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 Causal Effects in Social Networks

Marcel Fafchamps*

This paper reviews the current literature on the estimation of causal peer 
effects.  After a discussion of causality in general, I introduce the standard peer 
effect model in networks and illustrate the reflection problem.  I then present 
approaches to causal inference with observational data before introducing 
experimental approaches.  I review estimation issues arising from measurement 
and sampling errors, and discuss how they affect causal inference in network and 
peer effect experiments.  The last section of the paper broadens the discussion to 
encompass dynamic peer effects and link formation and illustrates the different 
meanings that causality can take in the estimation of peer effects.

L’ESTIMATION CAUSALE DES EFFETS DE PAIRS  
DANS LES RÉSEAUX SOCIAUX

Cet article passe en revue la littérature récente sur l’estimation causale des 
effets de pairs. Après une discussion de la causalité en général, j’introduis le 
modèle standard d’effets de pairs dans les réseaux et je donne une illustration du 
problème de réflexion. Je présente ensuite différentes approches de l’inférence 
causale avec des données d’observation, avant d’introduire les approches expé-
rimentales. Je passe en revue les problèmes d’estimation qui sont soulevés par 
les erreurs de mesure et d’échantillonnage, et je discute la façon dont ils affectent 
l’inférence causale dans les expériences d’effets de réseau et d’effets de pairs. 
La dernière section de l’article élargit la discussion pour couvrir les effets de pairs 
dynamiques et la formation des liens, et illustre les différentes significations que 
peut revêtir le concept de causalité dans l’estimation des effets de pairs.
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INTRODUCTION

Economists often talk of peer effects and network effects.  But, as I will argue 
in this paper, there is considerable ambiguity as to what is meant by these expres-
sions.  The use of the word “effect” implies some sort of causality.  What is less 
clear is what causality means in the context of social networks.

In the presentation, I start by reminding us of what economists today mean 
by “causal.” I use a simple example to illustrate the inherent difficulties asso-
ciated with a study of causality.  I then draw upon the lessons learned from the 
literature to illustrate different notions of causal peer effects, and to outline the 
counterfactual experiments required to test them.

Since the purpose of this article is to provide a documented version of my 
keynote presentation, the reader will hopefully excuse the fact that I borrow 
extensively from my own research when providing empirical examples of the 
various issues discussed here.

CAUSALITY IN ECONOMICS

Randomized controlled trials and endogeneity

The literature on randomized controlled trials has had a profound impact on 
how causality is studied in economics.  Randomized controlled trials (rcts) 
are the official procedure by which new medical treatments are authorized for 
use.  To summarize, in an rct the administration of a treatment w is randomized 
across i Î N  patients.  Some proportion of patients, say half, are randomly selec-
ted to receive the treatment while the rest do not.  The former are called the 
treated, the latter are called the controls.  The effectiveness of the treatment is 
verified by comparing outcomes y between treated and control subjects.  If out-
comes are statistically different between treated and controls, e.g., 

	 E E[ ] [ ]y w y w| = 1 | = 0≠

the treatment is said to have a causal effect on outcomes—hopefully, a beneficial 
one.

While this approach has proved useful and influential in economic practice, 
it is a somewhat reductionist view of causality.  Before rcts made their way 
into economics, causality was modeled through flow charts and their mathe-
matical representation, i.e., economic models.  The statistical representation of 
these causal models is the system of simultaneous equations in econometrics.  In 
these models, variables are thought to influence each other in a system.  A simple 
example of such a system is: 

y y z u1 0 1 2 2 1 1= α α α+ + +

y y z u2 0 1 1 2 2 2= β β β+ + + 	
(1)

where variables y1 and y2 are said to be endogenous—they influence each 
other—while variables z1 and z2 are said to be exogenous, since they are not 
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influenced by either y1 or y2.  The availability of exogenous variables z1 and 
z2 ensures that system (1) is identified, in the sense that its coefficients can be 
estimated by using z1 as an instrument for y1 in equation 2, and z2

 
as instrument 

for y2 in equation 1.  rcts are seen as a way of generating “perfect” instruments 
since randomly assigned treatment is, by design, exogenous.

It is also possible to estimate a reduced-form version of system (1) by regres-
sing endogenous on exogenous variables:

y a a z a z e1 0 1 1 2 2 1= + + +

y b b z b z e2 0 1 1 2 2 2= + + +

and there is a direct mathematical relationship between the a’s and b’s—the 
structural coefficients—and the a’s and b’s—the reduced-form coefficients.  As 
long as the system is identified, all structural coefficients can be recovered from 
the reduced-form coefficients.

Causes and theories

rcts are best at producing reliable estimates of reduced-form coefficients.  By 
themselves they do not provide much information on what the structural model 
might be.  For the approval of medical treatments, a reduced-form model may be all 
that we need: as long as the biology of the human body is sufficiently self-contained 
and uniform across individuals, statistical evidence about the efficacy of a treatment 
in a small sample of individuals is able to predict the efficacy of this treatment in 
the population at large.  Better treatments, however, may be found if we have a bet-
ter understanding of the channels by which treatment affects outcomes.  Medicine 
would not be what it is today if rcts were its only tool and it had no understanding 
of how the human body functions as a system of complex mutual causation.

In economics, it is often difficult to predict the effect of a treatment when it is 
applied outside the context of a specific rct.  This is because, in social and eco-
nomic phenomena, the process of causation involves many sub-systems that vary 
across time and space.  The efficacy of a treatment in a particular context may 
not predict its efficacy in another—a problem known as the “external validity” 
of experimental results.  As in medicine, our capacity to predict causal effects 
outside the experiment ultimately rests on our “structural models,” that is, our 
understanding of the channels of causation.  For instance, even if we find that 
poor Kenyan children sleeping under insecticide-treated bednets are healthier, 
we do not recommend that poor Canadian children sleep under bednets.  This is 
because we believe bednets improve health because they protect people against 
malaria-bearing mosquitoes, which are absent from Canada.

Channels are, by definition, endogenous.  But this does not mean that they are 
not causal.  To illustrate, imagine that a primitive tribe observes people entering 
their room in a recently built tourist hotel.  They note that, most of the time, 
light appears in a room shortly after someone enters.  To ascertain whether the 
effect is causal, they run an rct and randomly assign people to rooms.  Results 
confirms that people entering a room cause light to appear.  They try this in 
their home village, but with no success.  They conclude that their research lacks 
external validity because they do not know the channel of causation.
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They go back to the hotel and note that two things typically happen before 
light appears: 1) the person says something—such as “it is so dark in here!”; and 
2) they activate a switch in the wall.  They do not know whether it is the words 
(the incantation) or the action (or both) that cause light to appear—or if the incan-
tation is required before they can touch the switch.  They run more rcts—some-
times preventing people to speak when entering the room, sometimes covering 
the switch, sometimes both.  From their research, they conclude that speaking 
is not necessary.  But touching the switch is nearly always essential.1 Based on 
there findings, they install switches in their huts—but again have no success in 
creating light.

This example illustrates several things.  First, channels are causal even though 
they are endogenous: people get light in their room because they switch the light 
on.  Being endogenous does not make this channel less essential in causing the 
outcome.  Second, an easy way of verifying whether a channel is essential or 
necessary is to remove it and see what happens.  In our example there are nume-
rous channels of causation that are necessary: a switch connected to a lamp 
with a working bulb, itself connected to an electricity source that is operational, 
etc.  All these elements are necessary: should one of them be missing, light will 
not materialize.  If the researcher wishes to identify a sufficient cause, then the 
rct must introduces a new channel.  If the introduction of this channel causes 
the outcome, then this channel is sufficient—within the context of the experi-
ment—even though it may require an endogenous behavioral response.  If there 
exist alternative chains of causation, e.g., torchlight or candle, inference about 
causal channels is even more complicated.

Thirdly, it is possible to devise rcts that examine each of the elements in the 
chain to isolate the necessary ones.  But this search can only be fruitful if the 
researcher starts with a set of hypotheses that include the correct ones.  Because 
channels of causation can be multiple and complex, relying on rcts alone 
is an ineffective way to study causality.  rcts need to be complemented 
by theory, that is, by an intellectual understanding of the possible processes 
of causation.  Furthermore, some hypotheses can be erroneous—e.g., light is 
caused by magical power—even though falsifying them would be difficult.  It 
may be easier to reject these hypotheses on a priori grounds.  To summarize, 
causation in economics cannot typically be understood equipped solely with 
rcts and statistical inference.

