
Employment Concentration across U.S. Counties∗

Klaus Desmet
Universidad Carlos III and CEPR

Marcel Fafchamps
University of Oxford

January 2006

Abstract

This paper examines the spatial distribution of jobs across U.S. counties between
1970 and 2000, and investigates whether sectoral employment is becoming more or
less concentrated. The existing literature has found deconcentration (convergence)
of employment across urban areas. Cities only cover a small part of the U.S. though.
Using county data, our results indicate that deconcentration is limited to the up-
per tail of the distribution. The overall picture is one of increasing concentration
(divergence). While this seemingly contradicts the well documented deconcentration
in manufacturing, we show that these aggregate employment dynamics are driven
by services. Non-service sectors — such as manufacturing and farming — are indeed
becoming more equally spread across space, but services are becoming increasingly
concentrated.
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1 Introduction

Economic activity is unevenly distributed across space. The interaction of positive and

negative externalities creates intricate geographical patterns of city clusters and rural

hinterland (Henderson, 1988; Fujita, Krugman and Venables, 1999). Over time, these

patterns evolve because of changes in preferences, production technologies and transport

costs. As a result, the spatial distribution of employment adjusts as jobs are created

in certain locations, and destroyed elsewhere. Understanding how economic activity is

likely to be distributed through space in the future is important for policy makers at the

national and local level.

This paper describes the geographical evolution of jobs in the U.S. between 1970

and 2000, with the goal of understanding what the future spatial distribution of em-

ployment would look like if current tendencies were to continue. We use county-level

employment in 13 different sectors – ranging from farming to manufacturing and ser-

vices – and focus on the ergodic distribution of jobs.

Our work differs from the existing literature in a number of respects. First, rather

than looking at income per capita or population, we are interested in employment. Many

authors have studied whether standards of living in the U.S. are becoming more similar

over time. For instance, Higgins, Levy and Young (2003) find strong evidence of income

convergence across counties. This is not entirely surprising, given the high degree of labor

mobility in the U.S. (Blanchard and Katz, 1991). However, income convergence does not

tell us anything about where economic activity is locating. Is the U.S. moving towards a

situation with more or with less large and medium-sized metropolitan counties? Are rural

counties losing or gaining jobs? These are the kinds of questions we address in our paper.1

This is similar to studying whether population is becoming more or less concentrated in

space. In this respect, Beeson and DeJong (2002) is of particular interest. They find

population divergence across counties, especially in the post-WWII period. Our work

is complementary to theirs. By looking at employment, rather than population, we get

1 If labor and capital are not quite mobile, the distribution of GDP per capita can be regarded as
capturing the distribution of economic activity across space. However, in a country like the U.S., where
capital and workers are highly mobile, the dispersion of GDP per worker across geographical units is more
a measure of dispersion in productivity than in economic activity per se.
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additional insights from sectoral disaggregation.

Second, we examine the country as a whole, not just metropolitan areas. Most of

the literature on the spatial organization of economic activity in the U.S. has focused on

cities. One central finding of that line of research is that city growth is independent of

city size, a phenomenon known as Gibrat’s Law (Sutton, 1997). However, as pointed out

by Beeson, DeJong and Troesken (2001), limiting the analysis to urban areas introduces

a selection bias, since cities are those areas which experienced high growth in the past.

A recent paper by Eeckhout (2004) addresses this issue by revisiting Gibrat’s Law using

Census ‘places’. In contrast to metropolitan areas, these data cover the entire size dis-

tribution, including small towns and villages. He confirms that growth is independent of

size. However, ‘places’ still do not cover the entire U.S. In the 2000 Census they accounted

for 74 percent of the population.

Our third point of departure with the existing literature is our methodology.

Instead of relying on a single method– whether β-convergence, σ-convergence, or ergodic

distributions – we develop a methodology that encompasses them all. Much of the

existing work comparing geographical units is couched in terms of Barro’s β-convergence:

the underlying model is deterministic in nature (Barro, 1991; Mankiw, Romer and Weil,

1992). As first emphasized by Quah, evidence of β-convergence can yield a misleading

picture, because it can arise even when countries or regions are getting further apart, and

vice versa (Quah, 1993; Quah, 1996a; Durlauf and Quah, 1999). As a solution, Sala-i-

Martin (1996) suggests studying distributions by looking at the evolution of the variance

over time, a concept known as σ-convergence. Quah (1996b, 1997) goes one step further

by focusing on the ergodic distribution. This refers to the long term spatial distribution

of economic activity that would arise if current transition probabilities would remain

constant. The ergodic distribution is the distributional equivalent of the β coefficient in

a standard Barro model: it predicts in which direction the process goes, should current

structural factors remain unchanged. Of course, structural parameters may change, in

which case the direction of the process would change as well. The ergodic distribution is

thus but a way of describing the current trend of the distribution.

In this paper we start by computing parametric and non-parametric versions
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of the unconditional and conditional β-convergence tests and explain how they can be

understood as describing the expectation of the transition probability. We then compute

two versions of the ergodic distribution. The first version is the stochastic equivalent

of unconditional β-convergence: it assumes that all counties are inherently equivalent

and could switch places with each other over time. The second version is the stochastic

equivalent of conditional β-convergence: it conditions on county characteristics that are

constant over time. It is our best estimate of how economic activity would be distributed

across U.S. counties should current tendencies remain unchanged.

In addition, we also introduce a number of practical innovations when deriving

the ergodic distribution. In particular, by computing the transition matrix from the

smoothed conditional distribution rather than directly from the data, we get a better

approximation of the ergodic distribution. This makes the results both more detailed

and more accurate.2 The methodology is easy to implement, and can be applied to any

empirical study involving distribution dynamics.

We now turn to describing our main findings. Whereas recent work on metropoli-

tan areas shows a tendency towards deconcentration, with total employment becoming

more equally spread across cities (Chatterjee and Carlino, 2001; Carlino and Chatterjee,

2002), standard β-convergence tests using U.S. county data suggest the contrary, with

jobs becoming more concentrated over recent decades (Desmet and Fafchamps, 2005).

The analysis presented here resolves this apparent puzzle. Results show that, compared

to the current distribution of total employment across counties, the ergodic distribution

is a lot flatter, with the middle group thinning out. The overall picture that emerges

is thus one of concentration (divergence), with lots of small and medium sized counties

losing jobs to the more urban ones. At the upper tail of the distribution, however, the

opposite is true, with large metro counties losing jobs in favor of intermediate sized urban

counties. In other words, there is deconcentration (convergence) in the upper part of the

distribution, and concentration (divergence) in the distribution at large. This explains

the opposing results of Chatterjee and Carlino (2001) and Desmet and Fafchamps (2005).

2Moreover, contrary to Quah, who uses a highly complex programming language in Unix to obtain
non-parametric kernel estimates of the transition matrix, we rely on simple Stata commands. The ado
files are available from the authors upon request.
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Our findings confirm the results of Beeson and DeJong (2002) for population growth:

for the post-WWII period they report divergence across most of the distribution, but

convergence in the upper decile.

