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Abstract

We investigate how individuals form social connections to access information.
In our link formation game of one-way-flows, the myopic best response is to link
to the node with the highest informational reach, which depends on indirect links.
This strategy leads to the efficient circle network. Wefind thatmyopic best response
predicts the links that subjects form. However, some subjects target high-degree
nodes instead, neglecting indirect connections. This reduces network efficiency.
We obtain similar findings when subjects link to transfer information to others.
Using a minimal group treatment, we also find evidence of in-group homophily in
link formation.
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A core insight from network theory is that the diffusion of information depends on
the structure of social networks (Goyal, 2011; Banerjee et al., 2013). For example, we
know that the circulation of information is facilitated when networks are densely con-
nected, and hindered when they are split into distinct communities (Bala and Goyal,
2001; Golub and Jackson, 2012). The mechanisms that create different network struc-
tures, however, are poorly understood. Part of the difficulty arises from the fact that,
even in network formation problems of moderate size, the decision tree faced by each
decision maker is so large that deriving an optimal forward-looking strategy is quite
complex.

An important class of theoretical models has sought to address this difficulty by
proposing sequential link formation models in which each agent plays a myopic best
response strategy (MBR), defined as forming the links that maximise the subject’s util-
ity in the current network (Bala and Goyal, 2000), without considering how these links
may affect the future play of others (Jackson andWatts, 2002). Little evidence however
exists on whether and when people actually follow such strategies.

To fill this knowledge gap, we experimentally investigate a simple network forma-
tion game in which MBR is intuitive and naturally leads to an efficient outcome. MBR
is not the only plausible strategy to follow, however. People may rely on heuristics in-
stead, that is, on strategies that follow a simple rule of thumb. In games of information
sharing, such a heuristic may be to link to the highest degree node: if everyone follows
this heuristic and information flows two-way, the resulting network has a star shape
which is known to be efficient for many games. Since we wish to establish whether our
subjects can play MBR, we select an experimental game in which linking to the high-
est degree node is not a good heuristic. This enables us to test whether subjects adopt
MBR when their heuristic is ill-suited.

Our experimental design also serves another important purpose: to test whether
human subjects take into account the indirect connections of their information partners
when they form new links. While many formal and informal networks have a star
shape1, where a single node aggregates all information, highly centralised network
structures are not always possible. For example, using data from Banerjee et al. (2013)

1For example, formal online exchange networks such as Google, Facebook, or Amazon. Further,
Galeotti and Goyal (2010) report evidence suggesting that a number of important informal learning
networks (online and offline) have a core-periphery structure, which is closely related to the star network.
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we show in the next section that in villages in rural India – the setting of our study
– there are no global information aggregators. A likely reason is that serving as the
information aggregator at the centre of a star imposes large costs that few are willing to
bear (Caria and Fafchamps, 2017) and requires information processing capabilities that
few people have. If the social network cannot be expected to take a perfect star shape,
individuals should condition their link formation decision on the indirect connections
of the nodes to which they link. The question is whether they are capable of doing so.

Our experimental design is chosen to investigate these two research questions si-
multaneously: do people follow MBR; and do people take indirect links into account
when forming a link.2 Sincewe do not know a prioriwhat preferences subjects have, we
perform the analysis with two games that have a well-defined MBR for two different
types of generic preferences: selfish and altruistic.3

We also investigate the distortion that social identity can bring to the formation of
efficient information sharing networks (Akerlof and Kranton, 2000). Empirical studies
have documented that people have a strong tendency to interact with socially similar
individuals (McPherson et al., 2001; Currarini et al., 2009; Golub and Jackson, 2012).
Less is known on whether people are prepared to compromise private or aggregate
welfare in order to restrict social interaction to their in-group. To investigate this pos-
sibility, we introduce a minimal group treatment to ascertain whether group identity
distorts link formation and reduces information sharing.

To achieve our objectives we conduct a laboratory experiment in which links enable
subjects to observe the information others have. In the first treatment, which has a self-
ish MBR, subjects are invited to sequentially create one social link to observe others’
information. This information is non-rival: all the subjects who learn the information
receive the same payoff. The MBR is to link to the node with the highest reach, that

2Our experiment, on the other hand, is not well suited to study network formation in contexts where
some subjects are willing and capable to serve as information aggregators at the centre of the star, or
where subjects interact only in small tight-knit groups. Our experiment is also not designed to study the
formation of networks that emerge to enforce informal transactions (Greif, 1993; Chandrasekhar et al.,
2018). While in the real world these two types of networks often overlap, an advantage of our laboratory
setting is that we are able to observe link formation decisions that are only motivated by information
acquisition and information transmission.

3In the recent literature, altruistic preferences are also referred to as ‘efficiency-minded’ (Charness
and Rabin, 2002).
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is, the node who directly or indirectly accesses the largest amount of information. Infor-
mation flows one way, without decay, and each subject can only form one link. These
design features prevent subjects from forming a direct link to all other players: subjects
must prioritise to whom they link. They also ensure that players can easily identify the
player with the highest reach.4 If everyone plays according to MBR, the resulting net-
work is a circle and information reaches all players. In the second treatment, the link
that a subject forms serves only to give their information to another person, not to ob-
tain information from them. The efficient network is also a circle, but in order to reach
it using an MBR, subjects must behave altruistically.

To study the effect of social identity, we randomly divide players into two arbitrary
groups, and we vary whether players are informed of other subjects’ group affiliation.
This social identity treatment arm is crossedwith the other two treatments. Experimen-
tal designs based on minimal arbitrary groups have the key advantage that the effect
of social identity is not confounded by other factors that may be correlated with group
membership. Previous research suggests that artificially created minimal groups are
sufficient to activate group identity and lead subjects to discriminate against out-group
individuals asmuch as theywould do in real groups (Tajfel, 1981; Brewer, 1999; Yamag-
ishi and Kiyonari, 2000; Charness et al., 2007; Akerlof and Kranton, 2010; Goette et al.,
2012; Lane, 2016).

We implement our design with a population of male farmers in rural India. This
population has a large need for information about agricultural technology, but has lim-
ited access to media or government advice services. As a result, farmers often search
for relevant information by asking for advice frombetter informedneighbours (Comola
and Fafchamps, 2014). Indirect connections play a key role in this process of informa-
tion diffusion (Banerjee et al., 2013).5 Since we restrict the sample to men (as they are
most likely to have decision power over agricultural technologies — see for example
Majumder and Shah (2017)), an important caveat is that our results do not necessar-
ily apply to women, who may face different constraints and incentives when forming

4When information flows two-waywith decay andmultiple links are allowed, calculating the optimal
strategy becomes substantially more complex, even in small networks.

5 Using experimental data from a micro-finance awareness campaign in Indian villages, Banerjee
et al. (2013) show that targeting the campaign on farmers with more direct connections to other villagers
does not improve overall diffusion; what does is targeting farmers who have more direct and indirect
connections.
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social networks (Beaman et al., 2018).
The main results of our experiment are as follows. We find that, in all treatments,

MBR is highly predictive of individual link-formation decisions. Half of the observed
linking choices are consistent with an MBR either to obtain information for oneself (in
the first treatment) or to disseminate information to others (in the second treatment).
However a sufficiently large number of subjects deviate from these strategies so that
only about 10 % of the experimental sessions converge to a circle. On average, the
networks formed by participants generate expected payoffs that are 35 % lower than
those generated by the circle network.

To identify what drives subjects away from efficiency, we look at deviations from
MBR. The biggest efficiency loss comes from subjects who link to the node with the
largest number of direct links. Since it is hard to rationalise such behaviour as part of
an MBR or more sophisticated forward-looking strategy, we suspect that it is a mani-
festation of a common social heuristic: some subjects pick an action that seems appro-
priate in a general information-sharing context, instead of working out a best response
for the game at play (Gabaix and Laibson, 2005; DellaVigna, 2009). We validate this
conjecture in several ways. We first note that, if the conjecture is correct, linking to
the highest degree node should become more common over time as the complexity of
the network increases and mental resources are depleted. By the same reasoning, this
action should also become more frequent when identifying the optimal link is harder.
This is indeed what we find in the data. We also provide some evidence that subjects
who link to popular individuals outside of the experiment – and can thus be expected
to have this heuristic – are also those who link to high degree nodes in the experiment.

Regarding our social identity treatment, we are able to verify that randomly divid-
ing people in minimal groups triggers in-group norms in the link formation game.
When we disclose information about group membership, subjects form more links
with their in-group. However, this does not generate an additional loss of efficiency.
The reason appears to be that subjects exhibit an in-group preference onlywhen choos-
ing between in-group and out-group nodes that are in an equivalent network position.

Our findings complement the literature in several ways. We contribute to the study
of efficiency in network formation (Jackson and Wolinsky, 1996; Bala and Goyal, 2000)
by showing that, in a simple link formation game, (i) MBR predicts subjects’ decisions,
but (ii) deviations fromMBR are sufficiently frequent to prevent the formation of the ef-
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ficient network and to generate a loss in expected payoffs of about 35 %. Some subjects
follow an inappropriate heuristic instead of relying on a simple myopic best response.
This indicates a need for theoretical work on behavioural network formation. In partic-
ular, our evidence suggests to ‘stress-test’ MBR network models to ascertain the extent
to which their theoretical predictions are robust to behavioural deviations from simple
MBR.

Our findings also cast some doubt on the ability of human subjects to form efficient
networks when an information aggregator – e.g., a for-profit company such as Google
or a government agency – does not exist. Our evidence shows that, even in the simplest
information sharing environments, some people make linking decisions that decrease
welfare for themselves and others. As a result, efficiency in information diffusion de-
pends on the extent to which common heuristics fit strategic realities. As the evidence
provided by Banerjee et al. (2013) demonstrates, they often do not.

We also contribute to the lab experiment literature on network formation. Exper-
iments published to date have explored the role of inequity aversion (Goeree et al.,
2009), coordination (Berninghaus et al., 2006), and far-sightedness (Callander andPlott,
2005; Conte et al., 2009; Kirchsteiger et al., 2016). We add to this literature by study-
ing an experiment where (i) the MBR is based on indirect connections, and (ii) playing
MBR naturally leads to the efficient network. A separate strand of the experimental lit-
erature has documented that degree is a strong predictor of play in games of strategic
complements (Gallo and Yan, 2015) and strategic substitutes (Rosenkranz andWeitzel,
2012; Charness et al., 2014). We show that degree is also an important predictor of
link-formation decisions, even when ill-suited to the context. Falk and Kosfeld (2012) –
who study a game of unilateral, one-way-flow link formation based on Bala and Goyal
(2000) – is the experiment most closely related to ours. Our experiment differs from
theirs along several important dimensions. First, we focus on a population that relies
heavily on informal social networks for accessing relevant information (Comola and
Fafchamps, 2014). Second, we include several features that minimise coordination is-
sues and eliminate the need for computation, thereby reducing the risk that inefficient
behaviour is due to strategic or computational complexity.6 We find that, in our ex-
periment, an efficient network is reach in about 10 % of the sessions, compared to half

6 In our design, links are added to the network one at a time and players are allowed only one link,
so that the only cost of a link is the opportunity cost of not forming another link.
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the time in Falk and Kosfeld (2012). This illustrates how tight bounds on efficiency can
emerge when small groups of players rely on ill-suited heuristics. Thirdly, we include
a social identity treatment, something that is absent from their work.