PEER EFFECTS IN DIFFUSION NETWORKS

With these few words of caution, we are now in a better position to examine 
inference about peer effects in networks.  I focus first on the estimation of peer 
effects in social networks connecting many individual agents.  Throughout I 
conform to convention and sometimes call each agent a node, and a connection 
between two agents a link.  A network is a collection of agents and the links 
between them.  What the links represent depends on the topic of study.

1.  Some tourists have a torchlight.
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The estimation of peer effects raises a host of issues that have been exten-
sively discussed in the literature—see Moffitt [2001] for an excellent review, 
and Bramoullé, Djebbari and Fortin [2009] for a clear exposition of the issues 
surrounding identification and estimation of peer effect models.  Following this 
literature, we assume that the researcher is interested in estimating a network 
autoregressive model of the form:

	 Y X Y Xi i i i ia g g u= + + + +β ρ δ 	 (2)

where Yi is the decision or outcome of node i, Xi is a set of node-specific va-
riables thought to influence Yi, gi is the vector of links between other nodes and 
i, and Y is a vector of Yi over all observations.  Parameter r captures so-called 
endogenous peer effects, that is, the influence that the outcomes of other nodes 
have on node i.  Parameter d captures so-called exogenous peer effects, that is, 
the influence that characteristics of peers have on node i.  Model (2) focuses 
on diffusion effects—e.g., epidemic, information cascade, adoption of a new 
product.  If Yi is an outcome variable, r and d measure network externalities.  If 
Yi is a choice variable, r captures strategic complementarity or strategic substi-
tution effects.

Model (2) is closely related to the linear-in-means model which assumes that 
network effects depend not on the absolute number but on the proportion of 
adopting neighbors:

	 Y X Y Xi i i i ia g g u= + + + +β ρ δ  	 (3)

with 

	 g
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where di is the degree (i.e., number of links) of noted i.

The choice between (2) or (3) depends on which type of diffusion process is 
most appropriate a priori: if diffusion occurs by contact (e.g., epidemic), model 
(2) is the obvious choice; if diffusion occurs through conformism or imitation, 
model (3) is more appropriate.  Whether peer effects are endogenous or exoge-
nous depends on the type of diffusion mechanism at work.  To illustrate, suppose 
that Yi represents adoption and Xi represents information.  Exogenous peer ef-
fects corresponds to the case where adoption by i depends on whether i’s neigh-
bors are informed, irrespective of whether they adopt themselves.  Endogenous 
peer effects arise if adoption by i depends on whether i’s neighbors themselves 
adopted.

We now discuss how to obtain consistent estimates of models (2) and (3).

Identification and the reflection problem

In a widely cited paper, Manski [1993] discusses the estimation problems 
raised by the linear-in-means model (3).  He considers a specific network 
structure in which people are divided into mutually exclusive, fully connec-
ted groups.  He shows that, in this special case, parameters r and d cannot be 
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separately estimated—they are not identified.  He attributes this to the fact that 
what i does affects what j does and vice versa, and calls this the “reflection pro-
blem.” Similar problems arise for model (2).

Moffitt [2001] illustrates the reflection problem with a simple example, which 
I reproduce here.2 In this example each group has size 2.  We have, in each 
group g:

y x y x ug g g g g1 0 1 1 2 2 3 2 1= + + + +θ θ θ θ

y x y x ug g g g g2 0 1 2 2 1 3 1 2= + + + +θ θ θ θ

Solving this system of simultaneous linear equations for the reduced forms 
yields:

y x x vg g g g1 1 2 1= + + +α β γ

y x x vg g g g2 2 1 1= + + +α β γ

where:

α
θ θ

θ
=
( + )
−

0 2

2
2

1
1

β
θ θ θ
θ

=
+
−

2 3 1

2
21

γ
θ θ θ
θ

=
+
−

2 1 3

2
21

We see that we cannot recover the four structural coefficients q0, q1, q2 and q3 
from the three reduced form estimated parameters a, b, and g.  It is easy to 
verify that the same reasoning applies for larger group sizes.  Moffitt, howe-
ver, notes that if q2 = q3 = 0, then g = 0.  This means that parameter g does 
identify the combined endogenous and exogenous peer effect.  This is infor-
mative in itself.3

Several kinds of approaches have been offered to solve the identification pro-
blem in (2) or (3).  One approach, which is ad hoc but has often been used in 
practice, is to omit one xk variables from the list of exogenous peer effects.  This 
yields an instrument g xi k  for gi Y  and permits identification.  Unfortunately, 
it is often difficult to justify the exclusion of xk from exogenous peer effects—
unless this instrument has been engineered in an experimental or quasi-experi-
mental way.

2.  There is a small difference between Manski and Moffitt in that Manski includes i in the mean 
of i’s peers (reasoning that the mean is actually the expected behavior of the peers) while Moffitt 
does not (reasoning that i does not influence itself).  As it turns out, this difference does not really 
matter in the group model—see Bramoullé, Djebarri and Fortin [2009].

3.  Brock and Durlauf [2001] note that identification can be obtained if y is a dichotomous 
variable.  In this case, model (3) is no longer a linear regression and identification is possible 
through the curvature of the likelihood function for y.  Because identification is achieved through 
the curvature of the likelihood function, it is unclear how robust the method is in practice.
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Manski and Moffit only consider mutually exclusive groups of equal size.4 
Identification is easier in more general networks.  The approach, which has a 
gls flavor, identifies endogenous rgi Y  and exogenous dgi X  peer effects by 
relying on the correlation of residuals.  The intuition behind the approach is that 
if residuals are i.i.d., once we control for exogenous effects any remaining cor-
relation in outcomes across individuals can only arise through endogenous peer 
effects.  To illustrate, I show how the endogenous peer effect coefficient r can 
be estimated from the correlation of residuals.  I express Yi in deviation relative 
to the mean, which lets us ignore the constant term.  For now I omit exogenous 
regressors.  The simplified regression model (2) can then be written in matrix 
form as:

	 Y GY= +ρ u 	 (4)

where G≡[ ]gij  is the network matrix.  Equation (4) can be inverted to yield:

	 Y I G=( − )−ρ 1u

Forming the outer product of the above and taking expectations we get:5

	 E YY I I[ ]′ =( − ) ( − ′)− −ρ ρg g1 1Σ 	 (5)

where Σ≡ ⋅ ′E[ ]u u  is the covariance matrix of the errors.  If we are willing to 
impose sufficient structure on S it becomes possible to estimate r.  For instance, 
if we assume that errors are i.i.d.. with variance s2, it follows that Σ=σ2I  and 
we get:

	 E YY I G I G[ ]′ = ( − ) ( − ′)− −σ ρ ρ2 1 1 	 (6)

This creates a relationship between the data—the outer product of the Yi’s in 
E YY[ ]′ —and the parameter of interest r.  Given the network matrix G it is pos-
sible to recover r from the data using gmm or mle.6  In Appendix 1, we illustrate 
this observation with a simple example.

The approach can be generalized to include dependence on Xi and giX.  In 
matrix form, we get:

Y GY G X= +( + ) +ρ β δ u

Y I G G X I G=( − ) ( + ) +( − )− −ρ β δ ρ1 1u 	
(7)

Here X and GX play a role similar to impulses in time series analysis.7 Identifi-
cation is achieved in the same manner as above.  Assuming strict exogeneity of  
X, estimation can be achieved by applying mle or gmm to (7).

4.  Identification is in principle possible from data on fully connected groups of different 
size.  This is because larger groups have stronger multiplier effects than small groups.  This generates 
variation across groups that can be used to estimate r—see Bramoullé, Djebbari and Fortin [2009] 
and the references cited therein.

5.  I have assumed that the network matrix g is non-stochastic.  I return to this issue later.
6.  This is not very different qualitatively from time series analysis where the chronological 

nature of the data is used to obtain an estimate of the autocorrelation coefficient r.  Here, unlike in 
time series data, there is two-way influence, hence the square matrix.

7.  This is because r “transmits” the effect of u across peers, while d does not.  It follows that any 
correlation in errors ui between peers would constitute evidence of r-type of effects, i.e., endogenous 
peer effects.
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The problem with the above approach is that we have to assume i.i.d.. errors 
to obtain a consistent estimator of the causal peer effect r.  This ignores the pos-
sibility of contextual effects (as Manski calls them), that is, external or environ-
mental influences common to a group or subset of agents.  If contextual effects 
are uncorrelated with X, we can still use the above approach by expanding S 
to include group-specific random effects.  If they are correlated with X, we can 
add a vector of group dummies to X.  Both of these approaches, however, break 
down if the u are correlated across observations in arbitrary ways, or in the pres-
ence of heteroskedasticity of unspecified form.  For these reasons, the literature 
has developed estimators of peer effect models that do not require assumptions 
about the specific form of S.