The increased concentration evident in total employment stands in contrast to

what happened within the manufacturing sector. It is by now a stylized fact that since

World War II manufacturing employment has become less concentrated, albeit at a slow

pace (Dumais, Ellison and Glaeser, 2002; Kim, 1995). Our data confirm this empirical

regularity. Although manufacturing cannot account for the spatial dynamics of aggregate

employment, services can. The main service sectors – ‘retail’, ‘finance, insurance and

real estate’ and ‘other services’ – exhibit concentration (divergence) in the middle part

of the distribution and deconcentration (convergence) in the upper tail. This is most

patent in the case of ‘other services’, where we get ‘twin peaks’ – a bimodal ergodic

distribution.

That overall trends in the economy are driven by services should not come as a

surprise, given their weight. However, the fact that services behave differently from the

rest of the economy is interesting, because empirical work in economic geography has

mainly focused on manufacturing. Our findings confirm that the much heralded demise

of cities, epitomized by manufacturing jobs moving to less dense areas, is not occurring.

The reason is the rise of the service industry (Kolko, 1999).

Though not the subject of this paper, our results have implications for the spatial

dynamics of productivity and wages. Following Ciccone and Hall (1993), our findings

suggest that sectors that have been deconcentrating, such as manufacturing, may have

experienced spatial convergence in wages and productivity. In contrast, we would ex-

pect aggregate employment and services, which have been concentrating, to have seen

increasing spatial divergence in wages and productivity.

2 Methodology

In this section we present a general framework to discuss the evolution of the distribution

of an arbitrary geographical variable over time. Let our variable of interest be denoted

Y i
t where i stands for location and t for time. Variable Y i

t could denote GDP per head,
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employment, or income, but for now this is of no importance. At each point in time we

observe realizations of Y i
t for each i. We want to know whether, over time, realizations of

Y i
t are becoming more ‘alike’ across all i’s. This we call convergence. If realizations are

becoming less alike, we call it divergence. We first discuss unconditional convergence; we

then look at conditional convergence.

2.1 Unconditional convergence in a deterministic model

The growth convergence literature reverts around a β-convergence test meant to ascertain

whether GDP per head across countries is converging towards a common value Y ∗. This

test is implemented via a regression of the form (Mankiw, Romer and Weil, 1992; Quah,

1993):

logY i
t+1 − logY i

t = α− β logY i
t (1)

to which an error term is added for estimation purposes. Equation (1) can be rewritten

as:

Y i
t+1 = eα

¡
Y i
t

¢1−β
(2)

Equation (2) is a deterministic difference equation with two steady states:

Y ∗ = e
α
β

Y0 = 0

which, in the unconditional case, are the same for all i’s. The stability of this deterministic

system around the Y ∗ steady state depends on the sign of β: if β < 0, the Y ∗ steady

state is not stable and Yt diverges from it. Standard convergence tests estimate equation

(1) and examine whether β is positive or not.

One critique of this model is that it imposes too much structure on the law of

motion of Y i
t+1. In particular, it is unable to test for the presence of multiple steady

states. In addition, it assumes that convergence is exponential. However, in general the

linear approximation underlying equation (1) is only valid locally. It makes little sense

to apply this approximation to observations which, according to the model, are very far

from Y ∗. A more satisfactory model is one that allows for nonlinearity:

logY i
t+1 = φ(log Y i

t ) (3)
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where φ(.) is an arbitrary smooth function. Equation (3) can be estimated by standard

non-parametric techniques. If function φ(.) cuts the 45 degree line more than once, the

process driving Y i
t has multiple equilibria. Each point at which φ(.) cuts the 45 degree

line from above is stable; each point where it cuts from below is unstable. As it turns

out, it is easier to graph the equivalent alternative model:

logY i
t+1 − logY i

t = φ(logY i
t )− logY i

t

= f(log Y i
t ) (4)

Estimates of equation (4) are presented in the empirical section. Evidence of multiple

deterministic steady states is found for several sectors.

2.2 Unconditional convergence in a stochastic model

As Durlauf and Quah (1999) have emphasized, the approach to convergence based on a

deterministic model is hardly appropriate because it fails to recognize that in practice Y i
t

is stochastic. To illustrate this point, let us return for a moment to the linear model (1),

to which we add a stochastic term uit:

logY i
t+1 − logY i

t = α− β logY i
t + uit (5)

Defining yit ≡ logY i
t , equation (5) can be rewritten more simply as:

yit+1 − yit = α− βyit + uit

In this case, yit never actually settles anywhere permanently so there is no steady state

in the deterministic sense and thus no β-convergence. As Quah (1993) has shown, β in

this context measures the speed at which yit reverts to the mean.

When yit is stochastic, a more adequate representation of its evolution over time

is:

ft+1(yt+1) =

Z ∞

−∞
g(yt+1|yt)ft(yt)dyt (6)

where ft(yt) denotes the (unconditional) distribution of yt at time t across all i’s and

g(yt+1|yt) denotes its transition probability. Here and in the remainder of this section,
we assume the transition probability to be constant over time. This is of course an
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oversimplification. We revisit this issue in the empirical section. Equation (6) is itself a

deterministic law of motion. Provided that certain conditions are satisfied (Stokey, Lucas

and Prescott, 1989; Luenberger, 1979), this system has a steady state or time-invariant

distribution f(yt+1) to which it converges.3 This time-invariant distribution is called the

ergodic distribution. It is the distribution f(yt+1) that satisfies:4

f(yt+1) =

Z ∞

−∞
g(yt+1|yt)f(yt)dyt (7)

β-convergence corresponds to the case when the ergodic distribution is degenerate with a

mass point at y∗. In general, f(yt+1) is not degenerate. If the ergodic distribution f(yt+1)

is more concentrated – has lower variance – than the current distribution ft(yt), we

conclude that there is convergence, and vice versa. This is but a straightforward extension

of the concept of σ-convergence introduced by Sala-i-Martin (1996). The advantage

of dealing with the ergodic distribution is that we can extrapolate current transition

probabilities to the indefinite future, hence obtaining a clearer picture of what these

probabilities imply for the long-term.

2.3 Empirical implementation

In the empirical implementation, we begin by estimating linear and nonlinear β-convergence

models and look for possible evidence of multiple deterministic steady states. We then

turn to the stochastic approach and derive ergodic distributions. Computing the ergodic

distribution involves three steps: (i) calculating ft(yt) and ft+1,t(yt+1, yt); (ii) deriving

g(yt+1|yt) from the fact that the conditional distribution is the joint distribution divided

by the marginal distribution:

g(yt+1|yt) = ft+1,t(yt+1, yt)

ft(yt)

and (iii) obtaining the ergodic distribution by solving (7) for a constant f(.). As illustrated

by Quah (1996b), steps (i) and (ii) are easily handled by non-parametric techniques: ft(yt)

and ft+1,t(yt+1, yt) are estimated by fitting a kernel density to the data, and g(yt+1|yt)
3 In empirical applications, the most important issue that arises with respect to the existence of a

non-degenerate ergodic distribution is that of de-trending. This is discussed in detail below.