A final contribution is to the literature on homophily and identity economics more
generally (Akerlof and Kranton, 2000). Empirical studies of social networks document
that individuals interact more with people from the same group (McPherson et al.,
2001; Rogers, 2003; Berg et al., 2017). Most of these studies, however, cannot convinc-
ingly distinguish the desire to link to similar individuals – homophily means ‘love of
the same’ – from linking opportunities, which are typically lowerwith out-groupmem-
bers. We improve on this literature by implementing an alternative test of homophily
based on variation in the information available about the group affiliation of other indi-
viduals. Our results confirm that individuals in our experiment display a desire to link
to in-groupmembers, in spite of the fact that groupmembership is randomly assigned
within the experiment.

1 Design

Our experiment is designed to focus on our two main questions of interest: do sub-
jects follow amyopic best response; and do subjects take indirect links into account. To
this effect, we opt for a network formation game in which information flows one way
without decay. One key advantage of this design is that it produces simple predictions
about myopic best response for different types of preferences that can be put to the test.
Studying myopic best response would be more challenging in a two-way-flow model:
if information travels through the network without decay, any link to the giant compo-
nent is equally beneficial (e.g., Bala and Goyal (2000)); and if information travels with
decay, calculating the optimal link is beyond the calculating capacity of most subjects
(e.g., Jackson (2010)).

In the game design we consider one node receives a valuable non-rival signal, but
which node receives the signal is not known a priori. The objective of the game is
to be connected, directly or indirectly, to as many nodes as possible, to maximise the
probability of being connected to the player who receives the signal and hence to ob-
serve their valuable information. We thus obviate issues related to the aggregation of
multiple signals and biased inference (Enke and Zimmermann, 2017; Chandrasekhar
et al., 2015). By allowing players to form a single, one-way connection, we rule out the
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emergence of a node serving as information aggregator andmake indirect connections
salient. This serves to focus attention on our second question – do people take indirect
links into account.

Given our experimental design, the informational reach of a player i can naturally
be defined as the number of players whose signal i observes, either directly or indi-
rectly (i.e., through other nodes). A player with a reach of three thus ‘observes’ three
other players. We also define the in-reach of a player i as the number of individuals
who directly or indirectly observe i’s signal. A player with an in-reach of two is thus
‘observed’ by two other players. If the number of nodes in the network is n and we
normalise the value of the signal to 1, the expected payoff πi of a player i is given by a
linear function of his reach:7

πi = (reachi + 1)/n . (1)

In practice, to implement the idea of a valuable signal, we give a monetary prize
to the player that receives the signal and to the other subjects that reach this player
in the network. The prize is worth 100 Indian Rupees (5.2 USD at purchasing power
parity), which is about 85 % of the average daily wage paid by the NREGA public work
program in that area in 2012-2013. In the instructions, we explain that the prize can be
thought of as a valuable piece of information about a new agricultural technology that
farmers share across the social network.8

1.1 The link-formation game

We play the link-formation game with groups of six players. Each player can form one
link and one link only. The game starts with no links yet formed. In the first round,
each player takes a turn in which he can link to one other player. Links are formed
unilaterally – without requiring the consent of the other player. They are recorded on
a network map displayed on a white board visible to all players and updated after ev-
ery turn. This means that, when a player’s turn comes, he can see all the links already
formed before choosing who to link to. A number of design features ensure sequential
updating takes place without breaking anonymity.9 In the second round, each player

7We present additional notation and definitions in the Appendix.
8All instructions are available in the online Appendix.
9Participants record their decisions on a personal game sheet. Cardboard screens ensure partici-

pants cannot see what other players write on their game sheet. Further, all participants have to update
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is given a chance to rewire their link, i.e., to drop the link they formed in round one
and link to another node instead. The order of players in each round is randomly as-
signed.10

Information flows oneway over the link that each player adds to the network: either
to or from the player forming the link.11 In treatment T1, a player who links to a node
reaches all the information that node accesses. This means that if, for instance, player
A links to player B, then player A receives the monetary prize if B wins, but not vice
versa. In the left panel of Figure 1 this is represented with an arrow pointing fromA to
B, meaning that A ‘observes’ B. In Figure 1, by connecting to player B, A also reaches
players C and D and hence receives the prize if C or D are declared winners. Player
A’s reach is given by the number of players in set {B,C,D}. In this example player A
reaches three players in the network and thus has four chances out of six of receiving
the prize – one by himself, and three more chances through B, C and D.

In treatment T2, information flows in the reverse direction: instead of accessing
information, the player who forms the link transfers all their information to the other
player. For instance, if A links to B, then B receives the prizewheneverAwins it, but not
vice versa. This is illustrated in the right panel of Figure 1 where an arrow pointing
from B to A means that B observes A’s information. Player A’s in-reach is given by
number of players in the set {B}, that is, the set of nodes that observe the information
available to A.

Since the objective of our experiment is not to test whether subjects are able to read
network graphs (Dessi et al., 2016), information about reach (in T1) or in-reach (in T2) is
provided to subjects; they do not have to calculate it themselves.12 After two rounds the

their game sheet at every turn of the game, making it impossible to infer which player has the turn. A
set of regressions, available upon request, shows that the connections between participants outside of
the experiment are not a significant predictor of the links chosen during the game. This confirms that
anonymity was maintained in the experiment.

10Participants are informed that the order of play is chosen randomly, but do not know the particular
order of play which has been drawn for their session. In both rounds, players have the option not to
form any link. This option is used extremely rarely.

11This does not rule out the possibility that two players directly observe each other. However, for this
to be the case, each player in the pair has to create a link to the other person.

12The counting of connections is done by means of a Java application running on a small laptop op-
erated by the game assistant. After entering a new link, in T1 (T2) the software produces a table with
the reach (in-reach) of each player in the current network. This number is written next to the respective
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Figure 1: Links in T1 and T2
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game ends, at which point a winner is drawn at random and the network configuration
at the end of round two determines who will receive the prize.

1.2 Group identity

The experiment includes a minimal group identity treatment as follows. At the begin-
ning of the experiment we randomly assign subjects to one of two groups. We then
disclose information about group membership in some experimental sessions and not
in others. The group identity treatment is cross-cut with T1 and T2, resulting in four
treatment cells. In the first two cells, T1no and T2no, individuals have no information
about the group affiliation of the other players. In the last two cells, T1id and T2id,
players’ group identity is displayed publicly on the network map by identifying play-
ers with the symbol of their group.13

Group affiliation is assigned by inviting each subject to pick a card from an urn. We
do not use art or sport preferences to assign subjects into groups because these prefer-
encesmay correlatewith other individual characteristics. To strengthen group identity,
the groups compete in an agricultural knowledge quiz. While there are no monetary
prizes associated with this activity, we expect competition to strengthen group identi-
fication: contests of this kind have been used in previous experimental studies to make
group affiliation more salient (Eckel and Grossman, 2005).

player ID on the white board, immediately after the network map has been updated with a new link.
13In the experimental instructions the groups are called the mango and pineapple groups. On the

network map, these groups are identified, respectively, with a circle and a triangle.
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Figure 2: Order of activities in the experiment
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In our quiz, players answer three questions related to local weeds, pesticides, etc. If
all players in a group answer all questions correctly, the group obtains one “point” (see
Table C3 in the Appendix for summary statistics). Every player can thus have a strong
marginal impact on the group’s outcome: if the player makes one or more mistakes,
the whole group fails to gain the point. Players answer the agricultural knowledge
questions before the link formation game, but the results are disclosed publicly only
after all parts of the experiment are completed. After results are disclosed, each group
that has won a point is congratulated with an applause.

In addition, the points won by a group in a session are added to those accumulated
by subjects assigned to the same group in all previous experimental sessions, and par-
ticipants are informed ofwhich group is leading the knowledge contest across sessions.
We do not disclose any information about group performance before the experiment
so that players cannot make any inference about the personal identity or characteristics
of other group members.14 However, participants are informed at the start of the ses-
sion that group performance in the knowledge contest will be disclosed after all other
activities have been completed.

We check the impact of the group identity manipulation in two ways. First, we ask
players to take part in an incentivised allocation task. In this task, players divide 30 Ru-
pees between an in-group and an out-group recipient. Recipients are randomly drawn
from the participants in the following session of the experiment. This task is played right
after the questions on agricultural knowledge. Second, we ask a number of questions
about norms and expectations at the end of the experiment. These questions give us a
self-reported, unincentivised measure of whether the manipulation has activated so-
cial norms related to group identity. The sequence of activities is summarised in Figure
2.

14For example, failure to get the point in the agricultural contest may be interpreted by a player as a
negative signal on the ability of the other people in his group.
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Table 1: Summary of treatments

No identity Identity
T1 T1no T1id
T2 T2no T2id

1.3 Discussion

Comprehension. We take several steps to ensure that participants understand the rules
of the game: we develop simple standardised instructions that are read out to partici-
pants; we double translate all writtenmaterials; andwe rely on physical randomisation
devices (Barr and Genicot, 2008; Viceisza, 2012). We also test players’ comprehension
before the game starts. In particular we check whether players: (i) understand the di-
rection of links and the implication this has for winning the prize; (ii) are aware of the
possibility and implications of indirect connections; and (iii) are able to identify, in a
simple network map, either (in T1) the link that maximises their reach, or (in T2) the
link that benefits the largest number of subjects as well as the worst-off subject. After
players answer the comprehension test, our enumerators check their answers and give
further explanations to correct mistakes. To further increase comprehension, we run
a trial round of the link-formation game before the main game is played. Answers to
the comprehension test thus give a lower bound for the final level of comprehension.
Overall, we find that, in both T1 and T2, more than 50 % of players make at most 1
mistake and about 80 % of players make at most 2 mistakes.15 In the results section, we
present evidence suggesting that our findings are not driven by poor comprehension
of the rules of the game.

Side payments. In order to make side payments unlikely, personal identity is never
disclosed during the experiment and payments are disbursed privately.

Wealth effects. Both the allocation task and the link-formation game are incen-
tivised with monetary payments. In the allocation task individuals choose how to split
a sum of money between two subjects in a future session of the experiment. Thus, the

15We ask 8 questions in T1 and 7 questions in T2. In Table C1 in the Appendix we report the share of
correct answers for each question. The exact wording of the questions can be found in the experimental
materials.
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allocation decision does not affect the payoff of the decision maker or any other player
in the same session. This rules out unintended influences across the two tasks created
by endogenous shocks to players’ wealth.

Experimenter demand effects. These arise when subjects respond to implicit cues
embedded in the experimental design in an attempt to please the experimenter (Zizzo,
2010; de Quidt et al., 2018). To minimise these concerns, we rely on a between-subjects
design because it is less vulnerable to demand effects (Zizzo, 2010). We also refrain
from revealing players’ experimental group identity in the trial round to avoid making
unintended suggestions about how we expect players to use this information. A final
source of experimenter demands may come from the visual reminder of the network
reach of each player and from the explanations given before the game. These may en-
courage subjects to use efficiency-enhancing strategies. In the light of this, our finding
that efficient networks are rarely obtained becomes even more compelling.

Information aggregator. Our design intentionally focuses on networks that lack
an information aggregator in order to study whether subjects take informational reach
into account when forming a link. While there is evidence that many social networks
include high degree individuals who recirculate information, in our specific context
information networks typically do not have a global information aggregator, i.e., a star
node to whom all others are linked. To illustrate this point, we rely on data on social
networks in Indian villages collected by Banerjee et al. (2013).16 In none of these vil-
lages do the authors find an individual who exchanges information directly with all
other nodes in their village: the most central individual in the average village shares
information directly with only 5.6 % of other villagers, as shown in Figure B3. Fur-
thermore, in about 80 % of villages the individual with the highest degree is not the
individual with the highest reach (see Table C4 in the Appendix). These results also

16This data is well suited for our purposes. It is collected in rural India, in villages that are within
a three-hours drive from the city of Bangalore with an average size of 200 households. Our sample
includes villages at a similar distance from the city of Pune and with a similar size. Further, the data has
unusually rich information about social interaction: the researchers have collected census data on all
households in the village and have administered an in-detail survey to about 50 % of these households.
They use this data to compile an adjacency matrix of farmers’ information networks in each village. We
plot the distribution of degree and reach in these networks in Figures B1 and B2 in the Appendix. We
calculate reach by counting the number of connections up to five links away in the network. Finally, in
Figure B4, we plot the structure of the largest component of the network in a number of selected villages.
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hold at the level of sub-village communities.17

2 Predictions

In this section we formulate our predictions about individual decisions and about the
overall structure of the networks that are formed in the experiment. In the online Ap-
pendix we present formal notation and proofs.