Causal inference with observational data

The problem with (7) is that stringent assumptions about the error structure 
are needed to estimate r.  To overcome this problem, Bramoullé, Djebbari and 
Fortin [2009] propose an iv method that addresses the identification problem wit-
hout making such assumptions.  The canonical network autoregressive model is:

	 Y GY X GX= + + +ρ β δ u 	 (8)

The idea is to use G2X—the characteristics of the neighbors of the neighbors 
of i—as instrument for GY.  This is similar to the concept of spatial lags used 
in spatial econometrics.  Bramoullé, Djebbari and Fortin [2009] also extend the 
iv method to allow for sub-population fixed effects, and derive conditions under 
which this strategy is identified.

Spatial models

The approach can be generalized by borrowing from the literature on spa-
tial autoregressive models ([Anselin [1988], Drukker, Prucha and Raciborski 
[2001]).  This literature seeks to estimate a canonical model of the form:

Y GY X= + +ρ β u 	 (9)

u u e= +λM 	 (10)

where e is i.i.d.. and everything is in matrix form. Matrix G represents the spatial 
or network dependence across outcome variables Y and M represents the spatial 
or network dependence across the errors.  It is possible to assume that G M= , 
but it is not necessary.  Note that, as written here, (9) does not include exoge-
nous peer effects of the form GX.  It immediately follows that endogenous peer 
effects GY can be instrumented using GX, so that the model is identified.  More 
about this later.

In spatial data, matrices M and G can be formed of inverse distances, 

e.g., M=[ ]mij  and m
distij

ij
=

1
 where distij is the distance between i and j. 

Sometimes these distances are truncated upwards, e.g., setting mij = 0  if 
dist kmij > 500 , for instance.  M and G can also be contiguity matrices, e.g., 
mij =1 if i and j share a border.  Network data fit perfectly in this setup since a 
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network matrix basically constitutes a (non-Euclidian) contiguity matrix.  Eco-
nometric methods developed to deal with spatial models with contiguity matrices 
are thus applicable to network autoregressive models.

To estimate the system (9) and (10), we must be able to solve the following 
reduced-form equations:

Y I G X I G=( − ) +( − )− −ρ β ρ1 1u

u e=( − )−I Mλ 1

which clearly requires 1) that I M−λ  and I G−ρ  are non-singular, so that they 
can be inverted; and 2) that the inverses are finite.  The first requirement means 
that it is not possible for G and M to have l’s everywhere, as would be the case 
if the network is complete.  The second requirement puts a restriction on the size 
of the largest eigen value of  I M−λ  and I G−ρ  so that the network multiplier 
effect does not “explode.” This requirement ensures that the equilibrium value 
of Y is interior.  It de facto rules out network interaction models with multiple 
equilibria, which cannot be estimated using this method.

We also note that:

	 E G G I G[ ]( ) ′ = ( − ) ≠−y u uρ 1 0Ω

where Wu  is the covariance matrix of u.  This is another way of saying that, in 
equation (9), the regressor GY is endogenous since it is correlated with u.

Estimation

One avenue for estimating model (9) and (10) is to assume that errors e are 
homoskedastic and distributed normally, and apply maximum likelihood.  We 
have:

	 Ωu uu= ′ = ( − ) ( − ′)− −E I M I M[ ] σ λ λ2 1 1

Solving (9) and (10) for y in terms of e yields:

	 Y I G X I G I M=( − ) +( − ) ( − )− − −ρ β ρ λ1 1 1e 	 (11)

This expression, which is similar to (7), can be used to construct a log-likelihood 
function.

Various 2sls and gmm estimators have also been proposed to estimate re-
gression model (9) using instrumental variables to deal with the endogeneity 
of GY.  Kelejian and Prucha [1998], for instance, suggest using the following 
instruments: X, GX, G2 X as well as MX, MGX, MG2 X.  The authors suggest 
beginning with X, GX, G2 X as instruments and applying standard 2sls.  A more 
efficient estimator can be obtained using the same instruments in a gmm setting.

As discussed earlier, Bramoullé, Djebbari and Fortin [2009] generalize this 
approach to allow for exogenous peer effects.  Their model is of the form:

	 Y GY X GX= + + +ρ β δ u

This means that now GX enters as a regressor directly into the model and cannot, 
therefore, be used as instrument for GY.  Instrument G2 X nevertheless remains, 
and this is the approach suggested by the authors.  Building on the work of 
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Lee and Liu [2010], Liu et al. [2012] combine the approaches of Kelejian and 
Prucha [1998] with that of Bramoullé, Djebbari and Fortin [2009] into a gmm 
approach.  They also propose a correction of the gmm estimator for the presence 
of small-sample bias.

Causal inference using experimental approaches

More convincing causal inference on network peer effects can be achie-
ved using data from controlled or natural experiments.  A growing number of 
studies have sought to resolve the endogeneity of giY  by using experimental 
methods.  These studies can be roughly divided into two unequal groups: those, 
the most common, that “seed” the network exogenously with an experimen-
tal treatment to instrument Y but regard existing links gi as given; and those, 
still rare, that seek to instrument gi using experimental or quasi-experimental 
variation.

Seeding the network

Examples of estimation of peer effects using experimental data but existing 
links are found in Fafchamps and Vicente [2013], Giné and Mansuri [2011], and 
Fafchamps, Vaz and Vicente [2014].  Many of the estimation issues raised by 
such experiments are discussed in Baird et al. [2014].  In these experiments, a 
treatment 

 
Ti is introduced that has a direct effect on Yi.  This treatment can also 

have two kinds of indirect effects: a diffusion effect to individuals not directly 
treated but whose neighbors were treated; and a reinforcement effect on treated 
individuals whose neighbors were also treated.  Variation in treatment across 
neighbors or in i’s number of neighbors can be used to obtain identification.

The reduced-form or intent-to-treat version of the model is of the form:

	 Y X T T Xi i i i i ia g g u= + + + ′ + +β θ ρ δ 	 (12)

The iv or structural version uses giT as instrument for giY in (13):

	 Y X T Y Xi i i i i ia g g u= + + + ′ + +β θ ρ δ 	 (13)

Since giT is nothing but the number8 of i’s neighbors who were treated, the 
results from the reduced form (12) and structural form (13) are typically very 

similar since variation9 in the instrumented giY  is nothing but a multiple of 
variation in giT.  When both T and Y are dichotomous variables, applying iv to 
(13) using giT is the standard late estimator.

In practice, it is common for researchers to subsume contextual effects giX 
either in network/group fixed effects, or in individual fixed effects.  With indi-
vidual fixed effects the researcher needs data on Yi from before and after treat-
ment.  With such data, we can estimate:

	 ∆ ∆ ∆ ∆ ∆ ∆Y X T Y Xit it it it t it t itg g u= + + ( )+ ( )+β θ ρ δ 	 (14)

8.  Proportion, if we use the linear-in-means version of the model.
9.  I mean the part of the variation that is uncorrelated with or not explained by Xi and giX.
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where D denotes the first-difference estimator, i.e., ∆z z zit it i t= − −, 1  and 
∆( )git itT  is used as instrument for ∆( )git tY .  If the vector of contextual effects 
Xt does not change over time (e.g., because it only contains time-invariant 
characteristics) the first regressor drops out of (14).  In addition, if git does not 
change over time either (e.g., because the researcher only collected the informa-
tion at baseline), (14) simplifies to:

	 ∆ ∆ ∆ ∆Y T Yit it i t itg u= + +θ ρ 	 (15)

using giDTt as instrument.  This requires that Tt changes over time, which is 
typically ensured by collecting data prior to treatment (i.e., baseline data) and 
after treatment (i.e., follow-up data), and setting treatment such that T0 = 0 for 
all and T1 > 0 for some randomly selected individuals.

If Xi does not change but git changes over time—and the researcher is willing 
to regard this change as exogenous—then (14) can be rewritten as:
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In practice, researchers often have only one data point for gi.  In this case,  
Dgit = 0 and the above simplifies to (15).  Contextual effects within locations 
can be corrected for by clustering standard errors by location.