4There might be multiple solutions to equation (7) and thus multiple ergodic distributions. Multiple
solutions do not arise in our empirical analysis and are ignored here.
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is obtained by dividing one by the other. For the third step, it is difficult to work with

equation (7) directly. The standard approach in practice is to discretize the space of

possible values y into N discrete cells Γk, with k = {1, ...,N}. Formally, the probability
of being in cell Γk at time t is:

pkt ≡ Pr(yt ∈ Γk)

The transition probability of moving from cell Γk to cell Γm over one time period is

denoted:

akm = Pr(yt+1 ∈ Γk|yt ∈ Γm)

The ergodic distribution is then a set of interval probabilities pk that solves:5

pk =
X
m

akmpm

Because step (iii) involves discretization, it is common to discretize steps (i) and

(ii) as well and to compute the transition matrix [akm] directly from the data. This ap-

proach, however, fails to take advantage of the smoothing properties of kernel densities.

For this reason, transition matrices used in practice are usually very coarse — e.g., with

four or five intervals only. The resulting ergodic distribution is too rough to draw precise

conclusions about convergence. In this paper, we obtain a better approximation of the

5In matrix form we have:

p = Ap

(I −A)p = 0

It looks like the above system only has a solution of the form p = 0, but this is an illusion. Matrix A
does not have full rank since, by definition of a probability, each column sums to 1. To find p, one needs
to drop one row of A and to add the requirement that:X

i

pi = 1

We obtain a system of the form:
1− a11 ... −a1N

... 1− aii ...
−aN−1,1 ... −aN−1,N

1 ... 1

 [p] =


0
...
0
1


Bp = b

The modified system can be solved by inverting:

p = B−1b

In a linear system such as this, the ergodic distribution is in general unique (Luenberger, 1979).
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ergodic distribution by postponing discretization until step (iii) and computing the tran-

sition matrix from the smoothed conditional distribution g(yt+1|yt) rather than directly
from the data.6

An important practical detail is to make the data mean stationary. Our objective

in computing the ergodic distribution is to get an idea of the long term distribution of yit

around its mean, should the transition matrix remain unchanged. If E[yit] changes over

time, failing to subtract the mean will lead to biased results. To see why, suppose that we

have two time periods, t and t+ s, with E[yit+s] > E[yit]. A transition matrix computed

on the raw data will tend to produce a degenerate ergodic distribution with a mass point

at the highest value of y.7 To avoid degenerate ergodic distributions, it is essential that

the mean of the detrended variable does not change over time. Simply subtracting the

mean E[yit] from yt in each time period would do the job. In practice, however, it will be

convenient to use the following equivalent form instead:8

wi
t = yit

wi
t+s = yit+s −E[yit+s] +E[yit] (8)

This transformation offers the advantage of presenting all distributions in terms of yit

around its mean at time t, thereby facilitating visual interpretation. As is clear from (8),

this formulation amounts to removing any stochastic linear trend in the data.9 Apply-

ing steps (i) to (iii) to the detrended variable yields the transition matrix and ergodic

distribution of wi
t. The resulting ergodic distribution represents what would be the long

term distribution of yit around its mean, should the current transition matrix remain

unchanged.

6Quah (1996a, 1996b, 1997) computes the transition matrix (steps i and ii) using non-parametric
techniques. But as far as we can tell, when computing the ergodic distribution he uses a crudely discretized
transition matrix with a small number of cells only.

7By the same token, if E[yit+s] < E[yit], the ergodic distribution will tend to a mass point at the lowest
value y.

8This is equivalent to adding a constant E[yit] to y
i
t − E[yit], y

i
t+s −E[yit+s], etc.

9An alternative would be to assume a stochastic exponential trend. In that case, the appropriate
transformation would be wi

t+s = yit+sE[y
i
t]/E[y

i
t+s]. Using this alternative does not change our results

qualitatively.
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2.4 Conditional convergence

Until now we have implicitly assumed that the distribution of yit is the same for each

location i, irrespective of their inherent, time-invariant characteristics Xi. In many sit-

uations, this is an unrealistic assumption: part of the variation in yit across i’s is due to

differences in their Xi. This variation does not disappear over time. Consequently, if we

fail to control for Xi we may falsely conclude that yit is not converging when in fact it is.

Correct inference about convergence therefore requires that we condition on Xi. We call

this approach conditional convergence.

We decompose the variation in detrended yit into two parts: that due to X
iθ and

that due to a first order stochastic process zit. The data generation process takes the

form:

wi
t = Xiθ + zit

with E[Xz] = 0 and:

ft+1(zt+1) =

Z ∞

−∞
g(zt+1|zt)ft(zt)dzt (9)

with corresponding ergodic equation

f(zt+1) =

Z ∞

−∞
g(zt+1|zt)f(zt)dzt (10)

Although we do not observe zit directly, we can obtain a consistent estimate by

first estimating θ from a pooled regression of the form

wi
t = Xiθ + zit (11)

...

wi
t+s = Xiθ + zit+s

and then using bθ to compute
bzit = wi

t −Xibθ (12)

...

bzit+s = wi
t+s −Xibθ

The ergodic distribution of bzit can then be estimated through steps (i)-(iii) as detailed
before.
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The long-term distribution of wi
t is obtained by combining the variation due to

Xiβ with the ergodic distribution of zit. Let this distribution be written fY (y). We have:

wi = Xibθ + zi

= hi + zi

This is a standard problem in statistics. The general formula in the discrete case is

(Mood, Graybill and Boes, 1974, p. 186):

fW (w) =
X
w

fZ(w− h)fH(h)

=
X
Xbθ

fZ(w−Xbθ)fH(Xbθ) (13)

where fZ(.) is the ergodic distribution function of zi. Applying this formula to the data

yields the conditional ergodic distribution of wi
t.
10

2.5 Relation to β-convergence

It is useful to illustrate how our approach to conditional convergence relates to the stan-

dard β-convergence literature and how conditional convergence can be implemented in

the nonlinear β-convergence model. Since (9) represents a first-order stochastic process,

there exists an equivalent representation of (9) of the form:

zit+1 = φ(zit) + eit+1 (14)

10To compute the long-term probability of a particular value of w =W , we proceed as follows. Say we
have 3000 values of Xibθ, each with frequency 1.

1. Outer loop: let w =W .

(a) Inner loop: Take a specific value of Xibθ. We have fW (Xibθ) = 1
3000

.

(b) Compute bzi =W −Xibθ.
(c) Obtain fZ(W − Xibθ) using the ergodic distribution of bz. This is just the frequency of the

discretized bzi interval in which W −Xibθ happens to fall.
(d) Repeat for all values of Xibθ and take the sum of fZ(W −Xibθ) divided by 3000. This yields

the probability that w =W , which we have written fW (W ). End of inner loop.

2. Repeat for all values W to obtain all values of fW (w).

Given that the algorithm is based on a discretization, we renormalize probabilities fW (w) so that they
exactly sum to 1.
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where φ(.) is an arbitrary smooth function.11 If φ(zit) = ρzit, we can write:

wi
t+1 = Xiθ + zit+1

= Xiθ + ρzit + eit+1

= Xiθ + ρ
¡
wi
t −Xiθ

¢
+ eit+1

which can be rewritten:

wi
t+1 −wi

t = (1− ρ)Xiθ + (ρ− 1)wi
t + eit+1 (15)

If wi
t stands for log GDP per head, then the deterministic version of equation (15) is the

standard conditional convergence model (Barro, 1991; Mankiw, Romer and Weil, 1992).