2.1 Myopic best response

In T1, the MBR for a selfish player is to connect to the partner who has the highest
reach in the network. This allows him to be indirectly connected to the largest possible
number of players at that point in the game. Consequently, a player who follows an
MBR in treatment T1 will act according to this rule:18

Rule 1. Connect to the player with the highest reach.

In T2 sessions, players can only give the information they have to others. There is
therefore no myopic best response for purely selfish players. An MBR nonetheless ex-
ists for players who have other-regarding preferences. A large body of evidence from
controlled experiments shows that individuals care about the payoffs of others in sys-
tematic, heterogeneous ways (Charness and Rabin, 2002; Andreoni and Miller, 2002).
Let us consider two types of social objectives that are particularly relevant in our set-
ting. The first is the altruistic concern for total welfare discussed, for instance, in Char-
ness and Rabin (2002):

ui = πi + γ
∑
j∈N\i

πj. (2)

N is the set of players in the game. For a player with such altruistic preferences, the
MBR is to connect to the node with the maximum in-reach because this ensures that

17We identify communities using a popular community-detection algorithm due to Pons and Latapy
(2006). Communities are composed of twelve nodes on average. The most central node in a community
exchanges advice with an average of 38pct of the other nodes of the community.

18Links to the subject who has the turn are excluded from the count of the reach of the other players.
This is because these links give no additional information to the subject who has the turn. In the online
Appendix, we explain this point in more detail.
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the information that the player has reaches the largest possible number of individuals.19

Thus, for players who have preferences given by (2), the MBR in T2 is to form a link
according to the following rule:

Rule 2. Connect to the player with the maximum in-reach.

The second social preference we consider is:

ui = πi + γ min
j∈N\i

πj. (3)

This utility function captures a ‘Rawlsian’ concern for the player with the lowest
welfare (Yaari and Bar-Hillel, 1984). The MBR for a Rawlsian player in T2 is to link to
the least connected individual in the network to increase their payoff, i.e.:

Rule 3. Connect to the player with the minimum reach.

We can summarise the above observations into the following prediction:

Prediction 1. If players follow an MBR: in T1 selfish players will link to the node with the
highest reach; in T2 altruistic players will link to the nodewith the highest in-reach andRawlsian
players will link to the node with the minimum reach.

For ease of exposition we will sometimes refer to rules 1 and 2 as the ‘max’ rules
since both arise from a desire to maximise payoffs – one’s own or that of the group. We
refer to rule 3 as the ‘Rawlsian rule’.20

2.2 Network efficiency

In this sectionwe report the results of a set of simulationswherewe study the efficiency
of the networks that are formed when individuals play according to the rules specified
above. We define welfare as the sum of expected payoffs across players. We also define

19In the online Appendix, we show this formally and explain one qualification that applies to links
that create a small circle.

20A third model of social preferences is that of inequality aversion (Fehr and Schmidt, 1999). Under
inequality aversion, a player feels guilt towards players with a lower expected payoff and envy towards
players with a higher expected payoff. An inequality averse player would not form a link in the first turn
of a T2 session, because when the network has no links all players earn the same expected payoff. This
prediction is strongly falsified by the data and we thus we do not consider this type of preferences in
the discussion.
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the efficient network as the network that maximises welfare. In both T1 and T2 this is
the circle network, in which each player reaches the other five players. To normalize
our efficiency measure, we redefine it as the average reach of the n players in network
g divided by the average reach in the circle network:

Efficiencyg =

(
1/n ∗

n∑
i=1

reachi

)/
5 . (4)

Our first set of simulations shows that when all players followMBR rule 1 in T1, av-
erage efficiency is about 96%. Figure 3 gives an example of how players can achieve the
circle network within two rounds by playing according to rule 1. Under this rule, once
the circle network is reached, no player wants to rewire his link.21 This rule remains
quite effective even when a small proportion of players link randomly. For example,
average efficiency is about 80 % when 20 % of players choose links randomly and the
remaining players follow rule 1.

Our second set of simulations studies efficiency in T2. We find that when all players
play according to MBR rule 2 in T2, average efficiency is also about 96 %. This is not
surprising since rule 2 generates a link-formation sequence that is symmetrical to that
generated by rule 1 in T1. When all players play according to rule 3, on the other hand,
network efficiency falls to 67 %, and when players link at random, average efficiency is
about 52 %. Figure 4 depicts these results graphically.

Finally, we examine efficiency in sessions where a fraction p of players follow MBR
rule 3 (the Rawlsian rule), and a fraction 1 − p of players follow MBR rule 2 (the max
rule). Results show that efficiency decreases monotonically with p from amaximum of
96 % when p = 0 to a minimum of 67 % when p = 1. Figure B6 in the Appendix shows
this graphically.

21In a very small number of cases the link formation process does not converge to the circle. This
happens when two nodes have the same reach, in which case the MBR is to pick one of them at random.
This sometimes leads to a situation where there is only one player who can form the circle network
by re-wiring his link, but this subject has already played his second turn (by definition the MBR does
not take future play into account). If we allow more rounds, the likelihood of this occurring becomes
vanishingly small. For example, with three rounds rule 1 achieves 99 % efficiency.

16



Figure 3: Network evolution under rule 1 in T1
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(i) Turn 11: The circle!

For ease of presentation, play is assumed to be in alphabetical order. All players in this simulation play

according to rule 1. Turns 7-11 are in the second round, where players rewire their existing link. Turns

8-10 are omitted because no rewiring takes place.
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Figure 4: Efficiency in T2

(a) Random (b) Rule 2: Maximum in-reach

(c) Rule 3: Minimum reach

Each panel reports kernel density estimates of the distribution of the average value of reach after 12

turns of play for 500 simulated sessions. The vertical line indicates average efficiency achieved by a

given rule. The rule used in each set of simulations is indicated below the panel.
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2.3 Disclosure of group identity

We now discuss the effect of disclosing group identity in our game. Following Akerlof
and Kranton (2000), we assume that players experience positive utility when they fol-
low norms prescribed for members of their social group. Given the cultural context of
India and the strong observed homophily in social interaction andmarriage, we expect
that making group identity salient should trigger a norm encouraging linking to an in-
group node. If the utility obtained from following the in-group norm is high, players
may sacrifice payoff maximisation in order to follow this norm. In this case, we would
expect the disclosure of group identity to increase the frequency of in-group links, while
limiting the use of MBR and consequently reducing the efficiency of the network.

To illustrate, imagine that when group identity is disclosed, players in T2 prefer to
link with an in-group node rather than an out-group node whose in-reach is up to two
units higher. Simulations show that in this case average network efficiencywould fall to
53 %, which is only marginally above the average efficiency achieved through random
links. Alternatively, suppose that players in T1 never link to an out-group node and
use rule 1 to choose an in-group link. In this example, the network would converge to
two circles of 3 players and the average reach would be 2, which corresponds to 40 %
efficiency – much less than random linking. Figure B7 in the Appendix illustrates.

On the other hand, if the strength of the in-group norm is sufficiently low, the pos-
itive utility from following the norm will not outweigh the desire to maximise payoffs.
In this case, the disclosure of group identity would not change the frequency with
which players choose ‘max’ (or ‘Rawlsian’) links and hence would not affect the effi-
ciency of the network. However, the frequency of in-group links would still increase.
This is because when asked to choose between two nodes with the same position – one
in their group and one not – players would prefer to link to the in-group node. These
considerations yield the following prediction:

Prediction 2. Disclosure of group identity generates networks characterised by (i) more in-
group links and, if the in-group norm is sufficiently strong, (ii) lower efficiency.
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3 Data

We run the experiment in the Indian state of Maharashtra. We randomly sample from
a census list of all villages in 4 ‘talukas’ (sub-districts) of the Pune and Satara districts.22

Villages in these sub-districts are situated approximately 1,30 to 3h hours away from
Pune. This is a similar distance to the district capital as that of the villages selected
in the study of Banerjee et al. (2013). We select study participants through door-to-
door random sampling. On alternating days, we start sampling from the periphery
of the village or from the centre of the village. We invite all male adult farmers who
are encountered in the door-to-door visit until we have enough farmers to conduct all
planned sessions.

Data collection took place between September and October 2013. In total, we com-
pleted 81 sessions with 486 subjects. We ran 20 sessions of T1no, T1id and T2id, and 21
sessions of T2no. In three of the sessions one participant left before the beginning of
the link formation stage. This leaves us with 483 subjects, and a corresponding dyadic
dataset with 4,800 dyads.23 Table 2 summarises the number of observations in each
treatment.

Table 2: Number of observations by treatment

Treatment Sessions Players Dyads
T1no 20 120 1200
T1id 20 119 1180
T2no 21 126 1260
T2id 20 118 1160
Total 81 483 4800

At the end of the game, participants compile a short questionnaire. We hence have
a small set of variables that describe the study sample. Average age is 43 years. 95 %

22We exclude from the sample large towns on the main highway of the district.
23We create the dyadic dataset in the following way. For a player i in round rwe create an observation

for each possible player j to which player i can connect. We then stack these observations across players
and turns. As a result, when a session has six individuals, we have five dyads per turn for each player.
When a session has 5 individuals, we have four dyads per turn for each player.
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of participants are Hindu, 72 % do not belong to a scheduled caste, tribe or another
backward caste (OBC), 28 % have completed high school. We also find that average
total land holdings are about 4 hectares and average land cultivated is 3.6 hectares. On
average, farmers report regularly sharing information about agriculture with 11 other
farmers.24 From session 9 onwards, we ask each farmer whether he knows each of the
other 5 participants and how often he has spoken with them in the previous 30 days.
The density of links among participants in a session is very high: 87 % of participants
know every other farmer in their session. On average a farmer speakswith each known
participant on 13.5 of the previous 30 days. In table C5 in theAppendixwe present a set
of regressions that test whether covariates are balanced across treatments. We cannot
find any statistically significant imbalance.

Table 3: Summary statistics

Variable Obs. Mean Std. Dev. Min Max
Age 478 43.36 12.92 22 85
Hindu 456 0.95 0.22 0 1
Completed High School 465 0.28 0.45 0 1
Upper Caste 432 0.72 0.45 0 1
Land Owned (Ha) 474 4.08 4.68 0.1 50
Land Cultivated (Ha) 469 3.6 4.18 0.1 45
Information network size 427 10.91 8.94 1 60

4 Results

4.1 Network efficiency

We first investigate overall efficiency. Table 4 summarises average reach across treat-
ments and the related measure of efficiency. On average, players in T1no and T2no are
connected to 3.2 other individuals in the network. This determines a loss in expected
payoffs, compared to the circle network, of about 35 %. We then look at the distribution

24When participants fail to answer a question or report an illegible answer, we code a missing value.
This explains the changing number of observations in Table 3.
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of network efficiency, pooling together all T1no and T2no sessions, and find that the
efficient network is achieved in 4 sessions out of 41 (that is, in 9.76 % of the sessions).