Network sampling and measurement error

Chandrasekhar and Lewis [2012] discuss sampling issues surrounding the 
estimation of non-AR(1) reduced form model (12) that include indirect effects 
terms.  Dropping exogenous peer effects for simplicity of exposition, the esti-
mated model they investigate is of the form:

	 Y T GTi i ia g h u= + + ( )+ρ γ 	 (16)

where h(GT) is a vector of aggregate statistics on treatment network GT.  In 
Banerjee et al. [2012]’s application of this methodology to the diffusion of mi-
crofinance, GT includes the network distance from i to the “seeded” or treated 
individual k, together with various measures of the centrality of k.

The issue that Chandrasekhar and Lewis focus on is the measurement error 
bias in g that results from constructing GT statistics from a sample of the total 
network G.  To illustrate the problem, imagine that we sample only 50% of the 
population and focus on the distance between i and k.  Let the true distance be 
dik.  In practice, the estimate of dik that we can construct from a 50% sample 
overestimates dik since we do not observe all the links in G.  This measurement 
error in turn biases g.  Chandrasekhar and Lewis illustrate the size of the bias for 
different sampling ratios, and show that the bias gets large if the sampling ratio 
falls below 50%.  They propose a bias correction methods that uses the informa-
tion available from G and the sampling ratio to bracket what the true dik should 
be, assuming that G is a random sample of the total population.
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This problem affects ar(1) network autoregressive models as well except if 
the experiment only treats individual in the sample.  If other, unsampled indivi-
duals are treated too, there will be a bias in r.  To illustrate, imagine that some 
locations are treated and others not.  In treated locations, for each sampled indi-
vidual who was treated, there is one unsampled individual who was also trea-
ted.  Further imagine that each sampled individual i has exactly two friends, one 
sampled and one unsampled.  We estimate the first difference model (15).  The 
regressor of interest giT is the number of treated friends.  By assumption the true 
value of giT in treated locations is 2 but the observed value is 1.  In other words, 

 giT is mismeasured to be exactly half of its true value.  It follows that when we 
estimate (15) using available information, the coefficient estimate r  will capture 
the effect of having two friends and thus will be twice its true value, i.e., we have 
ρ ρ= 2 .  The fact that r  is biased does not, however, imply that inference about 
the existence of peer effects is biased: if ρ = 0  then ρ= 0  as well.  Hence if we 
reject that ρ= 0  it implies that r is also not equal to zero.  This example can be 
extended to more complex cases: as long as E[ ]ρ > 0  if r > 0 and vice versa, we 
can draw inference on whether r > 0 from r  (see for instance Fafchamps and 
Vicente [2013]).

In a related vein, Fafchamps, Goyal and Van der Leij [2010] discuss how to 
conduct inference when the researcher only observes a subset of the links between 
individuals.  In this case, the researcher observes the whole population but not 
all the links.  This is a typical situation for secondary data on certain links, like 

Figure 1. Simulated acquaintance networks
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collaborations, citations, or phone calls: there are social interactions that are not 
observed by the researcher.  In this case, the network distance in the observed 
network dc is weakly larger than the distance in the denser true network da.  If the 
observed network is embedded in the observed network, however, dc provides 
some useful information regarding da.  Since the observed network is a subset 
of the unobserved network, we must have: da  dc.  It follows that E[ ]d da c|  in-
creases with dc.  In other words, dc provides information about unknown da since 
the average value of unobserved da increases monotonically with observed dc.

This is illustrated by Fafchamps, Goyal and Van der Leij [2010] with a simple 
computer experiment.  We first generate a random “acquaintance network” of 
1 000 nodes and 2 500 links between randomly chosen pairs of nodes.  Figure 1(a) 
shows a histogram of this simulated acquaintance network.  Next, let us random-
ly select 1 000 links from the “acquaintance network” to obtain an “observed 
network.” As the observed network is a subgraph of the acquaintance network, the 
distance in the acquaintance network between two nodes is bounded from above 
by the distance in the observed network.  We then analyze the relation between 
da and dc in these simulated networks.  Figure 1(b) shows the results.  As expec-
ted, E[ ]d da c|  increases monotonically with dc.  Given that there is a monotonic 
relation between dc and da, dc is a valid proxy variable for da.  The requirement 
is that dc is not so much above the distribution of da that u uE[ ]d d da c c| / 0→ . 
Above this point, dc is no longer informative about E[ ]da .

Identification and the speed and strength of diffusion

Paradoxically, causal peer effects may be difficult to detect if they are too fast 
or too strong.  This is easily illustrated with the following example.  Imagine that 
a fire breaks out in an office building.  One person observes the outbreak and 
passes the information to her immediate office neighbors, who quickly pass it on 
to their own office neighbors, and so on.  Within minutes everyone is informed 
and leaves the building.  In this example diffusion is so rapid that an external 
researcher is unable to estimate regression (16).  The reason is that Yi—aware-
ness of the fire—is rapidly common to all workers, irrespective of their local 
network gi.  Hence there is no correlation between Yi and i’s position in the 
network.  Yet, it is obvious in the example that peers are essential to the diffusion 
of the information.  This means that diffusion must be slow enough, relative to 
the type of data available, for it to be observed by the researcher.  It is also true 
that, if diffusion is too slow relative to the researcher’s time frame, network 
effects will also fail to be observed.

Even if diffusion is rapid, peer effects may nevertheless be detectable pro-
vided diffusion is incomplete.  This arises if the network is split into distinct 
components or parts.  To illustrate with the example above, imagine that workers 
on a different floor of the building are not made aware of the fire because there 
is no communication between them and the rest of the building.  As a result they 
do not leave the building on time—an outcome that is observable.  This shows 
that network effects in fast diffusion processes can be observed if the network is 
split into distinct components—as long as “seeding” is sufficiently uncommon 
so that some components are not seeded.

This is easily illustrated with a simple diffusion model.  Let Yit be individual 
i’s awareness of the fire at time t.  The more aware of the fire someone is, the 
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more likely they are to take evasive action, e.g., to leave the building.  Peer 
effects are modeled as a reinforcing process of awareness that takes place over 
time: the more aware my network neighbors are of the fire, the more I become 
aware of it myself.  Let Y Y YNt t t= ′[ ]1 , ...  be the vector of awareness of all indi-
viduals in the network at time t.  We have:

	 Y GYt t tu= +−ρ 1 	 (17)

where ut denotes a vector of external impulses, e.g., the “seeding” of information 
from an exogenous source.  We first note that if uit = 0  for all i and all t, Yit = 0  
is the equilibrium of the system: no awareness of a fire is an equilibrium if no one 
in the network has received any information about the fire.  Now consider what 
happens when one individual receives a message ui about an imminent fire, and 
this message remains constant over time (i.e., it is not a false alarm).  How does 
awareness of the fire among the network evolve over time?

We first check whether process (17) has a finite resting point or equilibrium, 
that is, a point at which: 

	 Y GY= +ρ u 	 (18)

where u ui=[ ]0, ..., , ...0 .  A finite resting point would mean that awareness about 
the fire does not “explode” in a fleeing frenzy.  If such a point exists, it is given 
by: 

	 Y I G=( − )−ρ 1u

A sufficient condition for a finite solution to exist is that r be smaller than the 
largest eigenvalue of G—which is for instance guaranteed if r is smaller than 1 
over the maximum degree of any agent.10 When r is large enough, an interior 
equilibrium does not exist: awareness spreads rapidly and in an exponential man-
ner, and all individuals connected through the network become aware of the fire, 
which we define as reaching a value of Y about some threshold Y .

A high r also implies a rapid diffusion of the information, meaning that the 
awareness level of an arbitrary network member j rises rapidly over time and 
quickly reaches Y .  This is illustrated in figure 3 for different values of r for a 
fully connected network of size 3.11  Since in this example the average degree 
is 2, a sufficient condition for Y to increase without bound is r > 1/2, which 
is indeed what we find.  For r < 1/2, Yjt converges to a constant value; for 
r > 1/2, it increases without bounds.  We also note that increasing r above 1/2 
shortens the time it takes Yjt to reach Y —which we take to be the awareness 
level required to observe fire awareness, e.g., fleeing behavior.

