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Abstract

We study how knowledge about the social network of an individual re-

searcher – as embodied in his coauthor relations – helps us in developing a

more accurate prediction of his future productivity. We find that incorpo-

rating information about coauthor networks leads to a modest improvement

in the accuracy of forecasts on individual output, over and above what we

can predict based on the knowledge of past individual output. Our second

finding is that the signalling content of the network is quantitatively more

important than the flow of ideas.
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1 Introduction

Good recruitment requires an accurate prediction of a candidate’s potential future

performance. Sports clubs, academic departments, and business firms routinely

use past performance as a guide to predict the potential of applicants and to

forecast their future performance. In this paper the focus is on researchers.

Social interaction is an important aspect of research activity: researchers dis-

cuss and comment on each other’s work, they assess the work of others for pub-

lication and for prizes, and they join forces to coauthor publications. Scientific

collaboration involves the exchange of opinions and ideas and facilitates the gener-

ation of new ideas. Access to new and original ideas may in turn help researchers

be more productive. It follows that, other things being equal, individuals who are

better connected and more ‘central’ in their professional network may be more

productive in the future.

Network connectedness and centrality arise out of links created by individuals

and so they reflect their individual characteristics – e.g., ability, sociability, and

ambition. For instance, a collaboration with highly productive coauthors often

reveal that these coauthors find such collaboration worthwhile. Since the ability

of a researcher is imperfectly known, the existence of such ties may be informative.

The above considerations suggest that somenone’s collaboration network is

related to their research output in two ways: one, the network serves as a conduit

of ideas and, two, the network signals their individual quality. The first channel

suggests a causal relationship from network to research output, whereas the second

does not. Determining causality would clarify the importance of the two channels.

Unfortunately, as is known in the literature on social interactions (Manski, 1993;

Moffit, 2001), identifying network effects in a causal sense is difficult in the absence

of randomized experiments.

In this paper we take an alternative route: we focus on the predictive power
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of social networks in terms of future research output. That is, we investigate

how much current and past information on collaboration networks contribute to

forecasting future research output. “Causality” in the sense of prediction informa-

tiveness is known as Granger causality and is commonly analyzed in the macroe-

conometrics literature – see for example, Stock and Watson (1999) who investigate

the predictive power of unemployment rate and other macroeconomics variables

on forecasting inflation.1 Finding that network variables Granger-cause future

output does not constitute conclusive evidence of causal network effects in the tra-

ditional sense. Nonetheless, it implies that knowledge of a researcher’s network can

potentially be used by an academic department in making recruitment decisions.

We apply this methodology to evaluate the predictive power of collaboration

networks on future research output, measured in terms of future economics publi-

cations. We first ask whether social network measures help predict future research

output beyond the information contained in individual past performance. We

then investigate which specific network variables are informative and how their

informativeness varies over a researcher’s career.

Our first set of findings are about the information value of networks. We find

that including information about coauthor networks leads to an improvement in

the accuracy of forecasts about individual output over and above what we can

predict based on past individual output. The effect is significant but modest, e.g.,

the root mean squared error in predicting future productivity falls from 0.773 to

0.758 and the R2 increases from 0.395 to 0.416. We also observe that several

network variables – such as productivity of coauthors, closeness centrality, and

the number of coauthors – have predictive power. Of those, the productivity of

1A few examples of applications that have determined the appropriateness of a model based on

its ability to predict are Swanson and White (1997), Sullivan et al. (1999), Lettau and Ludvigson

(2001), Rapach and Wohar (2002) and Hong and Lee (2003).
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coauthors is the most informative network statistic among those we examine.

Secondly, the predictive power of network information varies over a researcher’s

career: it is more powerful for young researchers but declines systematically with

career time. By contrast, information on recent past output remains a strong

predictor of future output over an author’s entire career. As a result, fourteen

years after the onset of a researcher’s publishing career, networks do not have any

predictive value on future research output over and above what can be predicted

using recent and past output alone.

Our third set of findings is about the relation between author ability and the

predictive value of networks. We partition individual authors in terms of past

productivity and examine the extent to which network variables predict their

future productivity. We find that the predictive value of network variables is

non-monotonic with respect to past productivity. Network variables do not pre-

dict the future productivity of individuals with below average initial productivity.

They are somewhat informative for individuals in the highest past productivity

tier group. But they are most informative about individuals in between. In fact,

for these individuals, networks contain more information about their future pro-

ductivity than recent research output. Taken together, these results predict that

academics recruiters would benefit from gathering and analyzing information about

the coauthor network of young researchers, especially for those who are relatively

productive.

This paper is a contribution to the empirical study of social interactions. Tra-

ditionally, economists have studied the question of how social interactions affect

behavior across well defined groups, paying special attention to the difficulty of

empirically identifying social interaction effects. For an overview of this work, see

for instance Moffitt (2001) and Glaeser and Scheinkman (2002). In recent years,

interest has shifted to the ways by which the architecture of social networks influ-
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ences behavior and outcomes.2 Recent empirical papers on network effects include

Bramoullé, Djebbari and Fortin (2009), Calvó-Armengol, Patacchini and Zenou

(2008), Conley and Udry (2010), and Fafchamps, Goyal and van der Leij (2010).

This paper is also related to a more specialized literature on research produc-

tivity. Two recent papers, Azoulay et al. (2010) and Waldinger (2010), both use

the ‘unanticipated’ removal of individuals as a natural experiment to measure net-

work effects on researchers’ productivity. Azoulay et al. (2010) study the effects of

the unexpected death of ‘superstar’ life scientists. Their main finding is that coau-

thors of these superstars experience a 5% to 8% decline in their publication rate.

Waldinger (2010) studies the dismissal of Jewish professors from Nazi Germany in

1933/34. His main finding is that a fall in the quality of a faculty has significant

and long lasting effects on the outcomes of research students. Our paper quanti-

fies the predictive power of network information over and above the information

contained in past output.

The rest of the paper is organized as follows. Section 2 lays out the empiri-

cal framework. Section 3 describes the data and define the variables. Section 4

presents our findings. Section 5 checks the robustness of our main findings. Sec-

tion 6 concludes.

2 Empirical framework

It is standard practice in most organizations to look at the past performance of

job candidates as a guide to their future output. This is certainly true for the

recruitment and promotion of researchers, possibly because research output – i.e.,

journal articles and books – is publicly observable.

2For a survey of the theoretical work on social networks see Goyal (2007), Jackson (2009) and

Vega-Redondo (2007).
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The practice of looking at past performance appears to rest on two ideas. The

first is that a researcher’s output largely depends on ability and effort. The second

is that individuals are aware of the relationship between performance and reward

and consequently exert effort consistent with their career goals and ambition. This

potentially creates a stable relationship between ability and ambition on the one

hand, and individual performance on the other hand. Given this relationship, it

is possible to (imperfectly) predict future output on the basis of past output. In

this paper we start by asking how well past performance predicts future output.

We then ask if future output can be better predicted if we include information

about an individual’s research network. Social interaction among researchers takes

a variety of forms, some of which are more tangible than others. Our focus is on

social interaction reflected in the coauthorship of a published paper. This is a

concrete and quantifiable form of interaction. Coauthorship of academic articles

in economics rarely involves more than 4 authors. So, it is likely that coauthorship

entails personal interaction. Moreover, given the length of papers and the duration

of the review process in economics, it is reasonable to suppose that collaboration

entails communication over an extended period of time. These considerations –

personal interaction and sustained communication – in turn suggest several ways

by which someone’s coauthorship network can reveal valuable information on their

future productivity. We focus on two: research networks as a conduit of ideas; and

coauthorship as a signal about unobserved ability and career objectives.

Consider first the role of research networks as a conduit for ideas. Communica-

tion in the course of research collaboration involves the exchange of ideas. So we

expect that a researcher who is collaborating with highly creative and productive

people has access to more new ideas. This, in turn, suggests that a researcher who

is close to more productive researchers may have early access to new ideas. As

early publication is a key element in the research process, early access to new ideas

6



can lead to greater productivity. These considerations lead us to expect that, other

things being equal, an individual who is in close proximity to highly productive

authors will on average have greater future productivity.

Proximity need not be immediate, however: if A coauthors with B and B coau-

thors with C, then ideas may flow from A to C through their common collaborator

B. The same argument can be extended to larger network neighborhoods. It fol-

lows that authors who are more central in the research network are expected to

have earlier and better access to new research ideas.