Table 4: Reach and efficiency in final networks

Treatment Average reach Efficiency
T1no 3.258 0.652
T1id 2.895 0.582
T2no 3.238 0.648
T2id 3.273 0.666
All 3.167 0.637

We compare the efficiency of the networks in our experiment to two benchmarks:
the distribution of efficiency that we would observe if players follow a ‘max’ rule (rule
1 in T1 and rule 2 in T2) and the distribution of efficiency that we would observe if in-
dividuals choose their links at random. Figure 5 below and Figure B5 in the Appendix
present this analysis. We find that the efficiency of the experimental networks is 31
percentage points below the average level achieved when all players follow a ‘max’
rule. A Wilcoxon rank-sum test using session-level data confirms that the difference
between the distribution of network efficiency in our data and the simulated distribu-
tion is statistically significant at the 1 % level (Z = 12.08, p <.001). On the other hand,
the efficiency of the experimental networks is higher than the average efficiency which
random play would have achieved, by a significant 13 percentage points (Z = 4.62, p
<.001).

We summarise our findings in this result:

Result 1. The circle network is formed in about 10 % of the sessions. Expected payoffs in
T1no and T2no are 35 % lower than in the circle network. Expected payoffs are consequently
significantly lower than the payoffs that would be generated if everyone played according to the
‘max’ link-formation rule.

Further, we find that the direction of the flow of benefits associated with the links
does not affect network efficiency. Average efficiency in T1no and T2no is very similar.
A Wilcoxon rank sum test cannot reject the equality of the two distributions (Z = -0.11,
p = 0.91). Figure 6 presents this result graphically.
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Figure 5: Efficiency in real and simulated networks

Note. ‘Real networks’ include all sessions in T1no and T2no. ‘Rule 1 simulation’ includes networks
simulated assuming all players play according to rule 1.

Figure 6: Efficiency in T1no and T2no sessions
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Result 2. Efficiency in T2no sessions is not significantly different from efficiency in T1no ses-
sions.

We study the evolution of efficiency during the course of the experiment and find
that low efficiency is not an artefact of truncation at 12 turns. Efficiency has no mono-
tonic upward trend in either T1no or T2no, and efficiency at turn 12 is only a few per-
centage points higher than it was at turn 6.25 Figure B8 in the Appendix illustrates.
Falk and Kosfeld (2012), on the other hand, document strong learning dynamics and
positive efficiency trends in their experiment.

4.2 Individual decisions

In this section we study individual decisions. We present evidence showing that play-
ers are significantly more likely to connect to partners who satisfy one of the link-
formation rules compared to partners who do not. The majority of decisions are ac-
tually consistent with at least one of the rules. Further, we show that when players de-
viate from the rules, their links often target the ‘most popular’ player in the network.
Simulation analysis reveals that this strategy is particularly detrimental to efficiency. A
small number of links targeting the ‘most popular’ player substantially affects overall
network efficiency.

To investigate whether the link-formation rules predict subjects’ decisions we esti-
mate the following dyadic regression model:

linkijrs = α +Network Positionijrs β + δ roundr + eijrs. (5)

Linkijrs is a dummy which takes a value of one if player i connects to player j in
round r of session s. The vector of variables ‘Network Position’ describes the network
position of player j when it is player i’s turn to play in round r. We include all the
variables suggested by the rules described above. For T2, we include a dummy for
having the minimum reach and a dummy for having the maximum in-reach. For T1,

25Similarly, the length of the longest line in the network does not increase in the last 6 turns in T2no,
and experiences only a very modest increase in T1no. Throughout the second round the average longest
line in the network is composed of about four links. This means that, to reach efficiency, two links (33%
of the total) will need to be rewired.
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we include a dummy for having the maximum reach and, for completeness, we also
include a dummy for having the minimum value of in-reach. Furthermore, we control
for round specific effects. We estimate model (5) using OLS, correcting standard errors
for arbitrary correlation at the session level. This technique requires at least 40 clusters
(Cameron et al., 2008). When we run regressions with less than 40 clusters, we apply
the wild bootstrap correction to p-values proposed by Cameron et al. (2008).

We report results in Table 5. As hypothesised, we find that in T1no connections are
directed towards players with the maximum reach. Further, in T2no ties are directed
towards players with the maximum in-reach and the minimum reach. The effects are
statistically significant and economicallymeaningful. Players in T1no are 13 percentage
points more likely to connect to a partner who has the maximum reach in the network.
Players in T2no are 12 percentage points more likely to choose a player with maximum
in-reach and 9 percentage points more likely to pick a player with minimum reach.
A Wald test cannot reject the equality of these two coefficients. We summarise this
analysis in the following result, which supports prediction 1:

Result 3. In T1no players are more likely to form links with partners who have the maximum
reach in the network. In T2no players are more likely to form links with partners who have the
maximum in-reach and with partners who have the minimum reach in the network.

We confirm the robustness of these results by running a specification that substi-
tutes the dummies with the values of reach and in-reach. This allows players to make
mistakes, while requiring larger mistakes to be less likely than smaller mistakes. Table
C6 in the Appendix reports the estimates. Our findings from Table 5 are confirmed by
this analysis. In T1no, for example, players are about 19 percentage points more likely
to choose a partner with a reach of 4 than a partner with a reach of 0. Table C6 shows
a further significant effect: in T1no players are more likely to establish a link with a
partner with a lower in-reach.26 To describe this behaviour, we define a fourth rule:

26Apossible explanation for this result is that links carry some formof ‘social value’ for the personwho
receives the link. Individuals who choose partners with a low in-reach in T1no could thus be targeting
the players who have accumulated the minimum social value in the game so far. We cannot provide a
direct test for this interpretation. We have however some qualitative evidence in support of it. In the
questionnaire administered at the end of the experiment, subjects are asked the following question: "Do
you think that choosing a farmer from your own group is a way of showing respect to him?" 51 % of
subjects answer yes to this question.
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Table 5: Links and partner network position

Linkijr
(1) (2) (3) (4)

max reach .126 .124
(.001)∗∗∗ (.005)∗∗∗

min in-reach .020 .021
(.490) (.564)

max in-reach .123 .128
(.001)∗∗∗ (.011)∗∗

min reach .091 .092
(.010)∗∗ (.026)∗∗

Const. .107 .099 .045 .033
(.001)∗∗∗ (.096)∗ (.190) (.426)

max reach =min in-reach 6.80 4.99
(.012)∗∗ (.055)∗

max in-reach =min reach 0.38 0.35
(.542) (.551)

Obs. 1200 910 1260 940
Sample T1no T1no T2no T2no
Cluster N 20 20 21 21
Controls 4 4

The dependent variable is a dummy which takes a value of one if player i connects to player j in round r of the game. Each
regression contains round fixed effects. Regressions in columns 2 and 4 include controls for age, land owned, land cultivated,
number of contacts in real information networks, number of mistakes in the initial comprehension questions and dummies for

having completed secondary education, for being Hindu, and for belonging to an upper caste. Confidence: ***↔ 99%, **↔ 95%,
*↔ 90%. Standard errors are corrected for clustering at session level. P-values obtained with wild bootstrap-t procedure

reported in parentheses. The second panel reports the F statistics (and p-value in parenthesis) for a Wald test of the equality of
coefficients.

Rule 4. Connect to the player with the minimum in-reach.

Wewill refer to rule 3 in T2 and rule 4 in T1 as the ‘Rawlsian’ rules. Rule 4, however,
does not have significant predictive power in the original specification (see the first two
columns of Table 5).

Overall, about 70 % of decisions in each treatment are consistent with at least one
of the rules (Figure 7). In particular, 51 % of decisions in T1no are consistent with rule
1 and 63 % with rule 4. In T2no, 56 % of decisions are consistent with rule 2 and 68
% with rule 3. The percentage of players following ‘max’ and ‘Ralwsian’ rules is very
similar across treatments. This explains why players achieve similar levels of efficiency
in T1 and T2.

The two percentageswe report for each treatment do not add up to 70% because the
sets of possible partners satisfying different rules often overlap. We show the extent of
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Figure 7: Decisions and rules

this overlap in Figure B9 in theAppendix.27 Intuitively, overlaps are frequent because in
a line network (i) the last individual has both theminimum reach and themaximum in-
reach, and (ii) the first individual has both themaximum reach as well as theminimum
in-reach. The line network is formed frequently in the game. Further, as shown in
Figure 7, players frequently choose a partner who satisfies both of the rules.

4.2.1 Decisions that are not consistent with link-formation rules 1-4

What about the remaining 30 % of links that are not consistent with the link-formation
rules we have specified? We explore two possible additional rules:

Rule 5. Connect to the player who has been chosen bymost other players in the current network.

We refer to the individual who has been chosen by the largest number of players
as the ‘most popular’ player in the network. In T1, this is the player that is directly
observed by the largest number of individuals (using network terminology, this is the
player with the maximum in-degree). In the left panel of Figure 8, for example, player

27Consider turn twhen player i has to play. Let BR1
t , BR2

t , BR3
t and BR4

t be the sets of players who,
from the point of view of player i, satisfy link-formation rules 1, 2, 3 and 4, respectively. For T1, we focus
on BR1

t and BR4
t and define three mutually exclusive cases: fully overlapping (BR1

t ∩BR4
t = BR1

t =

BR4
t ), disjoint (BR1

t ∩BR4
t = ∅), and partially overlapping (not disjoint and not fully overlapping). For

T2, we focus on BR2
t and BR3

t and similarly define the three cases.
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Figure 8: The most popular player in T1 and T2
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D is the most popular player in the network, while players B and C have the highest
reach.28 In T2 the most popular player is the player that directly observes the largest
number of individuals (the player with maximum degree). In panel (b) of Figure 8 this
is player B. Rule 5 is consistent with models of non-strategic link formation where new
links preferentially target well-connected nodes (Barabási and Albert, 1999).

We also specify a rule that reflects a simple norm of procedural reciprocity:

Rule 6. Connect to the player who has chosen you in a previous round.

We find that about 65 % of the links that are not consistent with the link-formation
rules are directed to the ‘most popular’ player in the network. Reciprocal links are not
as common: they account for 18 % of those decisions. Figure B10 shows these results
graphically.29

We use simulation analysis to study how to improve the efficiency of the network
formation process. We find that reducing the proportion of links that are targeted to
the ‘most popular’ player would generate large efficiency gains. On the other hand,
reducing the proportion of ‘Rawlsian’ links would only have a limited impact on ef-
ficiency. In particular, we simulate a link formation process where 54 % of decisions

28Player D is observed by two players (B and C). All other players are observed by either zero or one
player. Thus, player D is the most popular player in the network. Players B and C, on the other hand,
have the highest reach in the network (they reach players D, E and F).

29While rule 5 is consistent with most decisions that do not follow the link-formation rules 1-4, it does
not significantly predict links in the full sample. We show this using regression analysis reported in
Table C7 in the Appendix.

28



are consistent with rule 1, 16 % with the rule 4 and the remaining 30 % with the ‘most
popular’ player rule.30 We then switch to rule 1 increasing proportions of decisions
originally assigned to follow rule 4, keeping the proportion of rule 5 decisions fixed.
We repeat the same exercise for rule 5: we switch to rule 1 increasing proportions of
decisions assigned to follow rule 5, keeping the proportion of rule 4 decisions fixed.
The results are stark: switching all rule 5 decisions to rule 1 delivers an efficiency gain
of 25 percentage points, while an equivalent reduction of ‘Rawlsian’ decisions results
only in a 5 percentage points gain in efficiency.31 Figure 9 illustrates. In Figure B11
in the Appendix we repeat this exercise with different assumptions about the base-
line proportions of decisions following the different rules. Results are not qualitatively
affected.