If the researcher observes fleeing behavior at intervals longer than the time 
required for information to spread to the entire network—e.g., every T > 20 
periods in figure 3 when r = 0.51—no information can be revealed about the 
precise value of r from detailed information about the initial impulse ui and the 
structure of the network G: before the network is seeded with ui, Yi = 0 for all i;  

10.  This is related to the concept of Bonacich centrality in network theory.  See Jackson [2009] 
for details.

11.  We set ui = 1 for one node i from t = 1 onwards, and we trace the evolution of Yjt for one 
of the other two nodes.  We set Y = 10  and only report values of Yjt up to Y .
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and after awareness has spread, Yjt  Y for all those connected to i in the 
network.  In both cases, there is no variation in fleeing behavior across indivi-
duals that is associated with proximity to individual i, and hence no econometric 
identification of r.  The only causal identification that the effect of seeding in 
disjoint components, that is, networks that are unconnected: unseeded networks 
remain at Y = 0 and they do not flee, while seeded networks quickly converge 
to Y  Yand they flee.

Creating exogenous links

As we have seen, estimating (13) by experimentally seeding the network 
with information (or another treatment) requires that gi be exogenous to treat-
ment.  This requires either that information about gi be collected prior to treat-
ment, or that the network information collected after treatment be orthogonal to 
treatment—e.g., family ties.12

Even so, we cannot completely rule out the possibility that inference is affec-
ted by network self-selection.  To see why, imagine that we “seed” farmers with 
information about a new fertilizer.  We observe that farmers A and B, who are 
network neighbors, both adopt although only farmer A was informed about the 
new technology.  It is tempting to conclude from this that A passed the infor-
mation to B and thus that we observed network diffusion.  We cannot, however, 
rule out the possibility that A told everyone about the new fertilizer but only his 
friend B adopted because both A and B are “modern” farmers interested in new 
technology, and this is why they are friends in the first place.  Here susceptibility 

12.  Even here, though, recall bias may generate measurement error that is correlated with 
treatment if people remember better those family ties that received treatment.

Figure 2.  Evolution of Yjt



Revue économique

672

Revue économique – vol. 66, N° 4, juillet 2015, p. 657-686

to treatment is correlated with network proximity: people for whom the effect of 
treatment is large (small) are linked to others for whom the effect of treatment 
is also large (small).  Hence we observed correlated adoption along network 
neighbors as a result of treatment—even though there is no diffusion along social 
networks.

Only exogenously assigned links can solve the problem of network self-selec-
tion in a fully convincing way.  A number of papers have used random assign-
ment of students to teams to identify peer effects.  In a seminal study, Sacerdote 
[2001] uses random assignment of roommates and dormmates at Dartmouth 
College to demonstrate social network effects on grade point average (gpa) and 
joining social groups.  Lyle [2007], [2009] and Shue [2011] use similar strate-
gies.  Fafchamps and Quinn [2013] organize a randomized field experiment that 
combines a link formation treatment with a information seeding treatment.

To illustrate, consider the following diffusion model:

	 Y X Y Xit i i t i ita g g u= + + + +−β ρ δ1

where peer effects are assumed to take time to materialize, hence the lag on 
Yt - 1.  A treatment tij aims to create new links between i and j such that tij 

is a valid instrument for gij.  Hence we can instrument gij using tij, and use 

gi
p
tY -1  as instrument for gi tY -1 , where gij

p  is the value of gij predicted by 
tij and where g g gi

p
i
p

in
p≡[ ]1 , ..., .  Since Xi and giX are by design orthogonal to 

the instrumented value of gi tY -1, they can be ignored from the regression and 
subsumed in the error term.  We can therefore estimate a model of the form:

	 Y Yit i t ita g u= + +−ρ 1
′

using gi
p
tY -1  as instrument.  This regression model basically estimates the 

extent to which a treatment that induces people to link also induces them to 
change their behavior or outcome Yit in a way that is consistent with diffusion 
along newly created network links.  The corresponding intent-to-treat or reduced 
form version is:

	 Y Yit i t ita v= + ′ +−ρ τ 1

Exclusion bias

Guryan, Kroft and Notowidigdo [2009] argue that exogenously assigning 
individuals to groups generate a specific negative bias in the estimation of peer 
effects.  They estimate a linear-in-means model of the form:

	 Y Yi i ia g u= + +ρ

where gi Y  represents the average of variable Y for those in the same group as i, 
where group membership gi  is randomly assigned within a given experimen-
tal population.  The authors show that this framework mechanically results in a 
negative bias in r.  In their paper Yi is performance in a golf tournament and ui 
is unobserved ability.  The intuition is that high ability golfers are matched with 
individuals who are, on average, of lower ability while low ability golfers are 
matched with individuals who are, on average, of higher ability.  This generates 
a mechanical negative correlation between ui and gi Y .  Caeyers and Fafchamps 
[2015] call this an exclusion bias, and examine the nature of the bias in detail and 
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use simulations to quantify the magnitude and sign of the bias with and without 
different types of fixed effects.

One remedy to exclusion bias is to include a proxy for the average ability of 
the peers—e.g., based on their performance in earlier tournaments.  Because the 
bias is mechanical, it is also possible to conduct consistent inference about the 
existence of peer effects by using bootstrapping to correct p-values instead.  This 
approach, discussed in detail by Caeyers and Fafchamps [2015], works as fol-
lows.  Let the model to be estimated be written:

	 Y Y
C

i
j i

j s is= + +
∈
∑β µ ε 	 (19)

where Ci is the (randomly assigned) neighborhood of i and µs is an experimental 
session fixed effect for individual i.  We wish to test the null hypothesis that 
b = 0.  The distribution of b  under the null can be simulated as follows.

•	Take the pool of subjects assigned to treatment and, within each pool (e.g., an 
experimental session), randomly reassign subjects to new “lacebo groups” Pi.

•	For each subject, generate a new 
j i

j∈∑ P
Y .  By construction the only source 

of correlation between 
j i

j∈∑ P
Y  and Yi is the exclusion bias.

•	Estimate (19) using 
j i

j∈∑ P
Y  in lieu of 

j i
j∈∑ C

Y  and store the estimate  

of bp .

•	Repeat this a large number of times.  The resulting frequency distribution of 
bp  simulates the distribution of b  under the null hypothesis that b = 0.  This 

distribution is not centered around 0 since 
j i

j∈∑ P
Y  is negatively correlated 

with Yi as a result of random selection without replacement.

•	Use the simulated distribution of bp  to compute a corrected p-value for test 
that b = 0 in regression (19).

Deleting links

Experiments aimed at creating new social links ultimately seek to identify 
sufficient causal processes.  Other researchers have documented what happens 
when social links are removed.  This identifies necessary causal processes.

Mevlude and Yuksel [2011], for instance, examine the long-term consequences 
of Jewish expulsions in Nazi Germany on the educational attainment and poli-
tical outcomes of German children.  They find that they had significant detri-
mental effects on the human capital and political development of Germans who 
were at school-age during the Nazi regime.  This suggests that the availability of 
qualified teachers and professors is necessary in order to educate the population, 
in the sense that an exogenous reduction in the supply of teachers and professors 
results in lower education levels.

In a similar vein, Patnam [2011] identifies the effect of corporate networks 
on firms’ financial investment and executive pay decisions.  The idea behind 
the paper is that board interlocks provide a channel for non-market interactions 
amongst firms.  Using panel data for all publicly traded companies in India, 
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Patnam estimates peer effects in firm policies.  Identification is achieved by 
exploiting exogenously changes in board interlocks caused by the death or reti-
rement of shared directors.  Significant network peer effects are found that are po-
sitively associated with firms’ investment strategy and executive compensation.

This paper is particularly relevant to our purpose because board interlocks are, 
by nature, endogenous: they result from a choice made by firms to share board 
directors.  Even though board interlocks are created endogenously, they may 
end for exogenous reasons.  Patnam’s paper thus illustrates how it is possible to 
identify the causal effect of endogenous social links by studying what happens 
when they are abruptly severed.

CAUSAL NETWORK EFFECTS REVISITED

The literature on peer effects that we have summarized so far is extensive 
and varied.  But it is all about the diffusion model.  The logic of this model 
is borrowed from epidemiology: a social network is given exogenously, and a 
diffusion process takes place over it.  Although it is possible to construct micro- 
economic foundations for it (e.g., Liu et al. [2012]), the model does not allow any 
link formation or deletion.  The network has to be exogenous.  Any suspicion of 
endogeneity is seen as threatening claims about causal peer effects.