As a first step we look at how the productivity of an individual, say i, varies

with the productivity of his or her coauthors. We then examine whether i’s fu-

ture productivity depends on the past productivity of the coauthors of his or her

coauthors. Finally we generalize this idea to i’s centrality in the network – in

terms of how close a researcher is to all other researchers (closeness) or how criti-

cal a researcher is to connections among other researchers (betweenness) – the idea

being that centrality gives privileged access to ideas that can help a researcher’s

productivity.

Access to new ideas may open valuable opportunities but it takes ability and

effort to turn a valuable idea into a publication in an academic journals. It is

reasonable to suppose that the usefulness of new ideas varies with ability and

effort. In particular, a more able researcher is probably better able to turn the ideas

accessed through the network into publications than a less able researcher. Since

ability and industriousness are reflected in past performance, we expect the value

of a social network to vary with past performance. To investigate this possibility,

we partition researchers into different tier groups based on their past performance

and examine whether the predictive power of having productive coauthors and

other related network variables varies systematically across tier groups.

The second way by which network information may help predict future output
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is because the quantity and quality of one’s coauthors is correlated with – and thus

can serve as a signal for – an individual’s hidden ability and ambition. Given the

commitment of time and effort involved in a research collaboration, it is reason-

able to assume that researchers do not casually engage in a collaborative research

venture. Hence when a highly productive researcher forms and maintains a collab-

oration with another – possibly more junior – researcher i, this link reveals positive

attributes of i that could not be inferred from other observable data. Over time,

however, evidence on i’s performance accumulates, and residual uncertainty about

i’s ability and industriousness decreases. We therefore expect the signal value of

network characteristics to be higher at the beginning of a researcher’s career and

to fall afterwards.

Our empirical strategy is based on the above ideas. Since our focus is on

predictive power, we worry that overfitting may bias inference. To avoid this,

we divide the sample into two halves, one of which is used to obtain parameter

estimates, and the other to assess the out-of-sample predictive power of these

estimates. We thus begin by randomly dividing the authors into two equal size

groups. The first halve of the authors is used to estimate a regression model of

researcher output. We then use the estimated coefficients obtained from the model

fitted on the first halve of the authors to predict researcher output for the authors

in the second halve of the data. We then compare these predictions with actual

output.

The purpose of this procedure is to assess the out-of-sample prediction per-

formance of the model. The reason for using out-of sample predictions is that

in-sample errors are likely to understate forecasting errors. As stated by Fildes

and Makridakis (1995) “the performance of a model on data outside that used in

its construction remains the touchstone for its utility in all applications” regarding

predictions. Other drawback of in-sample tests is that they tend to reject the null
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hypothesis of predictability. In other words, in-sample tests of predictability may

spuriously indicate predictability when there is none.3

The rest of this section develops some terminology and presents the regressions

more formally. We begin by describing the first step of our procedure and then we

explain how we assess prediction performance. The dependent variable of interest

is a measure yit of the future output of author i, defined more in detail in the

data section. This measure takes into account the number of articles published,

the length of each of the articles, and the ranking of the journal where the article

appears.

We first study predictions of yit based on past output and a set of controls

xit. Control variables include: cumulative output since the start ti0 of i’s career

until t − 5; career time dummies; year dummies; and the number of years since

i’s last publication. Career time dummies are included to capture career cycle

effects, i.e., that researchers publish less as they approach retirement. We then

examine by how much recent research output and network characteristics improve

the prediction. We also compare the accuracy of the prediction when we use only

past output and when we combine it with recent network characteristics.

The order of the regression models we estimate is as follows. We start with

benchmark model 0 which examines the predictive power of the control variables

xit:

Model 0 yi,t+1 = xitβ + εit

We then include past output yi,t as additional regressor. This yields Model 1:

3Arguments in favour of using out-of sample predictions can be found in Ashley et al. (1980)

who state that “a sound and natural approach” to testing predictability “must rely primarily on

the out-of-sample forecasting performance of models relating the original series of interest” (page

1149). Along with Fair and Shiller (1990), they also conjecture that out-of-sample inference is

more robust to model selection biases and to overfitting or data mining.
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Model 1 yi,t+1 = xitβ + yitγ1 + εit

In Model 2 we investigate the predictive power of network variables zi,t:

Model 2 yi,t+1 = xitβ + zitγ2 + εit

Network variables include the number of i’s coauthors up to time t, the produc-

tivity of these coauthors, and different network centrality measures detailed in the

empirical section. We estimate Model 2 first with one network variable at a time,

then including network variables simultaneously.

Finally, in Model 3 we ask if network variables zit improve the prediction of

future output over and above the prediction obtained from Model 1, that is, from

past productivity:

Model 3 yi,t+1 = xitβ + yitγ1 + zitγ2 + εit

Here too we first consider one network variable at a time to ascertain which network

characteristic have more predictive power. We also estimate Model 3 with several

networks variables together to evaluate the overall information contained in the

network.

Models 0, 1 and 2 are nested in Model 3. A comparison of models 1 and 2

allows us to investigate the relative information content of recent individual output

and recent social network. A comparison of models 2 and 3 examines whether

social network variables have explanatory power over and above the information

contained in recent individual output.

For Models 2 and 3 we consider both regressions with a single network variable,

and regressions with multiple network variables. In the latter case, since our

ultimate purpose is to predict research output, we need a criterion to select a

parsimonious set of regressors so as to avoid overfitting. To select among social
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network regressors we use the Bayesian Information Criterion (BIC). We find that,

in our case, the lowest values of the BIC criteria are obtained when all the network

variables are included, which is why our final specification of the “multivariate”

model includes them all.

The previous models are called restricted models because we are imposing the

constraint that the lagged productivity variables from ti0 of i’s career until t − 5

have the same effect on future productivity. Moreover, in these models we only

consider 5-year network variables, i.e. each network variable is computed assuming

that a link between author i and her co-author has a predictive effect that lasts for

five years. These restricted models are simple to estimate and allow us to compare

the predictive power of network variables and recent output. But we may be able

to improve the predictions of the restricted models by relaxing the constraint that

productivity lags have the same coefficient. Similarly, the predictive power of the

network variables might increase if we include several lags of the network variables.

To see whether this is the case, we also estimates versions of Models 1, 2

and 3 that include several lags of the productivity and network variables. The

number of lags of the productivity and network variables are selected using the

BIC criteria. We call these the unrestricted models. The benchmark unrestricted

model 1, Model 1’, contains thirteen lags of the productivity variable and a new

set of control variables xit: career dummies, time dummies and years since the last

publication. This model examines the predictive power of past output:

Model 1’ yi,t+1 = xitβ +
12∑
s=0

yit−sγs + εit

We also consider a model with only network information, Model 2’:

Model 2’ yi,t+1 = xitβ +
T∑

s=1

zit−sθs + εit

where T is the maximum lag length of the network variable selected using the BIC

11



criteria. For example, if T = 15 we include lags from zit−1 to zit−15 – zit−1 is the

network variable computed using the joint publications at period t and zit−15 is

the network variable obtained combining all joint publications from t − 14 to t.

A comparison of Model 1’ and 2’ provides insights about the importance of past

networks relative to past output.

The unrestricted Model 3, Model 3’, combines all past output and past network

information:

Model 3’ yi,t+1 = xitβ +
12∑
s=0

yit−sγs +
T∑

s=0

zit−sθs + εit

We also estimate models 2’ and models 3’ with multiple network variables. A

comparison of Model 1’ and Model 3’ allow us to examine the explanatory power

of network variables over and above knowledge of past output.

This describes the first step of our analysis. In the second step we evaluate

the predictive accuracy of the different models. To this effect we compare, in the

second halve of the data, the actual research output yi,t+1 to the predictions ŷi,t+1

obtained by applying to authors in the second halve of the data the regression

coefficients of restricted models 0 to 3 and unrestricted models 1’ to 3’ obtained

from the first halve of the data. To evaluate the prediction accuracy of ŷi,t+1 we

report the root mean squared errors (RMSE) defined as:

RMSE =

√
1

n

∑
i,t

(yi,t+1 − ŷi,t+1)2.

If the introduction of an explanatory variable in ŷi,t+1 decreases the out-of-sample

RMSE, this variable contains useful information that helps predict researchers

future productivity.