Figure 9: Efficiency simulations

Note. In the baseline simulation 54 % of decisions follow rule 1, 16 % follow rule 4, and 30 % follow rule
5. Each point in the graph represents average efficiency over 100 repetitions of the link formation game.

30These figures reflect the decisions in our data, with two simplifying assumptions: (i) all decisions
that are consistent with both rule 1 and rule 4 are assumed to follow the rule 1, (ii) all decisions that are
not consistent with link-formation rules 1-4 are assumed to follow rule 5.

31Figure B6 in the online Appendix shows what would happen if switch all rule 5 decisions to rule 3
(that is, if we run a simulation where 46 % of decisions follow rule 3 and 54 % follow rule 1): network
efficiency in such scenario would be above 90 %, which corresponds to a 20 percentage points gain.
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4.2.2 Why do players target the most popular individual?

Wehypothesise that linking to themost popular individual in the network is a heuristic
rule that individuals use to economise the cognitive cost ofmaking an optimal decision.
We use insights from recent models of thinking in complex environments to develop a
test of this hypothesis (Gabaix and Laibson, 2005; DellaVigna, 2009). In these models,
attention is scarce and individuals allocate more attention to a problemwhen informa-
tion is salient and when the cost of doing a mistake is large. Thus, if our hypothesis is
correct, links to the most popular players should become less likely when the myopic
best response (the player with the maximum reach in T1 and the player with maxi-
mum in-reach in T2) is in a visually salient position of the network map. For example,
when he is placed next to the decision maker.32 Further, individuals may decide not
to pay attention to the reach of other players when the difference between maximum
andminimum reach is small, and hence the cost of picking the wrong player is limited.
Lastly, links to the most popular player should be more frequent in the second round
of the game, when the network map is more complex and mental resources have been
depleted (Baumeister et al., 1998).33

We find qualified support for these predictions. In Table C8 in the Appendix we
report three sets of regressions. In the first three columns we study whether the most
popular player is less likely to be chosen when the myopic best response is in a salient
position of the networkmap. The salient position is that adjacent to the person forming
a link at that point in the game. We find that, when the myopic best response is in a
salient position, players are about 10 (3) percentage points less likely to link to the most
popular player in T2no (T1no). This difference is on the margin of significance in T2no
(p-value of 0.108) but is not significant in T1no. In the next three columns of Table C8,
we test whether players are less likely to connect to the most popular node when the
difference between nodes with maximum and minimum reach increases. Coefficients
have the hypothesised negative sign, but they are small inmagnitude and insignificant.
Finally, in the last three columns of Table C8, we show that in T1no players are almost
8 percentage points more likely to choose the most popular partner in round 2, when
the network structure is more complicated and mental resources more depleted. The

32See Dessi et al. (2016) for a study of network cognition.
33In the second round of the game, the network map always has 6 links. In all turns of the first round,

on the other hand, the map has less than 6 links. This should reduce complexity in the first round.
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effect is marginally significant (p-value of 0.093).
We also investigate whether the people who link to the most popular player in the

experiment tend to be connected to popular players in their networks outside of the
experiment. To perform this analysis, we exploit the data about the real networks of
our subjects. We ask each person (from session 9 onwards) to report the total number
of individuals with whom they regularly exchange information about agriculture. Let
us call this the player’s ‘degree’. Further, we ask each participant to indicate whether
they interact with each of the other five people in the session. These two pieces of
information enable us to calculate the average degree among the social ties of each
participant. We regress a variable capturing the number of times a subject played ac-
cording to the most popular player rule on this network statistics and report the results
of the analysis in Table C9 in the Appendix. We find a quantitatively meaningful cor-
relation between these two variables. A one standard deviation increase in the average
degree of a player’s social ties outside of the experiment is associated with a 0.2 stan-
dard deviations increase in the number of times a subject plays according to the most
popular player rule. Using robust standard errors, this is significant at the 10 % level.34

On the other hand, the correlation between the degree of a player’s social ties and the
use of other link formation rules is weaker and insignificant. These results give further
qualified support to the hypothesis that choosing the most popular player is a rule that
some players apply across different network formation games.

4.2.3 Forward-looking strategies

In this section, we provide suggestive evidence onwhether some of the deviations from
myopic best response documented above are the product of forward-looking strategies.
In particular, we are interested in the hypothesis that some subjects correctly expect
others to make mistakes and, on the basis of these expectations, they find it optimal
to deviate from MBR.35 We will provide two pieces of evidence to shed light on this
hypothesis, focusing on T1. It is important to note, however, that our experiment was
ultimately not designed to study forward-looking strategies and thus this evidence
should not be considered as conclusive.

The first piece of evidence looks at the correlation between deviations from MBR
34With clustered standard errors, the p-value is 0.16.
35We thank an anonymous referee for this suggestion.
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and players’ final reach in game. If deviations fromMBR are optimal forward-looking
responses to other players’ mistakes, then we would expect players that deviate from
MBR to have a higher reach at the end of the game. We explore this hypothesis in
Table C10 in the Appendix. What we find is that players that deviate from MBR in
both rounds have a final reach that is a significant 0.36 standard deviations lower than
the reach of players who play MBR. Players that deviate from both MBR and the most-
popular-player heuristic also have a final reach that is significantly lower than that of
subjects who play MBR (by 0.34 standard deviations).

Second, we study whether the proportion of players who play MBR changes in the
last turn of the game. Our rationale for this test is that even a forward-looking player
should choose a myopic best response in the last turn of the game since the network
will not evolve further after their decision is made. Thus, if some players are forward
looking and this is what induces them to select an action different from myopic best
response, we should see them switching to a myopic best response in the last turn of
the game. As a result, the fraction of decisions consistent with myopic best response
should increase in the last turn of game. Figure B12, however, shows that the fraction of
players choosing MBR remains essentially unchanged in the last period of the game.36

Overall, these two pieces of evidence suggest that deviations from MBR may not
be due to forward-looking strategies. However, as explained above, this conclusion is
necessarily preliminary and we thus flag this as an area for future research.

4.3 Group identity

We now study the effect of group identity on network formation. We start by reporting
the results of the two manipulations checks included in our design. First, we look at
decisions in the initial allocation task where each player has to divide a sum of money
between an individual who belongs to the same group and an individual who belongs
to the other group. The most frequent decision, as shown in Figure B13 in the Ap-
pendix, is to allocate moremoney to the recipient affiliated to the same group. Overall,
54 % of individuals show such in-group bias, while 30 % choose equal allocations. The
amount of in-group favouritism is large: the standardised discrimination coefficient is
0.92, which is in the upper range of the estimates reported in the literature (and about

36 We are also unable to find significant evidence that players target their links on the basis of the
round one decisions of the other players (see Table C11 in the Appendix).
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average for experiments that use minimal groups) (Lane, 2016). Second, we investigate
whether players perceive that linking to individuals outside one’s group violates a so-
cial norm. For this purpose, at the end of the experiment, we ask participants whether
they think that in the link-formation game a player ‘should’ only connect to players
in the same group. Fifty-seven % of participants answer yes to this question. Further,
about 70 % of players expect the majority of the other 5 players in the session to also
answer affirmatively. Second-order beliefs of this type are powerful motivators (Bursz-
tyn et al., 2018) and a key ingredient in the formation of social norms (Bicchieri, 2005).
We report these results in detail in Table C2 and Figure B13 in the Appendix.

Our main result on the identity treatments is the following one:

Result 4. In-group links occur more frequently in sessions where group identity is disclosed
than in sessions with no knowledge of group identity. Disclosure of group identity does not
affect network efficiency.

This result confirms the first part of prediction 2. First, in-group links increase.
Figure 10 shows a histogram of the number of in-group links in the final network for
sessions where group identity is disclosed and sessions where it is not disclosed. The
distribution clearly shifts to the right. A Wilcoxon rank-sum test confirms this differ-
ence is significant at the 5 % level (Z= 2.23, p= .02).

Figure 10: In-group links in identity and no-identity sessions

Note: Only links in the final network are considered. ‘No identity’ sessions include T1no and T2no.
‘Identity sessions’ include T1id and T2id.
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Second, we cannot detect a systematic effect of disclosing players’ group identity
on session level efficiency. Mean efficiency decreases from 65 to 58 % in T1 and is
basically unchanged in T2. A Wilcoxon rank-sum test cannot reject the equality of the
distributions (Z= -0.51, p= 0.61). This is documented graphically in Figure 11.

Figure 11: Efficiency in identity and no-identity sessions

To understand these aggregate results we study how disclosure of group identity
affects individual decisions. We use linear probability models of the following form:

xdis = α + β1Identity Sessions + edis, (6)

xdis = α + β1Identity Sessions + β2zis + β3
(
zis ∗ Identity Sessions

)
+ edis. (7)

In these models xdis is an indicator variable which takes a value of one if decision
d by player i in session s has characteristic x. In some cases, we interact the identity
treatment with an individual covariate z (for example, whether the individual discrim-
inated in favour of the in-group in the initial allocation task). We perform the analysis
with three definitions of xdis: whether decision d is a link to a player in the same group,
whether decision d is consistent with a ‘max’ rule, and whether decision d is consistent
with a ‘Rawlsian’ rule. In model 7, we also study whether the effect of being in an
identity session is stronger for certain types of players, for example, players who have
allocated more money to the in-group partner in the allocation task. Standard errors
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are clustered at the session level. We report the results in tables C12, C13, C14, and C15
in the Appendix.

We find that there is a higher proportion of in-group links in both treatments. In T1,
links to an in-group player are about 12 percentage points more likely once we disclose
player group identity. This corresponds to a statistically significant 40 % increase in
the probability of an in-group link. For T2 treatments the effect drops to 5 percentage
points and is not significant.

We also find that the frequency of ‘max’ and ‘Rawlsian’ links is not significantly
affected by disclosure of group identity. This is consistent with our discussion in sec-
tion 2: when the strength of the in-group norm is moderate, players link to in-group
partners only when these have the desired network position. If this is what is driving
the results, we should expect to see an increase in the proportion of ‘max’ and ‘Rawl-
sian’ links that are directed towards an in-group partner. To study this, we restrict the
sample to ‘max’ links in T1 and T2 and run model 6 with the in-group link dummy
as dependent variable. Consistent with our hypothesis, we find that when we disclose
group identity in T1 ‘max’ links are about 14 percentage points more likely to be di-
rected to an in-group player. This effect is significant at the 5 % level. For T2, we find
a smaller effect of 5 percentage point, which is in the hypothesised direction but not
significant.

We are unable to shedmore light on thesemechanisms through estimation ofmodel
7: the effect of group identity disclosure on the likelihood of choosing an in-group
link is not stronger for individuals who show in-group bias in the allocation task, who
agree with the norm of homophily, or who expect more peers to agree with the norm
of homophily.

4.4 Additional tests

In this section, we test whether the likelihood of choosing a link consistent with a given
link-formation rule is correlated with the answers given in the comprehension test. We
estimate the following regression models:

xdis =α + β1comprehensionis + edis, (8)
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xdis =α + γ1
(
comprehensionis ∗ Identity Session=0s

)
+ γ2

(
comprehensionis ∗ Identity Session=1s

)
+ γ3Identity Sessions + edis. (9)

As before, xdis is an indicator variable which takes a value of one if decision d by
player i in session s has characteristic x. ‘comprehensionis’ is the z-score of the num-
ber of correct answers players give in the initial comprehension questions. In the first
model, β1 captureswhether subjectswith a higher comprehension score aremore likely
to choose links consistent with rule x. The second model captures the effect of higher
comprehension in sessions where group identity is not disclosed (coefficient γ1) and
sessions where group identity is disclosed (coefficient γ2). Tables C18 to C21 report
estimation results for these two models. We start by pooling all sessions together and
then look separately at T1 and T2 sessions. When we estimate model 8 over the pooled
sample, we are unable to find evidence that people with a higher comprehension score
use different rules. We are similarly unable to find evidence of a comprehension effect
in all but two of the remaining thirty tests and, in both of these cases, the result is not
robust to a standard correction for multiple comparisons (Benjamini et al., 2006).