As a result the diffusion framework is ill-suited to the study of many interesting 
phenomena in which networks play an important role in the causal chain.  To illus-
trate, imagine someone is told of a new job opportunity in their favorite ice cream 
shop.  They call different people and find out how to apply.  In the end, they get 
the job.  Would we say that because applying for the job was endogenous, it did 
not have any causal impact on getting the job? Clearly not: applying is an essential 
element of the causal chain—like the light switch in our earlier example.  The same 
is true of the different social contacts that were created to locate the information 
about how to apply: these social links were initiated by the job seeker and are thus 
endogenous; but they were essential in obtaining the necessary information.  These 
endogenously created links are part of the causal chain, they are a channel by which 
the job was obtained.  The fact that social contacts are endogenous does not imply 
they can be ignored in policy design.  Especially, removing the possibility of social 
contact would, in this example, result in the job going to someone else.

Dynamic peer effects

Comola and Prina [2014] offer an elegant way of thinking about the causal 
role of endogenous network effects in an experimental setting.  They consider a 
randomized controlled trial in which treated individuals are located in a baseline 
social network G0 ≡[ ]gio .  The researchers observe an outcome at baseline and 
endline, denoted Y0 and Y1, respectively.  They also observe the social network 
G1 1≡[ ]gi  after treatment.  They write the diffusion model in the following form:

	 Y Y
Y Y T T
i i i i

i i i i i i

a g e
a a g g e

0 0 0 0 0

1 0 1 1 1 1 1 1 1

= + + +

= + + + + + +

ρ µ

ρ β δ µ
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where Ti1 0,1={ }  denotes treatment (set to 0 at baseline) and µi denotes an 
individual fixed effect.  As before r captures endogenous peer effects while d 
measures exogenous peer effects.

If the social network matrix is time-invariant so that G1 = G0 the diffusion 
model boils down to the standard:

	 ∆ ∆ ∆Y G Y T GT= + + + +a e1 ρ β δ

which can be estimated using the approach discussed earlier.

In what Comola and Prina call a dynamic peer effect model, part of the 
causal effect of treatment is achieved through a recomposition of the social 
network.  We have:

	 ∆ ∆ ∆ ∆ ∆Y G Y GY G Y= + + +a1 0 0ρ ρ ρ
	 + + + +β δ δT G T GT0 ∆ ∆e

There are three types of endogenous peer effects in this model: G0DY (our 
earlier endogenous peer effect term), DGY0 (the network recomposition effect), 
and the combined effect DGDY.  Comola and Prina note that the three types 
of endogenous peer effects are typically correlated.  As a result, ignoring the 
change in network structure DG and dropping the DGY0 and DGDY terms 
results in a biased coefficient r.  The authors build on Bramoullé, Djebbari and 
Fortin [2009] and Liu et al. [2012] to construct suitable instruments and apply 
the model to empirical data, allowing r and d to vary across terms.  They find 
that a large share of the peer effects r occurs through a recomposition of the 
network—mainly through the DGDY term.  This suggest that a significant share 
of the peer effect results from a recomposition of the network to adjust to the 
change in outcome.  Put differently, people form new links to individuals whose 
outcome has been changed as a consequence of treatment—and they drop links 
to people whose outcome has not changed—and part of the effect of treatment 
is mediated through this network recomposition.

To illustrate this idea with an example, imagine a treatment that induces 
people to adopt a new practice.  This treatment effect is magnified by network 
effects, i.e., people are more likely to adopt if their network neighbors adopt as 
well.  Dynamic peer effects arises when people drop links with non-adopters, 
create links with adopters, and this leads them to adopt even more.  This situa-
tion would naturally arise for network goods, that is, goods with strategic com-
plementarities between neighbors.  Typical examples include software products 
whose usefulness increases with the number of using neighbors.  In this case, 
it is rational for people to rewire their network to increase proximity to other 
adopters.  This is an endogenous effect in the sense that it is correlated with own 
adoption.  But it is still a channel through which peer effects magnify the effect 
of treatment: if people were unable to rewire their network, the total effect of 
treatment on adoption would be smaller.

Cause or means to an end

Improper inference about peer effects can arise from a fundamental impreci-
sion regarding what a link is.  To illustrate, imagine I survey graduate students 
and ask them, “If you have a question regarding econometrics, who do you turn 
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to?” I collect their answers and subsequently obtain information about their mark 
in econometrics.  I regress their mark on the type of link they listed.  I find that 
those who listed the econometrics professor obtain higher marks.  Is this evi-
dence of a causal effect of the link on exam performance?

There are many potential problems with this example, e.g., links could be 
correlated with interest—students gifted in econometrics share a common 
interest with the econometrics professor and are therefore more likely to 
talk to each other.  Another source of difficulty that is often overlooked in 
empirical work is that people report certain links more than others, or that 
they report links that do not yet exist but could easily be created.  Suppose 
the latter.  In this case, it is conceivable that students who are more confident 
in their capacity to articulate an econometrics question to the professor are 
also more likely to list the professor as possible source of information.  Here 
we have a case of response bias—the link does not actually exist in the way 
the researcher thinks about it—and this bias is correlated with unobserved 
student ability.  In fact, it is probably the case that all students can in prin-
ciple see the professor, but only some students decide to avail themselves 
of this opportunity.  In this case, the correlation between exam mark and 
listing the professor says nothing about the importance of network effects—
everyone has access to the professor, there cannot be network effects in the 
sense that those with a link have an advantage—but the correlation says much 
about student heterogeneity.

Comola and Fafchamps [2014b] propose a methodology for testing whether 
discordant responses given to the above question are better interpreted as links 
or as willingness to link.  Suppose we use their methodology to test whether 
students listed an actual link to their econometrics professor, or a willingness 
to link with the professor should a question arise.  Further, suppose that we 
conclude it is willingness to link.  It follows that we have no evidence of a causal 
effect of the reported “link” on exam performance: all students could approach 
the econometrics professor if they wanted to, but some are reluctant to do so for 
reasons that are partly correlated with ability.

Does this imply that linking to the professor is unimportant for exam 
performance and that we should, therefore, cancel office hours? No, because 
linking to the professor is the means by which some students achieve a good 
outcome.  Put differently, social links often are the channel by which peer 
effects are achieved.  The ultimate cause of the peer effect is the choice to 
link, but the peer effect could not be achieved if linking was made impos-
sible.  In other words, social links can be the essential channels by which 
diffusion of information and practices is achieved even though they do not 
cause diffusion per se.

There are many examples of diffusion that fit this description.  Think of 
Granovetter’s [1995] job search example: people activate their network to 
find job information and do so until a job is found.  People who have neglec-
ted to build links with others may find it harder to find a new job, but their 
lack of network may be a consequence of their own earlier choices, which 
could be driven by their preferences—which in turn could be partly deter-
mined by their genes, which in turn could be the consequence of human 
evolution through mate selection, etc.  The search for a cause that is not 
“endogenous” is largely futile.
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Encouraging link formation

Fafchamps and Quinn [2013], [2014] push this idea one step further.  They 
use data from two field experiments in which entrepreneurs are given an oppor-
tunity to form new acquaintances with a few other entrepreneurs.  They then 
examine whether entrepreneurs who are given this opportunity are more likely 
to emulate each other’s business practices.  They also investigate whether this 
effect is stronger for new acquaintances predicted by homophily compared to 
acquaintances that are not.  The logic is that people naturally react to an oppor-
tunity to make new friends in a small crowd by congregating with people that 
resemble them—e.g., same age, gender, ethnicity, religion, etc.  There is a large 
literature that documents the fact that nearly all social networks of friendship and 
acquaintance display a strong element of homophily (Jackson [2009]).  One can 
therefore interpret homophilous links as those that are more likely to happen by 
default, without specific purpose or goal—other than the pleasure of socializing 
with people sharing similar interests and background.  Non-homophilous links, 
therefore, are more likely to result from purposive link formation—such as links 
one would form to access new information or opportunities.  Fafchamps and 
Quinn [2013] test whether diffusion is associated more with homophilous or 
non-homophilous links.  They find some evidence that small entrepreneurs who 
link with large entrepreneurs are more likely to emulate them than entrepreneurs 
of similar size.

While the evidence the authors are able to provide remains impressionistic 
only, the approach illustrates the idea that peer effects may be stronger for links 
that are formed precisely to access them.  This is logical: if agents form certain 
links to access information and benefit from network externalities, it is natural 
to expect these links to channel more information and to generate stronger exter-
nalities—and hence to have stronger peer effects.