In order to assess whether forecasts from two models are significantly different

we use a test described by Diebold and Mariano (1995). This test is based on

the loss differential of forecasting the future output of an individual i, di,t. As we
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measure the accuracy of each forecast by a squared error loss function (RMSE),

we apply the Diebold-Mariano test to a squared loss differential, that is,

di,t = ε2Ai,t − ε2Bi,t.

where A is a competing model and B is the benchmark model.

To determine if one model predicts better we test the null hypothesis, H0 :

E[di,t] = 0, against the alternative, H1 : E[di,t] 6= 0. Under the null hypothesis,

the Diebold-Mariano test is

d√
V̂ (d)/n

v N(0, 1)

where d = n−1
∑
i,t

di,t, is the average loss differential, and V̂ (d) is a consistent

estimate of the asymptotic (long-rung) variance of
√
nd. We adjust for serial

correlation by using a Newey-West type estimator of V̂ (d̄).4

3 Data

The data used for this paper are drawn from the EconLit database, a bibliography

of journals in economics compiled by the editors of the Journal of Economic Lit-

erature. From this database we use information on all articles published between

1970 and 1999. These data are the same as those analyzed by Goyal, van der Leij,

4Formally, V̂ (d̄) =
∑
i(γ̂0 + 2

T−t∑
τ=1

wm(T )γ̂τ ), and γ̂τ = ˆCov(di,t, di,t−τ ), where wm(T ) is the

Bartlett Kernel function:

wm(T ) =


(

1− τ
m(T )

)
if 0 ≤ τ

m(T ) ≤ 1,

0, otherwise,

and m(T ) also known as the ”truncation” lag is a number growing with T , the number of periods

in the panel. The truncation lag has been chosen by the BIC.
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and Moraga-González (2006), Fafchamps, Goyal and van der Leij (2010), van der

Leij and Goyal (2011) and Ductor (2012).

3.1 Definition of variables

The output qit of author i in year t is defined as:

qit =
∑
j∈Sit

journal qualityj (1)

where Sit is the set of articles j of individual i published in year t. When available,

the Journal quality variable is taken from the work of Kodrzycki and Yu (2006) –

hereafter KY.5 Unfortunately, KY do not include in their analysis all the journals

in the EconLit database. To avoid losing information and minimize measurement

error in research output, we construct a prediction of the KY quality index of

journals not included in their list.6 The actual KY journal quality index is used

whenever available.

We are interested in predicting future output. In economics, the annual number

of papers per author is small and affected by erratic publication lags. We there-

fore need a reasonable time window over which to aggregate output. The results

presented here are based on a three year window, but our findings are insensitive

5We do not consider citations because they are often materialize long after a paper has been

published. This means that authors at the beginning of their career often have a small citation

record and hence, for them at least, citations have little predictive power.
6To do this, we regress the KY index on commonly available information of each journal listed

in EconLit, such as the number of published articles per year, the impact factor, the immedi-

acy index, the Tinbergen Institute Index, an economics dummy, interaction terms between the

economics dummy and the impact factor, and various citation measures. Estimated coefficients

from this regression are then used to obtain a predicted KY journal quality index for journals not

in their list. Since most of the journals that KY omitted are not highly ranked, their predicted

quality index is quite small.

14



to the use of alternative window length, e.g., five years. Our dependent variable

of interest is thus the output of author i in years t+ 1, t+ 2, t+ 3:

qfit = qi,t+1 + qi,t+2 + qi,t+3 (2)

Unsurprisingly qfi has a long upper tail. To avoid our results from being entirely

driven by a handful of highly productive individuals, we log the dependent variable

as follows:7

yi,t+1 = ln
(

1 + qfit

)
The analysis presented in the rest of the paper uses yi,t+1 as dependent variable.

We expect recent productivity to better predict output over the next three

years than ancient output. To capture this idea, we divide past output into two

parts in the restricted models: cumulative output until period t−5, which captures

i’s historical production and is used as control variable; and output from t−4 until

t, which represents i’s recent productivity and is expected to be a strong predictor

of future output. We define recent output qrit from t to t− 4 as:

qrit = qit + qi,t−1 + qi,t−2 + qi,t−3 + qi,t−4

Control variables in the restricted model xit include cumulative output qcit from

the start ti0 of i’s career until t− 5:

qcit = qi,ti0 + ....qi,t−6 + qi,t−5

where ti0 is the year in which individual i obtained his or her first publication. We

use ln(1+ qci,t) and ln(1+ qri,t) as regressors, since the distribution of both variables

7We have considered other functional forms such as y15,y50 ,y75, log of log, Poisson, Non-

negative Binomial, Zero inflated Non-Negative Binomial and Tobit. In terms of out-of-sample

RMSE, the specification that provides the best forecast is ln(x+ 1), which is the one we report

here. See the online appendix for more details.
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presents fat tails. We also include the number of years rit with no published article

since i’s last article was published:

rit =

 0 if qit > 0

ri,t−1 + 1 otherwise.
and

ri,ti0 = 0

Variable rit is used as proxy for leave or retirement from academics: the longer

someone has not published, the more likely he or she has retired or left research.

Other controls include career time dummies cit, and year dummies t. To summa-

rize, xit = {qcit, rit, cit, t}.

In the unrestricted models 1’ and 3’, we relax the constraint imposed in qrit and

qcit. In these models, we consider thirteen lags of the productivity variable, where

lags are obtained as:

yi,t−s = ln (1 + qi,t−s + qi,t−s−1 + qi,t−s−2) ∀s = 0, ..., 12.

Control variables in the unrestricted models are the same as in the restricted

models but excluding past output.

Next we turn to the network variables. Given that we wish to investigate

whether network characteristics have predictive power over and above that of re-

cent productivity, network variables must be constructed in such a way that they

do not contain information outside the time window of qrit. We therefore define the

5-year co-authorship network Gt,5 at time t over the same time window as qrit for

the restricted models, that is, using all joint publications from year t− 4 to t. At

time t, two authors i and j are said have a link gij,t in Gt,5 if they have published

in an EconLit journal in years t− 4 to t. Otherwise gij,t = 0.

For the unrestricted models 2’ and 3’ we introduce different co-authorship net-

works, Gt,s, where s determines the number of years that a link between author i
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and her co-author j lasts. For example, in the network Gt,10, we assume that the

effects from a collaboration last during 10 years, from t− 9 to t.

The set of network statistics that we construct from Gt,s is motivated by the

theoretical discussion of Section 2. Some of the network statistics we include in

our analysis are, on a priori grounds, more correlated with access to new scientific

ideas; others are included because they are thought to have a high signalling

potential. Measures of network topology such as centrality and degree reflect

network proximity and thus belong primarily to the first category while. Other

measures, such as the productivity of coauthors, are likely to have greater signalling

potential.

Based on these observations, the list of network variables that we use in the

analysis is as follows. We say that there is a path between i and j in Gt,s if gij,t = 1

at some period from t − s to t or there exists a set of distinct nodes j1, . . . , jm,

such that gij1,t = gj1j2,t = . . . = gjmj,t = 1. The length of such a path is m + 1.

The distance d(i, j;Gt,s) is the length of the shortest path between i and j in Gt,s.

We use the following standard definitions:

• (First order) degree is the number of coauthors that i has in period t− s to

t, n1i,t = |Ni(Gt,s)|, where Ni(Gt,s) = {j : gij,t = 1}.

• Second order degree is the number of nodes at distance 2 from i in period

t− s to t, n2i,t = |N2
i (Gt,s)|, where N2

i (Gt,s) = {k : d(i, k;Gt,s) = 2}.

• Giant component : The giant component in Gt,s is the largest subset of nodes

such that there exist a path between each pair of nodes in the giant com-

ponent, and no path to a node outside. We create a dummy variable which

takes value 1 if an author belongs to the giant component and 0 otherwise.

Within the giant component we consider the following two global proximity
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measures.8

• Closeness centrality Cc
i,t is the inverse of the average distance of a node to

other nodes within the giant component and is defined as:

Cc
i,t =

nt − 1∑
j 6=i

d(i, j;Gt,s)

where nt is the size of the giant component in year t in the co-authorship

network Gt,s. Because Cc
i,t has fat tails, we use ln(1 + Cc

i,t) as regressor

instead.