What we estimate in this paper is a generalized version of model (15) where we replace

the fixed parameter ρ with a smooth function φ(.) to yield:

wi
t+1 = Xiθ + φ

¡
wi
t −Xiθ

¢
+ eit+1 (16)

In the deterministic version of (16) the shape of function φ(.) captures the way in which

wi
t+1 converges to its steady state X

iθ. Equation (16) can thus be seen as a generalization

of the standard MRW model in which we do not impose linearity around the steady state

and let the data tell us how rapidly the process converges depending on how far it is

from its steady state. It can also identify the presence of multiple (deterministic) steady

states and determine which ones are stable. As we will see, however, this approach to

convergence is insufficiently informative when the true data generation process is stochas-

tic because the shape of φ(.) by itself tells us little about σ-convergence. We therefore

also compute conditional ergodic distributions.

Function φ(.) can be estimated by replacing, in equation (16), wi
t −Xiθ with zit

(or a consistent estimate of it). After replacement, this boils down to applying a standard

kernel regression to:

bzit+1 = φ(bzit) + eit+1 (17)

In the unconditional case, we simply replace bzit and bzit+1 with wi
t and wi

t+1.

11For our illustration, it is enough to assume that the errors eit+1 are not autocorrelated, but they need
not be homoskedastic.
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3 The data

We now turn to the empirical implementation. As discussed in the introduction, our goal

is to predict what the future distribution of economic activity over space would look like,

should current tendencies persist. We use job figures as a proxy for economic activity.

County-level sectoral employment data come from the Regional Economic Information

System (REIS) compiled by the U.S. Bureau of Economic Analysis (BEA). We use em-

ployment data for 1970 to 2000 in thirteen sectors, covering the entire economy: farming;

agricultural services; mining; construction; manufacturing; transportation and utilities;

wholesale; retail; FIRE (finance, insurance and real estate); other services; federal govern-

ment; military; and state and local government. We focus on the contiguous U.S. because

we believe that, over the period under investigation, labor and capital mobility towards

Alaska and Hawaii were lower than now. Pooling them with the contiguous U.S. may

therefore not be appropriate for our purpose. We are left with 3071 counties. Sectoral

employment data are missing for some counties, either because they are unavailable or

because they are not disclosed.12

Because the distribution of employment levels is approximately log-normal, we

focus our analysis on the log of employment. By dramatically reducing heteroskedasticity,

this limits the role of outliers and increases the robustness of our results. If we were to

perform the analysis in employment levels, a handful of urban counties with a lot of

employment would dominate the analysis. Our focus is on all counties.

To control for county-specific time-invariant characteristics, we use data on county

area, latitude, and longitude from the U.S. Geological Survey. Counties are assumed to

be centered at their county seat. The average county size is 2491 square kilometers, cor-

responding to an average diameter of approximately 50 kilometers (30 miles).13 Counties

vary considerably in size, however: the coefficient of variation of county area is 1.36.

Western counties in particular tend to be larger than their eastern counterparts. Dum-

12For some counties sectoral employment is not revealed in order not to violate employer confidential-
ity. For other counties sectoral employment is simply reported as ‘less than 10’; in those cases we set
employment equal to 5.

13This approximation obviously underestimates the actual diameter, since counties are not perfect
circles. It is nevertheless useful as a ballpark figure.
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mies are also created to control for whether a county is on a large body of water, such as

a lake or ocean, or for whether it is on the border with Canada or Mexico. In particular,

we include dummies for: the Atlantic ocean; the Pacific ocean; the Great Lakes; the gulf

of Mexico; the Mexican border; and the Canadian border. Information of proximity to

borders and water was compiled from detailed maps provided by the American Automo-

bile Association (AAA). Latitude and longitude are also included as regressors. Finally,

given that economic activity in the U.S. is concentrated on the Atlantic and the Pacific

seaboards, we add dummies for counties located in states on the East coast or the West

coast.

4 Results

4.1 σ-convergence and β-convergence

To get a feel for whether jobs have become more or less concentrated across space, Table

1 reports the standard deviation of detrended log employment at the county level in

1970, 1980, 1990 and 2000. A decreasing standard deviation reflects log employment

becoming more equally spread across counties, a phenomenon known as σ-convergence.

An increasing standard deviation points to employment becoming more concentrated in

space, with some counties have lots of jobs and some having very few. As can be seen, for

total employment the tendency has been towards more concentration (divergence). This

increasing concentration of aggregate employment can be seen even more clearly in Figure

1, which plots the same standard deviation at an annual frequency. At the sectoral level,

there is a clear difference between service and non-service sectors. Most services (‘retail’,

‘FIRE’, and ‘other services’) have become more concentrated; most other sectors, such

as ‘manufacturing’ and ‘farming’, have exhibited deconcentration (convergence).

Figure 2 shows a scatter plot of the log difference in total employment between

1970 and 2000 on the log of employment in 1970. At first sight it is difficult to see any

pattern in this cloud of points. To get a clearer picture, Table 2 reports the results of

a standard linear regression of annual employment growth between 1970 and 2000 on

initial log employment in 1970 – the standard test of unconditional β-convergence. A

positive coefficient on initial employment points to concentration (divergence), whereas
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a negative coefficient indicates deconcentration (convergence). Our findings from Table 1

are confirmed. There is concentration of employment at the aggregate level and in most

service sectors (‘retail’ and ‘other services’), and deconcentration in the other sectors.

This suggests that services are driving aggregate employment dynamics. This should not

come as a surprise, given the weight of services in the economy: in 1970 ‘retail’ and ‘other

services’ already made up 34% of total employment; by 2000 this share had grown to 48%.

The increasing concentration of aggregate county employment stands in contrast

with the observed employment deconcentration across metropolitan areas (Chatterjee and

Carlino, 2001; Carlino and Chatterjee, 2002). This suggests deconcentration across large

counties, and concentration across smaller sized counties. A quick-and-easy way of check-

ing this is to split up our sample into two groups: the 200 counties with more than 82,215

workers in 1970, and the remaining 2871 counties. Although the overlap is not perfect,

almost all of the 200 largest counties are classified as ‘urban’ by the Office of Management

and Budget. As expected, for the group of large metro counties we find deconcentration

across the board. Table 3 shows a negative coefficient on initial log employment for all

sectors. In contrast, for the group of smaller counties Table 4 shows total employment

becoming more concentrated. Again, there is a dichotomy across sectors: concentration

in services, and deconcentration in the rest of the economy. Summing up, standard con-

vergence analysis indicates that the tendency towards employment deconcentration only

holds for a limited group of high employment metropolitan counties. For the rest of the

distribution, concentration seems to be the norm. This finding confirms the results of

Beeson and DeJong (2002) for population.