In the limit, it is even conceivable that peer effects arise only through purpo-
sively formed links.  To illustrate, imagine that a new online game is intro-
duced.  Consider an online gamer who is currently not linked to anyone playing 
the new game.  To play the game, the gamer has to form new links to others 
interested in playing the new game.  The fact that these links can be created is 
essential in the adoption decision: if such links could not be made, the gamer 
could only play alone and game would have little or no value.  In this example, 
rewiring the network is essential to capture network externalities.  Peer effects 
are a characteristic of the online game that are manifested by the formation of 
new links among adopters.  In this example, purposive link formation is evi-
dence of peer effects, and is an essential ingredient to diffusion.

Purposive link formation

This leads us to wonder whether most social links observed in practice re-
sult from a purposive decision process—or arise serendipitously.  If economic 
agents form links to achieve a self-serving purpose—e.g., to access relevant 
information about jobs, technology, and other market-relevant opportunities—
then we expect social links to be created in a way that favors efficiency.  Full 
efficiency may not be achieved if agents do not internalize the externalities they 
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create for others, but social networks should maximize the individual benefits 
from link formation.  In contrast, if people form links for reasons other than the 
maximization of self-interest, social networks need not circulate information and 
other benefits in an efficient manner.  It is therefore of considerable interest to 
study the process by which social links are created in practice.

In the last couple of years, I have, in collaboration with various coauthors, 
initiated a number of experiments aimed at understanding the motives people 
have when forming social links that can generate economic gains for themselves 
and others.

There exists a considerable literature documenting other-regarding prefe-
rences in experimental games (Charness and Rabin [2002]).  Experimental sub-
jects often make choices that are consistent with altruism, envy, or both (e.g., Fehr 
and Schmidt [1999]).  What is less clear is whether other-regarding preferences 
also affect link formation.  Belot and Fafchamps [2014] conduct a dictator-type 
experiment in which subjects determine the payoffs of four players—their own, 
and that of three other players.  In one treatment the choice is couched in the form 
of an allocation process: the subject chooses between two payoff vectors for four 
players.  In another treatment, the choice is framed as a partner selection process 
whereby the two unselected partners must team up with each other.  Payoffs 
are determined by partner selection.  Payoff vectors are identical across the two 
treatments.  We show that subjects with a higher endowment display signifi-
cantly more altruism in the first than in the second treatment, while subjects 
with a lower endowment appear to act more spitefully in the partner selection 
treatment.  Partner selection thus appears not to bring out the best in people.

Davies and Fafchamps [2014] implement a simplified version of the gift ex-
change game of Brown, Falk and Fehr [2004] in an anonymized setting.  The 
game is couched as an employer-employee contract and played by Ghanaian 
university students.  Various treatments are investigated including relational 
contracting, reputation sanctions, praise and criticism, and worker non-enfor-
ceable promises.  While Brown, Falk and Fehr [2004], [2012] have found evi-
dence that relational contracting and reputational sanctions discipline workers 
and increase efficiency, we find considerable under-performance or shirking by 
subjects playing the role of employee, and persistent loss-making wage offers 
by subjects acting as employees.  These findings are largely insensitive to treat-
ment, and outcomes are inefficient (effort is too low) and inequitable (employers 
receive near-zero payoffs while employees enjoy large positive gains).  Reci-
procity has often been thought to be the cornerstone of social networks of favor 
exchange (e.g., Bloch, Genicot and Ray [2008], Jackson, Rodriguez-Barraquer 
and Tan [2012]).  These findings suggest that reciprocity may not be natural in 
an anonymous setting.  It follows that the formation of social links to serve as 
favor exchange conduit need not be as easy as often anticipated.  A social context 
may be necessary to trigger social norms that limit cheating.

If economic agents are weary of cheating and abuse by others, this may de-
ter link formation.  To investigate this possibility, Fafchamps and Hill [2014] 
construct an anonymous, zero-feedback experiment in which subjects increase 
their payoff by joining a group, but also expose themselves either to the destruc-
tion or to the appropriation of their payoff by others.  In a third treatment, people 
who join a group can give part of their payoff to others.  The experiment was 
conducted in the uk, Kenya and Uganda.  We find that African subjects steal 
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less and destroy no more than uk subjects.  But the fear of payoff destruction 
acts as a deterrent to group formation, especially among African subjects.  We 
also find that uk subjects give less than African subjects, but are also less likely 
to join a payoff-increasing group in the giving treatment.  These results suggest 
that the fear of stealing and destruction by others can discourage link forma-
tion, more so in some populations than in others.  Attitudes towards anonymous 
giving also affect willingness to form links, with differences across populations 
as well.  These findings suggest that efficiency-enhancing links need not be 
formed.

To investigate this issue further, Comola and Fafchamps [2014a] use observa-
tional data to test whether self-reported favor exchange links are best understood 
as resulting from unilateral or bilateral link formation.  Bilateral link formation 
corresponds to the concept of mutually agreed contract or arrangement—as 
for instance assumed in the seminal papers of Coate and Ravallion [1993] and 
Kocherlakota [1996].  Unilateral link formation is more akin to the idea of so-
cial norms of reciprocity making it difficult to refuse demands to help—and 
offers to help.  Using data on favor exchange from Tanzania and India, we find 
evidence suggesting unilateral link formation: many links exist—and trans-
fers take place—that only benefit one side.  Using detailed transfer data from 
Tanzania, De Weerdt and Fafchamps [2011] examine whether transfer patterns 
between villagers are consistent with the constraints imposed by rational reci-
procity.  They find that they do not.  In the Philippines, Fafchamps and Gubert 
[2007] similarly find that most transfers between households take place among 
relatives and neighbors.

When compared to our experimental findings, the results suggest that the 
formation of efficiency-enhancing links—such as favor or gift exchange—may 
need a social context that triggers either feelings of altruism or norms of reci-
procity.  To investigate this possibility, Caria and Fafchamps [2014a] run a link 
formation experiment with Indian farmers.  The experiment is designed as a 
treasure hunt: one subject receives information about a treasure that generates 
a positive payoff.  All other subjects who have access to this information also 
receives the treasure.  In one treatment, forming a link to another subject gives 
access to all the information this subject has.  In another treatment, forming a 
link with someone gives that person all the information the subject has.  In the 
first treatment, it is optimal to link to the person with the most information.  In 
the second treatment, it is efficient—but not privately beneficial—to link to 
someone who can pass the information to the most subjects.  We find that par-
ticipants understand the game but systematically depart from making efficient 
choices, either for themselves or for others.  When we introduce an artificial 
identity treatment, we find that it distorts link formation—subjects prefer to link 
to their own group even if it lowers their individual payoff.  Aggregate efficien-
cy, however, is unaffected—probably because it is already low even without the 
identity treatment.  What this suggests is that human subjects are not particularly 
good at forming links that maximize either their individual payoff or the payoff 
of the entire group.

To investigate this issue further, Comola and Fafchamps [2014b] conduct an 
experiment in which participants can form links with two other subjects.  Links 
generate different payoffs for each player.  Side transfers are not allowed.  The 
experiment allows for sequential offers and counter-offers, in a way that mimics 
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a matching algorithm.  Payoff matrices are selected such that, if subjects follow 
myopic best response, rapid convergence to a unique strongly pairwise stable 
(sps) equilibrium is guaranteed.  The experiment is conducted with French 
university students.  Even though the game is complex and involves multiple 
offer rounds, we find little departure from the strongly pairwise stable equili-
brium and high levels of aggregate efficiency.  Departure from the sps appears 
to be primarily due to satisficing behavior: some subjects stop making offers 
too soon.  We also find that more information about others’ payoffs speeds up 
convergence.  These findings suggest that the human mind is well attuned to 
competition over partners, so much so that the theoretically predicted equili-
brium is reached in nearly all games and sessions—an outcome rarely observed 
in laboratory games.

Taken together, this evidence suggests that link formation is only partially 
driven by material gain.  Other considerations interfere with the decentralized 
formation of efficient networks, such as the (justified) fear of being cheated 
or left out, adherence to (even arbitrary) social identity, and satisficing beha-
vior.  Given these constraints it is probably unsurprising that empirical social 
networks center around shared genes and shared life experiences.  In fact, we 
typically think negatively of individuals who befriend others only when they ex-
pect to derive a personal gain.  Social opportunism is frowned upon, and people 
are often asked to demonstrate their absence of social opportunism by incurring 
costs and undertaking tasks that a purely selfish individual would not do.