• Betweenness centrality Cb
i,t is the frequency of shortest paths passing through

node i and is calculated as:

Cb
i,t =

∑
j 6=k:j,k 6=i

τ ij,k(Gt,s)

τj,k(Gt,s)

where τ ij,k(Gt) is the number of shortest paths between j and k in Gt,s that

pass through node i, and τj,k(Gt,s) is the total number of shortest paths

between j and k inGt,s. In the regression analysis, we similarly use ln(1+Cb
i,t)

as regressor.

Next, we define regressors that capture the productivity of coauthors and that

of coauthors of coauthors. We apply the ln(x+ 1) transformation to them as well.

• Productivity of coauthors : is defined as the output of coauthors’ of author i

from t− s to t

q1it =
∑

j∈Ni(Gt,s)

qrjt

where qrjt is the output of j from period t− s to period t (excluding papers

that are coauthored with i).

8For a careful discussion on the interpretation of centrality measures, see Wasserman and

Faust (1994).
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• Productivity of coauthors of coauthors : the output of coauthor of coauthors’

of author i from t− s to t,

q2it =
∑

k∈N2
i (Gt,s)

qrkt

where qrkt is the output of k from t− s to t excluding papers that are coau-

thored with the neighbors of i, Ni(Gt,s).

We also include a dummy variable that takes value 1 for author i if one of i’s

coauthors in Gt,s has an output qrjt in the top 1% of the distribution of qrit.

In the restricted models, only five-year network variables are included. In

contrast, in the unrestricted models the number of network periods is selected

according to the BIC criteria.

3.2 Descriptive statistics

Table 1 provides summary statistics of the variables included in the analysis. Col-

umn 1 provides the mean value of each variable. Column 2 shows the standard

deviation and column 3 provides correlations between the different variables and

future productivity.

For the restricted model, we excluded observations relative to authors in the

earliest stage of their career, i.e., for which cit < 6. The reason is that these

authors have not yet established a publication record and network so that there is

little information on which to form predictions of future output. This assumption

is relaxed in the unrestricted models, where we consider the full sample, 1,335,428

observations, after replacing the missing lagged productivity and network variables

by zeros. The rationale for doing so is that authors who have just started their

career have no past output and co-authorship, hence the value of their lagged

productivity and network variables are truly zero.
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We draw attention to some distinctive features of the data. First, we observe

that the variance in future output qfit is large, with a standard deviation 2.41

times larger than the mean. There is a high positive correlation of 0.69 between

recent output qrjt and future output qfit. Figure 1 shows a scatter plot and a linear

regression line with confidence interval between qfit and qrjt for 1000 random selected

observations. This visually confirms that, as anticipated, recent past output has a

strong predictive power on future output.

Second, we observe a high correlation between qfit and several 5-year network

variables such as coauthors’ output q1it, author degree, and closeness and between-

ness centrality. The network variable most highly correlated with future produc-

tivity is q1it, the productivity of i’s coauthors with a correlation coefficient of 0.58.

Other network variables such as degree, closeness, and betweenness centrality are

also highly correlated with future output qfit. Figure 2 shows the relationship

between some 5-year network variables and future output.

4 Empirical findings

We have seen that there is a reasonably strong correlation between future output

and recent past output, but also between future output and the characteristics

of i’s recent coauthorship network. We now turn to a multivariate analysis and

estimate the different models outlined in Section 2. We start by presenting the

results on the predictive power of network information. This leads to a closer

examination of the role of signalling and flow of ideas in networks. We then

examine the relation between the productivity of an individual author and the

predictive power of network variables.
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4.1 Predicting future output

Table 2 presents the prediction results for Model 0, the baseline model with controls

xit = {qcit, rit, cit, t}, Model 1, that includes recent output qrit, and Model 2 that

includes a network variable, one per regression. Column 1 presents the R2 of the

regression on the in-sample data for each model. Column 2 shows the out-of-

sample RMSE for each model. Column 3 compares the RMSE of Model 1/Model

2 with the benchmark model, Model 0. Column 4 shows the coefficient of each

regressor.

Recent output qrjt explains slightly less than half of the variation in future

output qfit. Half of the variation in qfit – around 51% of the total variation – remains

unexplained after we take qrit into account. The question is: can we improve upon

this using network variables?

We begin by examining the predictive power of the different network variables

when one network variable is added to controls xit. This is achieved by comparing

the results from the Model 2 regressions with Model 0. Results, presented in

Table 2, show that coauthor productivity q1it, closeness centrality Cc
i,t, and the

productivity q2it of coauthors of coauthors – are statistically significant and help

predict future output. However, the predictive power is much less than recent

output, for example, coauthors’ productivity reduces the RMSE by 9.38% whereas

recent output reduces the RMSE by 15.72%.

We then combine recent output qrit and network variables in Model 3. Results

presented in Table 3 show that the same network variables remain significant once

we include qrit as regressor. Being significant does not imply that network variables

are very informative, however. For this we have to examine the improvement in

prediction that they represent. We compare Multivariate Model 3, that is, with

multiple network variables in the regression, to Model 1. Table 4 shows that

the R2 of Model 3 is greater than the R2 obtained under Model 1. This means
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that network information taken in combination with recent output yields a more

accurate prediction than a prediction based on past output alone. The gain in

explanatory power is small, however: the R2 rises from 0.49 in Model 1 to 0.51 in

Model 3. In line with this, the RMSE declines from 0.67 down to 0.65 when we

incorporate network information. This small difference is statistically significant,

as shown by the Diebold-Mariano test.

Table 5 presents the prediction results for the benchmark unrestricted Model

1’ and Model 2’. Model 1’ contains thirteen lags of the productivity variable and

the same control variables as in the restricted models except past output. Model

2’ includes the control variables without past output and several lags of a network

variable. Column 1 presents the lag length of each variable, the rest of Columns

are analogous to Table 2. The predictions obtained from the unrestricted models

are consistent with their restricted versions. The network variable with the highest

predictive power is coauthors’ productivity with a RMSE 7.76% greater than the

past output model, Model 1’. As shown in table 7, the predictive power of network

over and above information of past output is slightly higher when we consider the

unrestricted version, that is, when we include several lags of the network variables.

In the restricted multivariate models, the RMSE is reduced by 1.65% when we add

network variables to past and recent output, while in the unrestricted version, the

reduction is around 1.94%.

From this we conclude that network variables contain predictive information

over and above what can be predicted on the basis of past output, but this infor-

mation gain is modest.

4.2 Networks and career cycle

Next we estimate the predictive power of network variables for different career

time cit. The RMSE of restricted Models 0, 1 and Multivariate Models 2 and 3
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(that is, with multiple network variables included in the regression) as well as the

RMSE of unrestricted models 1’ and Multivariate Models 2’ and 3’ are plotted

in Figure 3 and Figure 3, respectively. Career age cit is on the horizontal axis

while RMSE is measured on the vertical axis. Unsurprisingly, the Figures shows

that the predictive accuracy of all the models improves – reflected in the decline

in RMSE – with career time. This is primarily because the control variables xit

– particularly cumulative output qcit – reveal more information about individual

ability and preferences over time.

To examine whether the relative predictive gain of network variables varies with

career time, we report in Figure 4 and Figure 6 the difference in RMSE between

Multivariate Models 2 and 3 versus Model 1 and the difference in RMSE between

their unrestricted versions, respectively. We note a marked decline in the difference

between Models 1’ and 3’ over the course of a researcher’s career. After time t =

14, the prediction accuracy of models with or without network variables becomes

virtually indistinguishable. The Diebold-Mariano test shows that the differences

between Multivariate Model 3’ and Model 1’ are not statistically significant from

t = 14 to t = 20. In the restricted models, Figure 4, the decline in the predictive

power of network variables is not observed till t = 15. This indicates that, for

senior researchers, network variables contains little information over and above

the information contained in past and recent output.

What does this pattern in the data suggest about the relative importance of the

two potential ways in which networks may matter: flow of ideas and signalling?

As time passes, the publication record of a researcher builds up. Since ability,

research ambition, and other personality traits are relatively stable over time, this

accumulating evidence ought to provide a more accurate estimate of the ‘type’ of

the person. Hence it should become easier to judge his or her ability and research

ambition on the basis of the publication record alone. Based on this, we would

23



expect that the signalling value of networks decreases over time, and hence that

network variables have less and less additional predictive power.