4.2 Unconditional kernel regressions

Splitting up the sample into two parts, and running linear regressions on each part, is

a rather rudimentary way of dealing with nonlinearities. A more appropriate way of

capturing the richness of the dynamics is to run nonlinear kernel regressions on the entire

sample. Because we are interested in long-run trends, not in trade cycles, we focus on 10

year intervals, i.e., we only use data from 1970, 1980, 1990 and 2000.
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The unconditional estimating equation is of the form:

wi
t+10 = φ(wi

t) + eit+1 (18)

where wi
t is (detrended) log employment in year t in county i. The estimation uses an

Epanechnikov kernel with optimal bandwidth.14 To facilitate interpretation, we have

plotted the annual employment growth as a function of initial log employment. In this

case, a negative slope indicates deconcentration (convergence) and a positive slope indi-

cates concentration (divergence). When the curve cuts the horizontal axis from above, we

have a stable equilibrium; when it cuts it from below, we have an unstable equilibrium.

Figure 3 plots the results for total employment and by sector. The graphs also re-

port a robust 95% confidence interval around the kernel regression.15 We start by looking

at the picture for total employment (‘Total’). The curve is upward sloping across much

of the distribution, and cuts the horizontal axis somewhere in the middle. This suggests

that at intermediate values of initial employment, forces exist that push total employ-

ment away towards the extremes. In other words, the middle part of the distribution

exhibits divergence in the deterministic sense: if employment starts off below the middle

equilibrium, the county is on average predicted to lose jobs, and is expected to converge

towards the low steady state. In contrast, if employment starts off above the middle

equilibrium, the county is expected to gain jobs and converge towards the high steady

state. Note that the slope of the estimated curve turns negative towards the upper end

of the distribution. This suggests convergence amongst metropolitan counties, a result in

line with Chatterjee and Carlino (2001). These findings can be quantified. An estimated

52% of counties, i.e., all counties with less than 7,720 jobs in 1970, are predicted to slowly

empty out; the remaining half is predicted to gain jobs and end up in the high steady

state. Regarding the upper tail, the 8% largest counties – corresponding to those with

14The size of the optimal bandwidth is obtained by cross-validation as follows. Pick a bandwidth κ.
For each observation wi, estimate a κ bandwidth kernel regression that omits observation wi. Let bwiκ

denote the fitted value from this local kernel regression. Obtain the residual buiκ = wi − bwiκ. Repeat this
procedure for all observations and compute the sum of squared residuals Sκ. The optimal bandwidth is
the value of κ that minimizes Sκ (Silverman, 1986).

15The 95% confidence interval is equal to the kernel estimate plus and minus 1.96 times the robust
standard error of the intercept in each kernel regression (Silverman, 1986). Since each standard error
is robustly estimated and the standard error of the intercept varies across the sample, this approach is
robust to the presence of heteroskedasticity in the data.
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more than 60,818 jobs in 1970 – exhibit convergence.

Turning to individual sectors, we see that for most of the non-service sectors —

such as ‘manufacturing’ and ‘construction’ — the slope tends to be negative. This suggests

deconcentration (convergence). The deterministic steady state is where the curve cuts the

horizontal axis. In contrast, for the service sectors — ‘retail’, ‘FIRE’, and ‘other services’

— the picture resembles that of aggregate employment. In ‘other services’, for instance,

there is a steady state with low retail employment and a steady state with high retail

employment, with the middle group disappearing. More specifically, the model predicts

that 62% of counties will end up in the low steady state, and the remaining 38% will end

up in the high steady state. Note that government employment at the state and local

level looks much like the other service sectors. Finally, ‘farming’ exhibits convergence

across much of the distribution, but divergence in the upper tail. This tells us that some

of the larger farming counties are becoming increasingly specialized.

4.3 Unconditional ergodic distributions

Interpreting kernel regressions results as indications of convergence relies on the implicit

assumption that yit can reasonably be approximated by a deterministic model, with all

counties ending up near one (or several) steady states. Put differently, such an interpre-

tation implicitly requires that the distribution over time converges to mass-points on the

steady states. In the case of a single steady state, this is equivalent to σ-convergence.16

To investigate convergence in the distribution itself, we need to examine the ergodic dis-

tribution. If this distribution converges to one mass point, we have σ-convergence. A

β-convergence analysis will then reveal where this mass point is.

It is important to understand the objective and limitations of such an exercise.

First, the ergodic distribution is nothing but a convenient way of depicting the trend in the

shape of a distribution. For the actual distribution to converge to the ergodic distribution,

the transition matrix would have to remain unchanged. We are not saying this will be the

16The kernel regression basically describes the conditional mean of the transition matrix, averaging
across rows. σ-convergence depends not only on the conditional mean but also on dispersion around this
mean. It is easy to construct transition matrices that display β-convergence but no σ-convergence.
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case.17 In fact we expect transition matrices to vary over time with changes in technology

(e.g., air conditioning and move to the sunbelt) and in preferences (e.g., concerns about

pollution and move of industry out of urban centers). The ergodic distribution depicts

what the distribution would look like in the long run if current conditions remain the

same. Second, the ergodic distribution represents how yit evolves around its mean. It

does not say anything about the mean itself. With population growth and immigration,

we expect US total employment to continue to grow but our focus is on the geographical

distribution of employment, not on the trend. Third, in order to obtain a reasonable

approximation of the transition matrix, it is important that the data be distributed

evenly. Kernel smoothing does a poor job of approximating highly skewed distributions.

As mentioned before, this is the reason why we focus on the log of employment.

Figure 4 plots the ergodic distributions for all sectors, and compares them to the

distributions of employment in 1970 and 2000. The method used to derive the ergodic

distribution is described in the methodology section. Log employment data is detrended

using (8), that is, we estimate the ergodic distribution of:

wi
t+s = yit+s −E[yit+s] +E[yi0]

where, as before, y is log employment and yi0 is employment in the first year for which we

have data, that is, 1970. The ergodic distribution is obtained by inverting ten-year ahead

transition matrices computed using data from 1970, 1980, 1990 and 2000. An appropriate

kernel bandwidth is selected as follows. We begin by calculating the kernel bandwidth that

minimizes the mean integrated squared error for univariate log employment densities.18 In

all cases, the optimal bandwidth is between 0.08 and 0.11 — in relative terms — suggesting

that a bandwidth of 0.1 is a good choice.19 This is the bandwidth we use to calculate the

bivariate kernel from which the transition matrix is extracted.

17Computing an ergodic distribution is like computing the trend in (the mean of) a variable: computing
the trend does not imply that the researcher believes the trend will remain the same forever. It is just a
way of representing a tendency in the data at a moment in time.

18This procedure yields an optimal bandwidth if the data are Gaussian, which is approximately the
case here. The Stata 9 kdensity command is used to calculate the optimized bandwidth.

19A relative bandwidth of 0.1 means that observations covering 10% of the range of the data are used
in each kernel regression.
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If the ergodic distribution is tighter than the distributions in 1970 and 2000,

this suggests deconcentration in log employment: based on current trends, counties are

predicted to look more alike in the future than in the past. If the ergodic distribution has a

thinner upper tail than the actual employment distributions for 1970 and 2000, this means

fewer high employment counties in the future. In contrast, if the ergodic distribution has

a ‘hat shape’ instead of a ‘bell shape’, with more mass on high employment values,

there will be more concentration in the future if current trends continue: the number

of high employment counties is predicted to increase, while the number of intermediate

employment counties is expected to fall.

