted for publication. We don’t think that those delays will be significant

however. Indeed, all the code would have been written and so running it on the testing

sample should be relatively fast. In addition, allowing referees and editors to have a

significant input in the finalization of the methodology might reduce the number of

robustness checks that are carried out as the results will be less likely to be type I

errors. This could actually speed up the publication process.

Relatedly, researchers might be worried that others will try to scoop them. As long

as the potential delays discussed above are kept in check we do not think that the

risk of scooping are greater than when researchers prepare a PAP. Indeed, results and

draft papers will be available and presented at the same time as they would be if the

researchers were to prepare a PAP.

Second, as indicated above, we expect that researchers, editors and referees will

play an active role in selecting hypotheses to test on the testing sample. Some of the

rejected hypotheses on the training sample might neither be interesting or relevant and

thus won’t be tested on the testing sample. Conversely, some important hypotheses

might fail to be rejected in the training sample but might still be tested on the testing

sample.

Third, editors should be less reluctant to accept a paper based on results from the

training set than from a PAP design. Indeed, the split sample approach provides more

information about the findings and, in the case of a RCT, about the quality of imple-

mentation. The strength of the main results and associated robustness checks on the

training sample provide some information as to whether they will hold on the testing

sample. In addition, one can make a case that, for well thought through hypotheses,
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precisely estimated zeroes should be published (as opposed to underpowered studies)

and results from the training set provide useful information on the study’s statistical

power.

Fourth, even in cases where the editor requires to see the results on the testing sam-

ple before accepting the paper, the authors can register a PAP containing all relevant

details before running the regressions on the testing sample. If the editor declines to

publish the paper after seeing the results, this would allow authors to have a record

of a pre-registered design when they submit the paper to another journal. That PAP

would likely be superior to the one that researchers would have prepared on their own.

5 Conclusion

In this paper we contribute to the nascent literature on ways to increase the likelihood

that published findings are true. We investigate the effectiveness of a method that

can be applied to both new and existing datasets. The method relies on a third-party

randomly splitting the data in two non-overlapping subsets. Researchers use the first

half to refine their research plan, present their findings during seminars and conference

and submit them to journals. Once the paper is accepted, the precise research plan is

then implemented on the second half and this is the set of results that are published.

We find that, in a large number of empirically-relevant settings, the proposed method

delivers more power than a pre-analysis plan. This is because the researchers are able

to learn from the data and thus the likelihood that relevant hypotheses are left untested

is lower than under a PAP. For this reason we encourage researchers to adopt the ap-

proach, especially for natural and quasi-experiments relying on large datasets. In the

context of controlled experiments (e.g., RCTs or lab experiments), researchers may find

it useful to combine our approach with a PAP. For hypotheses over which they have

strong priors, researchers could file a PAP. But they could still use the split sample ap-

proach to test other, more exploratory hypotheses. More generally, the split sample

approach is likely to be most useful when writing out a standard PAP is costly, either

because the sequence of analysis is difficult to describe beforehand, or because of ex

ante uncertainty about potential outcome variables.13

13These conditions are not dissimilar from those in which an incomplete contract is optimal – a finding
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We believe that a professional association or journal may find it useful to set up

and maintain an online platform where researchers can upload their dataset and have

someone carry out sample splitting. The method can, in some cases, also be imple-

mented by researchers working with proprietary data, e.g., researchers can send their

anonymized dataset with garbled variable names to the third party.

While the paper outlines an important avenue through which more credible em-

pirical results that can be implemented, it leaves open some questions and points to

avenues for further research. Many of these questions are directly related to the proce-

dure and were raised in the body of the paper: How should an optimal critical value on

the training sample be selected? What kind of multiple testing correction should be im-

plemented on the testing sample? How can data collection methods be made credibly

amenable to split sampling? Other questions relate to the implemention of the method

in a Bayesian framework. More broadly, research is needed to derive “optimal” con-

tracts between researchers, editors and referees that can credibly minimize pre-testing

and publication bias in the presence of imperfect information and commitment.

The simulations presented in the paper indicate that our method dominates a PAP

with FWER corrections. But we have not established that no alternative method ex-

ists that dominates both approaches. It may be possible to come up with a decision-

theoretic model tailored to the inference issues discussed here, for instance using a

Bayesian approach with pre-commitment. While such approach could yield some

gains in terms of efficiency and power, at this point it is unclear how it could be im-

plemented at a reasonable cost in terms of analytical derivation, coding, and computer

time. Until such method is made available, our approach offers the advantage of being

easy to understand and simple to implement

that is not incongruous since, ultimately, a PAP is a form of contract between the researcher and the
reader.
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