Research networks can, however, be important conduits of valuable research

ideas as well. Unlike the signalling value of networks, access to new research ideas

remains important throughout a researcher’s career. Thus if network variables help

predict future output because they capture access to new ideas, their predictive

value should remain relatively unchanged over a researcher’s career. This is not

what we observe, leaving signalling as a stronger contender as the possible channel

by which network variables help predict future productivity.

4.3 Network information across productivity categories

In this section we examine whether the predictive power of network information

varies systematically with recent output qrit. This analysis is predicated on the idea

that it takes talent and dedication to transform the new ideas conveyed by the

research network into publishable output. Consequently we expect the predictive

power of network variables to increase with ability – and hence with qrit – at least

over a certain range.

To investigate this possibility, we divided the observations into five tier groups

on the basis of their recent output qrit. The top category includes authors in the

top 1% in terms of qrit. The second top category includes authors in the 95-99

percentiles of qrit. The third category covers authors in the 90-94 percentiles, the

fourth includes authors in the 80-89 percentiles, and the last category is for authors

in the 50-79 percentiles.9

Figure 7 shows the RMSE % difference between Model 1 and Model 2 versus

Model 0 across the different categories. For the most productive authors, those

above the 99th percentile, network variables have predictive power in explaining

9We do not consider authors below the median because the median recent output is zero.
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future research output but much less than recent output. For the next category of

researchers, those in the 95-98 percentile range, network information has greater

predictive power. Even more strikingly, for researchers in the third category, the

90-94 percentile range, network variables are better at predicting future research

output than qrit! All the Models have statistically significant predictive power

across the different tiers group.

By contrast, network information has little but significant predictive power

for low productive individuals (those in the lower half of the distribution). This

suggests that, for researchers with low ability or research ambition, having pub-

lished with high quality coauthors has little informative content regarding their

future output – perhaps because they are unable to take advantage of the access

to information and research ideas that good coauthors provide.

Figure 8 presents the RMSE of unrestricted Model 2’ versus Model 1’. The

findings are consistent with the restricted version. For the most productive au-

thors, the predictive power of network variable is small relative to past output. For

the low productive authors, those in the 50-79 percentile range, the explanatory

power of network variables is very close to past output but none of them are very

useful to predict the future output of an individual. The RMSE of Model 1’ is

almost the same as the RMSE of Model 1’ excluding all the lags productivity vari-

ables, suggesting that neither past output nor network variables help to predict

the productivity of low productive authors.

5 Robustness

We have conducted an extensive investigation into the robustness of our results

to various assumptions made in constructing the variables used in the estimation.

The results of this analysis are summarized here; the details, not shown here to
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save space, are available in an online appendix.

In the analysis so far we have used average productivity from t+ 1 to t+ 3 as

the variable qit we seek to predict (see equation 2). The rationale for doing so is

that the distant future is presumably harder to predict than the immediate future,

and we want to give the model a fair chance. Yet, in economics there are long lags

between the submission and publication of a paper, and wide variation in these lags

across papers and journals. Publication lags thus introduce additional variation in

the variable we are trying to predict, and may thus lead us to underestimate the

predictive power of network information. To check whether this is affecting our

results, we repeat the analysis using average future productivity over a five year

window instead of three:

qfit = qi,t+1 + qi,t+2 + qi,t+3 + qi,t+4 + qi,t+5.

and, as before, use ln
(

1 + qfit

)
as the variable we seek to predict. Results are

similar to those reported here except that the predictive power of network variables

is larger using a five year window. In particular, network variables are even more

useful than past output to forecast the future performance of a researcher, i.e.,

Unrestricted Multivariate Model 2 outperforms Unrestricted Model 1.

Next we investigate whether results are sensitive to our definition of output qit.

We examine whether different results obtain if we correct for article length and

number of co-authors. Results show that the predictive power of network variables

is unaffected.10

Finally, the main specification used so far is a linear model estimated by OLS

in which the dependent variable is a logarithmic transformation of future research

output, ln(qfit + 1). We are concerned that the model might be misspecified by

restricting ourselves to OLS applied to this particular functional form. We, there-

10See online appendix for more details.
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fore, repeat the analysis with nonlinear regression models frequently used to study

research output or citations, such as the Poisson model, the Negative Binomial

model, and the Zero-inflated Negative Binomial model. Results show that the

in-sample log-likelihood is higher for the (Zero-inflated) Negative Binomial model

than for the linear model applied to the ln(y+1)-transformation. However the out

of sample RMSE is lowest for the linear model. As the linear model is also easy

to interpret and to evaluate, we use it as our main specification.

We also consider panel data models. Fixed effect models are not useful to

predict the productivity of junior researchers so we do not pursue them further.11

We also investigate the predictive power of vector autoregressive (VARs) models

where past network variables affect future output and past output influence future

network variables. We estimate such VAR models using a seemingly unrelated

regressions (SUR) approach, allowing for correlation in the error terms across the

two equations. The lag length of each equation is selected using the BIC criteria.

The SUR regressions should in principle lead to more efficient predictions as long as

the two equations do not include the same set of lagged variables, a conditions that

is fulfilled here. Results show that the predictions generated by the unrestricted

SUR Model 3 using feasible generalized least squares (FGLS) hardly differ from

the unrestricted Model 3 estimated using simple OLS. Therefore, the SUR model

does not outperform, out-of-sample, the simple OLS.

6 Concluding remarks

In this paper we have examined whether information about a researcher’s coauthor

network reveals information that helps predict their future output. Underlying

our study are two main ideas. The first idea is that a collaboration resulting

11Results from panel data regressions are available in the online appendix.
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in a published article reveals valuable information about an author’s ability and

research ambitions. This is particularly true for junior researchers whose type

cannot be fully assessed from their cumulative output. The second idea is that

professional research networks provide access to new research ideas. These ideas

can subsequently be turned into published papers provided the researcher possesses

the necessary ability and dedication.

To investigate these ideas, we examine coauthorship in economics. Our focus is

not on statistical significance or causality but rather on predictive power. For this

reason, we adopt a methodology that eliminates data mining and minimizes the

risk of pre-testing bias. To this effect we randomly divide the data into two halves.

Parameter estimates are obtained with one halve and predictions are judged by

how well they perform in the other half of the sample.

We find that information about someone’s coauthor networks leads to a modest

improvement in the forecast accuracy of their future output over and above what

can be predicted from their past output. The network variables that have the most

information content are the productivity of coauthors, closeness centrality, and the

number of past coauthors. These results are robust to alternative specifications

and variable definitions.

We investigate whether the predictive power of network variables is stronger

for more talented researchers, as would be the case if taking advantage of new

ideas requires talent and dedication. We find that the predictive value of network

information is non-existent for less talented and dedicated researchers. We also

find that for the most able researchers – those in the top 1% of the output dis-

tribution – network variables have no information content, possibly because these

researchers are so talented and dedicated that they would succeed irrespective of

their collaboration history.

The work presented here leaves many questions unanswered. In particular, we
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do not claim to have identified a causal effect of coauthorship or network quality

on future output. If anything, the signalling hypothesis is based on a reverse

causality argument, and it receives the most support from our analysis. We do,

however, also find evidence that network connections are most useful to talented

researchers. This result is consistent with a causal relationship between the flow

of research ideas and future output, with the caveat that talent is needed to turn

ideas into publishable papers. These issues deserve more research.
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Table 1: Summary statistics

Mean Std. deviation Correlations

Output

Future productivity .41 .99 1

Past stock output 1.62 1.44 .44

Recent past output .65 1.23 .69

Network variables

Degree .55 1.15 .55

Degree of order two .80 2.81 .46

Giant component .10 .30 .47

Closeness centrality .01 .02 .48

Betweenness centrality .50 2.29 .48

Coauthors’ productivity .58 1.40 .58

Coauthors of Coauthors’ prod. .55 1.55 .54

Working with top 1% .01 .11 .34

Number of observations 1697415 1697415 1697415

Number of authors 75109 75109 75109

Network variables are computed assuming that a link between two authors lasts

during five years (5-year network variables). The number of observations used to

obtain the statics for recent past output is 1230335 and for past stock output is

1132248. All the correlations coefficients are obtained using the same number of

observations, 872344
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Table 2: Prediction Accuracy: Restricted Models 1 and 2

R2 RMSE RMSE Diff. Coefficients

Model 0

Past output .28 .789 - .22∗∗

Model 1

Recent past output .49 .665 15.72% .49∗∗

Model 2

Degree .38 .728 7.73%∗∗ .29∗∗

Degree of order 2 .36 .744 5.70%∗∗ .10∗∗

Giant component .35 .748 5.20%∗∗ 1.05∗∗

Closeness .36 .743 5.83%∗∗ 22.96∗∗

Betweenness .38 .734 6.97%∗∗ .11∗∗

Coauthors’ productivity .41 .715 9.38%∗∗ .30∗∗

Coauthors of Coauthors’ prod. .39 .727 7.86%∗∗ .24∗∗

Working with a top 1% .36 .746 5.45%∗∗ 1.75∗∗

∗∗ Significant at 1% level, ∗ Significant at 5%. Model 0 includes career time

dummies, year dummies, number of years since the last publication and

cumulative productivity from the first publication till the t− 5. Model 1 adds to

Model 0 recent output. Model 2 adds to Model 0 one of the network variable.