Results shown in Figure 4 fall basically into three categories. First, some sectors

exhibit hat shapes or even twin peaks: ‘total’, ‘retail’, ‘FIRE’ and ‘other services’. This

suggests increasing concentration. Second, some sectors, such as ‘farming’, ‘manufactur-

ing’ and ‘construction’, exhibit (slightly skewed) bell shapes. In the case of ‘farming’

and ‘manufacturing’ the ergodic distribution is tighter, indicating a tendency towards

further convergence. In contrast, in the case of ‘construction’ the ergodic distribution is

not tighter, suggesting there will not be any further convergence in the future. Third,

the government sectors also give bell shapes, but with a distinctly fatter upper tail. This

suggests an increasing presence of a small number of counties with a high level of public

employment.

These results by and large confirm our findings in the kernel regressions. Total

employment is becoming concentrated over time. This means that U.S. counties are be-

coming more differentiated in terms of employment, with more counties with little if any

employment, more counties with high employment, and fewer with intermediate employ-

ment. This phenomenon at the aggregate level is a reflection of increased concentration

in ‘retail’, ‘FIRE’ and ‘other services’, and to a smaller extent in public employment. All

other sectors are predicted to either remain at their current level of concentration or to

become less concentrated.

If we compare Figure 4 with Figure 3, we note that hat-shaped ergodic distri-

butions arise whenever the kernel regression has two clearly identified stable equilibria.

This is not surprising: the two deterministic steady states can be thought of as attracting
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points to which employment realizations tend. Stochastic shocks, however, ensure that

employment does not settle in either steady state. Intuitively, the hat shape of the er-

godic distribution results from the ‘mixing’ of the distributions around each of the two

deterministic steady states. The kernel regression, however, fails to predict the extent

of mixing and is therefore less informative. In contrast, whenever the kernel regressions

suggest convergence to a single steady state, the ergodic distribution exhibits a bell shape.

The kernel regression does not, however, indicate whether future concentration will differ

from current concentration. This information is only obtained by calculating the er-

godic distribution. We therefore see that kernel regressions – which are themselves a

generalization of standard β-convergence tests – are less informative than the ergodic

distribution in identifying the direction of change.

As mentioned before, in computing the ergodic distributions, we have used a

10-year ahead transition matrix. One question is whether our results are robust to that

choice. To address this issue, Figure 5 shows the ergodic distribution of total employment

using a 5-year ahead transition matrix and a 15-year ahead transition matrix. As can

be seen, qualitatively our results go through: total employment is becoming increasingly

concentrated. The ergodic distribution changes its shape, however. In particular, using

a 5 year interval to estimate the transition matrix seems to lead to less divergence. This

makes sense: in as far as short term shocks are mean reverting (e.g., trade cycles), one

would expect shorter time lags to lead to more convergence. This is the Galton fallacy

argument as revisited by Quah (1993). In contrast, those mean reverting short term

shocks are largely absent once we move to 10- or 15-year lags, so that we get more

evidence of divergence.

As already mentioned, we do not really view the ergodic distribution as a reliable

picture of the way the world will look like in the future; instead, we believe ergodic

distributions are useful as a way of visualizing current trends. Be that as it may, it is still

interesting to analyze how long it takes to get ‘close’ to the ergodic distribution. Focusing

on total employment, Figure 6 shows what the transition matrices imply about where
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the distribution would be in 2050, 2100 and 2200, if current trends were to continue.20

As can be seen, change is slow. This is consistent with the fact that the transition matrix

is tightly distributed around its diagonal.

4.4 Conditional kernel regressions and ergodic distributions

The analysis presented so far may be misleading if the distribution of employment across

counties partly reflects time-invariant differences. Ergodic distributions computed with-

out conditioning on these differences may underestimate the magnitude of stochastic

shocks and thus misrepresent the long-term distribution of employment across counties.

To deal with this problem, we turn to the conditional model discussed in Section

2. As explained there, we first run a pooled regression of county employment on county

characteristics. This regression has the form (11). The Xi characteristics include a

variety of geographical features for which we have data.21 We then obtain the bzit using
(12). These bzit are then used to calculate a new set of kernel regressions and a new set of
ergodic distributions using formula (13). The methodology followed is the same as for the

unconditional case, except that it is applied to bzit instead of to detrended log-employment
wi
t.
22 We use data of 1970, 1980, 1990 and 2000.

Figure 7 plots the outcome of the kernel regressions of the bzit obtained using (17).
As before, kernel bandwidth is optimized using cross-validation. As explained in Section 2,

this approach is equivalent to the standard conditional β-convergence approach, except

that it allows for nonlinearities. Using this kernel regression to draw inference about

convergence in employment implicitly assumes that the time-varying component of wi
t

can be approximated by a deterministic process.

Comparing Figure 7 with Figure 3, we again get divergence in the middle part

of the distribution of ‘total’ employment. There is some evidence of convergence in

20Figure 6 is obtained by iterating on the transition matrix using.:

pt+s = Aspt

where pt is a vector representing the frequency distribution of log employment and A is the transition
matrix.

21The complete list was given in the data section (Section 3).

22Since bzit is estimated using detrended log employment wi
t, it is itself detrended.
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the lower tail, whereas the upper tail is now flat. Turning to individual sectors, our

previous results are confirmed. The non-service sectors exhibit mostly deconcentration

(convergence), whereas most of the service sectors — ‘retail’, ‘FIRE’, ‘other services’

and ‘local and state employment’ — are becoming more concentrated over time. In other

words, conditioning on time-invariant county characteristics does not change the basic

story: there is concentration at the aggregate level, and this concentration is driven by

the service sectors. This implies that observed concentration is not due to the geographical

differences between counties on which we conditioned.

Conditional ergodic distributions are presented in Figure 8. As explained in the

methodology section, these ergodic distributions are constructed by regressing wi
t on Xi

to remove the time-invariant part Xibθ, calculating the transition matrix of bzit, obtaining
the ergodic distribution of bzit, and finally adding Xibθ back in using the switch in variable
procedure detailed in footnote 10. The optimal bandwidth is chosen following the same

methodology as in the unconditional case.

The basic pattern is similar to that depicted in Figure 4 : ‘total’ employment,

‘retail’, ‘FIRE, and ‘other services’ exhibit a hat shaped ergodic distribution, suggesting

increasing concentration. Taken together, these results suggest increasing concentration

services. The results for non-service sectors are also broadly similar to Figure 4, al-

though in several instances the conditional ergodic distributions display less change than

the unconditional ones. This suggests distributions are changing little over time, once

geographical distributions are taken into account. This is especially clear in the man-

ufacturing sector. Whereas the unconditional ergodic distribution has become tighter

– indicating further convergence – this is no longer true for the conditional ergodic

distribution.