Further, we test whether the answers that individuals give to specific questions cor-
relate with the most-popular-player heuristic. We report this analysis in Figures B14
and B15 in the Appendix. We are generally unable to find significant correlations. We
report both p-values and q-values for each test, to address the problem ofmultiple com-
parisons (Benjamini et al., 2006). q-values are always above 0.5, indicating that to reject
any of the null hypotheses we need to tolerate a probability of making a false discovery
of at least 50 %.

Overall, these results suggest that the strategies observed in the experiment are gen-
erally not associatedwith players’ answers in the comprehension test. As we discussed
earlier in the paper, participants receive further instructions after giving these answers
and then have an opportunity to play a trial round of the game. Hence, our preferred
interpretation for the results in this section is that subjects’ imperfect comprehension
was corrected before the beginning of the main experiment.
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5 Discussion and Conclusion

In this paper we study network efficiency in a game of sequential, one-way-flow link
formation (Bala and Goyal, 2000). The efficient solution is for players – a sample of
male Indian farmers – to form an information circle, something they can easily do by
following a myopic best response. We find that efficiency is achieved in only 10 %
of the sessions and that subjects lose about 35 % of expected payoffs. While many
individuals play according to an MBR, these large welfare losses arise because some
subjects connect to the ‘most popular’ individual in the network. We also find that
disclosing group identity leads to networks with significantly more homophily, but
not less efficiency.

Researchers and policy makers are often puzzled by the fact that individuals hold
biased beliefs in several domains, including the returns to new technologies, relative
ability, and the behaviour of others (Malmendier andTate, 2008; Bryan et al., 2014; Caria
and Falco, 2016). A possible explanation for the persistence of these beliefs is that in-
dividuals fail to correctly incorporate available information (Hanna et al., 2014; Falk
and Zimmermann, 2017; Epley and Gilovich, 2016). Our results offer a complemen-
tary explanation: social networks may not always be structured in a way that makes
relevant information available. This evidence echoes some of the theoretical claims of
Bala and Goyal (2001) and lends support to interventions that change the structure of
social networks (Feigenberg et al., 2013; Vasilaky and Leonard, 2018; Fafchamps and
Quinn, 2016; Cai and Szeidl, 2017). These interventions have often focused on creating
more connections. Our results suggest that creating incentives for individuals to form
different links – even if these links are to less popular or socially distant nodes – may
be effective at improving information diffusion when nobody is willing or capable to
serve as the information aggregator of the network.

A second key concern in the literature on beliefs is that homophily in information
networks can lead to the creation of ‘echo chambers’ where extreme views prevail be-
cause individuals are not exposed to information that contradicts their prior beliefs
(Sunstein, 2009; Gentzkow and Shapiro, 2011). We see that, in our experiment, subjects
are not prepared to reduce their payoff in order to restrict links to the in-group. This
raises the question of whether in field settings individuals underestimate the cost of
echo chambers. In future work, we plan to explore whether interventions that alert
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individuals to these costs can improve information diffusion and welfare.
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A Formal derivation of the rules

A.1 Notation

We define some basic notation following Goyal (2007) and Bala and Goyal (2000). Let
N=(1,2,..,n) be the set of players. In T1, each player i chooses a (pure) strategy si =

(si1, si2, ..., sii−1, sii+1, ..., sin)
37. sij ∈ {0, 1} and sij = 1 if there is a link from i to j. In T2,

on the other hand, every player chooses a strategy si = (s1i, s2i, ..., si−1i, si+1i, ..., sni).
As before, sji ∈ {0, 1} and sji = 1 if there is a link from j to i. Let Si be the set of
possible values of si. S = S1 × S2 × ... × Sn is the set of all possible combinations of
player strategies. A vector of player strategies s = (s1, s2, ..., sn), drawn from S, can be
represented as a directed network g. gij ∈ {0, 1} captures whether there is a link from
i to j in this network (gij = 1 indicates that there is a link, and that player i observes
player j’s information thanks to this link). g ⊕ ij is the network obtained from adding
the ij link to network g.

In our game player i receives the prize if he is the winner of the prize lottery, or if
he is connected to the winner via a path of links. A path from player i to player j is a
set of links such that: giy = gyw = ... = gzj = 1. A direct link is a path of length 1.
The notation i g−→ j indicates that in network g there is a path from i to j. If there is a
path from i to j, we say that player i reaches player j in network g. In this case, player
i is assigned the prize whenever player j is assigned the prize. A path i g−→ j, on the
other hand, has no implication on whether player j is assigned the prize when player
i is assigned the prize.

We need to introduce two crucial concepts for our analysis. First, let Ni−→(g) = {k ∈

N |i g−→ k} and νi−→(g) = |Ni−→(g)|. Ni−→(g) is the set of players whom player i reaches
in network g and νi−→(g) represents the number of players whom player i reaches in
network g. We call νi−→(g) the reach of player i in network g. Sometimes we want to
exclude from the count the path from player i to player j. LetNi∼j−−−→

(g) = {k ∈ N \j|i g−→
k} and νi∼j−−→

(g) = |Ni∼j−−−→
(g)|. These are, respectively, the set of players and the number

of players whom player i reaches in network g, excluding player j. Intuitively, νi∼j−−→
(g)

captures the reach of player i among all players other than j.
37We rule out links from player i to player i.
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Second, let Ni←−(g) = {k ∈ N |i
g←− k} and νi←−(g) = |Ni←−(g)|. Ni←−(g) and νi←−(g) repre-

sent, respectively, the set of players and the number of players who reach player i in
network g. We call νi←−(g) the in-reach of player i in network g. Again, we sometimes
need to exclude the path from player j to player i. LetNi∼j←−−−

(g) = {k ∈ N \j|k g−→ i} and
νi∼j←−−

(g) = |Ni∼j←−−−
(g)|. νi∼j←−−

(g) is the number of players who reach player i in network g,
excluding player j.

Reach and in-reach (νi−→ and νi←−) should not be confused with the notions of out-
degree and in-degree, which represent the number of direct links of a player in the
network.38

Network g determines an expected payoff πi(g) for each player. This is simply cal-
culated as the value of the prize, which we normalise to 1, times the probability of
winning the prize, which is equal to the fraction of players accessed by player i:

πi(g) =
(
1 + νi−→(g)

)/
n . (A.1)

A.2 Rule 1

We assume that in T1 player i chooses which player j to link to in order to myopically
maximise his expected payoff:

max
j

πi(g ⊕ ij). (A.2)

Note that whenever i has the turn, Ni−→(g) = {∅} and νi−→(g) = 0. This is because
(i) in the first round of the game, player i has not yet established a link, and (ii) in the
second round of the game, player i’s first-round link will be removed when it is his
turn to choose his new link.

38The formal definitions of out-degree and in-degree are as follows. Let Nd
i (g) = {j ∈ N |gij = 1}

be the set of players to whom player i is directly linked. µd
i = |Nd

i (g)| is the number of players to whom
player i is directly linked. This is the out-degree of player i. Nd

−i(g = {j ∈ N |gji = 1}, on the other hand,
is the set of players j such that gji = 1. µd

−i = |Nd
−i(g)| is the in-degree: the number of players who have

a direct link to i.
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Proposition 1. Player i maximises πi(g ⊕ ij) by choosing the partner j with the maximum
value of νj∼i−−→

in network g.

Proof. Rewrite πi(g ⊕ ij) as:
(
1 + νi−→(g ⊕ ij)

)/
n . Notice that, as νi−→(g) = 0, νi−→(g ⊕

ij) = 1 + νj∼i−−→
(g). Thus πi(g ⊕ ij) =

(
2 + νj∼i−−→

(g)

)/
n , which is monotonically in-

creasing in νj∼i−−→
(g). �

The proof above captures a simple intuition. Player i wants to maximise his reach
in the network. To do that, he has to link to the player who enables him to access
the largest number of subjects. This is the player with the highest reach among all
subjects that are not i: νj∼i−−→

(as connections to i are redundant from i’s perspective).
This proposition motivates rule 1.

A.3 Rule 2

We now consider a case where player i cares both about his own expected payoff and
about the sum of the expected payoffs of the other players. This case is particularly
relevant in T2 and motivates rule 2. Formally, in this case, player i’s utility is given by:

ui = πi + γ
∑
j∈N\i

πj. (A.3)

The utility that player i gains by creating a ji link in T2 can be then expressed as:

ui(g ⊕ ji)− ui(g) = πi(g ⊕ ji)− πi(g) + γ
∑
k∈N\i

πk(g ⊕ ji)− πk(g)

= γ
∑
k∈N\i

πk(g ⊕ ji)− πk(g)

= γ f(g ⊕ ji). (A.4)

where f(g ⊕ ji) =
∑

k∈N\i πk(g ⊕ ji)− πk(g). The first two terms on the right hand
side drop because in T2 player i’s link does not affect player i’s reach or his expected
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payoff. Self-regarding considerations thus become irrelevant (at least for myopic play-
ers). In T2, player i will choose his link on the basis of f(g ⊕ ji), which captures the
increase in the expected payoff of the other players. In what follows, we study how
f(g ⊕ ji) is related to player j’s position in the network. We need to consider two sep-
arate cases, depending on whether player i reaches player j or not (and thus whether
the information of player i is entirely new to player j or not).

Case 1: j /∈ Ni−→(g) (player i does not observe the information of player j). In this
case, we can derive a simple analytic expression for f(g ⊕ ji):

f(g ⊕ ji) =
(
1 + νi−→(g)

)(
1 + νj←−

)
. (A.5)

Equation (A.5) shows that f(g⊕ji) increasesmonotonicallywith player j’s in-reach.
To derive equation (A.5) we first need to show the following property of networks in
T2: if player i does not observe the information of player j, then it follows that player j
(or any player reached by player j) does not observe the information of player i. If this
property did not hold, player iwould need to considerwhether some of his information
is redundant for player j (something that he has to do in case 2 below). Formally, we
describe this property with the following lemma:

Lemma 1. In T2, when it is player i’s turn to play, if j /∈ Ni−→(g), no player in j∪Nj←−
(g) reaches

a player in i ∪Ni−→(g).

Proof of lemma. We refer to a ij link as an ‘ingoing’ link for player i (player i obtains
new information from player j thanks to this link) and to a ji link as an ‘outgoing’ link
(player i shares his information with player j through this link). In T2, players can
have multiple ingoing links and at most one outgoing link. When it is player i’s turn to
play, player i has no outgoing links. He may have one or more ingoing links, in which
case Ni−→(g) is nonempty. Every individual k in Ni−→(g) has exactly one outgoing link.
This outgoing link is either a link that shares information with i, or a link that shares
information with a third player z in Ni−→(g) (so that there is a path that lets i observe
k’s information, which has to be the case since k ∈ Ni−→(g)). Thus, no player in the set

A.5



i∪Ni−→(g) has an outgoing link with a player who is not in the set i∪Ni−→(g). This means
that player j, who is not in Ni−→(g) by assumption, cannot reach any player in i∪Ni−→(g).
Further, this implies that no player in Nj←−

(g) can reach any player in i ∪Ni−→(g).39 �

Having established Lemma 1, we can now show how equation (A.5) is obtained.
Note that if player i creates link ji, he will increase the expect payoff of player j and
of all players who reach player j. The number of players who benefit from this link is
thus 1 + νj←−

. By how much does each of these players benefit? Lemma 1 tells us that
none of the players in i∪Ni−→(g)was previously reached by player j or by the players in
Nj←−

(g). As a result, each of these players experiences an increase in reach that is equal
to all of the information that player i observes: 1 + νi−→(g). Thus, the total increase in
reach is given by:

f(g ⊕ ji) =
(
1 + νi−→(g)

)(
1 + νj←−

)
=
(
1 + νi−→(g)

)(
1 + νj∼i←−−

)
.

where the second line follows since j /∈ Ni−→(g).