Each network variable is computed assuming that a link from a collaboration last

during 5 years (5-year network variable). The number of in-sample observations

is 436440.
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Table 3: Prediction Accuracy: Restricted Models 1 and 3

R2 RMSE RMSE Diff. Coefficients

Model 0

Past output .28 .789 - .22∗∗

Model 1

Recent past output .49 .665 15.72% .49∗∗

Model 3

Degree .50 .660 16.35%∗∗ .09∗∗

Degree of order 2 .50 .660 16.35%∗∗ .03∗∗

Giant component .50 .662 16.10%∗∗ .27∗∗

Closeness .50 .660 16.35%∗∗ 13.89∗∗

Betweenness .50 .657 16.73%∗∗ .06∗∗

Coauthors’ productivity .50 .660 16.35%∗∗ .09∗∗

Coauthors of Coauthors’ prod. .39 .660 16.35%∗∗ .07∗∗

Working with a top 1% .50 .660 16.35%∗∗ .59∗∗

∗∗ Significant at 1% level, ∗ Significant at 5%. Model 0 includes career time

dummies, year dummies, number of years since the last publication and

cumulative productivity from the first publication till t− 5. Model 1 adds to

Model 0 recent output. Model 3 adds to Model 1 one of the network variable.

Each network variable is computed assuming that the effects from a

collaboration last during 5 years (5-year network variable). The number of

in-sample observations is 436440.
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Table 4: Prediction accuracy of the restricted multivariate models

R2 RMSE RMSE Diff.

Model 0 .278 .789 -

Model 1 .493 .665 15.72%∗∗

Multivariate Model 2 .433 .700 11.28%∗∗

Multivariate Model 3 .509 .654 17.11%∗∗

∗∗ Significant at 1% level. These restricted models only includes 5 year network

variables. The number of in-sample observations is 436440.
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Table 5: Prediction Accuracy: Unrestricted Models 1’ and 2’

Lag Length R2 RMSE RMSE Diff. Coefficients

Model 1’

Recent past output 13 .39 .773 - .44∗∗

Model 2’

Degree 15 .24 .861 -11.38%∗∗ . .10∗∗

Degree of order 2 14 .23 .867 -12.16%∗∗ .05∗∗

Giant component 15 .23 .868 -12.29%∗∗ .96∗∗

Closeness 15 .24 .862 -11.51%∗∗ 1.42

Betweenness 15 .26 .849 -9.83%∗∗ .07∗

Coauthors’ productivity 12 .29 .833 -7.76%∗∗ .11∗∗

Coauthors of Coauthors’ prod. 15 .27 .847 -9.57%∗∗ .09∗∗

Working with a top 1% 14 .24 .862 -11.51%∗∗ .45∗∗

∗∗ Significant at 1% level, ∗ Significant at 5%. Model 1’ includes career time

dummies, year dummies, number of years since the last publication and thirteen

lags of the productivity variable. Model 2’ contains career time dummies, year

dummies, number of years since the last publication and several lags of a network

variable. The RMSE Diff. is the percentage RMSE difference between Model 1’

and Model 2’. The maximum lag length is selected using the BIC criteria. For

the network variables, the maximum possible lag length considered is 15. The

coefficient presented in the table correspond to the first lag of the variable. The

number of in-sample observations is 667423.
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Table 6: Prediction Accuracy of Unrestricted Model 1’ and 3’.

Lag Length R2 RMSE RMSE Diff. Coefficients

Model 1’

Past output 13 .39 .773 - .44∗∗

Model 3’

Degree 6 .41 .768 .65%∗∗ .14∗∗

Degree of order 2 5 .40 .768 .65%∗∗ .06∗∗

Giant component 8 .40 .768 .65%∗∗ .58∗∗

Closeness 10 .40 .767 .78%∗∗ 2.35∗

Betweenness 9 .40 .767 .78%∗∗ .02

Coauthors’ productivity 12 .41 .761 1.55%∗∗ .09∗∗

Coauthors of Coauthors’ prod. 11 .41 .764 1.16%∗∗ .07∗∗

Working with a top 1% 13 .40 .767 .78%∗∗ .39∗∗

∗∗ Significant at 1% level, ∗ Significant at 5%. Model 1’ includes career time dummies,

year dummies, number of years since the last publication and thirteen lags of the

productivity variable. Model 3’ adds to Model 1’ several lags of a network variable.

The RMSE Diff. is the percentage RMSE difference between Model 1 and Model 3.

The maximum lag length is selected using the BIC criteria. For the network variables,

the maximum possible lag length considered is 15. The coefficient presented in the

table correspond to the first lag of the variable. The number of in-sample observations

is 667423.
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Table 7: Prediction accuracy of the unrestricted multivariate models

Lags R2 RMSE RMSE Diff.

Model 1’ 13 0.395 0.773 -

Multivariate Model 2’ 15 0.321 0.814 -5.30%∗∗

Multivariate Model 3’ 8 0.416 0.758 1.94%∗∗

∗∗ Significant at 1% level. For Multivariate model 3, we considered 8 lags for each

network variable and 13 lags of the output. The lag length is selected according to the

BIC criteria, for the multivariate models we only considered as candidate models those

where each network variable has the same number of lags. The number of in-sample

observations is 667423
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Figure 1: A scatter plot of future output and recent past output.

Figure 2: Scatter plots of future productivity on closeness centrality and coauthors’

productivity.
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Figure 3: RMSE out-of-sample across Career time. Restricted Models
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Figure 4: RMSE % Difference across Career time. Restricted Models
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Figure 5: RMSE out-of-sample across Career time. Unrestricted Models

According to the Diebold-Mariano test, the RMSE % difference between Multivariate

Model 3 and Model 1 are statistically significant for every career time.
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Figure 6: RMSE % Difference across Career time. Unrestricted Models

According to the Diebold-Mariano test, the RMSE % difference between Multivariate

Model 3 and Model 1 are insignificant for t = 12 and from t = 14 to t = 20.
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Figure 7: RMSE % Difference between Restricted Models across productivity tiers.
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Figure 8: RMSE % Difference between Unrestricted Model 2 and Model 1 across

productivity tiers.
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7 Online Appendix: Detailed robustness analy-

sis

In this appendix we report in detail on the analysis of the robustness of our results

to various assumptions made in constructing the variables used in the estimation.

We also provide details on how we derive the final specification of our model.

7.1 Model Specification

In this paper we estimate dynamic models that require stationary time series.

A first concern is that the dependent variable, future research output, or the

regressors may not be stationary, in which case differencing the series may lead

to better predictions. To check stationarity, we test for the presence of unit roots

in the productivity and network variables. We use the Harris-Tzavalis panel unit

root test (Harris & Tzavalis, 1999) because it is suitable for panels with a large

cross-sectional dimension and a fixed number of time periods. This test requires

a strong balanced panel, a requirement that is not satisfied in our data. Each

author enters the panel at the time of his or her first publication, and this timing

naturally varies across authors. To implement the test, we divide the sample into

sets of authors who are present over the same time window. More precisely, we

first restrict our sample to authors who are in the panel for 15 years and we apply

the Harris-Tzavalis test to this balanced sample. We then repeat the exercise but

for authors who have been in the panel for 16 years, and so on.