5 Concluding remarks

In this paper we examined how the distribution of employment across U.S. counties is

likely to evolve if current concentration and deconcentration forces remain unchanged. To

do so, we developed a methodology borrowing from the work of Quah and building upon

the literature on β- and σ-convergence. We computed non-parametric β-convergence
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regressions, conditional and unconditional. Using non-parametric methods, we also com-

puted detailed ergodic distributions for total employment and sectoral employment across

U.S. counties.

Our results suggest that employment is becoming increasingly concentrated across

counties. Although very large metro counties may be losing jobs, the proportion of coun-

ties with modal employment is decreasing in favor of medium to high employment coun-

ties. More specifically, the 8% largest counties exhibit deconcentration; the remaining

82% exhibit concentration. This result is consistent with deconcentration across urban

areas (Chatterjee and Carlino, 2001) and concentration across U.S. counties (Desmet and

Fafchamps, 2005). It also confirms the results of Beeson and DeJong (2002) of population

divergence across counties. Whether the overall picture is one of concentration or decon-

centration is not entirely obvious. In terms of number of counties, concentration holds the

upper hand. However, in terms of number of people, deconcentration dominates, since

the 8% highest employment counties accounted for nearly two thirds of total employment

in 1970.

There are important differences across sectors. As in the rest of the literature,

we find deconcentration in manufacturing. Deconcentration is also the norm in other

non-service sectors. However, service activities are becoming more concentrated, in par-

ticular ‘retail’ trade, ‘finance, insurance and real estate’, and ‘other services’. Given the

importance of these sectors, they drive the evolution of the spatial distribution of total

employment. Limiting the focus of analysis to manufacturing is misleading. The U.S. is

a service economy, and services are behaving very differently from the other sectors.

Although we have limited our analysis to employment, our findings may shed light

on the spatial dynamics of productivity and wages across the United States. Using county

level data, Ciccone and Hall (1993) conclude that doubling employment density leads to

a 6% increase in productivity. Similar numbers have been found in subsequent studies

by Harris and Ioannides (2000) for U.S. metropolitan areas and by Ciccone (2002) for

European regions. Here we have looked at employment levels rather than at employment

density. But our qualitative results remain basically unchanged if density is taken as the

dependent variable. Following the insights of Ciccone and Hall (1993), we would expect
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sectors that have been deconcentrating – such as manufacturing – to have experienced

a fall in spatial productivity (and wage) differences. The opposite should have occurred

for aggregate employment and services.

These predictions about productivity and wages are speculative, and warrant

further investigation. They are based on a world in which employment dynamics are

driven by changing agglomeration and congestion effects on the production side. An

example of such approach can be found in Chatterjee and Carlino (2001) who argue that

rising aggregate employment causes congestion costs to rise faster in more dense areas,

leading to deconcentration of jobs. However, other forces – such as congestion on the

consumption side or a change in people’s preferences – may also be at work. In that

case, the picture may be more complex. For instance, soaring house prices in urban areas

could be consistent with densely populated areas losing employment but experiencing

rising wages. Similarly, if people have an increasing preference to live in low density

areas (Beale, 1977), this may lead to deconcentration of employment but increasing wage

differentials.

On the methodological side, our research shows the importance of using non-

parametric methods and of looking at the entire distribution, not just at cities. It also

demonstrates that β-convergence tests, even when done non-parametrically, are not suf-

ficiently informative. Computing the ergodic distribution associated with a given set

of transition probabilities is more useful to understand spatial trends. Moreover, our

approach is able to condition on time-invariant characteristics in a way that is fully con-

sistent with standard analysis of conditional β-convergence. The methodology developed

here can easily be applied to the study of any distributional dynamics.

This paper leaves a number of other questions unanswered. First, it is unclear

whether the forces identified here operate in a similar manner in other time periods and

other parts of the world. Applying the same approach to other data sets is necessary

before we can conclude that the process described here generalizes beyond the confines

of this study. Second, the methodology presented here does not (yet) allow statistical

inference in the normal sense. Statistical tests are reported for some of the statistics

presented here, such as confidence intervals for kernel regressions. But we do not present
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a ‘test’ of (conditional or unconditional) convergence based on estimated ergodic distri-

butions. In principle, such a test could be developed provided an intuitively satisfying

counter-factual distribution could be devised. It should also be possible to use bootstrap-

ping to test whether the mode of the ergodic distribution has shifted to the left or the

right relative to the current distribution (Kremer, Onatski and Stock, 2000). Developing

such tests is left for future research.
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Table 1: Standard deviations of sectoral employment in 1972 and 1992 in logs

Standard deviation of log employment
Sector 1970 1980 1990 2000
Total 1.33 1.37 1.43 1.46
Farming .93 .84 .84 .86
Agricultural Services 1.35 1.41 1.32 1.26
Mining 1.72 1.94 1.83 1.93
Construction 1.54 1.49 1.61 1.49
Manufacturing 1.99 1.88 1.80 1.71
Transportation/Utilities 1.59 1.55 1.56 1.55
Wholesale 1.78 1.65 1.70 1.64
Retail 1.42 1.49 1.59 1.60
FIRE 1.55 1.60 1.64 1.60
Other Services 1.51 1.56 1.62 1.64
Federal Civilian 1.57 1.58 1.61 1.58
Military 1.55 1.56 1.54 1.55
State/Local 1.29 1.35 1.36 1.37

Source: REIS, Bureau of Economic Analysis
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Table 2: Sectoral employment growth on initial sectoral employment (all 3074 counties)

Dependent variable: annual growth rate in sectoral employment 1970-2000
Total Farming Ag serv Mining Constr Manuf Trans/util

emp1970 0.0014 -0.0044 -0.0057 -0.0047 -0.0036 -0.0059 -0.0037

(6.74) (21.59) (12.42) (10.56) (12.49) (26.11) (14.06)

constant 0.0047 0.0220 0.0733 0.0227 0.0506 0.0540 0.0420

(2.56) (15.72) (34.25) (11.27) (28.60) (32.38) (26.07)

Adjusted R2 0.0143 0.0246 0.092 0.0649 0.0533 0.1968 0.0675

Wholesale Retail FIRE Other serv Fed civ Milit State/Loc
emp1970 -0.0048 0.0022 -0.0007 0.0010 -0.0019 -0.0021 0.0004

(17.35) (9.16) (2.69) (4.20) (9.16) (10.73) (2.08)

constant 0.0556 0.0039 0.0290 0.0260 0.0143 0.0012 0.0159

(35.65) (2.22) (18.48) (15.14) (13.80) (1.14) (11.89)

Adjusted R2 0.1019 0.0265 0.0022 0.0057 0.0263 0.0358 0.0011

Absolute values of t-statistics in brackets.