Case 2: j ∈ Ni−→(g) (player i observes the information of player j). Now a link ji
creates a circle and some of the information shared with player j is redundant. The
effect on f(g⊕ji) of an outgoing link to j is thus smaller compared to that of an outgoing
link to a player who is not inNi−→(g) and has the same in-reach as j. Figure A.1 illustrates
this point.40 As a result, player i cannot simply compare the in-reach of his potential

39Suppose a player z inNj←−
(g) reached a player x inNi−→(g). x has only one outgoing link. So for x to be

part of Ni−→(g), player z would need to have an outgoing link to another player whom player i reaches.
However, through this link i would observe the information of player z. Further, through z, they will
also observe the information of player j, which violates the assumption that j /∈ Ni−→(g)

40In the example, player A has the turn. Both player C and player D have an in-reach of two. However,
a link to player D is more effective at increasing aggregate payoffs compared to a link to C. If player A
links with D, there are three players (D, E and F) who experience an increase in reach of 3. On the other
hand, If player A links to player C, the reach of player C increases by 2, the reach of player B increases
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Figure A.1: Effect of a ji link
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partners in order to figure out which link maximises f(g⊕ ji). A good heuristic in this
case is to pick the player with the maximum value of νj∼i←−−

(g) (as opposed to νj←−
(g)), as

νj∼i←−−
(g) does not count the redundant path to i and thus it is less likely that linking to

the person who has maximum νj∼i←−−
(g)would create a cycle.41

The analysis of case 1 and case 2 showswhy linking to the playerwith themaximum
value of νj∼i←−−

(g) is an effective strategy in T2:

1. When Ni−→(g) = ∅, f(g ⊕ ji) monotonically increases in νj∼i←−−
(g).

2. When Ni−→(g) 6= ∅ and no player with the maximum value of νj∼i←−−
(g) is part of set

Ni−→(g), f(g ⊕ ji)monotonically increases in νj∼i←−−
(g).

3. When Ni−→(g) 6= ∅ and at least some of the players with the maximum value of
νj∼i←−−

(g) are part of setNi−→(g), linking to a player with the highest value of νj∼i←−−
(g)

is likely to lead to the largest possible increase in f(g ⊕ ji) (although this is not
always guaranteed).

by 1 and the reach of player A is unaffected. The difference lies in the fact that a link to player C creates
a cycle among a subset of players where some information is redundant.

41In Figure A.1, for example, νD∼A←−−−−(g) = 2 and νC∼A←−−−−(g) = 1. Player D thus has the maximum value
of νj∼i←−−−

(g) in this network.
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B Figures

Figure B1: Degree distribution in farmers’ information networks

(a) Number of people (b) Fraction of people

Authors’ calculations using data from Banerjee et al. (2013).
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Figure B2: Reach distribution in farmers’ information networks

(a) Number of people (b) Fraction of people

Authors’ calculations using data from Banerjee et al. (2013). Reach is defined as the number of
individuals that a subject reaches in the network with a path of no more than five links.
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Figure B3: Degree distribution among most central individuals

(a) Number of people (b) Fraction of people

Authors’ calculations using data from Banerjee et al. (2013).
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Figure B4: Network maps for selected villages

(a) (b)

(c) (d)

(e) (f)

Plots of the largest network component in selected villages using data from Banerjee et al. (2013).
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Figure B5: Efficiency in real networks and in simulated random networks

Note. ‘Real networks’ include all sessions in T1no and T2no. ‘Random networks’ are networks
simulated assuming all players choose links at random.
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Figure B6: Link formation process with mixed rules

Simulation where rule 3 is played with probability p and rule 2 with probability 1− p. 500 simulation
for each level of p.
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Figure B7: Simulated effect of group identity concerns on network structure

(a) Rule 2 (b) Rule 3

Weight 0 simulations show efficiency when all players play rule 2 (panel a) or rule 3 (panel b). Weight 2
simulations show efficiency when players value a link to an in-group player as much as 2 units of
in-reach (panel a) or two units of reach (panel b). We report results summarising 100 simulation for

each of the 4 rules.
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Figure B8: Time series of effciency in T1no and T2no, turns 6-12
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Figure B9: Overlap in choice sets
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Figure B10: What explains links that are not consistent with link-formation rules 1-4?

(a) Links to the ‘most popular’ player (b) ‘Reciprocal’ links

The category ‘most popular’ shows the relative frequency of decisions consistent with rule 5 and not
consistent with the ‘max’ rule nor with the ‘Rawlsian’ rule. The category ‘reciprocal’ shows relative
frequency of decisions consistent with rule 6 and not consistent with the ‘max’ rule nor with the

‘Rawlsian’ rule. Only data for sessions with no knowledge of group identity is shown.
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Figure B11: Efficiency simulation

In the baseline simulation 5 % of decisions follow rule 1, 65 % follow rule 4, and 30 % follow rule 5.
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Figure B12: Last turn vs previous turns
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Figure B13: In-group bias

(a) Allocation to in-group partner (b) Norm expectation
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Figure B14: Comprehension questions and the most-popular-player heuristic in T1

Note. This figure reports the results of a regression of a dummy for whether the player chose a link consistent with the
most-popular-player heuristic at least once on a dummy for whether the player answered a given comprehension question

correctly. We plot coefficient estimates and 95% confidence intervals. Standard errors are clustered at the level of the session.
Further, above each coefficient, we report a p-value (in parentheses), and a false-discovery-rate q-value (Benjamini et al., 2006) (in

brackets).
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Figure B15: Comprehension questions and the most-popular-player heuristic in T2

Note. This figure reports the results of a regression of a dummy for whether the player chose a link consistent with the
most-popular-player heuristic at least once on a dummy for whether the player answered a given comprehension question

correctly. We plot coefficient estimates and 95% confidence intervals. Standard errors are clustered at the level of the session.
Further, above each coefficient, we report a p-value (in parentheses), and a false-discovery-rate q-value (Benjamini et al., 2006) (in

brackets).
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C Tables

Table C1: Comprehension questions

Treatment: T1

Question Topic Correctly answered (percent)
1

Direction of links
75.3

2 75.7
3 77.0
4

Indirect connections
98.3

5 85.8
6

Identify myopic best response
80.8

7 86.6
8 93.7

Treatment: T2

Question Topic Correctly answered (percent)
1

Direction of links
84.8

2 83.2
3 82.8
4

Identify link that benefits most players
61.1

5 98.4
6

Identify player with smallest payoff
47.1

7 83.6
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Table C2: Summary statistics on allocations, norms and expectations

Variable Obs. Mean Std. Dev. Min Max
Amount allocated to in-group partner 483 18.03 5.83 0 30
Bias in allocation task 483 0.54 0.5 0 1
Agrees with in-group norm 482 1.43 0.5 1 2
No. other players expected to agree with the norm 477 3.51 1.31 0 5

‘Amount allocated to in-group partner’ is the number of Rupees allocated to the in-group partner in the allocation task.
‘In-group bias in allocation’ is a dummy equal to 1 if the player has allocated more than half of the endowment to the in-group
partner in the allocation task. ‘Agrees with in-group norm’ is a dummy equal to 1 if the player answered yes to the question ‘In
the link formation game you have just played, do you think a player should only link to a peer of his own group?’. ‘No. other
players expected to agree with the norm’ is the answer to the question ‘How many of the other 5 players in the session do you

think answered YES to the previous question?’. There is 1 missing value. We also set to missing answers that are greater than 5.

Table C3: The agricultural knowledge contest

All Group 1 Group 2
Probability of winning the point 0.387 0.396 0.379
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Table C4: Degree centrality and reach

Number of steps
2 3 4 5

Probability degree central node does not have highest reach .54 .7 .76 .78
Authors calculations of the probability that the degree central node in the village does not have the highest reach, using data
from the network survey of Banerjee et al. (2013). Reach is defined differently in each column. In the first column, we define
reach as the number of people in the village that each subject reaches with at most two links. We then calculate reach using

paths that are at most three, four, and five links. The maximum path length is indicated in the column heading.
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Table C5: Balance test

Age Education Upper Caste Land Owned Land Cultivated Network Size
(1) (2) (3) (4) (5) (6)

T1id -2.378 .091 -.040 .077 .141 .111
(2.530) (.081) (.097) (.733) (.653) (1.095)

T2no -3.664 .033 -.007 -.069 -.008 1.581
(2.569) (.073) (.091) (.608) (.546) (1.723)

T2id -1.993 .002 -.146 -.005 .067 1.150
(2.167) (.072) (.101) (.694) (.631) (1.376)

Mean in T1no 45.387 .248 .764 4.076 3.556 10.187
F-test (p-value) .54 0.68 .43 .99 .99 .69
Obs. 478 465 432 474 469 427
OLS regressions. The dependent variable is indicated in the row’s name. Upper caste is a variable that takes value of 1 if the
respondent is not from a scheduled caste, a scheduled tribe or an Other Backward Caste. Network size is the self reported

number of peers with whom the farmer exchanges advice on agricultural matters. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.
Standard errors clustered at the session level reported in parentheses. The second to last row reports the p-value of an F -test of

the joint null hypothesis that all coefficients are equal to zero.
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Table C6: Continuous measures of reach and in-reach

Linkijr
(1) (2) (3) (4)

Reach .047 .047 -.049 -.048
(.001)∗∗∗ (.007)∗∗∗ (.000)∗∗∗ (.000)∗∗∗

In-reach -.029 -.026 .058 .057
(.012)∗∗ (.096)∗ (.000)∗∗∗ (.000)∗∗∗

Const. .178 .176 .187 .186
(.000)∗∗∗ (.000)∗∗∗ (.000)∗∗∗ (.010)∗∗

Obs. 1200 910 1260 940
Cluster N 20 20 21 21
Sample T1no T1no T2no T2no
Controls 4 4

Linear probability model. The dependent variable is a dummy which takes a value of one if player i connects to player j in
round r of the game. Round fixed effects are included. Regressions in columns 2 and 4 include controls for age, land owned,

land cultivated, number of contacts in real information networks, number of mistakes in the initial comprehension questions and
dummies for having completed secondary education, for being Hindu, and for belonging to an upper caste. Confidence: ***↔
99%, **↔ 95%, *↔ 90%. Standard errors corrected for clustering at session level. P-values obtained with the wild bootstrap-t

procedure reported in parentheses.
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Table C7: Links to the most popular player and reciprocal links

Linkijr
(1) (2)

max reach .126
(.044)∗∗

min in-reach .015
(.029)∗∗

max in-reach .803
(.016)∗∗

min reach .095
(.018)∗∗

Most popular -.019 .006
(.503) (.859)

Reciprocal -.018 -.001
(.705) (.978)

Const. .119 .028
(.024)∗∗ (.546)