Table 8 presents the results of the Harris-Tzavalis unit root test for all variables

of interest for the set of authors who have been 15, 18, 21, 24 and 26 years in the

panel. The results provide strong evidence of stationarity for almost all variables,

except for the variables ‘Degree’ and ‘Degree of order two’, which show mixed

results, in particular for shorter panel lengths. This may be due to a lack of power

48



of the Harris-Tzavalis test. Based on this, we therefore decide not to difference

the data.

Second, in the paper we consider as main specification a linear model in which

the dependent variable is a logarithmic transformation of future research output,

ln(qfit + 1), and we estimate this model by OLS. We are concerned that the model

might be misspecified. To investigate this possibility, we estimate other commonly

used models for research output and citation data, such as the Poisson, Nega-

tive Binomial, and Zero-inflated Negative Binomial models. Table 9 compares the

performance of different linear and nonlinear models for the specification of ‘unre-

stricted Model 1’, that is, the specification without network variables. An optimal

number of lagged dependent variables is included among the regressors. The results

show that, although the in-sample log-likelihood is higher for the (Zero-inflated)

Negative Binomial model, the out of sample RMSE is lowest for the linear model

with an ln(y + 1)-transformation.

Third, in the paper we report results from a pooled OLS regression. Can fore-

casts be improved by using a dynamic fixed effects model, either in first difference

or using a system GMM estimator (Blundell & Bond, 1998)?12 Table 10 presents

the out-of-sample RMSE of different panel estimators applied to our data and

shows that the pooled OLS performs best. This may be surprising to some, but it

is rather understandable if one recognizes that our purpose is out-of-sample predic-

tion rather than coefficient estimation. Panel data models are designed to reduce

bias in coefficient estimates by filtering out distortions caused by individual effects.

However, in order to predict the future performance of an individual author, one

needs to predict the individual fixed effect as well. Out-of-sample predictions of

12The System GMM model deals with the dynamic panel bias introduced by the correlation

between the lagged dependent variable and the error term in the fixed effect specification. Our

specification includes as instruments the career time dummies, year dummies, years since the

last publication, the network variables and the fourteen and fifteen lags of productivity.
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individual effects are unavailable since there is no in-sample information on which

to base their estimation. Hence we must rely on first-differencing the variables to

filter out individual effects. It is well known that the correct estimation of first-

differenced variables is difficult (Arellano & Bond, 1991). This is confirmed in our

data: dynamic panel estimators do not lead to better out-of-sample predictions of

future productivity in our data set.

Fourth, we estimate vector autoregressions (VARs) models that simultaneously

allow past network variables to affect future output, and past output to influence

future network variables. These VAR models are estimated using a seemingly

unrelated regressions (SUR) approach, allowing for correlation in the error terms

across the equations. The lag length of each equation is selected using the BIC

criteria. The SUR regressions should lead to more efficient predictions, as long as

the different equations do not always include the same set of lagged variables, a

condition that is fulfilled here. Table 11 shows that the results from estimating

the unrestricted SUR Model 3 using feasible generalized least squares (FGLS)

hardly differ from the unrestricted Model 3 estimated using simple OLS. From

this conclude that, in our data, the SUR VAR model does not outperform the

OLS out of sample.

Finally, there remains a possible concern about functional form: if the pre-

dictive power of past output is non-linear and this non-linearity is correlated with

network characteristics, this could generate a spurious predictive power for network

variables. To investigate this possibility, we also consider an alternative specifi-

cation with a quadratic term in each lagged productivity variable to capture a

possible non-monotonic relationship between past and future output. The results,

presented in Table 12, show that the coefficient of the first lag of the quadratic

term is also positive and significant at the 1% level. But network variables remain

significant and their predictive power is only slightly smaller than in the non-
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quadratic case. This confirms that network variables do not have predictive power

simply because they are capturing a non-linearity in the effect of past output on

future output.

7.2 Different definition of variables

In the analysis presented in the paper we have used average productivity from

t+ 1 to t+ 3 as the variable qit we seek to predict (see equation 2). The rationale

for doing so is that the distant future is presumably harder to predict than the

immediate future, and we want to give the model a fair chance. Yet, in economics

there are long lags between the submission and publication of a paper, and wide

variation in these lags across papers and journals. Variation in publication lags

thus introduces additional variation in the variable we are trying to predict, and

may thus lead us to underestimate the predictive power of network information.

To check whether this is affecting our results, we repeat the analysis using average

future productivity over a five year window instead of three:

qfit = qi,t+1 + qi,t+2 + qi,t+3 + qi,t+4 + qi,t+5.

and, as before, use ln
(

1 + qfit

)
as the variable we seek to predict.

Results, presented in Table 13, are similar to those reported in the paper except

that the predictive power of network variables is larger using a five year window.

In particular, network variables are even more useful than past output to forecast

the future performance of a researcher.

Next we investigate whether results are sensitive to the definition of output qit.

It is customary for studies of author and departmental productivity in economics

to correct for article length (e.g., Kodrzycki and Yu, 2005) and number of co-

authors. To check whether this affects our results, we redo the analysis using a

productivity measure that corrects for the number of published pages and number
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of co-authors, i.e., using:

qit =
∑
j∈Sit

pagesj ∗ journal qualityj

Number of coauthorsj
(3)

The variable “pagesj” is the number of pages of article j divided by the average

number of pages of articles published in the journal.13 For comparison purposes, qit

assigns 28 points to a single-authored 9 page article or a 18 page two-author paper

in the American Economic Review. As our definition of output. Results, shown

in Table ??, show that the predictive power of network variables is unaffected.

7.3 Active sample

In the results reported so far, we keep all the authors in the dataset and replace

missing lagged productivity and network variables by zeros. The rationale for

doing so is that authors who have just started their career have no past output and

coauthorships, hence the value of their lagged productivity and network variables

are truly zero. Without such replacement we would loose the first years of an

author’s career and this could bias results.

We nevertheless worry that this may introduce another kind of bias in the

prediction of network variables. As an inactive author (i.e., an author without

many publications) matures, future output and network variables are both zeros

but lagged productivity is not. As a result network variables might have an in-

creasing predictive power across time. To investigate whether such a bias affects

our results, we redo the analysis dropping those observations where an author did

not publish anything for five consecutive years or more.

13The number of pages is truncated above fifty pages to correct for a small number of unusually

long published articles. Overly long papers are usually literature review articles. Hence not

truncating above fifty pages would probably overrepresent their contribution.
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Results are presented in Table 15. We observe that, once we restrict the sample

to active authors, the RMSE is higher for all models compared to the full sample:

not surprisingly perhaps, all models find it more difficult to predict the future pro-

ductivity of authors who publish little. However, the relative RMSE improvement

from the inclusion of network variables is similar across the two samples. Hence,

our main conclusions are unaffected.
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Table 9: Prediction performance of unrestricted Model 1’ using different functional

forms

Log-likelihood AIC BIC RMSE

Log(y+1) -782,223 1,564,580 1,565,344 16.69

Level -2,861,612 5,723,358 5,724,122 17.16

Poisson -3,777,972 7,556,078 7,556,842 19.67

Negative Binomial -766,673 1,533,482 1,534,258 19.58

Zero inflated NB -760,749 1,521,637 1,522,436 19.54

RMSE is obtained from out-of-sample level predictions. The ln(y + 1) model is

re-transformed using exp(β′Xi,t) exp(ui,t)− 1. The E(ui,t) is estimated by the sample

average N−1
∑

exp(ûj) where N is the total number of observations.

Table 10: Prediction performance of Unrestricted Models using Panel data models

RMSE Model 1 RMSE MV. Model 2 RMSE MV. Model 3

Log(y+1) .680 .742 .673

First Difference .711 .764 .713

System GMM .780 - .760

In the System GMM model, we use as instruments the career time dummies, year

dummies, number of years since the last publication, the fourteen and fifteen lags of

productivity and the network variables for the equation in differences. System GMM is

not computed for MV. Model 2 since past output is not included.
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Table 11: Prediction Accuracy of Unrestricted Model 1 and 3. Seemly Unrelated

Regression.