Table 3: Sectoral employment growth on initial sectoral employment 1970-2000 (200

largest counties)

Dependent variable: annual growth rate in sectoral employment 1970-2000
Total Farming Ag serv Mining Constr Manuf Trans/util

emp1970 -0.0037 -0.0007 -0.0058 -0.0083 -0.0058 -0.0114 -0.0074

(3.00) (1.45) (4.52) (6.05) (3.79) (8.85) (5.69)

constant 0.0649 -0.0049 0.0893 0.0571 0.0746 0.1170 0.0859

(4.26) (1.48) (10.41) (6.70) (5.27) (8.55) (7.17)

Adjusted R2 0.0387 0.0056 0.1120 0.1868 0.0642 0.2807 0.1362

Wholesale Retail FIRE Other serv Fed civ Milit State/Loc
emp1970 -0.0100 -0.0066 -0.0037 -0.0031 -0.0058 -0.0058 -0.0028

(7.87) (5.19) (3.09) (2.95) (7.22) (5.91) (2.80)

constant 0.1122 0.0889 0.0604 0.0716 0.0525 0.0308 0.0456

(9.64) (6.77) (5.27) (6.38) (7.67) (3.73) (4.57)

Adjusted R2 0.2344 0.1153 0.0412 0.0372 0.2046 0.1456 0.0333

Absolute values of t-statistics in brackets.
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Table 4: Sectoral employment growth on initial sectoral employment (2874 smallest coun-

ties)

Dependent variable: annual growth rate in sectoral employment 1970-2000
Total Farming Ag serv Mining Constr Manuf Trans/util

emp1970 0.0020 -0.0054 -0.0092 -0.0053 -0.0041 -0.0063 -0.0055

(7.46) (23.78) (16.23) (10.61) (11.16) (23.44) (16.08)

constant -0.0005 0.0285 0.0867 0.0232 0.0533 0.0560 0.0510

(0.22) (18.51) (34.66) (10.99) (24.70) (29.74) (26.04)

Adjusted R2 0.0187 0.1645 0.1619 0.0727 0.0461 0.1753 0.0929

Wholesale Retail FIRE Other serv Fed civ Milit State/Loc
emp1970 -0.0061 0.0036 -0.0011 0.0007 -0.0025 -0.0018 0.0009

(17.00) (11.49) (3.21) (2.26) (9.41) (7.30) (3.76)

constant 0.0616 -0.0052 0.0311 0.0278 0.0170 -0.0002 0.0125

(32.50) (2.36) (15.62) (12.89) (13.31) (0.17) (7.45)

Adjusted R2 0.1054 0.044 0.0035 0.0015 0.0296 0.0179 0.0046

Absolute values of t-statistics in brackets.
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Figure 1: Standard deviation of Figure 1: Standard deviation of Figure 1: Standard deviation of Figure 1: Standard deviation of detrended detrended detrended detrended total employment 1970total employment 1970total employment 1970total employment 1970----2000 (logs)2000 (logs)2000 (logs)2000 (logs)    
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Figure 2: Growth in total employment on initial log employment (1970Figure 2: Growth in total employment on initial log employment (1970Figure 2: Growth in total employment on initial log employment (1970Figure 2: Growth in total employment on initial log employment (1970----2000200020002000))))    
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Figure 3: Unconditional kernel regressionsFigure 3: Unconditional kernel regressionsFigure 3: Unconditional kernel regressionsFigure 3: Unconditional kernel regressions    
 
Employment growth on initial log employment (1970-2000). 
95% confidence intervals based on robust standard errors  
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Figure 3: Unconditional kernel regressions (cont’d)Figure 3: Unconditional kernel regressions (cont’d)Figure 3: Unconditional kernel regressions (cont’d)Figure 3: Unconditional kernel regressions (cont’d)    
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Figure 3: Unconditional kernel regressions (cont’d)Figure 3: Unconditional kernel regressions (cont’d)Figure 3: Unconditional kernel regressions (cont’d)Figure 3: Unconditional kernel regressions (cont’d)    
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Figure 4: Unconditional ergodic distributionsFigure 4: Unconditional ergodic distributionsFigure 4: Unconditional ergodic distributionsFigure 4: Unconditional ergodic distributions    
 
Ergodic distributions are given by the full curve ( — ). For comparison purposes, the distributions 
in 1970 are represented by the dashed curved (---), whereas the distributions in 2000 are given by 
the dotted curves (...). 
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Figure 4: UnconditionalFigure 4: UnconditionalFigure 4: UnconditionalFigure 4: Unconditional ergodic distributions (cont’d) ergodic distributions (cont’d) ergodic distributions (cont’d) ergodic distributions (cont’d)    
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Figure 4: Unconditional ergodic distributions (cont’d)Figure 4: Unconditional ergodic distributions (cont’d)Figure 4: Unconditional ergodic distributions (cont’d)Figure 4: Unconditional ergodic distributions (cont’d)    
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Figure 5: Unconditional ergodic distribution of total employment: effect of time intervalsFigure 5: Unconditional ergodic distribution of total employment: effect of time intervalsFigure 5: Unconditional ergodic distribution of total employment: effect of time intervalsFigure 5: Unconditional ergodic distribution of total employment: effect of time intervals    
    
In Figure 4 the ergodic distributions are computed using a 10-year ahead transition 
matrix. In Figure 5 we show the ergodic distributions of total employment using a 15-year 
and a 5-year ahead transition matrix. 
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Figure 6: Estimated distribution of Figure 6: Estimated distribution of Figure 6: Estimated distribution of Figure 6: Estimated distribution of total employment in 2050, 2100 and 2200total employment in 2050, 2100 and 2200total employment in 2050, 2100 and 2200total employment in 2050, 2100 and 2200    
    
Ergodic distributions are given by the full curve ( — ). The distributions in 1970 is represented by 
the dashed curved (---), whereas the distributions in 2050, 2100 and 2200 are given by the dotted 
curves (...). 
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Figure 7: Conditional kernel regressionsFigure 7: Conditional kernel regressionsFigure 7: Conditional kernel regressionsFigure 7: Conditional kernel regressions    
 
Employment growth on initial log employment (1970-2000). 
95% confidence intervals based on robust standard errors  
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Figure 7: Conditional kernel regressions (cont’d)Figure 7: Conditional kernel regressions (cont’d)Figure 7: Conditional kernel regressions (cont’d)Figure 7: Conditional kernel regressions (cont’d)    
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Figure 7: Conditional kernel regressions (cont’d)Figure 7: Conditional kernel regressions (cont’d)Figure 7: Conditional kernel regressions (cont’d)Figure 7: Conditional kernel regressions (cont’d)    
    
    

Conditional kernel – Military
 

-2.41943 4.45323

-.020177

.010496

Conditional kernel – State & Local
 

-2.04232 3.38629

-.00118

.003675

 



 

42 

Figure 8: Conditional ergodic distributionsFigure 8: Conditional ergodic distributionsFigure 8: Conditional ergodic distributionsFigure 8: Conditional ergodic distributions    
 
Ergodic distributions are given by the full curve ( — ). For comparison purposes, the distributions 
in 1970 are represented by the dashed curved (---), whereas the distributions in 2000 are given by 
the dotted curves (...). 
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Figure 8: Conditional ergodic distributions (cont’d)Figure 8: Conditional ergodic distributions (cont’d)Figure 8: Conditional ergodic distributions (cont’d)Figure 8: Conditional ergodic distributions (cont’d)    
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Figure 8: Conditional ergFigure 8: Conditional ergFigure 8: Conditional ergFigure 8: Conditional ergodic distributions (cont’d)odic distributions (cont’d)odic distributions (cont’d)odic distributions (cont’d)    
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