Obs. 910 940
Sample T1no T2no
Cluster N 20 21
Controls 4 4

Linear probability model. The dependent variable is a dummy which takes a value of one if player i connects to player j in round
r of the game. Each regression controls for the round, as well as for age, land owned, land cultivated, number of contacts in real
information networks, number of mistakes in the initial comprehension questions and dummies for having completed secondary
education, for being Hindu, and for belonging to an upper caste. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors

corrected for clustering at session level. P-values obtained with the wild bootstrap-t procedure reported in parentheses.
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Table C9: Link-formation rules and real networks

Most Popular Max Rawlsian Ingroup Link
(1) (2) (3) (4)

Average degree of partners .162 .024 .005 -.127
(.092)∗ (.132) (.113) (.093)

Number of partners -.025 .017 .018 .010
(.021) (.028) (.025) (.023)

Const. 1.087 .853 1.097 .547
(.221)∗∗∗ (.296)∗∗∗ (.262)∗∗∗ (.232)∗∗

Obs. 397 397 397 397
OLS regression. The dependent variable is a variable capturing the number of times a player played consistently with a given
rule (specified in the column heading). We estimate the model using data from session 9 onwards. We include all players who

report to interact outside of the experiment with at least one person in their session. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.
Robust standard errors reported in parentheses.
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Table C10: Deviations from MBR and reach in final network

Dep var: reach at the end of the experiment
(1) (2) (3) (4) (5) (6)

Deviated from MBR -.44 -.424 .075 .078 -.856 -.916
(0.189)∗∗ (0.192)∗∗ (0.154) (0.154) (0.195)∗∗∗ (0.211)∗∗∗

Chose most popular player -.16 -.226 .257
(0.169) (0.146) (0.185)

Heuristic followed in... both rounds first round second round
Effect size in sd. -0.36 -0.34 0.06 0.06 -0.69 -0.74
Obs. 239 239 239 239 239 239

Linear probability model. The dependent variable is the reach of player i at the end of the game. Confidence: ***↔ 99%, **↔
95%, *↔ 90%. Standard errors corrected for clustering at the session level.
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Table C11: Links and past behaviour of other players

Linkijr
(1) (2)

Max reach .176
(.01)∗∗

Min in-reach .044
(.351)

Max in-reach .163
(.003)∗∗∗

Min reach .162
(.001)∗∗∗

Most popular player .076 .075
(.012)∗∗ (.065)∗

Played according to max rule in round 1 .028 .013
(.477) (.723)

Played according to Rawlsian rule in round 1 .036 -.091
(.549) (.218)

Played according to most chosen player rule in round 1 -.026 -.007
(.602) (.849)

Const. .069 .123
(.294) (.072)∗

Obs. 600 630
Sample T1 T2
Cluster N 20 21
Linear probability model. The dependent variable is a dummy which takes a value of one if player i connects to player j. Only
round two observations are used for estimation. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors corrected for

clustering at the session level.
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Table C12: Choosing in-group links

In-group link
(1) (2)

Identity session .117 .046
(.055)∗∗ (.056)

Const. .282 .268
(.037)∗∗∗ (.033)∗∗∗

Obs. 438 447
Sample T1 T2
Cluster N 40 41
Linear Probability Model. The dependent variable takes the value of 1 if the subject links with an in-group partner. Decisions
taken in the first turn of the first round are not included in the sample. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard

errors clustered at the session level reported in parentheses.

Table C13: Choosing ‘max’ links

Max link
(1) (2)

Identity session -.0003 -.080
(.065) (.062)

Const. .473 .519
(.044)∗∗∗ (.045)∗∗∗

Obs. 438 447
Sample T1 T2
Cluster N 40 41
Linear Probability Model. The dependent variable takes the value of 1 if the subject links with a player with the maximum reach

(in T1) and maximum in-reach (in T2). Decisions taken in the first turn of the first round are not included in the sample.
Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.

Table C14: Choosing ‘Rawlsian’ links

Rawlsian link
(1) (2)

Identity session -.013 -.038
(.055) (.055)

Const. .600 .649
(.033)∗∗∗ (.036)∗∗∗

Obs. 438 447
Sample T1 T2
Cluster N 40 41

Linear Probability Model. he dependent variable takes the value of 1 if the subject links with a player with the minimum
in-reach (in T1) and minimum reach (in T2). Decisions taken in the first turn of the first round are not included in the

sample.Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.
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Table C15: Choosing in-group links
Restricted sample

In-group link
(1) (2)

Identity session .139 .053
(.066)∗∗ (.079)

Const. .298 .242
(.048)∗∗∗ (.051)∗∗∗

Obs. 207 215
Sample T1 T2
Cluster N 40 41

Linear Probability Model. The dependent variable takes the value of 1 if the subject links with an in-group partner. Sample
restricted to ‘max’ links. Decisions taken in the first turn of the first round are not included in the sample. Confidence: ***↔

99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses.
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Table C16: In-group links and player characteristics in T1

In-group link
(1) (2) (3)

Identity session .095 .133 -.014
(.073) (.077)∗ (.115)

Bias in allocation task .002
(.084)

Bias * Identity session .044
(.124)

In-group norm .055
(.080)

In-group norm * Identity session -.027
(.097)

In-group norm expectation -.014
(.024)

Norm expectation * Identity session .040
(.032)

Const. .281 .250 .333
(.051)∗∗∗ (.067)∗∗∗ (.098)∗∗∗

Obs. 438 437 435
Sample T1 T1 T1
Cluster N 40 40 40

Linear Probability Model. The dependent variable takes the value of 1 if the subject links with an in-group partner. “Bias in
allocation task" is a dummy equal to one if in the allocation task the player has allocated more than half of the endowment to the

in-group partner. “in-group norm" is a dummy equal to one if the player agrees with the in-group norm. “in-group norm
expectation" reports the number of players that the subject expects to agree with the in-group norm. Decisions taken in the first
turn of the first round are not included in the sample. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at

the session level reported in parentheses.
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Table C17: In-group links and player characteristics in T2

In-group link
(1) (2) (3)

Identity session .014 .001 -.080
(.080) (.073) (.133)

Bias in allocation task -.015
(.074)

Bias * Identity session .054
(.111)

In-group norm -.011
(.082)

In-group norm * Identity session .083
(.103)

In-group norm expectation -.032
(.021)

Norm expectation * Identity session .034
(.040)

Const. .278 .275 .387
(.057)∗∗∗ (.056)∗∗∗ (.076)∗∗∗

Obs. 447 447 440
Sample T2 T2 T2
Cluster N 41 41 41

Linear Probability Model. The dependent variable takes the value of 1 if the subject links with an in-group partner. “Bias in
allocation task" is a dummy equal to one if in the allocation task the player has allocated more than half of the endowment to the

in-group partner. “in-group norm" is a dummy equal to one if the player agrees with the in-group norm. “in-group norm
expectation" reports the number of players that the subject expects to agree with the in-group norm. Decisions taken in the first
turn of the first round are not included in the sample. Confidence: ***↔ 99%, **↔ 95%, *↔ 90%. Standard errors clustered at

the session level reported in parentheses.
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Table C18: Strategies and comprehension

Max Rawlsian Reciprocal Most Popular In-group
(1) (2) (3) (4) (5)

Comprehension .018 .007 .007 -.009 .009
(.018) (.017) (.010) (.013) (.016)
[.697] [.697] [.697] [.697] [.697]

Const. .467 .609 .100 .370 .310
(.024)∗∗∗ (.022)∗∗∗ (.012)∗∗∗ (.016)∗∗∗ (.022)∗∗∗

Obs. 885 885 885 885 885
Sample Full Full Full Full Full
Cluster N 81 81 81 81 81

Linear Probability Model. The dependent variable takes the value of 1 if the link is consistent with the link-formation rule
indicated in the heading. Decisions taken in the first turn of the first round are not included in the sample. Confidence: ***↔
99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses. False-discovery-rate q-values

reported in brackets (Benjamini et al., 2006).
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Table C19: Strategies and comprehension in T1 AND T2 sessions

Max Rawlsian Reciprocal Most Popular In-group
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Comprehension .036 .017 .018 .021 .004 .006 -.010 -.020 -.033 .028
(.019)∗ (.028) (.024) (.024) (.016) (.014) (.021) (.020) (.027) (.026)
[.31] [.677] [.78] [.657] [.782] [.677] [.782] [.657] [.52] [.657]

Const. .433 .481 .574 .631 .107 .096 .381 .360 .377 .291
(.033)∗∗∗ (.031)∗∗∗ (.034)∗∗∗ (.027)∗∗∗ (.022)∗∗∗ (.017)∗∗∗ (.030)∗∗∗ (.021)∗∗∗ (.044)∗∗∗ (.028)∗∗∗

Obs. 438 447 438 447 438 447 438 447 438 447
Sample T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
Cluster N 40 41 40 41 40 41 40 41 40 41

Linear Probability Model. The dependent variable takes the value of 1 if the link is consistent with the link-formation rule
indicated in the heading. Decisions taken in the first turn of the first round are not included in the sample. Confidence: ***↔
99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses. False-discovery-rate q-values

reported in brackets (calculated separately for the T1 regressions and the T2 regressions) (Benjamini et al., 2006).
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Table C20: Strategies and comprehension in T1 sessions, by identity treatment

Max Rawlsian Reciprocal Most Popular In-group
(1) (2) (3) (4) (5)

Identity -.018 -.040 -.089 .117 .109
(.070) (.076) (.045)∗∗ (.051)∗∗ (.085)

Comprehension * identity session = 0 .023 -1.25e-09 -.040 .041 -.030
(.034) (.047) (.025) (.028) (.035)
[.628] [1] [.343] [.343] [.628]

Comprehension * identity session = 1 .044 .027 .028 -.036 -.027
(.025)∗ (.029) (.018) (.027) (.035)
[.305] [.444] [.305] [.309] [.444]

Const. .446 .600 .167 .305 .318
(.056)∗∗∗ (.063)∗∗∗ (.041)∗∗∗ (.032)∗∗∗ (.061)∗∗∗

Obs. 438 438 438 438 438
Sample T1 T1 T1 T1 T1
Cluster N 40 40 40 40 40

Linear Probability Model. The dependent variable takes the value of 1 if the link is consistent with the link-formation rule
indicated in the heading. Decisions taken in the first turn of the first round are not included in the sample. Confidence: ***↔
99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses. False-discovery-rate q-values

reported in brackets (Benjamini et al., 2006).

A.39



Table C21: Strategies and comprehension in T2, by identity treatment

Max Rawlsian Reciprocal Most Popular In-group
(1) (2) (3) (4) (5)

Identity -.076 -.035 -.006 -.002 .053
(.062) (.054) (.033) (.044) (.056)

Comprehension * identity session = 0 -.001 .023 .019 -.027 .019
(.038) (.037) (.020) (.030) (.029)
[.977] [.675] [.675] [.675] [.675]

Comprehension * identity session = 1 .028 .014 -.008 -.012 .043
(.040) (.029) (.019) (.027) (.042)
[.668] [.668] [.668] [.668] [.668]

Const. .520 .647 .098 .362 .267
(.046)∗∗∗ (.036)∗∗∗ (.025)∗∗∗ (.029)∗∗∗ (.033)∗∗∗

Obs. 447 447 447 447 447
Sample T2 T2 T2 T2 T2
Cluster N 41 41 41 41 41

Linear Probability Model. The dependent variable takes the value of 1 if the link is consistent with the link-formation rule
indicated in the heading. Decisions taken in the first turn of the first round are not included in the sample. Confidence: ***↔
99%, **↔ 95%, *↔ 90%. Standard errors clustered at the session level reported in parentheses. False-discovery-rate q-values

reported in brackets (Benjamini et al., 2006).
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