Lag Length R2 RMSE RMSE Diff. Coefficients

Model 1

Past output 13 .39 .773 - .36∗∗

Model 3

Degree 6 .40 .768 .65%∗∗ .15∗∗

Degree of order 2 5 .40 .768 .65%∗∗ .06∗∗

Giant component 8 .40 .768 .65%∗∗ .58∗∗

Closeness centrality 10 .40 .767 .78%∗∗ 2.35∗

Betweenness centrality 9 .40 .767 .78%∗∗ .02

Coauthors’ productivity 12 .41 .761 1.55%∗∗ .09∗∗

Coauthors of Coauthors’ prod. 11 .41 .764 1.16%∗∗ .07∗∗

Working with a top 1% 13 .40 .767 .78%∗∗ .39∗∗

Multivariate Model 3 .42 .759 1.81%∗∗

∗∗ Significant at 1% level, ∗ Significant at 5%. We estimate future productivity and

future network variables in the SUR model using the feasible generalized least squares

method. The results from estimating future network variables are available upon

request. The lag length for each model is selected using BIC. The coefficients presented

in the table correspond to the first lag of each variable. The number of in-sample

observations is 667423.
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Table 12: Prediction accuracy of the unrestricted multivariate models. Including

quadratic past output.

Lags R2 RMSE RMSE Diff. Coefficients

Model 1’

Past output 13 .40 .770 .23∗∗

Past output squared .05∗∗

Model 3’

Degree 6 .40 .765 .65%∗∗ .13∗∗

Degree of order 2 5 .39 .766 .52%∗∗ .05∗∗

Giant component 8 .40 .765 .65%∗∗ .38∗∗

Closeness centrality 10 .40 .764 .78%∗∗ 3.19∗∗

Betweenness centrality 9 .40 .764 .78%∗∗ -.02

Coauthors’ productivity 12 .41 .759 1.43%∗∗ .08∗∗

Coauthors of Coauthors’ prod. 11 .40 .762 1.04%∗∗ .05∗∗

Working with a top 1% 13 .39 .766 .52%∗∗ .26∗∗

Multivariate Model 3’ 8 .42 .757 1.69%∗∗

∗∗ Significant at 1% level. Model 1’ and Multivariate Model 3’ include 13 lags of the

productivity variable and their quadratic terms. Column 4 shows the coefficient of the

first lag of each variable. We include 8 lags of the network variables and 11 lags of the

output in Multivariate Model 3’. The lag length is selected according to the BIC

criteria. The number of in-sample observations is 566040.
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Table 13: Prediction Accuracy: Unrestricted Models 1’ and 2’; using 5-period

productivity variable.

Lag Length R2 RMSE RMSE Diff. Coefficients

Model 1’

Past output 11 .34 .946 - .51∗∗∗

Model 2’

Degree 13 .26 .998 -5.50%∗∗∗ .04∗∗∗

Degree of order 2 13 .22 1.006 -6.34%∗∗∗ .06∗∗∗

Giant component 15 .25 1.005 -6.24%∗∗∗ 1.05∗∗∗

Closeness centrality 15 .26 .998 -5.50%∗∗∗ 1.75

Betweenness centrality 12 .28 .985 -4.12%∗∗∗ .08∗∗

Coauthors’ productivity 13 .31 .963 -1.80%∗∗∗ .12∗∗∗

Coauthors of Coauthors’ prod. 12 .29 .980 -3.59%∗∗∗ .09∗∗∗

Working with a top 1% 14 .26 .999 -5.60%∗∗∗ .50∗∗∗

Multivariate Model 2’ 13 .34 .942 .42%∗∗

Model 3’

Degree 15 .37 .928 1.90%∗∗∗ .16∗∗∗

Degree of order 2 15 .36 .932 1.48%∗∗∗ .07∗∗∗

Giant component 15 .36 .931 1.59%∗∗ .84∗∗∗

Closeness centrality 15 .36 .929 1.80%∗∗∗ 2.04∗

Betweenness centrality 15 .37 .927 2.01%∗∗∗ .03

Coauthors’ productivity 7 .39 .912 3.59%∗∗∗ .11∗∗∗

Coauthors of Coauthors’ prod. 15 .38 .921 2.64%∗∗∗ .08∗∗∗

Working with a top 1% 9 .37 .928 1.90%∗∗∗ .48∗∗∗

Multivariate Model 3’ 9 .40 .904 4.44%∗∗

∗∗∗ Significant at 1% level, ∗∗ Significant at 5%, ∗ Significant at 10%. The

dependent variable is the future productivity from t+ 1 to t+ 5. For

Multivariate Model 3’, we include 9 lags of the network variables and 11 lags of

the output. The lag length is selected according to the BIC criteria. The number

of in-sample observations is 566040.
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Table 14: Prediction Accuracy: Unrestricted Models 1’, 2’ and 3’; using discounted

productivity.

Lag Length R2 RMSE RMSE Diff. Coefficients

Model 1’

Recent past output 14 .40 .670 - .43∗∗∗

Model 2’

Degree 15 .21 .760 -13.43%∗∗∗ .08∗∗∗

Degree of order 2 15 .21 .762 -13.73%∗∗∗ .04∗∗∗

Giant component 15 .21 .762 -13.73%∗∗∗ .86∗∗∗

Closeness centrality 15 .22 .756 -12.84%∗∗∗ .34

Betweenness centrality 15 .24 .747 -11.49%∗∗∗ .07∗∗

Coauthors’ productivity 15 .28 .729 -8.81%∗∗∗ .10∗∗∗

Coauthors of Coauthors’ prod. 15 .25 .742 -10.75%∗∗∗ .08∗∗∗

Working with a top 1% 14 .23 .754 -12.54%∗∗∗ .38∗∗∗

Multivariate Model 2’ 15 .31 .714 -6.57%∗∗

Model 3’

Degree 4 .40 .666 .60%∗∗∗ .10∗∗∗

Degree of order 2 5 .40 .666 .60%∗∗∗ .05∗∗∗

Giant component 8 .40 .666 .60%∗∗∗ .50∗∗∗

Closeness centrality 8 .40 .665 .75%∗∗∗ 1.68∗

Betweenness centrality 9 .40 .665 .75%∗∗∗ 0.02

Coauthors’ productivity 12 .41 .660 1.49%∗∗∗ .08∗∗∗

Coauthors of Coauthors’ prod. 12 .41 .662 1.19%∗∗∗ .06∗∗∗

Working with a top 1% 12 .41 .665 .75%∗∗∗ .32∗∗∗

Multivariate Model 3’ .42 .658 1.79%∗∗

∗∗∗ Significant at 1% level, ∗∗ Significant at 5%, ∗ Significant at 10%. The

coauthors’ productivity, coauthors of coauthors’ productivity and the dummy

variable working with a top 1% have been obtained using the discounted

productivity. The number of in-sample observations is 667423
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Table 15: Prediction Accuracy: Unrestricted Models 1’ and 2’. Active Sample

Lag Length R2 RMSE RMSE Diff. Coefficients

Model 1’

Recent past output 13 .35 .999 - .36∗∗

Model 2’

Degree 12 .22 1.095 -9.61%∗∗ .04∗∗

Degree of order 2 11 .22 1.09 -9.11%∗∗ .03∗∗

Giant component 15 .22 1.091 -9.21%∗∗ .86∗∗

Closeness centrality 15 .24 1.080 -8.11%∗∗ 1.52∗∗

Betweenness centrality 15 .25 1.075 -7.61%∗∗ .07∗∗

Coauthors’ productivity 12 .27 1.058 -5.91%∗∗ .10∗∗

Coauthors of Coauthors’ prod. 12 .25 1.070 -7.11%∗∗ .08∗∗

Working with a top 1% 14 .22 1.096 -9.71%∗∗ .36∗∗

Multivariate Model 2’ .30 1.039 -4.00%∗∗

Model 3’

Degree 5 .36 .994 .50%∗∗ .11∗∗

Degree of order 2 5 .36 .993 .60%∗∗ .05∗∗

Giant component 8 .36 .993 .60%∗∗ .58∗∗

Closeness centrality 7 .36 .991 .80%∗∗ 2.21∗

Betweenness centrality 9 .36 .991 .80%∗∗ .02∗∗

Coauthors’ productivity 6 .37 .984 1.50%∗∗ .09∗∗

Coauthors of Coauthors’ prod. 10 .37 .988 1.10%∗∗ .06∗∗

Working with a top 1% 6 .36 .993 .60%∗∗ .44∗∗

Multivariate Model 3’ .38 .980 1.90%∗∗

∗∗ Significant at 1% level, ∗ Significant at 5%. Active sample: we dropped all

observations where the recent output is zero. The number of in-sample

observations is 357832.
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