This means that humans, as social animals, are not always encouraged to form 
social links in a purposive, self-interested manner, as a response to changes in 
external incentives.  We are expected to form durable bonds with carefully selec-
ted individuals whose help can be mobilized in response to changes in circums-
tances.  If we unilaterally form new bonds in response to external incentives, 
we are supposed to form them at least in part for altruistic reasons, not purely 
out of self-interest.  In contrast, if we form bonds by mutual agreement, com-
petition with others ensures that formed links are mutually beneficial.  In such 
environment, self-regarding behavior appears to be less problematic, and more 
efficiency is achieved in experimental conditions.  One possible interpretation 
of this finding is that the human mind is naturally attuned to market exchange, 
a conclusion that reinforces other market experiments such as those pioneered 
by Vernon Smith.

Strategic interactions and multiple equilibria

Finally, there are situations in which trying to identify causal peer effects 
is misguided.  To illustrate, imagine a short race in which competitors are 
randomly assigned to teams of two players and must drive a car as quickly 
as possible between two points.  Clearly, they cannot both drive the car at the 
same time.  Since it is a short race, switching drivers is probably not a good 
idea.  Hence it is optimal for one of the competitors to drive and for the other to 
serve as navigator.  Should we infer from this evidence that one player’s driving 
causes the other player’s to navigate?

Causal inference is the wrong question here: we have multiple equilibria 
but, because of strong strategic substitution effects, they all have the common 
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feature that players specialize, i.e., their actions are negatively correlated.  This 
is a consequence of the game structure which creates interdependency between 
the actions of the agents; it is not driven by causal peer effects.

The example can be expanded to include strategic complements as well.  Ima-
gine that each competing team can choose to drive in different cars but they 
win if both team members cross the finish line sooner than all other pairs of 
competitors.  This rule implies that it is optimal for teams to ride in the same 
car.  Hence if they have the choice between different cars, we will observe them 
getting into the same one: because the rules of the game create strong strategic 
complementarities, their choice of car will be the same even though, if all cars 
are equivalent, which car they pick does not matter.  Should we infer from this 
evidence that one player’s choice of, say, car 27 causes his team player to choose 
the same car? No: players choose to ride in the same car—in whichever way they 
decide—because of the incentive structure of the game.13

Causal inference is not a particularly interesting question here: there are mul-
tiple equilibria with correlated actions.  How players choose the car is largely irre-
levant: they could talk about it beforehand, they could agree beforehand that one 
of them will choose for both of them, they could argue over it at the start of the 
race, it does not matter.  The outcome is identical, i.e., they ride in the same car.

What this example illustrates is that evidence about the existence of strategic 
complements and substitutes can be extracted from the pattern of correlation 
between choices made by players who are close to each other—without trying 
to second-guess which of the two influenced the other.  If behaviors are strate-
gic substitutes, behaviors will be more negative correlated between individuals 
who are close to each other, i.e., capable of influencing each other’s strategic 
incentives.  Similarly, if behaviors are strategic complements, they will be more 
positively correlated between nearby individuals.  How convincing such evi-
dence is depends on the extent to which correlation in contextual effects could 
account for the observed patterns.

Fafchamps and Söderbom [2014] use this approach to study the adoption of 
business practices in Ethiopia and Sudan.  They conclude that some business 
practices are probably characterized by strategic substitution effects—e.g., free 
riding on vocational training offered by a competitor.  In a different context, Faf-
champs and Quisumbing [2003] use a similar approach to study specialization 
in household chores.  They find a strong gender divide in the allocation of tasks, 
but also evidence of strategic substitutes in assignment to task within gender 
group.  They argue that this suggests the presence of returns to specialization—
a bit like driving a car: some things are better done when only person does it, 
even if it does not matter who does it.  In the same spirit, Van den Boogaart, 
Fafchamps and Söderbom [2014] examine the diffusion of mobile money in 
an African country, looking for tell-tale signs that diffusion is driven by sprea-
ding information about the existence and reliability of the new service.  They 
conclude that the diffusion pattern is more consistent with the presence of 
network externalities.

13.  An astute observer may note that it should be possible to organize an rct whereby one 
player is assigned to a car, and observe whether this assignment “causes” the team member to select 
the same car.  Finding this to be the case, the observer may correctly conclude that assigning a driver 
to, say, car c causes the team member to select c as well.  This experiment is not by itself revealing 
of the true cause of coordination, which is the incentive structure of the game.
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CONCLUSIONS

In this paper I have sought to clarify some of the many issues surrounding the 
estimation of causal effects in social networks.  Most of the current econometric 
literature on this issue focuses on the estimation of an ar(1) network autoregres-
sive model thought to arise from network externalities or strategic complemen-
tarities.  In this model, diffusion takes place over an existing network, with no 
formation of new links.

The literature has made considerable progress on how to obtain consistent 
estimates of this model from observational and experimental data.  I discussed 
many of the issues that arise, such as identification, the role of instrumental 
variables, and the usefulness of experimental approaches.  Next I discussed see-
ding experiments whereby the researcher introduces information into an exis-
ting network and observes its diffusion.  While such experiments offer much 
promise, they are not a magic bullet.  The literature has identified a number of 
sources of bias.  I note that the effect of sampling bias varies with the type of 
model being estimated.  Observation bias can arise as well, and I discussed how 
this type of bias can be circumvented in some cases.

Link self-selection bias has received more attention in the literature, and has 
been identified as a potential source of bias in many empirical papers seeking 
to estimate causal network effects.  The proposed solution to this problem is to 
conduct link formation experiments.  Such experiments are susceptible to a spe-
cific source of bias, called exclusion bias.  This bias can fortunately be corrected, 
but has been largely ignored in empirical analysis of network effects relying on 
exogenous link formation.  I also discussed whether link formation experiments 
seek to identify sufficient or necessary causes: sufficient causes can be identified 
with experiments seeking to create new links; necessary causes can be identified 
by experiments that destroy existing links.  The distinction has not been fully 
recognized in the literature, yet it has important implications for policy design.

Once we allow for the possibility that social networks recompose over time, 
the notion of a causal network effect becomes elusive: what if a network effect 
is achieved by creating new links, or by using existing links in new ways—i.e., 
what if the network effect is endogenous? Does this make it less causal? Using 
simple examples, I argued that a network effect can be both causal and endoge-
nous—and in fact that many factors that we regard as causes are endogenous in 
practice.  For instance, we all understand that turning on a light switch is what 
causes light to appear in a room.  This is true even though the act of turning on 
the switch is endogenous, in the sense that it is the result of purposive action on 
our part.

This led me to discuss the existing evidence regarding the nature of the link 
formation process.  Using results from several recent experiments, I argued that 
people do not always form social links in the purposeful way that is often assu-
med by economists.  Much link formation appears to be serendipitous—based on 
shared genes, identity, or life experiences, and less on self-interest or aggregate 
efficiency concerns.  When link formation is unilateral, experimental subjects 
seem to experience difficulty in forming efficient networks, and their actions 
are partly driven by other-regarding preferences.  Subjects do better when link 
formation is the result of a competitive process of offers and counter-offers, as 
typically happens in market exchange.  I ended by observing that, in the presence 
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of strategic interaction and multiple equilibria, (negatively or positively) cor-
related actions should arise out of the structure of incentives, not because the 
action of one person “causes” others to behave in a certain way.  In these cases, 
correlated actions are caused by incentives, not by peer effects.  Many network 
effects studied in the empirical literature have this character, and can in principle 
be studied by looking at the correlation pattern directly.

For lack of space I have left out a number of important issues, such as the pro-
cess by which economic agents influence others, the shape of the influence func-
tion (e.g., Jackson [2009]), and the possibility of saturation effects (e.g., Baird 
et al. [2014]).  Even with these omissions, this rapid overview has illustrated that 
the study of causal effects on social networks is a challenging topic.  Much pro-
gress has been realized in recent years, but much remains to be done.  Hopefully 
this papers helps to show the way forward.
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APPENDIX

To illustrate how the network autoregressive parameter can be identified from data, 
imagine 5 nodes in a circle and suppose that each node is influenced by its left neighbor. 
I - rG has the form:
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The corresponding matrix (I - rG)- 1 is: 
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The exponent of r is the distance from i to j in the directed network G.  The covariance 
matrix of Y is:

	
E YY[ ]′
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a≡ + + + +1 2 4 6 8ρ ρ ρ ρ

b≡ + + + +ρ ρ ρ ρ ρ3 4 5 7

c≡ + + + +ρ ρ ρ ρ ρ2 3 4 5 6

which demonstrates how r can be estimated from the sample moments of matrix E YY[ ]′ .


